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Abstract. We study two variants of measures of non-compactness of oper-
ators associated to a Banach operator ideal in the sense of Pietsch. These
measures are motivated by the notions of surjective-ideal-compactness and
injective-ideal-compactness, defined respectively by Carl and Stephani and
by Stephani. Interpolation results on these measures in the cases of Banach
couples generated by a single Banach space are given. As an application,
we obtain interpolation theorems on p-compact operators and quasi p-nuclear
operators.

1. Introduction and background

Based on the well-known characterization given by Grothendieck [19] in 1955
(see also [26, p. 30]) for relatively compact sets in a Banach space X (K ⊂ X is
relatively compact if and only if K ⊂ {

∑∞
n=1 anxn; (an) ∈ B`1} for some sequence

(xn) ∈ c0(X)), Sinha and Karn [32, p. 19–20] introduced in 2002 a strengthened
form of compactness in Banach spaces. Namely, if 1 ≤ p ≤ ∞ (and p′ satisfies
that 1/p + 1/p′ = 1) a subset K in X is said to be relatively p-compact if and
only if K ⊂ p-co(xn) := {

∑∞
n=1 anxn; (an) ∈ B`p′} for some sequence (xn) ∈

`p(X), where the following conventions are understood: (an) ∈ Bc0 if p = 1,
and (xn) ∈ c0(X) when p = ∞. Thus, relatively compact sets may be referred
to as relatively ∞-compact sets. Note that p-co(xn) is a relatively compact set
when (xn) ∈ `p(X) and so relatively p-compact sets (1 ≤ p < ∞) are relatively
compact. If compact sets are viewed as ∞-compact sets, then every p-compact
set is a q-compact set, for 1 ≤ p < q ≤ ∞.

The definition of relatively p-compact set leads to the notion of p-compact
operator (in the sense of Sinha and Karn): a bounded linear operator T ∈ L(X,Y )
is called p-compact operator if T (BX) is a relatively p-compact set in Y . Let
Kp(X,Y ) := {T ∈ L(X,Y ); T is p-compact}. It is well-known that [Kp, kp] is
a Banach operator ideal (see [32, Theorem 4.2] and [13, Proposition 3.15]). This
kind of p-compactness for operators is different from the notion of p-compact
operator due to Fourie and Swart [17] and, independently, to Pietsch [29] (see
[28] and [1]).
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The relationships of the ideal Kp with other classical ideals were studied for
the first time in [32], where it is shown for T ∈ L(X,Y ) that (see [32, Proposition
5.3]):

- If T is p-compact, then T ∗ is p-summing.
- When T is p-nuclear, T ∗ is p-compact.
- If T ∗ is p-compact, then T is p-summing.

This study has been continued by Delgado, Piñeiro and Serrano in [13, Corol-
lary 3.4 and Proposition 3.8] proving that

T is p-compact if and only if T ∗ is quasi p-nuclear,

and

(1) T is quasi p-nuclear if and only if T ∗ is p-compact.

The isometric counterparts of each one of these characterizations were given in
[18, Theorem 2.8].

It is worth noting that the research of different properties (such as approxima-
tion, duality or factorization) in connection with p-compact sets and p-compact
operators, as well as certain extensions of this form of compactness, has at-
tracted the interest in the recent years (see, e.g., the articles [1], [2], [10], [13],
[14], [21], [28] and [30]). A more general approach based on the notions of sur-
jective A-compactness and injective A-compactness, defined respectively by Carl
and Stephani [5] and by Stephani [33], allows the study of some of these questions
under this wider framework (see [11], [12], [23] and [24] and references therein).
This approach is followed by Delgado and Piñeiro [12] when considering two mea-
sures of non-A-compactness of an operator, χA and nA, associated to a Banach
operator ideal A, which the authors use to provide a quantitative version of (1)
(see [12, Corollary 3.13]).

In this paper we investigate the measures χA and nA. As explained next,
the measure χA (respectively, nA) vanishes precisely on the class of surjectively
(respectively, injectively)A-compact operators. Let us note that, in the particular
case when A is chosen as the ideal of all bounded linear operators, each of these
measures characterizes compactness (or ∞-compactness) of an operator.

Before of giving the precise definition of the measures χA and nA, we recall
that (see for example [5, Sections 0 and 1] or [12, p. 98–99]) if A is an operator
ideal and X is a Banach space, a subset D ⊂ X is said to be A-bounded if
there is a Banach space Z and an operator S ∈ A(Z,X) such that D ⊂ S(BZ).
Analogously, D ⊂ X is called relatively A-compact, or simply A-compact (as in
[5]), if D ⊂ S(K) for some compact set K ⊂ Z. Clearly, the class of all L-
bounded sets in X is precisely the class of all bounded sets in X. Analogously,
if K stands for the ideal of compact operators, the class of all K-bounded sets
coincides with that of all relatively compact sets. On the other hand, the class
of L-compact sets coincides with the class of relatively compact sets in X.

The definition of surjectively A-compact operator (referred to simply as A-
compact operator in [5, Definition 2]), generalizes the notion of compact operator
and it is the natural: T ∈ L(X,Y ) is surjectively A-compact if maps every
bounded subset in X into an A-compact subset in Y . The class KA formed by all
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surjectively A-compact operators is a surjective operator ideal and KA = Asur◦K
(see [5, Theorem 2.1]).

When a Banach operator ideal [A, α] is considered, the notion ofA-compactness
can be expressed in a similar way to precompactness in a Banach space [5, The-
orem 3.1]: An A-bounded set D ⊂ X is A-compact if and only if for every
ε > 0, there are finitely many elements x1, . . . , xn ∈ X, a Banach space Z and
an operator S ∈ A(Z,X), with α(S) ≤ ε, such that

D ⊂
n⋃
k=1

{xk + S(BZ)} .

If T ∈ Asur(X,Y ) (equivalently T (BX) is A-bounded) is not surjectively A-
compact, it is natural to wonder about the distance between T and KA(X,Y ).
From the aforementioned characterization of the A-compactness, Delgado and
Piñeiro [12, Definitions 2.4 and 3.1] introduced the (outer) measure χA of non-
A-compactness. Namely, for T ∈ Asur(X,Y ),

χA(T ) := inf
{
ε > 0; T (BX) ⊂

n⋃
k=1

{yk + S(BZ)}
}
,

where the infimum is taken over all possible y1, . . . , yn ∈ Y , Banach spaces Z and
operators S ∈ A(Z, Y ) with α(S) ≤ ε. Note that T ∈ Asur(X,Y ) ensures that in
the above definition the infimum is taken on a nonempty set of positive numbers.

In addition, we remark that χA(T ) = limn en(T,A), where en(T,A) stands
for the generalized (outer) entropy number, introduced by Carl and Stephani
[5, Section 4]. Clearly, if A = L, then the measure χL coincides with the (ball)
measure of non-compactness of an operator. Let us also note that T ∈ Asur(X,Y )
is surjectively A-compact if and only if χA(T ) = 0.

Moreover, in [12, Remark 3.3] it is shown that χA is a different notion from
the (outer) measure γA related to an operator ideal A, defined by Astala [3] in
1980:

γA(T ) := inf {ε > 0; T (BX) ⊂ εBY + S(BZ),

for some Banach space Z and operator S ∈ A(Z, Y )} .

Next we focus on the definition of the another function associated to a Banach
operator ideal, nA, considered in [12]. Now the aim is to quantify in some sense
the degree of inyective non-A-compactness of an operator of the injective hull
Ainj . First we recall that, given an operator ideal A, an operator T ∈ L(X,Y ) is
said to be injectively A-compact if there exist a Banach space Z, a sequence (z∗n) ∈
c0(Z∗) and an operator S ∈ Ainj(X,Z) such that ‖Tx‖Y ≤ supn∈N |〈z∗n, Sx〉| for
any x ∈ X (see [33, Section 1]). By the well-known characterization which
says that T ∈ L(X,Y ) is compact if and only if there is (x∗n) ∈ c0(X∗) such
that ‖Tx‖Y ≤ supn∈N |〈x∗n, x〉| for all x ∈ X, it follows that if A = L, the
preceding concept coincides with the notion of compact operator. The class HA
of all injectively A-compact operators is an injective operator ideal and it can be
described in terms of Ainj as HA = K ◦ Ainj (see [33, Theorem 1.1(b)]).

On the other hand, when we consider a Banach operator ideal [A, α], the follow-
ing characterization for injectively A-compact operators holds (see [12, Theorem
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3.9]): An operator T ∈ L(X,Y ) is injectively A-compact if and only if for every
ε > 0, there are x∗1, . . . , x

∗
n ∈ X∗, a Banach space Z and an operator S ∈ A(X,Z),

with α(S) ≤ ε, such that

‖Tx‖Y ≤ sup
1≤k≤n

|〈x∗k, x〉|+ ‖Sx‖Z , x ∈ X .

The definition of the (inner) measure nA of non-A-compactness is based on
this last fact (see [12, Definition 3.10]): for T ∈ Ainj(X,Y ), it is defined

nA(T ) := inf
{
ε > 0 ; ‖Tx‖Y ≤ sup

1≤k≤n
|〈x∗k, x〉|+ ‖Sx‖Z , x ∈ X

}
,

where the infimum is taken over all choices of finitely many x∗1, . . . , x
∗
n ∈ X∗,

Banach spaces Z and operators S ∈ A(X,Z) with α(S) ≤ ε. The condition
T ∈ Ainj(X,Y ) ensures that this infimum is taken over a nonempty set of positive
numbers.

We note that nA(T ) = limn cn(T,A), where cn(T,A) denotes the generalized
Gelfand number defined by Stephani [33, Section 4]. Then, when in particular
A = L, nL coincides with the seminorm ‖ · ‖m studied by Lebow and Schechter
[25], and so χL(T )/2 ≤ nL(T ) ≤ 2χL(T ) (see [25, Theorem 3.1]). Observe that
T ∈ Ainj(X,Y ) is injectively A-compact if and only if nA(T ) = 0.

In [12, Remark 3.11] it is shown that nA is not the same concept that the
(inner) measure βA related to an operator ideal A, introduced by Tylli [35] in
1995:

βA(T ) := inf {ε > 0; there are a Banach space Z and an operator S ∈ A(X,Z)

such that ‖Tx‖Y ≤ ε‖x‖X + ‖Sx‖Z , for any x ∈ X} .
Using [5, Theorem 2.1] and the surjectivity of the dual ideal of the ideal Πp of

p-summing operators, it holds that KΠd
p = Πd

p ◦ K. Since also Kp = Πd
p ◦ K (see

for example [1, Corollary 4.9]), it follows that KΠd
p = Kp. Then, we have

T is p-compact ⇐⇒ T is surjectively Πd
p-compact ⇐⇒ χΠd

p
(T ) = 0 .

Analogously, as a consequence of [33, Theorem 1.1(b)] and the injectivity of
the ideal Πp, it holds that HΠp = K ◦ Πp. Moreover QNp = K ◦ Πp (see [33, p.
255]) and so HΠp = QNp. Therefore,

T is quasi p-nuclear ⇐⇒ T is injectively Πp-compact ⇐⇒ nΠp(T ) = 0 .

We finish this section pointing out that these facts and [12, Corollary 3.13],
where it is proved that

nΠp(T ) = χΠd
p
(T ∗) for T ∈ Πp(X,Y ) ,

allow Delgado and Piñeiro to obtain a quantitative version of (1).
As we have mentioned before, our aim is the study of the measures χA and nA.

We do this after this introduction and the preliminary Section 2. On a hand, in
Section 3 we establish results on different properties of χA and nA which extend
that known about them in [12]. On the other hand, in Section 4 we investigate the
behaviour under interpolation of these measures of non-A-compactness. As far
as we know there is no result in the literature in this sense. As a consequence of
our interpolation formulas for χA and nA, we establish results on interpolation of
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surjective A-compactness and injective A-compactness, for an arbitrary Banach
operator ideal A, in the cases in which one of the Banach couples reduces to
a single Banach space. In particular, we deduce interpolation theorems on p-
compact operators and quasi p-nuclear operators.

2. Notation and basic definitions

Throughout the paper we will use standard notation. Given a Banach space
X, we denote the closed unit ball of X by BX and the dual space of X by
X∗. If X and Y are Banach spaces, L(X,Y ) stands for the Banach space of
all bounded linear operators T from X into Y equipped with the operator norm
‖T‖ = supx∈BX

‖Tx‖.
Let `1(BX) be the Banach space of all absolutely summable families of scalars

(λx) indexed by elements of BX . We denote by QX : `1(BX) → X the met-
ric surjection defined by QX(λx)x∈BX

:=
∑

x∈BX
λxx. On the other hand, let

`∞(BX∗) be the Banach space of all bounded families of scalars indexed by el-
ements of BX∗ . By JX : X → `∞(BX∗) we mean the metric injection given by
JXx := (〈x∗, x〉)x∗∈BX∗ .

Given two Banach spaces Z0 and Z1, let (Z0⊕Z1)∞ (resp., (Z0⊕Z1)1) be the
direct sum of the Banach spaces Z0 and Z1 endowed with the norm ‖(z0, z1)‖ =
max{‖z0‖Z0 , ‖z1‖Z1} (resp., ‖(z0, z1)‖ = ‖z0‖Z0 + ‖z1‖Z1), for (z0, z1) ∈ Z0 ×Z1.

An operator ideal A is defined as a method of ascribing to each pair of Ba-
nach spaces (X,Y ) a linear subspace A(X,Y ) of L(X,Y ) such that the following
properties are satisfied:

(I1) The operator x∗ ⊗ y := 〈x∗, ·〉y ∈ A(X,Y ), for any x∗ ∈ X∗, y ∈ Y ;
(I2) If S ∈ L(U,X), T ∈ A(X,Y ) and R ∈ L(Y, V ), then R ◦T ◦S ∈ A(U, V ).

If in addition, for every (X,Y ), the space A(X,Y ) is supplied with a norm α
in such a way that:

(N1) α(x∗ ⊗ y) = ‖x∗‖ · ‖y‖, for all x∗ ∈ X∗, y ∈ Y ;
(N2) α(R ◦ T ◦ S) ≤ ‖R‖ · α(T ) · ‖S‖, whenever U and V are Banach spaces

and S ∈ L(U,X), T ∈ A(X,Y ) and R ∈ L(Y, V );
(N3) (A(X,Y ), α) is a Banach space;

then [A, α] is called a Banach operator ideal. Familiar examples of Banach oper-
ator ideals are the ideals [L, ‖ · ‖] of all bounded linear operators, [K, ‖ · ‖] of all
compact operators and [W, ‖ · ‖] of all weakly compact operators, where ‖ · ‖ is
the usual operator norm.

As usual Ad stands for the dual ideal of an operator ideal A, that is Ad(X,Y ) =
{T ∈ L(X,Y ); T ∗ ∈ A(Y ∗, X∗)}. If [A, α] is a Banach operator ideal, [Ad, αd]
becomes a Banach operator ideal, with αd(T ) := α(T ∗) for T ∈ Ad(X,Y ).

We also recall that an operator ideal A is said to be surjective whenever A =
Asur, where Asur is the (surjective hull) ideal whose components are

Asur(X,Y ) := {T ∈ L(X,Y ); T (BX) ⊂ S(BZ), S ∈ A(Z, Y )} .

Analogously, an operator ideal A is called injective when A = Ainj , where Ainj
is the (injective hull) ideal whose components are

Ainj(X,Y ) := {T ∈ L(X,Y ); ‖Tx‖Y ≤ ‖Sx‖Z for x ∈ X, S ∈ A(X,Z)} .
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For a Banach operator ideal [A, α] it holds that [Asur, αsur] and [Ainj , αinj ] are
also Banach operator ideals, where αsur(T ) := inf{α(S); T (BX) ⊂ S(BZ), S ∈
A(Z, Y )} = α(T ◦QX) and αinj(T ) := inf{α(S); ‖Tx‖Y ≤ ‖Sx‖Z for x ∈ X, S ∈
A(X,Z)} = α(JY ◦ T ).

We conclude this section recalling the definition of two classes of operators
that are important in this paper, such as the ideal Πp of p-summing operators
and the ideal QNp of quasi p-nuclear operators. Given 1 ≤ p < ∞, an operator
T ∈ L(X,Y ) is a p-summing if T maps weakly p-summable sequences in X
into p-summable sequences in Y (for the theory of p-summing operators, we
refer to [15, Chapter 2]). On the other hand, T ∈ L(X,Y ) is called quasi p-
nuclear, 1 ≤ p <∞, if there exists a sequence (x∗n) ∈ `p(X∗) such that ‖Tx‖Y ≤(∑∞

n=1 |〈x∗n, x〉|p
)1/p

, for any x ∈ X (see for example [13, p. 293]).
An exhaustive study of operator theory can be carried out in the classical

books [15], [20] and [29]. We refer to these monographs for wide information, in

particular, about the Banach operator ideals [Πp, πp] and [QNp, νQp ].

3. Some properties of χA and nA

In this section we prove several properties of χA and nA that complement those
studied in [12]. As we have pointed out in Section 1, χA and nA are different
from the measures γA and βA, defined by Astala [3] and Tylli [35] respectively.
However, they share certain similar properties (see [7] and references therein for
the main properties of γA and βA). For example, it is easy to check that if
T ∈ Asur(X,Y ) (resp., T ∈ Ainj(X,Y )), R ∈ L(Y, Y0) and S ∈ L(X0, X), then

χA(R ◦ T ◦ S) ≤ ‖R‖χA(T )‖S‖ (resp., nA(R ◦ T ◦ S) ≤ ‖R‖nA(T )‖S‖) .

The measures χA and nA are also submultiplicative.

Lemma 1. Let [A, α] be a Banach operator ideal.

(i) Assume that T ∈ Asur(X,Y ) and S ∈ Asur(Y,Z). Then,

χA(S ◦ T ) ≤ χA(S)χA(T ) .

(ii) Assume that T ∈ Ainj(X,Y ) and S ∈ Ainj(Y,Z). Then,

nA(S ◦ T ) ≤ nA(S)nA(T ) .

Proof. We just prove (ii) (part (i) has been established in [12, Proposition
3.5(6)]). Fix β > nA(T ). Then there exist x∗1, . . . , x

∗
m ∈ X∗, a Banach space H

and an operator P ∈ A(X,H), with α(P ) ≤ β, such that

‖Tx‖Y ≤ sup
1≤i≤m

|〈x∗i , x〉|+ ‖Px‖H , x ∈ X .

Similarly, let γ > nA(S), then there are y∗1, . . . , y
∗
n ∈ Y ∗, a Banach space K and

an operator Q ∈ A(Y,K), with α(Q) ≤ γ such that

‖Sy‖Z ≤ sup
1≤j≤n

|〈y∗j , y〉|+ ‖Qy‖K , y ∈ Y .
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Hence, for every x ∈ X,

‖STx‖Z ≤ sup
1≤j≤n

|〈y∗j , Tx〉|+ ‖QTx‖K ≤ sup
1≤j≤n

|〈T ∗y∗j , x〉|+ ‖Q‖‖Tx‖Y

≤ sup
1≤j≤n

|〈T ∗y∗j , x〉|+ ‖Q‖
[

sup
1≤i≤m

|〈x∗i , x〉|+ ‖Px‖H
]
.

Combining the above, we get

‖STx‖Z ≤ sup
1≤k≤r

|〈x̂∗k, x〉|+ ‖Φx‖H , x ∈ X ,

where x̂∗1, . . . , x̂
∗
r ∈ X∗ and Φ := ‖Q‖P ∈ A(X,H). Clearly, α(Φ) = ‖Q‖α(P ) ≤

α(Q)α(P ) and so nA(S ◦ T ) ≤ γβ. This yields

nA(S ◦ T ) ≤ nA(S)nA(T ).

�

Lemma 2. Let [A, α] be a Banach operator ideal and let X be a Banach space.

(i) If IdX ∈ Asur(X,X), then χA(IdX) = 0 if and only if X is finite dimen-
sional. In addition, χA(IdX) 6= 0 implies that χA(IdX) ≥ 1.

(ii) If IdX ∈ Ainj(X,X), then nA(IdX) = 0 if and only if X is finite dimen-
sional. In addition, nA(IdX) 6= 0 implies that nA(IdX) ≥ 1.

Proof. The statement (i) is given in [12, Proposition 3.5(7)]. To show (ii),
observe that nA(IdX) = 0 implies that IdX is injectively A-compact and therefore
it is compact. Thus, X is finite dimensional.

Now assume that X is finite dimensional. Then, IdX is a finite rank operator.
In particular, IdX belongs to the ideal of injectively A-compact operators, which
means that nA(IdX) = 0.

Finally note that if nA(IdX) > 0, by Lemma 1(ii), we obtain that

nA(IdX) = nA(IdX ◦ IdX) ≤ (nA(IdX))2 ,

which completes the proof. �

Remark 3. As a direct consequence of the definition of χA, for every metric
surjection q : X0 → X and T ∈ Asur(X,Y ), it follows that χA(T ) = χA(T ◦ q).
Analogously, for each metric injection j : Y → Y0 and T ∈ Ainj(X,Y ), it holds
that nA(T ) = nA(j ◦ T ).

The following minimal properties occur (similarly to those in [7, Section 2] for
the measures γA and βA). We include a proof for the sake of completeness.

Proposition 4. Let [A, α] be a Banach operator ideal.

(i) For any operator T ∈ Asur(X,Y ) one has

χA(JY ◦ T ) = min{χA(j ◦ T ); j : Y → Y0 a metric injection} .

(ii) For any operator T ∈ Ainj(X,Y ) one has

nA(T ◦QX) = min{nA(T ◦ q); q : X0 → X a metric surjection} .



8 A. MANZANO AND M. MASTY LO

Proof. (i) We claim that, for any metric injection j : Y → Y0, one has

χA(JY ◦ T ) ≤ χA(j ◦ T ) .

By the metric extension property of `∞(BY ∗), we can find an operator S ∈
L(Y0, `∞(BY ∗)) such that S ◦ ij(Y ) = JY ◦ j−1

|j(Y )
and ‖S‖ = ‖JY ◦ j−1

|j(Y )
‖, where

ij(Y ) is the inclusion of j(Y ) in Y0. Thus, we get

χA(JY ◦ T ) = χA(S ◦ ij(Y ) ◦ j ◦ T ) ≤ ‖S‖χA(j ◦ T ) = χA(j ◦ T )

and this proves our claim. Since the reverse inequality in the statement of (i) is
obvious, the proof is complete.

(ii) It is enough to establish nA(T ◦QX) ≤ nA(T ◦q), for each metric surjection
q : X0 → X. Let R : X0/Kerq → X be the isometric isomorphism induced by
q. If φKerq : X0 → X0/Kerq denotes the canonical quotient map, we have that
q = R ◦ φKerq. By the metric lifting property of `1(BX), for every ε > 0, there
exists an operator S ∈ L(`1(BX), X0) such that φKerq ◦ S = R−1 ◦ QX and
‖S‖ ≤ (1 + ε)‖R−1 ◦QX‖ = 1 + ε. Then,

nA(T ◦QX) = nA(T ◦R ◦ φKerq ◦ S) ≤ nA(T ◦ q ◦ S)

≤ nA(T ◦ q)‖S‖ ≤ (1 + ε)nA(T ◦ q) .

This implies that nA(T ◦QX) ≤ nA(T ◦ q) and the proof finishes. �

As it is pointed out in [12, p. 100], the following result follows straightaway
from [9, Proposition 5].

Proposition 5. Let [A, α] be a Banach operator ideal. Then, for any operator
T ∈ Asur(X,Y ) the following formula holds:

χA(T ) = inf{α(S); T (BX) ⊂ R(BF ) + S(BG)} ,

where the infimum is taken over all Banach spaces F and G and operators R ∈
KA(F, Y ) and S ∈ A(G, Y ).

In a similar fashion, we show a characterization of nA.

Proposition 6. Let [A, α] be a Banach operator ideal. Then for any operator
T ∈ Ainj(X,Y ) the following formula holds:

(2) nA(T ) = inf{α(S); ‖Tx‖Y ≤ ‖Rx‖F + ‖Sx‖G, for all x ∈ X} ,

where the infimum is taken over all Banach spaces F and G and operators R ∈
HA(X,F ) and S ∈ A(X,G).

Proof. Let rA(T ) denote the right-hand side of (2). If ε > rA(T ), then we can
find Banach spaces F and G and operators R ∈ HA(X,F ) and S ∈ A(X,G) with
α(S) ≤ ε, such that

‖Tx‖Y ≤ ‖Rx‖F + ‖Sx‖G, x ∈ X .

By [33, Theorem 1.1(c)], there exist a Banach space Z, a sequence (z∗n)n∈N ∈
c0(Z∗) and Q ∈ Ainj(X,Z) so that

‖Rx‖F ≤ sup
n∈N
|〈z∗n, Qx〉|, x ∈ X .
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Since Q ∈ Ainj(X,Z), there are a Banach space V and an operator P ∈ A(X,V )
with ‖Qx‖Z ≤ ‖Px‖V , for any x ∈ X. Moreover, given any δ > 0, there is n0 ∈ N
such that, for each n ≥ n0 and every x ∈ X, we have |〈z∗n, Qx〉| ≤ δ‖Qx‖Z . Hence

‖Rx‖F ≤ sup
n∈N
|〈z∗n, Qx〉| ≤ max

{
sup

1≤n≤n0

|〈z∗n, Qx〉|, δ‖Qx‖Z
}

≤ sup
1≤n≤n0

|〈z∗n, Qx〉|+ δ‖Px‖V .

Combining the above, we get

‖Tx‖Y ≤ sup
1≤n≤n0

|〈z∗n, Qx〉|+ ‖(δP )x‖V + ‖Sx‖G, x ∈ X .

If we define K := (V ⊕ G)1 and L := ψV ◦ (δP ) + ψG ◦ S, where ψV : V → K
and ψV : G→ K are the natural inclusions of V and G into K, respectively, it is
clear that α(L) ≤ δα(P ) + ε and

‖Tx‖Y ≤ sup
1≤n≤n0

|〈z∗n, Qx〉|+ ‖Lx‖K , x ∈ X .

This implies nA(T ) ≤ δα(P ) + ε and so nA(T ) ≤ rA(T ).
Now assume that ε > nA(T ). There are finitely many functionals x∗1, . . . , x

∗
n ∈

X∗, a Banach space Z and an operator S ∈ A(X,Z), with α(S) ≤ ε, such that

‖Tx‖Y ≤ sup
1≤k≤n

|〈x∗k, x〉|+ ‖Sx‖Z , x ∈ X .

The operator R : X → `n∞ defined by Rx := (〈x∗k, x〉)1≤k≤n has a finite rank, and

so R ∈ HA(X, `n∞), and also

‖Tx‖Y ≤ ‖Rx‖`n∞ + ‖Sx‖Z , x ∈ X .

This yields that rA(T ) ≤ nA(T ). �

Theorem 7. Let [A, α] be a Banach operator ideal.

(i) If T ∈ Ainj(X,Y ), then χA(JY ◦ T ) ≤ nA(T ) .
(ii) If T ∈ Asur(X,Y ), then nA(T ◦QX) ≤ χA(T ) .

Proof. (i) Fix ε > nA(T ). By Remark 3 one has that nA(T ) = nA(JY ◦T ), and
so we can find functionals x∗1, . . . , x

∗
n ∈ X∗, a Banach space Z and an operator

S ∈ A(X,Z), with α(S) ≤ ε, such that

‖JY Tx‖Y ≤ sup
1≤k≤n

|〈x∗k, x〉|+ ‖Sx‖Z , x ∈ X .

Put Z̃ = (`n∞ ⊕ Z)1 and let ψ`n∞ : `n∞ → Z̃ and ψZ : Z → Z̃ be the natural

inclusions of `n∞ and Z into Z̃. We define P : X → Z̃ as

P := ψ`n∞ ◦ S
n
∞ + ψZ ◦ S ,

where Sn∞ : X → `n∞ is given by Sn∞x := (〈x∗k, x〉)1≤k≤n. It is clear that

‖JY Tx‖Y ≤ ‖Px‖Z̃ , x ∈ X .

Then the operator R : P (X) → `∞(BY ∗) defined as Rv = JY Tx, if v = Px, has

norm less than or equal to 1. Let R denote the extension of R to P (X). By the
metric extension property of `∞(BY ∗), it follows that we can find an operator

R̃ ∈ L(Z̃, `∞(BY ∗)) with ‖R̃‖ = ‖R‖ ≤ 1, and R̃v = Rv if v ∈ P (X).
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Taking into account the definition of P , we get

JY (T (BX)) ⊂ R̃(P (BX)) ⊂ R̃
(
ψ`n∞(Sn∞(BX)) + ψZ(S(BX))

)
⊂ R̃(ψ`n∞(Sn∞(BX))) + R̃(ψZ(S(BX))) .

Since R̃ ◦ ψ`n∞ ◦ S
n
∞ is a finite rank operator, it holds that R̃ ◦ ψ`n∞ ◦ S

n
∞ ∈

KA(X, `∞(BY ∗)). On the other hand, R̃ ◦ ψZ ◦ S ∈ A(X, `∞(BY ∗)) with α(R̃ ◦
ψZ ◦S) ≤ ‖R̃◦ψZ‖α(S) ≤ ε. Proposition 5 allows to conclude that χA(JY ◦T ) ≤
nA(T ) and this completes the proof.

(ii) Suppose that ε > χA(T ). Using Remark 3 we have that χA(T ) = χA(T ◦
QX), and then there exist finitely many elements y1, . . . , yn ∈ Y , a Banach space
Z and an operator S ∈ A(Z, Y ), with α(S) ≤ ε, such that

(3) T (QX(B`1(BX))) ⊂
n⋃
k=1

{yk + S(BZ)} .

Let M = ([y1, . . . , yn], ‖ · ‖M ), where ‖ · ‖M := ‖ · ‖Y /max{‖y1‖Y , . . . , ‖yn‖Y }.
Consider Z̃ = (M ⊕ Z)∞ and let S̃ : Z̃ → Y be the operator defined as S̃ :=
iM ◦ IdM ◦ φM + S ◦ φZ , where iM : M → Y is the canonical embedding of M

into Y , and φM : Z̃ → M and φZ : Z̃ → Z are the natural projections of Z̃ onto
M and Z, respectively. By (3), we get

T (QX(B`1(BX))) ⊂ S̃(B
Z̃

) .

Then using the metric lifting property of `1(BX), namely [29, Lemma 8.5.4], for

any δ > 0 it is possible to construct R ∈ L(`1(BX), Z̃) such that T ◦QX = S̃ ◦R
and ‖R‖ ≤ 1 + δ. Hence

‖TQX(λx)‖Y = ‖S̃R(λx)‖Y ≤ ‖iM IdMφMR(λx)‖Y + ‖SφZR(λx)‖Y ,
for every (λx)x∈BX

∈ `1(BX). Since iM ◦ IdM ◦φM ◦R is a finite rank operator, it
follows that iM ◦ IdM ◦φM ◦R ∈ HA(`1(BX), Y ). On the other hand, S ◦φZ ◦R ∈
A(`1(BX), Y ) and α(S ◦ φZ ◦ R) ≤ α(S)‖φZ ◦ R‖ ≤ ε(1 + δ). From Proposition
6 we conclude that nA(T ◦QX) ≤ χA(T ). �

4. Interpolation formulas for χA and nA

A natural question is to study the behaviour under interpolation of charac-
teristics for operators acting between Banach spaces. In this section we show
interpolation estimates for both measures of non-A-compactness of operators, χA
and nA, associated to a Banach operator ideal A. We will use some techniques
inspired by the papers [6] and [8]. Before of establishing our results concerning
this matter, we recall some basic definitions on interpolation theory.

Let Ā = (A0, A1) be a Banach couple, that is, A0 and A1 are two Banach spaces
which are continuously embedded in some Hausdorff topological vector space.
The sum A0 + A1 and the intersection A0 ∩ A1 of A0 and A1 become Banach
spaces when endowed with the norms K(1, ·; Ā) and J(1, ·; Ā), respectively, where
the K- and J-functionals are defined, for t > 0, by

K(t, a) = K(t, a; Ā) := inf{‖a0‖A0 + t‖a1‖A1 ; a = a0 +a1, ai ∈ Ai}, a ∈ A0 +A1.

J(t, a) = J(t, a; Ā) := max{‖a‖A0 , t‖a‖A1}, a ∈ A0 ∩A1 .
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A Banach space A is called an intermediate space with respect to Ā = (A0, A1)
if A0 ∩ A1 ↪→ A ↪→ A0 + A1, where “↪→” means continuous inclusion. Given an
intermediate space A with respect to a couple Ā = (A0, A1), it is possible in
some sense to describe the “position” of A within the couple Ā by means of the
following functions:

ψA(t) = ψA(t; Ā) := sup{K(t, a); ‖a‖A = 1}
and

ρA(t) = ρA(t; Ā) := inf{J(t, a); a ∈ A0 ∩A1, ‖a‖A = 1} .
These functions are variants of functions studied, e.g., in [16], [27] and [31].
Clearly, the functions ψA(t) and ρA(t) are strictly positive and non-decreasing,
and the functions ψA(t)/t and ρA(t)/t are non-increasing.

Examples of intermediate spaces that will be relevant in this paper are the
spaces A◦i , that is, the closure of A0∩A1 in Ai endowed with the norm of Ai (i =
0, 1). Other important intermediate spaces are the Gagliardo completion A∼i of
Ai (i = 0, 1) in A0 +A1. The space A∼i consists of all those a ∈ A0 +A1 for which
there exists a sequence (an)n∈N of elements of Ai such that

(4) sup
n∈N
‖an‖Ai <∞ and lim

n→∞
‖a− an‖A0+A1 = 0 .

The norm in A∼i is given by

‖a‖A∼i = inf
{

sup
n∈N
‖an‖Ai ; (an)n∈N satisfies (4)

}
.

An intermediate space A with respect to Ā = (A0, A1) is called an interpolation
space if for any operator T : Ā→ Ā (that is, T is a bounded linear operator from
A0 + A1 into A0 + A1 whose restriction to each Ai defines a bounded operator
from Ai into Ai for i = 0, 1), the restriction T : A→ A is a bounded operator. In
that case, there is a constant C = C(A, Ā) such that

(5) ‖T‖A,A ≤ C‖T‖Ā,Ā, for all T : Ā→ Ā ,

where ‖T‖Ā,Ā := max{‖T‖A0,A0 , ‖T‖A1,A1}. We say that an intermediate space
A is a rank-one interpolation space if inequality (5) is fulfilled for all rank-one
operators T : Ā → Ā. In some papers (see [16] and [31]), rank-one interpolation
spaces are also referred to as partly interpolation spaces. An example of an inter-
mediate space with respect to the couple (L1, L∞) which is not an interpolation
space can be found in [22, p. 122]. Nevertheless, such a space is a rank-one
interpolation space because, according to [16] and [31], any space lying between
the Lorentz and the Marcinkiewicz spaces with the same fundamental function
is a rank-one interpolation space.

We also recall that an intermediate space A with respect to Ā = (A0, A1) is
said to be of class CK(θ; Ā), where 0 < θ < 1, if there is a constant C > 0 such
that, for all t > 0 and a ∈ A,

K(t, a) ≤ Ctθ‖a‖A .
Analogously, A is called of class CJ(θ; Ā), with 0 < θ < 1, if there exists a con-
stant C > 0 such that, for all t > 0 and a ∈ A0 ∩A1,

‖a‖A ≤ Ct−θJ(t, a) .
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An intermediate space A is said to be of class C(θ; Ā) whenever it is of class
CK(θ; Ā) and of class CJ(θ; Ā). The real interpolation space (A0, A1)θ,q and the
complex interpolation space (A0, A1)[θ] are important examples of spaces of class

C(θ; Ā).

Remark 8. If A is of class CK(θ; Ā), then

lim
t→0

ψA(t) = lim
t→∞

ψA(t)

t
= 0 .

On the other hand, if A is of class CJ(θ; Ā), then we get

lim
t→0

t

ρA(t)
= lim

t→∞

1

ρA(t)
= 0 .

We refer to the books [4], [34] for the fundamentals of interpolation theory,
and to the papers [6], [8] for further information about the functions ψA and ρA.

Theorem 9. Let [A, α] be a Banach operator ideal. Let X̄ = (X0, X1) be a
Banach couple and let Y be a Banach space. Assume that X is an intermediate
space with respect to X̄. For any T ∈ Asur(X0 +X1, Y ), we have the following:

(i) If χA(TX0,Y ) = 0,

χA(TX,Y ) ≤ χA(TX1,Y ) · lim
t→∞

ψX(t)

t
.

(ii) If χA(TX1,Y ) = 0,

χA(TX,Y ) ≤ χA(TX0,Y ) · lim
t→0

ψX(t) .

(iii) If χA(TXi,Y ) > 0 for i = 0, 1, then

χA(TX,Y ) ≤ 2χA(TX0,Y ) · ψX
(
χA(TX1,Y )

χA(TX0,Y )

)
.

Proof. Let εi > χA(TXi,Y ), i = 0, 1. There are finitely many elements yi1, . . . , y
i
ni
∈

Y , Banach spaces Zi and operators Si ∈ A(Zi, Y ), with α(Si) ≤ εi, such that

T (BXi) ⊂
ni⋃
k=1

{
yik + Si(BZi)

}
, i = 0, 1 .

Take ε > 0 and t > 0 arbitrarily. Given any x ∈ BX , since K(t, x) ≤ ψX(t), we
can find xi ∈ Xi such that x = x0 + x1 and

‖x0‖X0 + t‖x1‖X1 ≤ ψX(t) + ε ,

and so
‖xi‖Xi ≤ (ψX(t) + ε)t−i, i = 0, 1 .

Then,

T (BX) ⊂ (ψX(t) + ε)T (BX0) + (ψX(t) + ε)t−1T (BX1)

⊂
n0⋃
k=1

{
(ψX(t) + ε)y0

k + (ψX(t) + ε)S0(BZ0)
}

+

n1⋃
k=1

{
(ψX(t) + ε)t−1y1

k + (ψX(t) + ε)t−1S1(BZ1)
}
.
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Hence, we have a covering

T (BX) ⊂
n⋃
k=1

{
yk + S(BZ)

}
,

with y1, . . . , yn ∈ Y , Z = (Z0 ⊕ Z1)∞ and S : Z → Y the operator defined as

S(z0, z1) = (ψX(t) + ε)S0z0 + (ψX(t) + ε)t−1S1z1 ,

that is, S = (ψX(t) + ε)(S0 ◦ φ0) + (ψX(t) + ε)t−1(S1 ◦ φ1), where φi : Z → Zi is
the natural projection (i = 0, 1). Thus, S ∈ A(Z, Y ) and α(S) ≤ (ψX(t) + ε)ε0 +
(ψX(t)+ε)t−1ε1 = (ψX(t)+ε)(ε0 + t−1ε1). It gives that, for any ε > 0 and t > 0,

χA(TX,Y ) ≤ (ψX(t) + ε)(ε0 + t−1ε1) .

Therefore,

(6) χA(TX,Y ) ≤ ψX(t)
[
χA(TX0,Y ) + t−1χA(TX1,Y )

]
, t > 0 .

When χA(TXi,Y ) = 0 for i = 0 or i = 1, taking into account (6) and that
ψX(t)/t is non-increasing and ψX(t) is non-decreasing, we deduce (i) and (ii),
respectively. On the other hand, the case (iii) is obtained by choosing t :=
χA(TX1,Y )/χA(TX0,Y ) in (6). �

Remark 10. Writing down Theorem 9 for A = L, we obtain [6, Theorem 3.1],
and so (see Remark 8) we also deduce [4, Theorem 3.8.1(i)].

Corollary 11. Let [A, α] be a Banach operator ideal. Let X̄ = (X0, X1) be a
Banach couple and let Y be a Banach space. Assume that X is an intermediate
space with respect to X̄. Given T ∈ Asur(X0 +X1, Y ), it follows that T : X → Y
is a surjectively A-compact operator whenever one of the following assertions
holds:

� T : X0 → Y and T : X1 → Y are surjectively A-compact operators.

� T : X0 → Y is surjectively A-compact and limt→∞
ψX(t)
t = 0.

� T : X1 → Y is surjectively A-compact and limt→0 ψX(t) = 0.

As an application, we obtain results on interpolation of p-compact operators.
The next corollary is an example.

Corollary 12. Let 1 ≤ p < ∞. Let X̄ = (X0, X1) be a Banach couple and
let Y be a Banach space. Assume that T ∈ Πd

p(X0 + X1, Y ). When X is an

intermediate space of class CK(θ; X̄), 0 < θ < 1, then T : X → Y is a p-compact
operator if either T : X0 → Y or T : X1 → Y is p-compact.

The following result complements Theorem 9. Its first part states, in particular,
that if T : X0 → Y is a surjectively A-compact operator, then every rank-one
interpolation space X for which T : X → Y is not surjectively A-compact must
necessarily verify that X◦1 ↪→ X. The second part shows that the sufficient
conditions obtained in Theorem 9(i) are also necessary under a suitable additional
hypothesis on the Banach couple X̄, namely when X◦1 = X1 holds. The proof of
Theorem 13 can be established by means of similar arguments to those used in
the proofs of [6, Theorem 3.9 and Corollary 3.11]. For the sake of completeness,
we include the details.
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Theorem 13. Let [A, α] be a Banach operator ideal. Let X̄ = (X0, X1) be a
Banach couple and let Y be a Banach space. Suppose that T ∈ Asur(X0 +X1, Y )
and X is a rank-one interpolation space with respect to X̄. If T : X0 → Y is a
surjectively A-compact operator, then at least one of the following conditions is
fulfilled:

(i) T : X → Y is surjectively A-compact .
(ii) X◦1 ↪→ X .

Furthermore, if X◦1 = X1, the operator T : X → Y is surjectively A-compact if
and only if at least one of the next conditions holds:

(i’) T : X1 → Y is surjectively A-compact .

(ii’) limt→∞
ψX(t)
t = 0 .

Proof. By Theorem 9(i), we know that

χA(TX,Y ) ≤ χA(TX1,Y ) · lim
t→∞

ψX(t)

t
.

Then either χA(TX,Y ) = 0, equivalently T : X → Y is surjectively A-compact,

or χA(TX,Y ) > 0. In this latter case, we have that limt→∞
ψX(t)
t > 0 and so

X◦1 ↪→ X (see [6, Lemma 3.7(ii)]).
On the other hand, note that Theorem 9(i) ensures that either (i’) or (i”) is

sufficient to obtain that the operator T : X → Y is surjectively A-compact.
Now assume that X◦1 = X1 and T : X → Y is surjectively A-compact. If (i’) is
not true, that is, T : X1 → Y is not surjectively A-compact, it necessarily implies

that limt→∞
ψX(t)
t = 0. In other case X◦1 ↪→ X holds (see [6, Lemma 3.7(ii)])

and, since X◦1 = X1, the operator T : X1 → Y would be surjectively A-compact,
which is a contradiction. Analogously, if (ii’) does not hold, then X◦1 ↪→ X and
so T : X◦1 → Y is surjectively A-compact. Taking into account that X◦1 = X1, we
obtain that (i’) is fulfilled. �

Now we focus on the injective A-compactness and the measure nA.

Theorem 14. Let [A, α] be a Banach operator ideal. Let X be a Banach space
and let Ȳ = (Y0, Y1) be a Banach couple. Assume that Y is an intermediate space
with respect to Ȳ . For any T ∈ Ainj(X,Y0 ∩ Y1), we have the following:

(i) If nA(TX,Y0) = 0,

nA(TX,Y ) ≤ nA(TX,Y1) · lim
t→0

t

ρY (t)
.

(ii) If nA(TX,Y1) = 0,

nA(TX,Y ) ≤ nA(TX,Y0) · lim
t→∞

1

ρY (t)
.

(iii) If nA(TX,Yi) > 0 for i = 0, 1, then

nA(TX,Y ) ≤
2nA(TX,Y0)

ρ
(
nA(TX,Y0)/nA(TX,Y1)

) .
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Proof. Let εi > nA(TX,Yi), i = 0, 1. Then there exist finitely many functionals
f i1, . . . , f

i
ni
∈ X∗, Banach spaces Zi and operators Si ∈ A(X,Zi), with α(Si) ≤ εi,

such that for both i = 0 and i = 1, we have

‖Tx‖Yi ≤ sup
1≤k≤ni

|〈f ik, x〉|+ ‖Six‖Zi , x ∈ X .

Let t > 0. Put Z = (Z0 ⊕ Z1)1 and let S : X → Z be the operator given by

Sx =
1

ρY (t)
(S0x, tS1x) .

that is, S = 1
ρY (t)(ϕ0 ◦ S0) + t

ρY (t)(ϕ1 ◦ S1), where ϕi : Zi → Z is the natural

inclusion (i = 0, 1). Hence, S ∈ A(X,Z) and

α(S) ≤ ε0

ρY (t)
+

ε1t

ρY (t)
=

1

ρY (t)
(ε0 + tε1) .

Clearly, for each y ∈ Y0∩Y1, we have ‖y‖Y ≤ J(t, y)/ρY (t). Hence, for all x ∈ X,

‖Tx‖Y ≤
J(t, Tx)

ρY (t)
=

1

ρY (t)
max

{
‖Tx‖Y0 , t‖Tx‖Y1

}
≤ 1

ρY (t)
max
i=0,1

{
ti sup

1≤k≤ni

|〈f ik, x〉|+ ti‖Six‖Zi

}
≤ sup

1≤k≤ni,i=0,1

∣∣∣〈 ti

ρY (t)
f ik, x

〉∣∣∣+
1

ρY (t)
‖S0x‖Z0 +

t

ρY (t)
‖S1x‖Z1

= sup
1≤k≤ni,i=0,1

∣∣∣〈 ti

ρY (t)
f ik, x

〉∣∣∣+ ‖Sx‖Z .

This implies that, for any t > 0,

nA(TX,Y ) ≤ 1

ρY (t)
(ε0 + tε1) ,

and so

(7) nA(TX,Y ) ≤ 1

ρY (t)

[
nA(TX,Y0) + tnA(TX,Y1)

]
, t > 0 .

If nA(TX,Yi) = 0 for i = 0 or i = 1, replacing this information in (7) and
keeping in mind that t/ρY (t) is non-decreasing and 1/ρY (t) is non-increasing, the
statements (i) and (ii), respectively, are proved. When nA(TX,Yi) > 0 for i = 0, 1,
we conclude the proof by substituting in (7) the value t := nA(TX,Y0)/nA(TX,Y1).

�

Remark 15. As a consequence of Theorem 14, for the particular case A = L, we
have a similar estimate to that given in [6, Theorem 3.2], and thus (see Remark
8) we also recover [4, Theorem 3.8.1(ii)].

Corollary 16. Let [A, α] be a Banach operator ideal. Let X be a Banach space
and let Ȳ = (Y0, Y1) be a Banach couple. Assume that Y is an intermediate space
with respect to Ȳ . Given T ∈ Ainj(X,Y0 ∩ Y1), it follows that T : X → Y is an
injectively A-compact operator whenever one of the following assertions holds:

� T : X → Y0 and T : X → Y1 are injectively A-compact operators .
� T : X → Y0 is injectively A-compact and limt→0

t
ρY (t) = 0 .
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� T : X → Y1 is injectively A-compact and limt→∞
1

ρY (t) = 0 .

As a consequence, results on interpolation of quasi p-nuclear operators can be
obtained. An example of this is the next corollary.

Corollary 17. Let 1 ≤ p <∞. Let X be a Banach space and let Ȳ = (Y0, Y1) be
a Banach couple. Assume that T ∈ Πp(X,Y0 ∩ Y1). When Y is an intermediate
space of class CJ(θ; Ȳ ), 0 < θ < 1, then T : X → Y is a quasi p-nuclear operator
if either T : X → Y0 or T : X → Y1 is quasi p-nuclear.

We also establish an analogous result to Theorem 13 in the “dual” situation
(see now [6, Theorem 3.10 and Corollary 3.12] for the case of compact operators).
Namely, we show that if T : X → Y0 is an injectively A-compact operator, then
every rank-one interpolation space Y for which T : X → Y is not injectively A-
compact must necessarily satisfy that Y ↪→ Y ∼1 . Furthermore, it is proved that
the sufficient conditions obtained in Theorem 14(i) are also necessary under the
additional hypothesis Y ∼1 = Y1.

Theorem 18. Let [A, α] be a Banach operator ideal. Let X be a Banach space
and let Ȳ = (Y0, Y1) be a Banach couple. Suppose that T ∈ Ainj(X,Y0 ∩ Y1)
and Y is a rank-one interpolation space with respect to Ȳ . If T : X → Y0 is an
injectively A-compact operator, then at least one of the following conditions is
fulfilled:

(i) T : X → Y is injectively A-compact.
(ii) Y ↪→ Y ∼1 .

Moreover, if Y ∼1 = Y1, the operator T : X → Y is injectively A-compact if and
only if at least one of the next conditions holds:

(i’) T : X → Y1 is injectively A-compact.
(ii’) limt→0

t
ρY (t) = 0.

Proof. According to Theorem 14(i), whenever T : X → Y0 is injectively A-
compact, we have that

nA(TX,Y ) ≤ nA(TX,Y1) · lim
t→0

t

ρY (t)
.

Then either nA(TX,Y ) = 0, that is, T : X → Y is injectively A-compact, or
nA(TX,Y ) > 0. In this case, it must hold that limt→0

t
ρY (t) > 0 and in consequence

Y ↪→ Y ∼1 (see [6, Lemma 3.8(ii)]).
In addition, Theorem 14(i) guarantees that (i’), or (i”), is a sufficient condition

to obtain that the operator T : X → Y is injectively A-compact.
Now assume that Y ∼1 = Y1 and T : X → Y is injectively A-compact. If (i’) is
not fulfilled, equivalently T : X → Y1 is not injectively A-compact, it necessarily
follows that limt→0

t
ρY (t) = 0. If not, Y ↪→ Y ∼1 holds (see [6, Lemma 3.8(ii)]) and,

since Y ∼1 = Y1, the operator T : X → Y1 would be injectively A-compact, which
is a contradiction. On the other hand, if (ii’) does not hold, then Y ↪→ Y ∼1 and
so T : X → Y ∼1 is injectively A-compact. Due to Y ∼1 = Y1, (i’) is true. �

Next we establish interpolation formulas for the measure of T : X → Y in
terms of the measures of the restrictions T : X0 ∩X1 → Y and T : X0 +X1 → Y
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(respectively T : X → Y0 ∩ Y1 and T : X → Y0 + Y1), for T ∈ Asur(X0 + X1, Y )
(respectively T ∈ Ainj(X,Y0 ∩ Y1)). This is interesting, since sometimes the
known information about the operator only refers to such extreme restrictions.

Theorem 19. Let [A, α] be a Banach operator ideal. Let X̄ = (X0, X1) be a
Banach couple and let Y be a Banach space. Assume that X is an intermediate
space with respect to X̄. For every T ∈ Asur(X0+X1, Y ), the following statements
are true:

(i) When χA(TX0∩X1,Y ) = 0,

χA(TX,Y ) ≤ χA(TX0+X1,Y ) ·
(

lim
t→0

ψX(t) + lim
t→∞

ψX(t)

t

)
.

(ii) When χA(TX0∩X1,Y ) > 0,

χA(TX,Y ) ≤ 2

ψX
(
χA(TX0+X1,Y )/χA(TX0∩X1,Y )

)
1/χA(TX0∩X1,Y )

+

+
ψX

(
χA(TX0∩X1,Y )/χA(TX0+X1,Y )

)
1/χA(TX0+X1,Y )

 .

Proof. Given σ > χA(TX0∩X1,Y ), there are finitely many elements u1, . . . , um ∈
Y , a Banach space U and an operator R ∈ A(U, Y ), with α(R) ≤ σ, so that

(8) T (BX0∩X1) ⊂
m⋃
k=1

{
uk +R(BU )

}
.

On the other hand, if δ > χA(TX0+X1,Y ) we can find v1, . . . , vn ∈ Y , a Banach
space V and an operator S ∈ A(V, Y ), with α(S) ≤ δ, such that

(9) T (BX0+X1) ⊂
n⋃
k=1

{
vk + S(BV )

}
.

Let ε > 0 and 0 < t ≤ 1 arbitrarily. Define W := (U ⊕ V )∞ and P ∈ L(W,Y ) as

P (u, v) := (1 + ε)

(
ψX(t−1) +

ψX(t)

t

)
Ru+ (1 + ε)

(
ψX(t) +

ψX(t−1)

t−1

)
Sv ,

i.e., P = (1 + ε)
(
ψX(t−1) + ψX(t)

t

)
(R ◦φU ) + (1 + ε)

(
ψX(t) + ψX(t−1)

t−1

)
(S ◦φV ),

where φU : W → U and φV : W → V are the natural projections. Whence,
P ∈ A(W,Y ) and

α(P ) ≤ (1 + ε)
(
ψX(t−1) + ψX(t)/t

)
σ + (1 + ε)

(
ψX(t) + ψX(t−1)/t−1

)
δ .

Note that K(s, x) ≤ ψX(s)‖x‖X , for every x ∈ X and any s > 0. Then, given
x ∈ BX , there are decompositions of x as x = x0 + x1 = x′0 + x′1, with xi, x

′
i ∈

Xi (i = 0, 1), and

‖x0‖X0 + t‖x1‖X1 ≤ K(t, x) + εψX(t) ≤ (1 + ε)ψX(t) ,

‖x′0‖X0 + t−1‖x′1‖X1 ≤ K(t−1, x) + εψX(t−1) ≤ (1 + ε)ψX(t−1) .
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Thus,

(10) ‖xi‖Xi ≤ (1 + ε)ψX(t)/ti, ‖x′i‖Xi ≤ (1 + ε)ψX(t−1)/t−i, i = 0, 1 .

Now let x̂ := x′0 − x0 = x1 − x′1 ∈ X0 ∩X1. It follows from (10) and 0 < t ≤ 1
that

(11)

‖x̂‖X0∩X1 ≤ max{‖x0‖X0 + ‖x′0‖X0 , ‖x1‖X1 + ‖x′1‖X1}

≤ (1 + ε) max
{
ψX(t) + ψX(t−1), ψX(t)/t+ ψX(t−1)/t−1

}
≤ (1 + ε) max

{
ψX(t)/t+ ψX(t−1), ψX(t)/t+ ψX(t−1)

}
= (1 + ε)

(
ψX(t−1) + ψX(t)/t

)
and

(12) ‖x− x̂‖X0+X1 ≤ ‖x0‖X0 + ‖x′1‖X1 ≤ (1 + ε)
(
ψX(t) + ψX(t−1)/t−1

)
.

Using (11) and (12), we deduce that

BX ⊂ (1 + ε)

(
ψX(t−1) +

ψX(t)

t

)
BX0∩X1 + (1 + ε)

(
ψX(t) +

ψX(t−1)

t−1

)
BX0+X1 .

Keeping in mind (8) and (9), it follows that

T (BX) ⊂ (1 + ε)

(
ψX(t−1) +

ψX(t)

t

)
T (BX0∩X1)

+ (1 + ε)
(
ψX(t) +

ψX(t−1)

t−1

)
T (BX0+X1)

⊂
m⋃
k=1

{
(1 + ε)

(
ψX(t−1) +

ψX(t)

t

)
uk

+ (1 + ε)

(
ψX(t−1) +

ψX(t)

t

)
R(BU )

}
+

n⋃
k=1

{
(1 + ε)

(
ψX(t) +

ψX(t−1)

t−1

)
vk

+ (1 + ε)
(
ψX(t) +

ψX(t−1)

t−1

)
S(BV )

}
.

Therefore, there exist finitely many w1, . . . , wl ∈ Y such that

T (BX) ⊂
l⋃

k=1

{
wk + P (BW )

}
,

with P ∈ A(W,Y ) and

α(P ) ≤ (1 + ε)
(
ψX(t−1) + ψX(t)/t

)
σ + (1 + ε)

(
ψX(t) + ψX(t−1)/t−1

)
δ .

It implies that, for each 0 < t ≤ 1,

(13)

χA(TX,Y ) ≤
(
ψX(t−1) +

ψX(t)

t

)
χA(TX0∩X1,Y )

+
(
ψX(t) +

ψX(t−1)

t−1

)
χA(TX0+X1,Y ) .
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When χA(TX0∩X1,Y ) = 0, it follows that

χA(TX,Y ) ≤
(
ψX(t) +

ψX(t−1)

t−1

)
χA(TX0+X1,Y ) ,

and using that ψX(t) + ψX(t−1)
t−1 is non-decreasing, we have that

χA(TX,Y ) ≤ χA(TX0+X1,Y ) ·
(

lim
t→0

ψX(t) + lim
t→0

ψX(t−1)

t−1

)
= χA(TX0+X1,Y ) ·

(
lim
t→0

ψX(t) + lim
t→∞

ψX(t)

t

)
.

Now assume that χA(TX0∩X1,Y ) > 0. Since χA(TX0∩X1,Y ) ≤ χA(TX0+X1,Y ),

t :=
χA(TX0∩X1,Y )

χA(TX0+X1,Y )
≤ 1 .

Substituting this value in (13) yields that

χA(TX,Y ) ≤

ψX (χA(TX0+X1,Y )

χA(TX0∩X1,Y )

)
+
ψX

(
χA(TX0∩X1,Y )/χA(TX0+X1,Y )

)
χA(TX0∩X1,Y )/χA(TX0+X1,Y )

 ·
· χA(TX0∩X1,Y )

+

ψX (χA(TX0∩X1,Y )

χA(TX0+X1,Y )

)
+
ψX

(
χA(TX0+X1,Y )/χA(TX0∩X1,Y )

)
χA(TX0+X1,Y )/χA(TX0∩X1,Y )

 ·
· χA(TX0+X1,Y )

= 2

ψX
(
χA(TX0+X1,Y )/χA(TX0∩X1,Y )

)
1/χA(TX0∩X1,Y )

+

+
ψX

(
χA(TX0∩X1,Y )/χA(TX0+X1,Y )

)
1/χA(TX0+X1,Y )

 .

�

Corollary 20. Let [A, α] be a Banach operator ideal. Let X̄ = (X0, X1) be a
Banach couple and let Y be a Banach space. Assume that X is an intermediate
space with respect to X̄ and T ∈ Asur(X0 + X1, Y ). If T : X0 ∩ X1 → Y is
surjectively A-compact and

lim
t→0

ψX(t) = lim
t→∞

ψX(t)

t
= 0 ,

then T : X → Y is a surjectively A-compact operator.

Corollary 21. Let [A, α] be a Banach operator ideal. Let X̄ = (X0, X1) be a
Banach couple and let Y be a Banach space. Suppose X is of class CK(θ; X̄), 0 <
θ < 1. For T ∈ Asur(X0 + X1, Y ), it follows that T : X → Y is surjectively
A-compact if and only if T : X0 ∩X1 → Y is surjectively A-compact.
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Observe that the above corollaries, applied to the Banach operator ideal [A, α]
given by the dual ideal of p-summing operators, imply interpolation results on
p-compact operators. This fact motivates the study of the dual case and its
connections with the measure nA.

Theorem 22. Let [A, α] be a Banach operator ideal. Let X be a Banach space
and let Ȳ = (Y0, Y1) be a Banach couple. Assume that Y is an intermediate space
with respect to Ȳ . For every T ∈ Ainj(X,Y0 ∩ Y1), the following statements are
true:

(i) When nA(TX,Y0+Y1) = 0,

nA(TX,Y ) ≤ 2nA(TX,Y0∩Y1) ·
(

lim
t→0

t

ρY (t)
+ lim
t→∞

1

ρY (t)

)
.

(ii) When nA(TX,Y0+Y1) > 0,

nA(TX,Y ) ≤ 3

 nA(TX,Y0+Y1)

ρ
(
nA(TX,Y0+Y1)/nA(TX,Y0∩Y1)

)
+

nA(TX,Y0∩Y1)

ρ
(
nA(TX,Y0∩Y1)/nA(TX,Y0+Y1)

)
 .

Proof. Suppose σ > nA(TX,Y0+Y1). Then, there exist finitely many functionals
f∗1 , . . . , f

∗
m ∈ X∗, a Banach space H and an operator R ∈ A(X,H), with α(R) ≤

σ, so that

(14) ‖Tx‖Y0+Y1 ≤ sup
1≤k≤m

|〈f∗k , x〉|+ ‖Rx‖H , x ∈ X .

Moreover, if δ > nA(TX,Y0∩Y1), then there exist functionals g∗1, . . . , g
∗
n ∈ X∗,

a Banach space G and an operator S ∈ A(X,G), with α(S) ≤ δ, such that

(15) ‖Tx‖Y0∩Y1 ≤ sup
1≤k≤n

|〈g∗k, x〉|+ ‖Sx‖G, x ∈ X .

Take ε > 0 and t ≥ 1 arbitrarily. Let Z := (H ⊕G)1 and define P ∈ L(X,Z) by

Px :=

(
(1 + ε)

( 1

ρY (t−1)
+

t

ρY (t)

)
Rx, (2 + ε)

( t−1

ρY (t−1)
+

1

ρY (t)

)
Sx

)
.

Thus, P = (1+ε)
(

1
ρY (t−1)

+ t
ρY (t)

)
(ϕH◦R)+(2+ε)

(
t−1

ρY (t−1)
+ 1
ρY (t)

)
(ϕG◦S), where

ϕH : H → Z and ϕG : G → Z are the natural inclusions. Whence P ∈ A(X,Z)
and

α(P ) ≤ (1 + ε)

(
1

ρY (t−1)
+

t

ρY (t)

)
σ + (2 + ε)

(
t−1

ρY (t−1)
+

1

ρY (t)

)
δ .

On the other hand, for each x ∈ X, there is a decomposition of Tx as Tx = y0+y1,
with yi ∈ Yi and

‖yi‖Yi ≤ ‖y0‖Y0 + ‖y1‖Y1 ≤ (1 + ε)‖Tx‖Y0+Y1 , i = 0, 1 .(16)

By (16) and (14),

‖yi‖Yi ≤ (1 + ε) sup
1≤k≤m

|〈f∗k , x〉|+ (1 + ε)‖Rx‖H , i = 0, 1 .(17)
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Since yi ∈ Y0 ∩ Y1 (i = 0, 1), it follows from (16) that

‖yi‖Y1−i = ‖Tx− y1−i‖Y1−i ≤ ‖Tx‖Y1−i + ‖y1−i‖Y1−i

≤ ‖Tx‖Y0∩Y1 + (1 + ε)‖Tx‖Y0+Y1 ≤ (2 + ε)‖Tx‖Y0∩Y1 ,

for i = 0, 1. Using (15),

‖yi‖Y1−i ≤ (2 + ε) sup
1≤k≤n

|〈g∗k, x〉|+ (2 + ε)‖Sx‖G, i = 0, 1 .(18)

Observe that, for every y ∈ Y0 ∩ Y1 and for all s > 0, ‖y‖Y ≤ J(s, y)/ρY (s).
Thus, using (17) and (18), it follows that

‖Tx‖Y ≤ ‖y0‖Y + ‖y1‖Y ≤
J(t−1, y0)

ρY (t−1)
+
J(t, y1)

ρY (t)

≤ 1

ρY (t−1)
max

{
‖y0‖Y0 , t−1‖y0‖Y1

}
+

1

ρY (t)
max

{
‖y1‖Y0 , t‖y1‖Y1

}
≤ 1

ρY (t−1)
max

{
(1 + ε) sup

1≤k≤m
|〈f∗k , x〉|+ (1 + ε)‖Rx‖H ,

t−1
[
(2 + ε) sup

1≤k≤n
|〈g∗k, x〉|+ (2 + ε)‖Sx‖G

]}
+

1

ρY (t)
max

{
(2 + ε) sup

1≤k≤n
|〈g∗k, x〉|+ (2 + ε)‖Sx‖G,

t
[
(1 + ε) sup

1≤k≤m
|〈f∗k , x〉|+ (1 + ε)‖Rx‖H

]}
≤ max

{
(1 + ε)

1

ρY (t−1)
sup

1≤k≤m
|〈f∗k , x〉|, (2 + ε)

t−1

ρY (t−1)
sup

1≤k≤n
|〈g∗k, x〉|

}
+ (1 + ε)

1

ρY (t−1)
‖Rx‖H + (2 + ε)

t−1

ρY (t−1)
‖Sx‖G

+ max
{

(1 + ε)
t

ρY (t)
sup

1≤k≤m
|〈f∗k , x〉|, (2 + ε)

1

ρY (t)
sup

1≤k≤n
|〈g∗k, x〉|

}
+ (1 + ε)

t

ρY (t)
‖Rx‖H + (2 + ε)

1

ρY (t)
‖Sx‖G

≤ 2 max
{

(1 + ε)
( 1

ρY (t−1)
+

t

ρY (t)

)
sup

1≤k≤m
|〈f∗k , x〉|,

(2 + ε)
( t−1

ρY (t−1)
+

1

ρY (t)

)
sup

1≤k≤n
|〈g∗k, x〉|

}
+ (1 + ε)

( 1

ρY (t−1)
+

t

ρY (t)

)
‖Rx‖H + (2 + ε)

( t−1

ρY (t−1)
+

1

ρY (t)

)
‖Sx‖G,

and so

‖Tx‖Y ≤ sup
1≤k≤l

|〈h∗k, x〉|+ ‖Px‖Z ,

for certain functionals h∗1, . . . , h
∗
l ∈ X∗ and P ∈ A(X,Z), with

α(P ) ≤ (1 + ε)

(
1

ρY (t−1)
+

t

ρY (t)

)
σ + (2 + ε)

(
t−1

ρY (t−1)
+

1

ρY (t)

)
δ .
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Hence,

nA(TX,Y ) ≤ (1 + ε)
( 1

ρY (t−1)
+

t

ρY (t)

)
σ + (2 + ε)

( t−1

ρY (t−1)
+

1

ρY (t)

)
δ .

Thus, for any t ≥ 1,

(19)

nA(TX,Y ) ≤
( 1

ρY (t−1)
+

t

ρY (t)

)
nA(TX,Y0+Y1)

+ 2
( t−1

ρY (t−1)
+

1

ρY (t)

)
nA(TX,Y0∩Y1) .

If nA(TX,Y0+Y1) = 0, we obtain that

nA(TX,Y ) ≤ 2
( t−1

ρY (t−1)
+

1

ρY (t)

)
nA(TX,Y0∩Y1) ,

and keeping in mind that t−1

ρY (t−1)
+ 1

ρY (t) is non-increasing, we conclude that

nA(TX,Y ) ≤ 2nA(TX,Y0∩Y1) ·
(

lim
t→∞

t−1

ρY (t−1)
+ lim
t→∞

1

ρY (t)

)
= 2nA(TX,Y0∩Y1) ·

(
lim
t→0

t

ρY (t)
+ lim
t→∞

1

ρY (t)

)
.

On the other hand, if nA(TX,Y0+Y1) > 0, then nA(TX,Y0∩Y1) > 0 too, because
nA(TX,Y0+Y1) ≤ nA(TX,Y0∩Y1). Then, taking

t :=
nA(TX,Y0∩Y1)

nA(TX,Y0+Y1)
≥ 1

in (19), we deduce that

nA(TX,Y ) ≤

≤
nA(TX,Y0+Y1)

ρ
(
nA(TX,Y0+Y1)/nA(TX,Y0∩Y1)

) +
nA(TX,Y0∩Y1)

ρ
(
nA(TX,Y0∩Y1)/nA(TX,Y0+Y1)

)
+ 2

 nA(TX,Y0+Y1)

ρ
(
nA(TX,Y0+Y1)/nA(TX,Y0∩Y1)

) +
nA(TX,Y0∩Y1)

ρ
(
nA(TX,Y0∩Y1)/nA(TX,Y0+Y1)

)


= 3

 nA(TX,Y0+Y1)

ρ
(
nA(TX,Y0+Y1)/nA(TX,Y0∩Y1)

) +
nA(TX,Y0∩Y1)

ρ
(
nA(TX,Y0∩Y1)/nA(TX,Y0+Y1)

)
 .

�

We specify two particular cases stated in the following corollaries.

Corollary 23. Let [A, α] be a Banach operator ideal. Let X be a Banach space
and let Ȳ = (Y0, Y1) be a Banach couple. Assume that Y is an intermediate space
with respect to Ȳ and T ∈ Ainj(X,Y0 ∩ Y1). If T : X → Y0 + Y1 is injectively
A-compact and

lim
t→0

t

ρY (t)
= lim

t→∞

1

ρY (t)
= 0 ,

then T : X → Y is an injectively A-compact operator.
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Corollary 24. Let [A, α] be a Banach operator ideal. Let X be a Banach space
and let Ȳ = (Y0, Y1) be a Banach couple. Suppose Y is of class CJ(θ; Ȳ ), 0 < θ <
1. For T ∈ Ainj(X,Y0 ∩ Y1), it follows that T : X → Y is injectively A-compact
if and only if T : X → Y0 + Y1 is injectively A-compact.

Let us point out that if [A, α] is the Banach operator ideal of p-summing
operators, then the above corollaries yield interpolation results on quasi p-nuclear
operators.

We now observe that applying Corollaries 20 and 23 and [6, Lemmata 3.7
and 3.8], respectively, it is possible to establish results in the same line that [8,
Corollaries 3.11 and 3.10].

Corollary 25. Let [A, α] be a Banach operator ideal. Let X̄ = (X0, X1) be
a Banach couple and let Y be a Banach space. Suppose that T ∈ Asur(X0+X1, Y )
and X is a rank-one interpolation space with respect to X̄. If T : X0 ∩X1 → Y
is a surjectively A-compact operator, then at least one of the following conditions
is fulfilled:

(i) T : X → Y is surjectively A-compact.
(ii) X◦0 ↪→ X.

(iii) X◦1 ↪→ X.

Corollary 26. Let [A, α] be a Banach operator ideal. Let X be a Banach space
and let Ȳ = (Y0, Y1) be a Banach couple. Suppose that T ∈ Ainj(X,Y0 ∩ Y1) and
Y is a rank-one interpolation space with respect to Ȳ . If T : X → Y0 + Y1 is an
injectively A-compact operator, then at least one of the following conditions is
fulfilled:

(i) T : X → Y is injectively A-compact.
(ii) Y ↪→ Y ∼0 .
(iii) Y ↪→ Y ∼1 .
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Burgos, Escuela Politécnica Superior, Calle Villadiego s/n, 09001 Burgos. Spain.

E-mail address: amanzano@ubu.es

Mieczys law Masty lo, Faculty of Mathematics and Computer Science, Adam Mick-
iewicz University, Uniwersytetu Poznańskiego 4, 61-614 Poznań, Poland.
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