ON SOME MEASURES OF NON-COMPACTNESS ASSOCIATED TO BANACH OPERATOR IDEALS

ANTONIO MANZANO AND MIECZYSŁAW MASTYŁO

ABSTRACT. We study two variants of measures of non-compactness of operators associated to a Banach operator ideal in the sense of Pietsch. These measures are motivated by the notions of surjective-ideal-compactness and injective-ideal-compactness, defined respectively by Carl and Stephani and by Stephani. Interpolation results on these measures in the cases of Banach couples generated by a single Banach space are given. As an application, we obtain interpolation theorems on *p*-compact operators and quasi *p*-nuclear operators.

1. INTRODUCTION AND BACKGROUND

Based on the well-known characterization given by Grothendieck [19] in 1955 (see also [26, p. 30]) for relatively compact sets in a Banach space X ($K \subset X$ is relatively compact if and only if $K \subset \{\sum_{n=1}^{\infty} a_n x_n; (a_n) \in B_{\ell_1}\}$ for some sequence $(x_n) \in c_0(X)$), Sinha and Karn [32, p. 19–20] introduced in 2002 a strengthened form of compactness in Banach spaces. Namely, if $1 \leq p \leq \infty$ (and p' satisfies that 1/p + 1/p' = 1) a subset K in X is said to be relatively p-compact if and only if $K \subset p$ -co $(x_n) := \{\sum_{n=1}^{\infty} a_n x_n; (a_n) \in B_{\ell_p'}\}$ for some sequence $(x_n) \in$ $\ell_p(X)$, where the following conventions are understood: $(a_n) \in B_{c_0}$ if p = 1, and $(x_n) \in c_0(X)$ when $p = \infty$. Thus, relatively compact sets may be referred to as relatively ∞ -compact sets. Note that p-co (x_n) is a relatively compact set when $(x_n) \in \ell_p(X)$ and so relatively p-compact sets $(1 \leq p < \infty)$ are relatively compact. If compact sets are viewed as ∞ -compact sets, then every p-compact set is a q-compact set, for $1 \leq p < \infty$.

The definition of relatively *p*-compact set leads to the notion of *p*-compact operator (in the sense of Sinha and Karn): a bounded linear operator $T \in \mathcal{L}(X, Y)$ is called *p*-compact operator if $T(B_X)$ is a relatively *p*-compact set in *Y*. Let $\mathcal{K}_p(X,Y) := \{T \in \mathcal{L}(X,Y); T \text{ is } p\text{-compact}\}$. It is well-known that $[\mathcal{K}_p, k_p]$ is a Banach operator ideal (see [32, Theorem 4.2] and [13, Proposition 3.15]). This kind of *p*-compactness for operators is different from the notion of *p*-compact operator due to Fourie and Swart [17] and, independently, to Pietsch [29] (see [28] and [1]).

²⁰²⁰ Mathematics Subject Classification: 47B10, 46B70, 46B50

Key words and phrases: Banach operator ideal, measure of non-compactness, intermediate space, interpolation space, *p*-compact operator, quasi *p*-nuclear operator.

The first named author was supported by the Ministerio de Economía, Industria y Competitividad and FEDER under project MTM2017-84058-P. The second author was supported by the National Science Centre, Poland, Grant no. 2019/33/B/ST1/00165.

The relationships of the ideal \mathcal{K}_p with other classical ideals were studied for the first time in [32], where it is shown for $T \in \mathcal{L}(X, Y)$ that (see [32, Proposition 5.3]):

- If T is p-compact, then T^* is p-summing.

- When T is p-nuclear, T^* is p-compact.

- If T^* is *p*-compact, then *T* is *p*-summing.

This study has been continued by Delgado, Piñeiro and Serrano in [13, Corollary 3.4 and Proposition 3.8] proving that

T is p-compact if and only if T^* is quasi p-nuclear,

and

(1) T is quasi *p*-nuclear if and only if T^* is *p*-compact.

The isometric counterparts of each one of these characterizations were given in [18, Theorem 2.8].

It is worth noting that the research of different properties (such as approximation, duality or factorization) in connection with *p*-compact sets and *p*-compact operators, as well as certain extensions of this form of compactness, has attracted the interest in the recent years (see, e.g., the articles [1], [2], [10], [13], [14], [21], [28] and [30]). A more general approach based on the notions of surjective \mathcal{A} -compactness and injective \mathcal{A} -compactness, defined respectively by Carl and Stephani [5] and by Stephani [33], allows the study of some of these questions under this wider framework (see [11], [12], [23] and [24] and references therein). This approach is followed by Delgado and Piñeiro [12] when considering two measures of non- \mathcal{A} -compactness of an operator, $\chi_{\mathcal{A}}$ and $n_{\mathcal{A}}$, associated to a Banach operator ideal \mathcal{A} , which the authors use to provide a quantitative version of (1) (see [12, Corollary 3.13]).

In this paper we investigate the measures $\chi_{\mathcal{A}}$ and $n_{\mathcal{A}}$. As explained next, the measure $\chi_{\mathcal{A}}$ (respectively, $n_{\mathcal{A}}$) vanishes precisely on the class of surjectively (respectively, injectively) \mathcal{A} -compact operators. Let us note that, in the particular case when \mathcal{A} is chosen as the ideal of all bounded linear operators, each of these measures characterizes compactness (or ∞ -compactness) of an operator.

Before of giving the precise definition of the measures $\chi_{\mathcal{A}}$ and $n_{\mathcal{A}}$, we recall that (see for example [5, Sections 0 and 1] or [12, p. 98–99]) if \mathcal{A} is an operator ideal and X is a Banach space, a subset $D \subset X$ is said to be \mathcal{A} -bounded if there is a Banach space Z and an operator $S \in \mathcal{A}(Z, X)$ such that $D \subset S(B_Z)$. Analogously, $D \subset X$ is called *relatively* \mathcal{A} -compact, or simply \mathcal{A} -compact (as in [5]), if $D \subset S(K)$ for some compact set $K \subset Z$. Clearly, the class of all \mathcal{L} bounded sets in X is precisely the class of all bounded sets in X. Analogously, if \mathcal{K} stands for the ideal of compact operators, the class of all \mathcal{K} -bounded sets coincides with that of all relatively compact sets. On the other hand, the class of \mathcal{L} -compact sets coincides with the class of relatively compact sets in X.

The definition of surjectively \mathcal{A} -compact operator (referred to simply as \mathcal{A} -compact operator in [5, Definition 2]), generalizes the notion of compact operator and it is the natural: $T \in \mathcal{L}(X, Y)$ is surjectively \mathcal{A} -compact if maps every bounded subset in X into an \mathcal{A} -compact subset in Y. The class $\mathcal{K}^{\mathcal{A}}$ formed by all

 $\mathbf{2}$

surjectively \mathcal{A} -compact operators is a surjective operator ideal and $\mathcal{K}^{\mathcal{A}} = \mathcal{A}^{sur} \circ \mathcal{K}$ (see [5, Theorem 2.1]).

When a Banach operator ideal $[\mathcal{A}, \alpha]$ is considered, the notion of \mathcal{A} -compactness can be expressed in a similar way to precompactness in a Banach space [5, Theorem 3.1]: An \mathcal{A} -bounded set $D \subset X$ is \mathcal{A} -compact if and only if for every $\varepsilon > 0$, there are finitely many elements $x_1, \ldots, x_n \in X$, a Banach space Z and an operator $S \in \mathcal{A}(Z, X)$, with $\alpha(S) \leq \varepsilon$, such that

$$D \subset \bigcup_{k=1}^n \{x_k + S(B_Z)\}.$$

If $T \in \mathcal{A}^{sur}(X, Y)$ (equivalently $T(B_X)$ is \mathcal{A} -bounded) is not surjectively \mathcal{A} compact, it is natural to wonder about the distance between T and $\mathcal{K}^{\mathcal{A}}(X, Y)$. From the aforementioned characterization of the \mathcal{A} -compactness, Delgado and
Piñeiro [12, Definitions 2.4 and 3.1] introduced the *(outer) measure* $\chi_{\mathcal{A}}$ of non- \mathcal{A} -compactness. Namely, for $T \in \mathcal{A}^{sur}(X, Y)$,

$$\chi_{\mathcal{A}}(T) := \inf \left\{ \varepsilon > 0; \ T(B_X) \subset \bigcup_{k=1}^n \{ y_k + S(B_Z) \} \right\},$$

where the infimum is taken over all possible $y_1, \ldots, y_n \in Y$, Banach spaces Z and operators $S \in \mathcal{A}(Z, Y)$ with $\alpha(S) \leq \varepsilon$. Note that $T \in \mathcal{A}^{sur}(X, Y)$ ensures that in the above definition the infimum is taken on a nonempty set of positive numbers.

In addition, we remark that $\chi_{\mathcal{A}}(T) = \lim_{n \to \infty} e_n(T, \mathcal{A})$, where $e_n(T, \mathcal{A})$ stands for the generalized (outer) entropy number, introduced by Carl and Stephani [5, Section 4]. Clearly, if $\mathcal{A} = \mathcal{L}$, then the measure $\chi_{\mathcal{L}}$ coincides with the (ball) measure of non-compactness of an operator. Let us also note that $T \in \mathcal{A}^{sur}(X, Y)$ is surjectively \mathcal{A} -compact if and only if $\chi_{\mathcal{A}}(T) = 0$.

Moreover, in [12, Remark 3.3] it is shown that $\chi_{\mathcal{A}}$ is a different notion from the (*outer*) measure $\gamma_{\mathcal{A}}$ related to an operator ideal \mathcal{A} , defined by Astala [3] in 1980:

$$\gamma_{\mathcal{A}}(T) := \inf \{ \varepsilon > 0; \ T(B_X) \subset \varepsilon B_Y + S(B_Z),$$

for some Banach space Z and operator $S \in \mathcal{A}(Z, Y) \}$

Next we focus on the definition of the another function associated to a Banach operator ideal, $n_{\mathcal{A}}$, considered in [12]. Now the aim is to quantify in some sense the degree of inyective non- \mathcal{A} -compactness of an operator of the injective hull \mathcal{A}^{inj} . First we recall that, given an operator ideal \mathcal{A} , an operator $T \in \mathcal{L}(X, Y)$ is said to be *injectively* \mathcal{A} -compact if there exist a Banach space Z, a sequence $(z_n^*) \in$ $c_0(Z^*)$ and an operator $S \in \mathcal{A}^{inj}(X, Z)$ such that $||Tx||_Y \leq \sup_{n \in \mathbb{N}} |\langle z_n^*, Sx \rangle|$ for any $x \in X$ (see [33, Section 1]). By the well-known characterization which says that $T \in \mathcal{L}(X, Y)$ is compact if and only if there is $(x_n^*) \in c_0(X^*)$ such that $||Tx||_Y \leq \sup_{n \in \mathbb{N}} |\langle x_n^*, x \rangle|$ for all $x \in X$, it follows that if $\mathcal{A} = \mathcal{L}$, the preceding concept coincides with the notion of compact operator. The class $\mathcal{H}^{\mathcal{A}}$ of all injectively \mathcal{A} -compact operators is an injective operator ideal and it can be described in terms of \mathcal{A}^{inj} as $\mathcal{H}^{\mathcal{A}} = \mathcal{K} \circ \mathcal{A}^{inj}$ (see [33, Theorem 1.1(b)]).

On the other hand, when we consider a Banach operator ideal $[\mathcal{A}, \alpha]$, the following characterization for injectively \mathcal{A} -compact operators holds (see [12, Theorem 3.9]): An operator $T \in \mathcal{L}(X, Y)$ is injectively \mathcal{A} -compact if and only if for every $\varepsilon > 0$, there are $x_1^*, \ldots, x_n^* \in X^*$, a Banach space Z and an operator $S \in \mathcal{A}(X, Z)$, with $\alpha(S) \leq \varepsilon$, such that

$$||Tx||_Y \le \sup_{1 \le k \le n} |\langle x_k^*, x \rangle| + ||Sx||_Z, \quad x \in X$$

The definition of the (*inner*) measure $n_{\mathcal{A}}$ of non- \mathcal{A} -compactness is based on this last fact (see [12, Definition 3.10]): for $T \in \mathcal{A}^{inj}(X, Y)$, it is defined

$$n_{\mathcal{A}}(T) := \inf \left\{ \varepsilon > 0 \, ; \, \|Tx\|_{Y} \le \sup_{1 \le k \le n} |\langle x_{k}^{*}, x \rangle| + \|Sx\|_{Z}, \, x \in X \right\},$$

where the infimum is taken over all choices of finitely many $x_1^*, \ldots, x_n^* \in X^*$, Banach spaces Z and operators $S \in \mathcal{A}(X, Z)$ with $\alpha(S) \leq \varepsilon$. The condition $T \in \mathcal{A}^{inj}(X, Y)$ ensures that this infimum is taken over a nonempty set of positive numbers.

We note that $n_{\mathcal{A}}(T) = \lim_{n} c_n(T, \mathcal{A})$, where $c_n(T, \mathcal{A})$ denotes the generalized Gelfand number defined by Stephani [33, Section 4]. Then, when in particular $\mathcal{A} = \mathcal{L}$, $n_{\mathcal{L}}$ coincides with the seminorm $\|\cdot\|_m$ studied by Lebow and Schechter [25], and so $\chi_{\mathcal{L}}(T)/2 \leq n_{\mathcal{L}}(T) \leq 2\chi_{\mathcal{L}}(T)$ (see [25, Theorem 3.1]). Observe that $T \in \mathcal{A}^{inj}(X, Y)$ is injectively \mathcal{A} -compact if and only if $n_{\mathcal{A}}(T) = 0$.

In [12, Remark 3.11] it is shown that $n_{\mathcal{A}}$ is not the same concept that the *(inner) measure* $\beta_{\mathcal{A}}$ *related to an operator ideal* \mathcal{A} , introduced by Tylli [35] in 1995:

 $\beta_{\mathcal{A}}(T) := \inf \{ \varepsilon > 0; \text{ there are a Banach space } Z \text{ and an operator } S \in \mathcal{A}(X, Z)$ such that $\|Tx\|_Y \le \varepsilon \|x\|_X + \|Sx\|_Z$, for any $x \in X \}$.

Using [5, Theorem 2.1] and the surjectivity of the dual ideal of the ideal Π_p of p-summing operators, it holds that $\mathcal{K}^{\Pi_p^d} = \Pi_p^d \circ \mathcal{K}$. Since also $\mathcal{K}_p = \Pi_p^d \circ \mathcal{K}$ (see for example [1, Corollary 4.9]), it follows that $\mathcal{K}^{\Pi_p^d} = \mathcal{K}_p$. Then, we have

T is p-compact $\iff T$ is surjectively \prod_p^d -compact $\iff \chi_{\prod_p^d}(T) = 0$.

Analogously, as a consequence of [33, Theorem 1.1(b)] and the injectivity of the ideal Π_p , it holds that $\mathcal{H}^{\Pi_p} = \mathcal{K} \circ \Pi_p$. Moreover $\mathcal{QN}_p = \mathcal{K} \circ \Pi_p$ (see [33, p. 255]) and so $\mathcal{H}^{\Pi_p} = \mathcal{QN}_p$. Therefore,

T is quasi p-nuclear $\iff T$ is injectively \prod_p -compact $\iff n_{\prod_p}(T) = 0$.

We finish this section pointing out that these facts and [12, Corollary 3.13], where it is proved that

$$n_{\Pi_p}(T) = \chi_{\Pi_p^d}(T^*) \text{ for } T \in \Pi_p(X, Y),$$

allow Delgado and Piñeiro to obtain a quantitative version of (1).

As we have mentioned before, our aim is the study of the measures $\chi_{\mathcal{A}}$ and $n_{\mathcal{A}}$. We do this after this introduction and the preliminary Section 2. On a hand, in Section 3 we establish results on different properties of $\chi_{\mathcal{A}}$ and $n_{\mathcal{A}}$ which extend that known about them in [12]. On the other hand, in Section 4 we investigate the behaviour under interpolation of these measures of non- \mathcal{A} -compactness. As far as we know there is no result in the literature in this sense. As a consequence of our interpolation formulas for $\chi_{\mathcal{A}}$ and $n_{\mathcal{A}}$, we establish results on interpolation of surjective \mathcal{A} -compactness and injective \mathcal{A} -compactness, for an arbitrary Banach operator ideal \mathcal{A} , in the cases in which one of the Banach couples reduces to a single Banach space. In particular, we deduce interpolation theorems on *p*-compact operators and quasi *p*-nuclear operators.

2. NOTATION AND BASIC DEFINITIONS

Throughout the paper we will use standard notation. Given a Banach space X, we denote the closed unit ball of X by B_X and the dual space of X by X^* . If X and Y are Banach spaces, $\mathcal{L}(X,Y)$ stands for the Banach space of all bounded linear operators T from X into Y equipped with the operator norm $||T|| = \sup_{x \in B_X} ||Tx||$.

Let $\ell_1(B_X)$ be the Banach space of all absolutely summable families of scalars (λ_x) indexed by elements of B_X . We denote by $Q_X : \ell_1(B_X) \to X$ the *metric surjection* defined by $Q_X(\lambda_x)_{x\in B_X} := \sum_{x\in B_X} \lambda_x x$. On the other hand, let $\ell_{\infty}(B_{X^*})$ be the Banach space of all bounded families of scalars indexed by elements of B_{X^*} . By $J_X : X \to \ell_{\infty}(B_{X^*})$ we mean the *metric injection* given by $J_X x := (\langle x^*, x \rangle)_{x^* \in B_X^*}$.

Given two Banach spaces Z_0 and Z_1 , let $(Z_0 \oplus Z_1)_\infty$ (resp., $(Z_0 \oplus Z_1)_1$) be the direct sum of the Banach spaces Z_0 and Z_1 endowed with the norm $||(z_0, z_1)|| = \max\{||z_0||_{Z_0}, ||z_1||_{Z_1}\}$ (resp., $||(z_0, z_1)|| = ||z_0||_{Z_0} + ||z_1||_{Z_1}$), for $(z_0, z_1) \in Z_0 \times Z_1$.

An operator ideal \mathcal{A} is defined as a method of ascribing to each pair of Banach spaces (X, Y) a linear subspace $\mathcal{A}(X, Y)$ of $\mathcal{L}(X, Y)$ such that the following properties are satisfied:

- (I1) The operator $x^* \otimes y := \langle x^*, \cdot \rangle y \in \mathcal{A}(X, Y)$, for any $x^* \in X^*, y \in Y$;
- (I2) If $S \in \mathcal{L}(U, X)$, $T \in \mathcal{A}(X, Y)$ and $R \in \mathcal{L}(Y, V)$, then $R \circ T \circ S \in \mathcal{A}(U, V)$.

If in addition, for every (X, Y), the space $\mathcal{A}(X, Y)$ is supplied with a norm α in such a way that:

- (N1) $\alpha(x^* \otimes y) = ||x^*|| \cdot ||y||$, for all $x^* \in X^*, y \in Y$;
- (N2) $\alpha(R \circ T \circ S) \leq ||R|| \cdot \alpha(T) \cdot ||S||$, whenever U and V are Banach spaces and $S \in \mathcal{L}(U, X), T \in \mathcal{A}(X, Y)$ and $R \in \mathcal{L}(Y, V)$;
- (N3) $(\mathcal{A}(X, Y), \alpha)$ is a Banach space;

then $[\mathcal{A}, \alpha]$ is called a *Banach operator ideal*. Familiar examples of Banach operator ideals are the ideals $[\mathcal{L}, \|\cdot\|]$ of all bounded linear operators, $[\mathcal{K}, \|\cdot\|]$ of all compact operators and $[\mathcal{W}, \|\cdot\|]$ of all weakly compact operators, where $\|\cdot\|$ is the usual operator norm.

As usual \mathcal{A}^d stands for the *dual ideal* of an operator ideal \mathcal{A} , that is $\mathcal{A}^d(X, Y) = \{T \in \mathcal{L}(X,Y); T^* \in \mathcal{A}(Y^*, X^*)\}$. If $[\mathcal{A}, \alpha]$ is a Banach operator ideal, $[\mathcal{A}^d, \alpha^d]$ becomes a Banach operator ideal, with $\alpha^d(T) := \alpha(T^*)$ for $T \in \mathcal{A}^d(X,Y)$.

We also recall that an operator ideal \mathcal{A} is said to be *surjective* whenever $\mathcal{A} = \mathcal{A}^{sur}$, where \mathcal{A}^{sur} is the (*surjective hull*) ideal whose components are

$$\mathcal{A}^{sur}(X,Y) := \left\{ T \in \mathcal{L}(X,Y); \, T(B_X) \subset S(B_Z), S \in \mathcal{A}(Z,Y) \right\}.$$

Analogously, an operator ideal \mathcal{A} is called *injective* when $\mathcal{A} = \mathcal{A}^{inj}$, where \mathcal{A}^{inj} is the (*injective hull*) ideal whose components are

 $\mathcal{A}^{inj}(X,Y) := \left\{ T \in \mathcal{L}(X,Y); \, \|Tx\|_Y \le \|Sx\|_Z \text{ for } x \in X, \, S \in \mathcal{A}(X,Z) \right\}.$

For a Banach operator ideal $[\mathcal{A}, \alpha]$ it holds that $[\mathcal{A}^{sur}, \alpha^{sur}]$ and $[\mathcal{A}^{inj}, \alpha^{inj}]$ are also Banach operator ideals, where $\alpha^{sur}(T) := \inf\{\alpha(S); T(B_X) \subset S(B_Z), S \in \mathcal{A}(Z,Y)\} = \alpha(T \circ Q_X)$ and $\alpha^{inj}(T) := \inf\{\alpha(S); ||Tx||_Y \leq ||Sx||_Z$ for $x \in X, S \in \mathcal{A}(X,Z)\} = \alpha(J_Y \circ T)$.

We conclude this section recalling the definition of two classes of operators that are important in this paper, such as the ideal Π_p of *p*-summing operators and the ideal \mathcal{QN}_p of quasi *p*-nuclear operators. Given $1 \leq p < \infty$, an operator $T \in \mathcal{L}(X, Y)$ is a *p*-summing if *T* maps weakly *p*-summable sequences in *X* into *p*-summable sequences in *Y* (for the theory of *p*-summing operators, we refer to [15, Chapter 2]). On the other hand, $T \in \mathcal{L}(X, Y)$ is called *quasi pnuclear*, $1 \leq p < \infty$, if there exists a sequence $(x_n^*) \in \ell_p(X^*)$ such that $||Tx||_Y \leq$ $\left(\sum_{n=1}^{\infty} |\langle x_n^*, x \rangle|^p\right)^{1/p}$, for any $x \in X$ (see for example [13, p. 293]). An exhaustive study of operator theory can be carried out in the classical

An exhaustive study of operator theory can be carried out in the classical books [15], [20] and [29]. We refer to these monographs for wide information, in particular, about the Banach operator ideals $[\Pi_p, \pi_p]$ and $[\mathcal{QN}_p, \nu_p^Q]$.

3. Some properties of χ_A and n_A

In this section we prove several properties of $\chi_{\mathcal{A}}$ and $n_{\mathcal{A}}$ that complement those studied in [12]. As we have pointed out in Section 1, $\chi_{\mathcal{A}}$ and $n_{\mathcal{A}}$ are different from the measures $\gamma_{\mathcal{A}}$ and $\beta_{\mathcal{A}}$, defined by Astala [3] and Tylli [35] respectively. However, they share certain similar properties (see [7] and references therein for the main properties of $\gamma_{\mathcal{A}}$ and $\beta_{\mathcal{A}}$). For example, it is easy to check that if $T \in \mathcal{A}^{sur}(X, Y)$ (resp., $T \in \mathcal{A}^{inj}(X, Y)$), $R \in \mathcal{L}(Y, Y_0)$ and $S \in \mathcal{L}(X_0, X)$, then

 $\chi_{\mathcal{A}}(R \circ T \circ S) \le \|R\|\chi_{\mathcal{A}}(T)\|S\| \quad (\text{resp.}, \, n_{\mathcal{A}}(R \circ T \circ S) \le \|R\|n_{\mathcal{A}}(T)\|S\|) \,.$

The measures $\chi_{\mathcal{A}}$ and $n_{\mathcal{A}}$ are also submultiplicative.

Lemma 1. Let $[\mathcal{A}, \alpha]$ be a Banach operator ideal.

(i) Assume that $T \in \mathcal{A}^{sur}(X, Y)$ and $S \in \mathcal{A}^{sur}(Y, Z)$. Then,

 $\chi_{\mathcal{A}}(S \circ T) \le \chi_{\mathcal{A}}(S)\chi_{\mathcal{A}}(T) \,.$

(ii) Assume that $T \in \mathcal{A}^{inj}(X,Y)$ and $S \in \mathcal{A}^{inj}(Y,Z)$. Then,

$$n_{\mathcal{A}}(S \circ T) \leq n_{\mathcal{A}}(S)n_{\mathcal{A}}(T)$$
.

Proof. We just prove (ii) (part (i) has been established in [12, Proposition 3.5(6)]). Fix $\beta > n_{\mathcal{A}}(T)$. Then there exist $x_1^*, \ldots, x_m^* \in X^*$, a Banach space H and an operator $P \in \mathcal{A}(X, H)$, with $\alpha(P) \leq \beta$, such that

$$||Tx||_Y \le \sup_{1\le i\le m} |\langle x_i^*, x\rangle| + ||Px||_H, \quad x \in X.$$

Similarly, let $\gamma > n_{\mathcal{A}}(S)$, then there are $y_1^*, \ldots, y_n^* \in Y^*$, a Banach space K and an operator $Q \in \mathcal{A}(Y, K)$, with $\alpha(Q) \leq \gamma$ such that

$$\|Sy\|_Z \le \sup_{1 \le j \le n} |\langle y_j^*, y \rangle| + \|Qy\|_K, \quad y \in Y.$$

Hence, for every $x \in X$,

$$\begin{split} \|STx\|_{Z} &\leq \sup_{1 \leq j \leq n} |\langle y_{j}^{*}, Tx \rangle| + \|QTx\|_{K} \leq \sup_{1 \leq j \leq n} |\langle T^{*}y_{j}^{*}, x \rangle| + \|Q\| \|Tx\|_{Y} \\ &\leq \sup_{1 \leq j \leq n} |\langle T^{*}y_{j}^{*}, x \rangle| + \|Q\| \Big[\sup_{1 \leq i \leq m} |\langle x_{i}^{*}, x \rangle| + \|Px\|_{H} \Big] \,. \end{split}$$

Combining the above, we get

$$||STx||_Z \le \sup_{1\le k\le r} |\langle \hat{x}_k^*, x\rangle| + ||\Phi x||_H, \quad x \in X,$$

where $\hat{x}_1^*, \ldots, \hat{x}_r^* \in X^*$ and $\Phi := ||Q|| P \in \mathcal{A}(X, H)$. Clearly, $\alpha(\Phi) = ||Q|| \alpha(P) \le \alpha(Q) \alpha(P)$ and so $n_{\mathcal{A}}(S \circ T) \le \gamma \beta$. This yields

$$n_{\mathcal{A}}(S \circ T) \le n_{\mathcal{A}}(S)n_{\mathcal{A}}(T)$$

Lemma 2. Let $[\mathcal{A}, \alpha]$ be a Banach operator ideal and let X be a Banach space.

- (i) If $\operatorname{Id}_X \in \mathcal{A}^{sur}(X, X)$, then $\chi_{\mathcal{A}}(\operatorname{Id}_X) = 0$ if and only if X is finite dimensional. In addition, $\chi_{\mathcal{A}}(\operatorname{Id}_X) \neq 0$ implies that $\chi_{\mathcal{A}}(\operatorname{Id}_X) \geq 1$.
- (ii) If $\operatorname{Id}_X \in \mathcal{A}^{inj}(X, X)$, then $n_{\mathcal{A}}(\operatorname{Id}_X) = 0$ if and only if X is finite dimensional. In addition, $n_{\mathcal{A}}(\operatorname{Id}_X) \neq 0$ implies that $n_{\mathcal{A}}(\operatorname{Id}_X) \geq 1$.

Proof. The statement (i) is given in [12, Proposition 3.5(7)]. To show (ii), observe that $n_{\mathcal{A}}(\mathrm{Id}_X) = 0$ implies that Id_X is injectively \mathcal{A} -compact and therefore it is compact. Thus, X is finite dimensional.

Now assume that X is finite dimensional. Then, Id_X is a finite rank operator. In particular, Id_X belongs to the ideal of injectively \mathcal{A} -compact operators, which means that $n_{\mathcal{A}}(Id_X) = 0$.

Finally note that if $n_{\mathcal{A}}(\mathrm{Id}_X) > 0$, by Lemma 1(ii), we obtain that

$$n_{\mathcal{A}}(\mathrm{Id}_X) = n_{\mathcal{A}}(\mathrm{Id}_X \circ \mathrm{Id}_X) \le (n_{\mathcal{A}}(\mathrm{Id}_X))^2,$$

which completes the proof.

Remark 3. As a direct consequence of the definition of χ_A , for every metric surjection $q: X_0 \to X$ and $T \in \mathcal{A}^{sur}(X,Y)$, it follows that $\chi_A(T) = \chi_A(T \circ q)$. Analogously, for each metric injection $j: Y \to Y_0$ and $T \in \mathcal{A}^{inj}(X,Y)$, it holds that $n_A(T) = n_A(j \circ T)$.

The following minimal properties occur (similarly to those in [7, Section 2] for the measures $\gamma_{\mathcal{A}}$ and $\beta_{\mathcal{A}}$). We include a proof for the sake of completeness.

Proposition 4. Let $[\mathcal{A}, \alpha]$ be a Banach operator ideal.

(i) For any operator $T \in \mathcal{A}^{sur}(X, Y)$ one has

 $\chi_{\mathcal{A}}(J_Y \circ T) = \min\{\chi_{\mathcal{A}}(j \circ T); j \colon Y \to Y_0 \text{ a metric injection}\}.$

(ii) For any operator $T \in \mathcal{A}^{inj}(X,Y)$ one has

 $n_{\mathcal{A}}(T \circ Q_X) = \min\{n_{\mathcal{A}}(T \circ q); q \colon X_0 \to X \text{ a metric surjection}\}.$

Proof. (i) We claim that, for any metric injection $j: Y \to Y_0$, one has

$$\chi_{\mathcal{A}}(J_Y \circ T) \le \chi_{\mathcal{A}}(j \circ T) \,.$$

By the metric extension property of $\ell_{\infty}(B_{Y^*})$, we can find an operator $S \in \mathcal{L}(Y_0, \ell_{\infty}(B_{Y^*}))$ such that $S \circ i_{j(Y)} = J_Y \circ j_{|_{j(Y)}}^{-1}$ and $||S|| = ||J_Y \circ j_{|_{j(Y)}}^{-1}||$, where $i_{j(Y)}$ is the inclusion of j(Y) in Y_0 . Thus, we get

$$\chi_{\mathcal{A}}(J_{Y} \circ T) = \chi_{\mathcal{A}}(S \circ i_{j(Y)} \circ j \circ T) \le \|S\|\chi_{\mathcal{A}}(j \circ T) = \chi_{\mathcal{A}}(j \circ T)$$

and this proves our claim. Since the reverse inequality in the statement of (i) is obvious, the proof is complete.

(ii) It is enough to establish $n_{\mathcal{A}}(T \circ Q_X) \leq n_{\mathcal{A}}(T \circ q)$, for each metric surjection $q: X_0 \to X$. Let $R: X_0/Kerq \to X$ be the isometric isomorphism induced by q. If $\phi_{Kerq}: X_0 \to X_0/Kerq$ denotes the canonical quotient map, we have that $q = R \circ \phi_{Kerq}$. By the metric lifting property of $\ell_1(B_X)$, for every $\varepsilon > 0$, there exists an operator $S \in \mathcal{L}(\ell_1(B_X), X_0)$ such that $\phi_{Kerq} \circ S = R^{-1} \circ Q_X$ and $\|S\| \leq (1 + \varepsilon) \|R^{-1} \circ Q_X\| = 1 + \varepsilon$. Then,

$$n_{\mathcal{A}}(T \circ Q_X) = n_{\mathcal{A}}(T \circ R \circ \phi_{Kerq} \circ S) \le n_{\mathcal{A}}(T \circ q \circ S)$$
$$\le n_{\mathcal{A}}(T \circ q) \|S\| \le (1 + \varepsilon) n_{\mathcal{A}}(T \circ q) .$$

This implies that $n_{\mathcal{A}}(T \circ Q_X) \leq n_{\mathcal{A}}(T \circ q)$ and the proof finishes.

As it is pointed out in [12, p. 100], the following result follows straightaway from [9, Proposition 5].

Proposition 5. Let $[\mathcal{A}, \alpha]$ be a Banach operator ideal. Then, for any operator $T \in \mathcal{A}^{sur}(X, Y)$ the following formula holds:

$$\chi_{\mathcal{A}}(T) = \inf\{\alpha(S); T(B_X) \subset R(B_F) + S(B_G)\},\$$

where the infimum is taken over all Banach spaces F and G and operators $R \in \mathcal{K}^{\mathcal{A}}(F,Y)$ and $S \in \mathcal{A}(G,Y)$.

In a similar fashion, we show a characterization of $n_{\mathcal{A}}$.

Proposition 6. Let $[\mathcal{A}, \alpha]$ be a Banach operator ideal. Then for any operator $T \in \mathcal{A}^{inj}(X, Y)$ the following formula holds:

(2)
$$n_{\mathcal{A}}(T) = \inf\{\alpha(S); \|Tx\|_Y \le \|Rx\|_F + \|Sx\|_G, \text{ for all } x \in X\},\$$

where the infimum is taken over all Banach spaces F and G and operators $R \in \mathcal{H}^{\mathcal{A}}(X,F)$ and $S \in \mathcal{A}(X,G)$.

Proof. Let $r_{\mathcal{A}}(T)$ denote the right-hand side of (2). If $\varepsilon > r_{\mathcal{A}}(T)$, then we can find Banach spaces F and G and operators $R \in \mathcal{H}^{\mathcal{A}}(X, F)$ and $S \in \mathcal{A}(X, G)$ with $\alpha(S) \leq \varepsilon$, such that

$$||Tx||_Y \le ||Rx||_F + ||Sx||_G, \quad x \in X.$$

By [33, Theorem 1.1(c)], there exist a Banach space Z, a sequence $(z_n^*)_{n \in \mathbb{N}} \in c_0(Z^*)$ and $Q \in \mathcal{A}^{inj}(X, Z)$ so that

$$||Rx||_F \le \sup_{n \in \mathbb{N}} |\langle z_n^*, Qx \rangle|, \quad x \in X.$$

Since $Q \in \mathcal{A}^{inj}(X, Z)$, there are a Banach space V and an operator $P \in \mathcal{A}(X, V)$ with $||Qx||_Z \leq ||Px||_V$, for any $x \in X$. Moreover, given any $\delta > 0$, there is $n_0 \in \mathbb{N}$ such that, for each $n \geq n_0$ and every $x \in X$, we have $|\langle z_n^*, Qx \rangle| \leq \delta ||Qx||_Z$. Hence

$$\begin{aligned} \|Rx\|_F &\leq \sup_{n \in \mathbb{N}} |\langle z_n^*, Qx \rangle| \leq \max \left\{ \sup_{1 \leq n \leq n_0} |\langle z_n^*, Qx \rangle|, \delta \|Qx\|_Z \right\} \\ &\leq \sup_{1 \leq n \leq n_0} |\langle z_n^*, Qx \rangle| + \delta \|Px\|_V. \end{aligned}$$

Combining the above, we get

$$||Tx||_Y \le \sup_{1\le n\le n_0} |\langle z_n^*, Qx \rangle| + ||(\delta P)x||_V + ||Sx||_G, \quad x \in X.$$

If we define $K := (V \oplus G)_1$ and $L := \psi_V \circ (\delta P) + \psi_G \circ S$, where $\psi_V : V \to K$ and $\psi_V : G \to K$ are the natural inclusions of V and G into K, respectively, it is clear that $\alpha(L) \leq \delta \alpha(P) + \varepsilon$ and

$$||Tx||_Y \le \sup_{1\le n\le n_0} |\langle z_n^*, Qx \rangle| + ||Lx||_K, \quad x \in X.$$

This implies $n_{\mathcal{A}}(T) \leq \delta \alpha(P) + \varepsilon$ and so $n_{\mathcal{A}}(T) \leq r_{\mathcal{A}}(T)$.

Now assume that $\varepsilon > n_{\mathcal{A}}(T)$. There are finitely many functionals $x_1^*, \ldots, x_n^* \in X^*$, a Banach space Z and an operator $S \in \mathcal{A}(X, Z)$, with $\alpha(S) \leq \varepsilon$, such that

$$||Tx||_Y \le \sup_{1 \le k \le n} |\langle x_k^*, x \rangle| + ||Sx||_Z, \quad x \in X.$$

The operator $R: X \to \ell_{\infty}^n$ defined by $Rx := (\langle x_k^*, x \rangle)_{1 \le k \le n}$ has a finite rank, and so $R \in \mathcal{H}^{\mathcal{A}}(X, \ell_{\infty}^n)$, and also

$$||Tx||_Y \le ||Rx||_{\ell_{\infty}^n} + ||Sx||_Z, \quad x \in X$$

This yields that $r_{\mathcal{A}}(T) \leq n_{\mathcal{A}}(T)$.

Theorem 7. Let $[\mathcal{A}, \alpha]$ be a Banach operator ideal.

(i) If $T \in \mathcal{A}^{inj}(X, Y)$, then $\chi_{\mathcal{A}}(J_Y \circ T) \leq n_{\mathcal{A}}(T)$.

(ii) If $T \in \mathcal{A}^{sur}(X,Y)$, then $n_{\mathcal{A}}(T \circ Q_X) \leq \chi_{\mathcal{A}}(T)$.

Proof. (i) Fix $\varepsilon > n_{\mathcal{A}}(T)$. By Remark 3 one has that $n_{\mathcal{A}}(T) = n_{\mathcal{A}}(J_Y \circ T)$, and so we can find functionals $x_1^*, \ldots, x_n^* \in X^*$, a Banach space Z and an operator $S \in \mathcal{A}(X, Z)$, with $\alpha(S) \leq \varepsilon$, such that

$$||J_Y Tx||_Y \le \sup_{1\le k\le n} |\langle x_k^*, x\rangle| + ||Sx||_Z, \quad x \in X.$$

Put $\widetilde{Z} = (\ell_{\infty}^n \oplus Z)_1$ and let $\psi_{\ell_{\infty}^n} \colon \ell_{\infty}^n \to \widetilde{Z}$ and $\psi_Z \colon Z \to \widetilde{Z}$ be the natural inclusions of ℓ_{∞}^n and Z into \widetilde{Z} . We define $P \colon X \to \widetilde{Z}$ as

$$P := \psi_{\ell_{\infty}^n} \circ S_{\infty}^n + \psi_Z \circ S \,,$$

where $S_{\infty}^n: X \to \ell_{\infty}^n$ is given by $S_{\infty}^n x := (\langle x_k^*, x \rangle)_{1 \le k \le n}$. It is clear that

$$J_Y T x \|_Y \le \|Px\|_{\widetilde{Z}}, \, x \in X \, .$$

Then the operator $R: P(X) \to \ell_{\infty}(B_{Y^*})$ defined as $Rv = J_Y T x$, if v = P x, has norm less than or equal to 1. Let \overline{R} denote the extension of R to $\overline{P(X)}$. By the metric extension property of $\ell_{\infty}(B_{Y^*})$, it follows that we can find an operator $\widetilde{R} \in \mathcal{L}(\widetilde{Z}, \ell_{\infty}(B_{Y^*}))$ with $\|\widetilde{R}\| = \|\overline{R}\| \leq 1$, and $\widetilde{R}v = \overline{R}v$ if $v \in \overline{P(X)}$.

Taking into account the definition of P, we get

$$J_Y(T(B_X)) \subset \widetilde{R}(P(B_X)) \subset \widetilde{R}(\psi_{\ell_{\infty}^n}(S_{\infty}^n(B_X)) + \psi_Z(S(B_X)))$$
$$\subset \widetilde{R}(\psi_{\ell_{\infty}^n}(S_{\infty}^n(B_X))) + \widetilde{R}(\psi_Z(S(B_X))).$$

Since $\widetilde{R} \circ \psi_{\ell_{\infty}^n} \circ S_{\infty}^n$ is a finite rank operator, it holds that $\widetilde{R} \circ \psi_{\ell_{\infty}^n} \circ S_{\infty}^n \in \mathcal{K}^{\mathcal{A}}(X, \ell_{\infty}(B_{Y^*}))$. On the other hand, $\widetilde{R} \circ \psi_Z \circ S \in \mathcal{A}(X, \ell_{\infty}(B_{Y^*}))$ with $\alpha(\widetilde{R} \circ \psi_Z \circ S) \leq \|\widetilde{R} \circ \psi_Z \| \alpha(S) \leq \varepsilon$. Proposition 5 allows to conclude that $\chi_{\mathcal{A}}(J_Y \circ T) \leq n_{\mathcal{A}}(T)$ and this completes the proof.

(ii) Suppose that $\varepsilon > \chi_{\mathcal{A}}(T)$. Using Remark 3 we have that $\chi_{\mathcal{A}}(T) = \chi_{\mathcal{A}}(T \circ Q_X)$, and then there exist finitely many elements $y_1, \ldots, y_n \in Y$, a Banach space Z and an operator $S \in \mathcal{A}(Z, Y)$, with $\alpha(S) \leq \varepsilon$, such that

(3)
$$T(Q_X(B_{\ell_1(B_X)})) \subset \bigcup_{k=1}^n \{y_k + S(B_Z)\}.$$

Let $M = ([y_1, \ldots, y_n], \|\cdot\|_M)$, where $\|\cdot\|_M := \|\cdot\|_Y / \max\{\|y_1\|_Y, \ldots, \|y_n\|_Y\}$. Consider $\widetilde{Z} = (M \oplus Z)_{\infty}$ and let $\widetilde{S} : \widetilde{Z} \to Y$ be the operator defined as $\widetilde{S} := i_M \circ \operatorname{Id}_M \circ \phi_M + S \circ \phi_Z$, where $i_M : M \to Y$ is the canonical embedding of M into Y, and $\phi_M : \widetilde{Z} \to M$ and $\phi_Z : \widetilde{Z} \to Z$ are the natural projections of \widetilde{Z} onto M and Z, respectively. By (3), we get

$$T(Q_X(B_{\ell_1(B_X)})) \subset S(B_{\widetilde{Z}})$$

Then using the metric lifting property of $\ell_1(B_X)$, namely [29, Lemma 8.5.4], for any $\delta > 0$ it is possible to construct $R \in \mathcal{L}(\ell_1(B_X), \widetilde{Z})$ such that $T \circ Q_X = \widetilde{S} \circ R$ and $||R|| \leq 1 + \delta$. Hence

$$||TQ_X(\lambda_x)||_Y = ||SR(\lambda_x)||_Y \le ||i_M \mathrm{Id}_M \phi_M R(\lambda_x)||_Y + ||S\phi_Z R(\lambda_x)||_Y,$$

for every $(\lambda_x)_{x \in B_X} \in \ell_1(B_X)$. Since $i_M \circ \mathrm{Id}_M \circ \phi_M \circ R$ is a finite rank operator, it follows that $i_M \circ \mathrm{Id}_M \circ \phi_M \circ R \in \mathcal{H}^{\mathcal{A}}(\ell_1(B_X), Y)$. On the other hand, $S \circ \phi_Z \circ R \in \mathcal{A}(\ell_1(B_X), Y)$ and $\alpha(S \circ \phi_Z \circ R) \leq \alpha(S) \|\phi_Z \circ R\| \leq \varepsilon(1 + \delta)$. From Proposition 6 we conclude that $n_{\mathcal{A}}(T \circ Q_X) \leq \chi_{\mathcal{A}}(T)$.

4. Interpolation formulas for χ_A and n_A

A natural question is to study the behaviour under interpolation of characteristics for operators acting between Banach spaces. In this section we show interpolation estimates for both measures of non- \mathcal{A} -compactness of operators, $\chi_{\mathcal{A}}$ and $n_{\mathcal{A}}$, associated to a Banach operator ideal \mathcal{A} . We will use some techniques inspired by the papers [6] and [8]. Before of establishing our results concerning this matter, we recall some basic definitions on interpolation theory.

Let $A = (A_0, A_1)$ be a *Banach couple*, that is, A_0 and A_1 are two Banach spaces which are continuously embedded in some Hausdorff topological vector space. The sum $A_0 + A_1$ and the intersection $A_0 \cap A_1$ of A_0 and A_1 become Banach spaces when endowed with the norms $K(1, \cdot; \bar{A})$ and $J(1, \cdot; \bar{A})$, respectively, where the K- and J-functionals are defined, for t > 0, by

$$K(t,a) = K(t,a;\bar{A}) := \inf\{\|a_0\|_{A_0} + t\|a_1\|_{A_1}; a = a_0 + a_1, a_i \in A_i\}, a \in A_0 + A_1, a_i \in A_i\}, a \in A_0 + A_1, a_i \in A_0 + A_1, a_i \in A_0 = J(t,a;\bar{A}) := \max\{\|a\|_{A_0}, t\|a\|_{A_1}\}, a \in A_0 \cap A_1.$$

A Banach space A is called an *intermediate space* with respect to $\overline{A} = (A_0, A_1)$ if $A_0 \cap A_1 \hookrightarrow A \hookrightarrow A_0 + A_1$, where " \hookrightarrow " means continuous inclusion. Given an intermediate space A with respect to a couple $\overline{A} = (A_0, A_1)$, it is possible in some sense to describe the "position" of A within the couple \overline{A} by means of the following functions:

$$\psi_A(t) = \psi_A(t; A) := \sup\{K(t, a); \|a\|_A = 1\}$$

and

$$\rho_A(t) = \rho_A(t; A) := \inf\{J(t, a); a \in A_0 \cap A_1, \|a\|_A = 1\}$$

These functions are variants of functions studied, e.g., in [16], [27] and [31]. Clearly, the functions $\psi_A(t)$ and $\rho_A(t)$ are strictly positive and non-decreasing, and the functions $\psi_A(t)/t$ and $\rho_A(t)/t$ are non-increasing.

Examples of intermediate spaces that will be relevant in this paper are the spaces A_i° , that is, the closure of $A_0 \cap A_1$ in A_i endowed with the norm of A_i (i = 0, 1). Other important intermediate spaces are the Gagliardo completion A_i^{\sim} of A_i (i = 0, 1) in $A_0 + A_1$. The space A_i^{\sim} consists of all those $a \in A_0 + A_1$ for which there exists a sequence $(a_n)_{n \in \mathbb{N}}$ of elements of A_i such that

(4)
$$\sup_{n \in \mathbb{N}} ||a_n||_{A_i} < \infty$$
 and $\lim_{n \to \infty} ||a - a_n||_{A_0 + A_1} = 0$.

The norm in A_i^{\sim} is given by

$$\|a\|_{A_i^{\sim}} = \inf\left\{\sup_{n\in\mathbb{N}} \|a_n\|_{A_i}; \ (a_n)_{n\in\mathbb{N}} \text{ satisfies } (4)\right\}.$$

An intermediate space A with respect to $\overline{A} = (A_0, A_1)$ is called an *interpolation* space if for any operator $T: \overline{A} \to \overline{A}$ (that is, T is a bounded linear operator from $A_0 + A_1$ into $A_0 + A_1$ whose restriction to each A_i defines a bounded operator from A_i into A_i for i = 0, 1), the restriction $T: A \to A$ is a bounded operator. In that case, there is a constant $C = C(A, \overline{A})$ such that

(5)
$$||T||_{A,A} \le C ||T||_{\bar{A},\bar{A}}, \text{ for all } T \colon \bar{A} \to \bar{A},$$

where $||T||_{\bar{A},\bar{A}} := \max\{||T||_{A_0,A_0}, ||T||_{A_1,A_1}\}$. We say that an intermediate space A is a rank-one interpolation space if inequality (5) is fulfilled for all rank-one operators $T: \bar{A} \to \bar{A}$. In some papers (see [16] and [31]), rank-one interpolation spaces are also referred to as partly interpolation spaces. An example of an intermediate space with respect to the couple (L_1, L_∞) which is not an interpolation space can be found in [22, p. 122]. Nevertheless, such a space is a rank-one interpolation space because, according to [16] and [31], any space lying between the Lorentz and the Marcinkiewicz spaces with the same fundamental function is a rank-one interpolation space.

We also recall that an intermediate space A with respect to $\overline{A} = (A_0, A_1)$ is said to be of class $C_K(\theta; \overline{A})$, where $0 < \theta < 1$, if there is a constant C > 0 such that, for all t > 0 and $a \in A$,

$$K(t,a) \le Ct^{\theta} \|a\|_A.$$

Analogously, A is called of class $C_J(\theta; \bar{A})$, with $0 < \theta < 1$, if there exists a constant C > 0 such that, for all t > 0 and $a \in A_0 \cap A_1$,

$$||a||_A \le Ct^{-\theta} J(t,a) \,.$$

An intermediate space A is said to be of class $C(\theta; \bar{A})$ whenever it is of class $C_K(\theta; \bar{A})$ and of class $C_J(\theta; \bar{A})$. The real interpolation space $(A_0, A_1)_{\theta,q}$ and the complex interpolation space $(A_0, A_1)_{[\theta]}$ are important examples of spaces of class $C(\theta; \bar{A})$.

Remark 8. If A is of class $C_K(\theta; \bar{A})$, then

$$\lim_{t \to 0} \psi_A(t) = \lim_{t \to \infty} \frac{\psi_A(t)}{t} = 0.$$

On the other hand, if A is of class $C_J(\theta; \overline{A})$, then we get

$$\lim_{t \to 0} \frac{t}{\rho_A(t)} = \lim_{t \to \infty} \frac{1}{\rho_A(t)} = 0.$$

We refer to the books [4], [34] for the fundamentals of interpolation theory, and to the papers [6], [8] for further information about the functions ψ_A and ρ_A . **Theorem 9.** Let $[\mathcal{A}, \alpha]$ be a Banach operator ideal. Let $\bar{X} = (X_0, X_1)$ be a Banach couple and let Y be a Banach space. Assume that X is an intermediate space with respect to \bar{X} . For any $T \in \mathcal{A}^{sur}(X_0 + X_1, Y)$, we have the following:

(i) If $\chi_{\mathcal{A}}(T_{X_0,Y}) = 0$,

$$\chi_{\mathcal{A}}(T_{X,Y}) \leq \chi_{\mathcal{A}}(T_{X_1,Y}) \cdot \lim_{t \to \infty} \frac{\psi_X(t)}{t}.$$

- (ii) If $\chi_{\mathcal{A}}(T_{X_1,Y}) = 0$, $\chi_{\mathcal{A}}(T_{X,Y}) \le \chi_{\mathcal{A}}(T_{X_0,Y}) \cdot \lim_{t \to 0} \psi_X(t)$.
- (iii) If $\chi_{\mathcal{A}}(T_{X_i,Y}) > 0$ for i = 0, 1, then

$$\chi_{\mathcal{A}}(T_{X,Y}) \le 2\chi_{\mathcal{A}}(T_{X_0,Y}) \cdot \psi_X\left(\frac{\chi_{\mathcal{A}}(T_{X_1,Y})}{\chi_{\mathcal{A}}(T_{X_0,Y})}\right)$$

Proof. Let $\varepsilon_i > \chi_{\mathcal{A}}(T_{X_i,Y}), i = 0, 1$. There are finitely many elements $y_1^i, \ldots, y_{n_i}^i \in Y$, Banach spaces Z_i and operators $S_i \in \mathcal{A}(Z_i, Y)$, with $\alpha(S_i) \leq \varepsilon_i$, such that

$$T(B_{X_i}) \subset \bigcup_{k=1}^{n_i} \left\{ y_k^i + S_i(B_{Z_i}) \right\}, \quad i = 0, 1.$$

Take $\varepsilon > 0$ and t > 0 arbitrarily. Given any $x \in B_X$, since $K(t, x) \leq \psi_X(t)$, we can find $x_i \in X_i$ such that $x = x_0 + x_1$ and

$$||x_0||_{X_0} + t ||x_1||_{X_1} \le \psi_X(t) + \varepsilon,$$

and so

$$||x_i||_{X_i} \le (\psi_X(t) + \varepsilon)t^{-i}, \quad i = 0, 1.$$

Then,

$$T(B_X) \subset (\psi_X(t) + \varepsilon)T(B_{X_0}) + (\psi_X(t) + \varepsilon)t^{-1}T(B_{X_1})$$
$$\subset \bigcup_{k=1}^{n_0} \left\{ (\psi_X(t) + \varepsilon)y_k^0 + (\psi_X(t) + \varepsilon)S_0(B_{Z_0}) \right\}$$
$$+ \bigcup_{k=1}^{n_1} \left\{ (\psi_X(t) + \varepsilon)t^{-1}y_k^1 + (\psi_X(t) + \varepsilon)t^{-1}S_1(B_{Z_1}) \right\}$$

Hence, we have a covering

$$T(B_X) \subset \bigcup_{k=1}^n \left\{ y_k + S(B_Z) \right\},$$

with $y_1, \ldots, y_n \in Y$, $Z = (Z_0 \oplus Z_1)_{\infty}$ and $S \colon Z \to Y$ the operator defined as

$$S(z_0, z_1) = (\psi_X(t) + \varepsilon) S_0 z_0 + (\psi_X(t) + \varepsilon) t^{-1} S_1 z_1 ,$$

that is, $S = (\psi_X(t) + \varepsilon)(S_0 \circ \phi_0) + (\psi_X(t) + \varepsilon)t^{-1}(S_1 \circ \phi_1)$, where $\phi_i \colon Z \to Z_i$ is the natural projection (i = 0, 1). Thus, $S \in \mathcal{A}(Z, Y)$ and $\alpha(S) \leq (\psi_X(t) + \varepsilon)\varepsilon_0 + \varepsilon$ $(\psi_X(t) + \varepsilon)t^{-1}\varepsilon_1 = (\psi_X(t) + \varepsilon)(\varepsilon_0 + t^{-1}\varepsilon_1)$. It gives that, for any $\varepsilon > 0$ and t > 0,

$$\chi_{\mathcal{A}}(T_{X,Y}) \le (\psi_X(t) + \varepsilon)(\varepsilon_0 + t^{-1}\varepsilon_1)$$

Therefore,

(6)
$$\chi_{\mathcal{A}}(T_{X,Y}) \leq \psi_X(t) \Big[\chi_{\mathcal{A}}(T_{X_0,Y}) + t^{-1} \chi_{\mathcal{A}}(T_{X_1,Y}) \Big], \quad t > 0.$$

When $\chi_{\mathcal{A}}(T_{X_i,Y}) = 0$ for i = 0 or i = 1, taking into account (6) and that $\psi_X(t)/t$ is non-increasing and $\psi_X(t)$ is non-decreasing, we deduce (i) and (ii), respectively. On the other hand, the case (iii) is obtained by choosing t := $\chi_{\mathcal{A}}(T_{X_1,Y})/\chi_{\mathcal{A}}(T_{X_0,Y})$ in (6).

Remark 10. Writing down Theorem 9 for $\mathcal{A} = \mathcal{L}$, we obtain [6, Theorem 3.1], and so (see Remark 8) we also deduce [4, Theorem 3.8.1(i)].

Corollary 11. Let $[\mathcal{A}, \alpha]$ be a Banach operator ideal. Let $\overline{X} = (X_0, X_1)$ be a Banach couple and let Y be a Banach space. Assume that X is an intermediate space with respect to \bar{X} . Given $T \in \mathcal{A}^{sur}(X_0 + X_1, Y)$, it follows that $T: X \to Y$ is a surjectively \mathcal{A} -compact operator whenever one of the following assertions holds:

 $\diamond T: X_0 \to Y \text{ and } T: X_1 \to Y \text{ are surjectively } \mathcal{A}\text{-compact operators.}$

 $\stackrel{\diamond}{} T \colon X_0 \to Y \text{ is surjectively } \mathcal{A}\text{-compact and } \lim_{t \to \infty} \frac{\psi_X(t)}{t} = 0. \\ \stackrel{\diamond}{} T \colon X_1 \to Y \text{ is surjectively } \mathcal{A}\text{-compact and } \lim_{t \to 0} \psi_X(t) = 0.$

As an application, we obtain results on interpolation of *p*-compact operators. The next corollary is an example.

Corollary 12. Let $1 \leq p < \infty$. Let $\overline{X} = (X_0, X_1)$ be a Banach couple and let Y be a Banach space. Assume that $T \in \prod_p^d (X_0 + X_1, Y)$. When X is an intermediate space of class $C_K(\theta; \bar{X}), 0 < \theta < 1$, then $T: X \to Y$ is a p-compact operator if either $T: X_0 \to Y$ or $T: X_1 \to Y$ is p-compact.

The following result complements Theorem 9. Its first part states, in particular, that if $T: X_0 \to Y$ is a surjectively \mathcal{A} -compact operator, then every rank-one interpolation space X for which $T: X \to Y$ is not surjectively A-compact must necessarily verify that $X_1^{\circ} \hookrightarrow X$. The second part shows that the sufficient conditions obtained in Theorem 9(i) are also necessary under a suitable additional hypothesis on the Banach couple \bar{X} , namely when $X_1^\circ = X_1$ holds. The proof of Theorem 13 can be established by means of similar arguments to those used in the proofs of [6, Theorem 3.9 and Corollary 3.11]. For the sake of completeness, we include the details.

Theorem 13. Let $[\mathcal{A}, \alpha]$ be a Banach operator ideal. Let $X = (X_0, X_1)$ be a Banach couple and let Y be a Banach space. Suppose that $T \in \mathcal{A}^{sur}(X_0 + X_1, Y)$ and X is a rank-one interpolation space with respect to \overline{X} . If $T: X_0 \to Y$ is a surjectively \mathcal{A} -compact operator, then at least one of the following conditions is fulfilled:

- (i) $T: X \to Y$ is surjectively \mathcal{A} -compact.
- (ii) $X_1^{\circ} \hookrightarrow X$.

Furthermore, if $X_1^{\circ} = X_1$, the operator $T: X \to Y$ is surjectively A-compact if and only if at least one of the next conditions holds:

- (i') $T: X_1 \to Y$ is surjectively \mathcal{A} -compact.
- (ii') $\lim_{t\to\infty}\frac{\psi_X(t)}{t}=0$.

Proof. By Theorem 9(i), we know that

$$\chi_{\mathcal{A}}(T_{X,Y}) \leq \chi_{\mathcal{A}}(T_{X_1,Y}) \cdot \lim_{t \to \infty} \frac{\psi_X(t)}{t} \, .$$

Then either $\chi_{\mathcal{A}}(T_{X,Y}) = 0$, equivalently $T: X \to Y$ is surjectively \mathcal{A} -compact, or $\chi_{\mathcal{A}}(T_{X,Y}) > 0$. In this latter case, we have that $\lim_{t\to\infty} \frac{\psi_X(t)}{t} > 0$ and so $X_1^\circ \hookrightarrow X$ (see [6, Lemma 3.7(ii)]).

On the other hand, note that Theorem 9(i) ensures that either (i') or (i") is sufficient to obtain that the operator $T: X \to Y$ is surjectively \mathcal{A} -compact. Now assume that $X^{\circ}_{\cdot} = X_{\cdot}$ and $T: X \to Y$ is surjectively \mathcal{A} -compact. If (i') is

Now assume that $X_1^{\circ} = X_1$ and $T: X \to Y$ is surjectively \mathcal{A} -compact. If (i') is not true, that is, $T: X_1 \to Y$ is not surjectively \mathcal{A} -compact, it necessarily implies that $\lim_{t\to\infty} \frac{\psi_X(t)}{t} = 0$. In other case $X_1^{\circ} \to X$ holds (see [6, Lemma 3.7(ii)]) and, since $X_1^{\circ} = X_1$, the operator $T: X_1 \to Y$ would be surjectively \mathcal{A} -compact, which is a contradiction. Analogously, if (ii') does not hold, then $X_1^{\circ} \to X$ and so $T: X_1^{\circ} \to Y$ is surjectively \mathcal{A} -compact. Taking into account that $X_1^{\circ} = X_1$, we obtain that (i') is fulfilled. \Box

Now we focus on the injective \mathcal{A} -compactness and the measure $n_{\mathcal{A}}$.

Theorem 14. Let $[\mathcal{A}, \alpha]$ be a Banach operator ideal. Let X be a Banach space and let $\overline{Y} = (Y_0, Y_1)$ be a Banach couple. Assume that Y is an intermediate space with respect to \overline{Y} . For any $T \in \mathcal{A}^{inj}(X, Y_0 \cap Y_1)$, we have the following:

(i) If $n_{\mathcal{A}}(T_{X,Y_0}) = 0$,

$$n_{\mathcal{A}}(T_{X,Y}) \le n_{\mathcal{A}}(T_{X,Y_1}) \cdot \lim_{t \to 0} \frac{t}{\rho_Y(t)}.$$

(ii) If $n_{\mathcal{A}}(T_{X,Y_1}) = 0$,

$$n_{\mathcal{A}}(T_{X,Y}) \leq n_{\mathcal{A}}(T_{X,Y_0}) \cdot \lim_{t \to \infty} \frac{1}{\rho_Y(t)}.$$

(iii) If $n_{\mathcal{A}}(T_{X,Y_i}) > 0$ for i = 0, 1, then

$$n_{\mathcal{A}}(T_{X,Y}) \leq \frac{2n_{\mathcal{A}}(T_{X,Y_0})}{\rho\left(n_{\mathcal{A}}(T_{X,Y_0})/n_{\mathcal{A}}(T_{X,Y_1})\right)}.$$

Proof. Let $\varepsilon_i > n_{\mathcal{A}}(T_{X,Y_i}), i = 0, 1$. Then there exist finitely many functionals $f_1^i, \ldots, f_{n_i}^i \in X^*$, Banach spaces Z_i and operators $S_i \in \mathcal{A}(X, Z_i)$, with $\alpha(S_i) \leq \varepsilon_i$, such that for both i = 0 and i = 1, we have

$$||Tx||_{Y_i} \le \sup_{1 \le k \le n_i} |\langle f_k^i, x \rangle| + ||S_i x||_{Z_i}, \quad x \in X$$

Let t > 0. Put $Z = (Z_0 \oplus Z_1)_1$ and let $S \colon X \to Z$ be the operator given by

$$Sx = \frac{1}{\rho_Y(t)} (S_0 x, tS_1 x) \,.$$

that is, $S = \frac{1}{\rho_Y(t)}(\varphi_0 \circ S_0) + \frac{t}{\rho_Y(t)}(\varphi_1 \circ S_1)$, where $\varphi_i \colon Z_i \to Z$ is the natural inclusion (i = 0, 1). Hence, $S \in \mathcal{A}(X, Z)$ and

$$\alpha(S) \le \frac{\varepsilon_0}{\rho_Y(t)} + \frac{\varepsilon_1 t}{\rho_Y(t)} = \frac{1}{\rho_Y(t)} (\varepsilon_0 + t\varepsilon_1).$$

Clearly, for each $y \in Y_0 \cap Y_1$, we have $||y||_Y \leq J(t,y)/\rho_Y(t)$. Hence, for all $x \in X$,

$$\begin{aligned} |Tx||_{Y} &\leq \frac{J(t,Tx)}{\rho_{Y}(t)} = \frac{1}{\rho_{Y}(t)} \max\left\{ ||Tx||_{Y_{0}}, t||Tx||_{Y_{1}} \right\} \\ &\leq \frac{1}{\rho_{Y}(t)} \max_{i=0,1} \left\{ t^{i} \sup_{1 \leq k \leq n_{i}} |\langle f_{k}^{i}, x \rangle| + t^{i} ||S_{i}x||_{Z_{i}} \right\} \\ &\leq \sup_{1 \leq k \leq n_{i}, i=0,1} \left| \langle \frac{t^{i}}{\rho_{Y}(t)} f_{k}^{i}, x \rangle \right| + \frac{1}{\rho_{Y}(t)} ||S_{0}x||_{Z_{0}} + \frac{t}{\rho_{Y}(t)} ||S_{1}x||_{Z_{1}} \\ &= \sup_{1 \leq k \leq n_{i}, i=0,1} \left| \langle \frac{t^{i}}{\rho_{Y}(t)} f_{k}^{i}, x \rangle \right| + ||Sx||_{Z}. \end{aligned}$$

This implies that, for any t > 0,

$$n_{\mathcal{A}}(T_{X,Y}) \leq \frac{1}{\rho_Y(t)} (\varepsilon_0 + t\varepsilon_1),$$

and so

(7)
$$n_{\mathcal{A}}(T_{X,Y}) \leq \frac{1}{\rho_Y(t)} \Big[n_{\mathcal{A}}(T_{X,Y_0}) + tn_{\mathcal{A}}(T_{X,Y_1}) \Big], \quad t > 0.$$

If $n_{\mathcal{A}}(T_{X,Y_i}) = 0$ for i = 0 or i = 1, replacing this information in (7) and keeping in mind that $t/\rho_Y(t)$ is non-decreasing and $1/\rho_Y(t)$ is non-increasing, the statements (i) and (ii), respectively, are proved. When $n_{\mathcal{A}}(T_{X,Y_i}) > 0$ for i = 0, 1, we conclude the proof by substituting in (7) the value $t := n_{\mathcal{A}}(T_{X,Y_0})/n_{\mathcal{A}}(T_{X,Y_1})$.

Remark 15. As a consequence of Theorem 14, for the particular case $\mathcal{A} = \mathcal{L}$, we have a similar estimate to that given in [6, Theorem 3.2], and thus (see Remark 8) we also recover [4, Theorem 3.8.1(ii)].

Corollary 16. Let $[\mathcal{A}, \alpha]$ be a Banach operator ideal. Let X be a Banach space and let $\overline{Y} = (Y_0, Y_1)$ be a Banach couple. Assume that Y is an intermediate space with respect to \overline{Y} . Given $T \in \mathcal{A}^{inj}(X, Y_0 \cap Y_1)$, it follows that $T: X \to Y$ is an injectively \mathcal{A} -compact operator whenever one of the following assertions holds:

- $\diamond T: X \to Y_0 \text{ and } T: X \to Y_1 \text{ are injectively } \mathcal{A}\text{-compact operators}.$
- $\diamond T: X \to Y_0$ is injectively \mathcal{A} -compact and $\lim_{t\to 0} \frac{t}{\rho_Y(t)} = 0$.

 $\diamond T: X \to Y_1$ is injectively \mathcal{A} -compact and $\lim_{t\to\infty} \frac{1}{\rho_Y(t)} = 0$.

As a consequence, results on interpolation of quasi *p*-nuclear operators can be obtained. An example of this is the next corollary.

Corollary 17. Let $1 \le p < \infty$. Let X be a Banach space and let $\overline{Y} = (Y_0, Y_1)$ be a Banach couple. Assume that $T \in \prod_{p}(X, Y_0 \cap Y_1)$. When Y is an intermediate space of class $C_I(\theta; \bar{Y}), 0 < \theta < 1$, then $T: X \to Y$ is a quasi p-nuclear operator if either $T: X \to Y_0$ or $T: X \to Y_1$ is quasi p-nuclear.

We also establish an analogous result to Theorem 13 in the "dual" situation (see now [6, Theorem 3.10 and Corollary 3.12] for the case of compact operators). Namely, we show that if $T: X \to Y_0$ is an injectively \mathcal{A} -compact operator, then every rank-one interpolation space Y for which $T: X \to Y$ is not injectively \mathcal{A} compact must necessarily satisfy that $Y \hookrightarrow Y_1^{\sim}$. Furthermore, it is proved that the sufficient conditions obtained in Theorem 14(i) are also necessary under the additional hypothesis $Y_1^{\sim} = Y_1$.

Theorem 18. Let $[\mathcal{A}, \alpha]$ be a Banach operator ideal. Let X be a Banach space and let $Y = (Y_0, Y_1)$ be a Banach couple. Suppose that $T \in \mathcal{A}^{inj}(X, Y_0 \cap Y_1)$ and Y is a rank-one interpolation space with respect to \overline{Y} . If $T: X \to Y_0$ is an injectively \mathcal{A} -compact operator, then at least one of the following conditions is fulfilled:

- (i) $T: X \to Y$ is injectively \mathcal{A} -compact.
- (ii) $Y \hookrightarrow Y_1^{\sim}$.

Moreover, if $Y_1^{\sim} = Y_1$, the operator $T: X \to Y$ is injectively A-compact if and only if at least one of the next conditions holds:

- (i') $T: X \to Y_1$ is injectively \mathcal{A} -compact. (ii') $\lim_{t\to 0} \frac{t}{\rho_Y(t)} = 0.$

According to Theorem 14(i), whenever $T: X \to Y_0$ is injectively \mathcal{A} -Proof. compact, we have that

$$n_{\mathcal{A}}(T_{X,Y}) \le n_{\mathcal{A}}(T_{X,Y_1}) \cdot \lim_{t \to 0} \frac{t}{\rho_Y(t)}.$$

Then either $n_{\mathcal{A}}(T_{X,Y}) = 0$, that is, $T: X \to Y$ is injectively \mathcal{A} -compact, or $n_{\mathcal{A}}(T_{X,Y}) > 0$. In this case, it must hold that $\lim_{t\to 0} \frac{t}{\rho_Y(t)} > 0$ and in consequence $Y \hookrightarrow Y_1^{\sim}$ (see [6, Lemma 3.8(ii)]).

In addition, Theorem 14(i) guarantees that (i'), or (i"), is a sufficient condition to obtain that the operator $T: X \to Y$ is injectively \mathcal{A} -compact.

Now assume that $Y_1^{\sim} = Y_1$ and $T: X \to Y$ is injectively \mathcal{A} -compact. If (i') is not fulfilled, equivalently $T: X \to Y_1$ is not injectively \mathcal{A} -compact, it necessarily follows that $\lim_{t\to 0} \frac{t}{\rho_Y(t)} = 0$. If not, $Y \hookrightarrow Y_1^{\sim}$ holds (see [6, Lemma 3.8(ii)]) and, since $Y_1^{\sim} = Y_1$, the operator $T: X \to Y_1$ would be injectively \mathcal{A} -compact, which is a contradiction. On the other hand, if (ii') does not hold, then $Y \hookrightarrow Y_1^{\sim}$ and so $T: X \to Y_1^{\sim}$ is injectively \mathcal{A} -compact. Due to $Y_1^{\sim} = Y_1$, (i') is true.

Next we establish interpolation formulas for the measure of $T: X \to Y$ in terms of the measures of the restrictions $T: X_0 \cap X_1 \to Y$ and $T: X_0 + X_1 \to Y$

(respectively $T: X \to Y_0 \cap Y_1$ and $T: X \to Y_0 + Y_1$), for $T \in \mathcal{A}^{sur}(X_0 + X_1, Y)$ (respectively $T \in \mathcal{A}^{inj}(X, Y_0 \cap Y_1)$). This is interesting, since sometimes the known information about the operator only refers to such extreme restrictions.

Theorem 19. Let $[\mathcal{A}, \alpha]$ be a Banach operator ideal. Let $\overline{X} = (X_0, X_1)$ be a Banach couple and let Y be a Banach space. Assume that X is an intermediate space with respect to \overline{X} . For every $T \in \mathcal{A}^{sur}(X_0+X_1, Y)$, the following statements are true:

(i) When $\chi_{\mathcal{A}}(T_{X_0 \cap X_1, Y}) = 0$,

$$\chi_{\mathcal{A}}(T_{X,Y}) \le \chi_{\mathcal{A}}(T_{X_0+X_1,Y}) \cdot \left(\lim_{t \to 0} \psi_X(t) + \lim_{t \to \infty} \frac{\psi_X(t)}{t}\right) \,.$$
(ii) When $\chi_{\mathcal{A}}(T_{X_0+X_1,Y}) \ge 0$

(ii) When
$$\chi_{\mathcal{A}}(T_{X_0\cap X_1,Y}) > 0$$
,
 $\chi_{\mathcal{A}}(T_{X,Y}) \leq 2 \left(\frac{\psi_X \left(\chi_{\mathcal{A}}(T_{X_0+X_1,Y})/\chi_{\mathcal{A}}(T_{X_0\cap X_1,Y}) \right)}{1/\chi_{\mathcal{A}}(T_{X_0\cap X_1,Y})} + \frac{\psi_X \left(\chi_{\mathcal{A}}(T_{X_0\cap X_1,Y})/\chi_{\mathcal{A}}(T_{X_0+X_1,Y}) \right)}{1/\chi_{\mathcal{A}}(T_{X_0+X_1,Y})} \right)$

Proof. Given $\sigma > \chi_{\mathcal{A}}(T_{X_0 \cap X_1, Y})$, there are finitely many elements $u_1, \ldots, u_m \in Y$, a Banach space U and an operator $R \in \mathcal{A}(U, Y)$, with $\alpha(R) \leq \sigma$, so that

(8)
$$T(B_{X_0 \cap X_1}) \subset \bigcup_{k=1}^m \left\{ u_k + R(B_U) \right\}.$$

On the other hand, if $\delta > \chi_{\mathcal{A}}(T_{X_0+X_1,Y})$ we can find $v_1, \ldots, v_n \in Y$, a Banach space V and an operator $S \in \mathcal{A}(V,Y)$, with $\alpha(S) \leq \delta$, such that

(9)
$$T(B_{X_0+X_1}) \subset \bigcup_{k=1}^n \left\{ v_k + S(B_V) \right\}.$$

Let $\varepsilon > 0$ and $0 < t \leq 1$ arbitrarily. Define $W := (U \oplus V)_{\infty}$ and $P \in \mathcal{L}(W, Y)$ as

$$P(u,v) := (1+\varepsilon) \left(\psi_X(t^{-1}) + \frac{\psi_X(t)}{t} \right) Ru + (1+\varepsilon) \left(\psi_X(t) + \frac{\psi_X(t^{-1})}{t^{-1}} \right) Sv,$$

i.e., $P = (1+\varepsilon) \left(\psi_X(t^{-1}) + \frac{\psi_X(t)}{t} \right) (R \circ \phi_U) + (1+\varepsilon) \left(\psi_X(t) + \frac{\psi_X(t^{-1})}{t^{-1}} \right) (S \circ \phi_V),$ where $\phi_U \colon W \to U$ and $\phi_V \colon W \to V$ are the natural projections. Whence, $P \in \mathcal{A}(W, Y)$ and

$$\alpha(P) \le (1+\varepsilon) \left(\psi_X(t^{-1}) + \psi_X(t)/t \right) \sigma + (1+\varepsilon) \left(\psi_X(t) + \psi_X(t^{-1})/t^{-1} \right) \delta.$$

Note that $K(s,x) \leq \psi_X(s) ||x||_X$, for every $x \in X$ and any s > 0. Then, given $x \in B_X$, there are decompositions of x as $x = x_0 + x_1 = x'_0 + x'_1$, with $x_i, x'_i \in X_i$ (i = 0, 1), and

$$\|x_0\|_{X_0} + t\|x_1\|_{X_1} \le K(t, x) + \varepsilon \psi_X(t) \le (1 + \varepsilon)\psi_X(t),$$

$$\|x_0'\|_{X_0} + t^{-1}\|x_1'\|_{X_1} \le K(t^{-1}, x) + \varepsilon \psi_X(t^{-1}) \le (1 + \varepsilon)\psi_X(t^{-1})$$

Thus,

(10) $||x_i||_{X_i} \le (1+\varepsilon)\psi_X(t)/t^i$, $||x_i'||_{X_i} \le (1+\varepsilon)\psi_X(t^{-1})/t^{-i}$, i = 0, 1. Now let $\widehat{x} := x_0' - x_0 = x_1 - x_1' \in X_0 \cap X_1$. It follows from (10) and $0 < t \le 1$ that

(11)
$$\begin{aligned} \|\widehat{x}\|_{X_0\cap X_1} &\leq \max\{\|x_0\|_{X_0} + \|x_0'\|_{X_0}, \|x_1\|_{X_1} + \|x_1'\|_{X_1}\} \\ &\leq (1+\varepsilon) \max\{\psi_X(t) + \psi_X(t^{-1}), \psi_X(t)/t + \psi_X(t^{-1})/t^{-1}\} \\ &\leq (1+\varepsilon) \max\{\psi_X(t)/t + \psi_X(t^{-1}), \psi_X(t)/t + \psi_X(t^{-1})\} \\ &= (1+\varepsilon) \left(\psi_X(t^{-1}) + \psi_X(t)/t\right) \end{aligned}$$

and

(12)
$$\|x - \hat{x}\|_{X_0 + X_1} \le \|x_0\|_{X_0} + \|x_1'\|_{X_1} \le (1 + \varepsilon) \Big(\psi_X(t) + \psi_X(t^{-1})/t^{-1}\Big)$$

Using (11) and (12), we deduce that

$$B_X \subset (1+\varepsilon) \left(\psi_X(t^{-1}) + \frac{\psi_X(t)}{t} \right) B_{X_0 \cap X_1} + (1+\varepsilon) \left(\psi_X(t) + \frac{\psi_X(t^{-1})}{t^{-1}} \right) B_{X_0 + X_1}.$$
Keeping in mind (8) and (0), it follows that

Keeping in mind (8) and (9), it follows that

$$T(B_X) \subset (1+\varepsilon) \left(\psi_X(t^{-1}) + \frac{\psi_X(t)}{t} \right) T(B_{X_0 \cap X_1})$$

+ $(1+\varepsilon) \left(\psi_X(t) + \frac{\psi_X(t^{-1})}{t^{-1}} \right) T(B_{X_0+X_1})$
 $\subset \bigcup_{k=1}^m \left\{ (1+\varepsilon) \left(\psi_X(t^{-1}) + \frac{\psi_X(t)}{t} \right) u_k$
+ $(1+\varepsilon) \left(\psi_X(t^{-1}) + \frac{\psi_X(t)}{t} \right) R(B_U) \right\}$
+ $\bigcup_{k=1}^n \left\{ (1+\varepsilon) \left(\psi_X(t) + \frac{\psi_X(t^{-1})}{t^{-1}} \right) v_k$
+ $(1+\varepsilon) \left(\psi_X(t) + \frac{\psi_X(t^{-1})}{t^{-1}} \right) S(B_V) \right\}.$

Therefore, there exist finitely many $w_1, \ldots, w_l \in Y$ such that

$$T(B_X) \subset \bigcup_{k=1}^l \left\{ w_k + P(B_W) \right\},\,$$

with $P \in \mathcal{A}(W, Y)$ and

 $\alpha(P) \leq (1+\varepsilon) \left(\psi_X(t^{-1}) + \psi_X(t)/t \right) \sigma + (1+\varepsilon) \left(\psi_X(t) + \psi_X(t^{-1})/t^{-1} \right) \delta.$ It implies that, for each $0 < t \leq 1$,

(13)
$$\chi_{\mathcal{A}}(T_{X,Y}) \leq \left(\psi_X(t^{-1}) + \frac{\psi_X(t)}{t}\right) \chi_{\mathcal{A}}(T_{X_0 \cap X_1,Y}) \\ + \left(\psi_X(t) + \frac{\psi_X(t^{-1})}{t^{-1}}\right) \chi_{\mathcal{A}}(T_{X_0 + X_1,Y})$$

When $\chi_{\mathcal{A}}(T_{X_0 \cap X_1, Y}) = 0$, it follows that

$$\chi_{\mathcal{A}}(T_{X,Y}) \leq \left(\psi_X(t) + \frac{\psi_X(t^{-1})}{t^{-1}}\right) \chi_{\mathcal{A}}(T_{X_0+X_1,Y}),$$

and using that $\psi_X(t) + \frac{\psi_X(t^{-1})}{t^{-1}}$ is non-decreasing, we have that

$$\chi_{\mathcal{A}}(T_{X,Y}) \leq \chi_{\mathcal{A}}(T_{X_0+X_1,Y}) \cdot \left(\lim_{t \to 0} \psi_X(t) + \lim_{t \to 0} \frac{\psi_X(t^{-1})}{t^{-1}}\right)$$
$$= \chi_{\mathcal{A}}(T_{X_0+X_1,Y}) \cdot \left(\lim_{t \to 0} \psi_X(t) + \lim_{t \to \infty} \frac{\psi_X(t)}{t}\right).$$

Now assume that $\chi_{\mathcal{A}}(T_{X_0\cap X_1,Y}) > 0$. Since $\chi_{\mathcal{A}}(T_{X_0\cap X_1,Y}) \leq \chi_{\mathcal{A}}(T_{X_0+X_1,Y})$,

$$t := \frac{\chi_{\mathcal{A}}(T_{X_0 \cap X_1, Y})}{\chi_{\mathcal{A}}(T_{X_0 + X_1, Y})} \le 1$$

Substituting this value in (13) yields that

$$\begin{split} \chi_{\mathcal{A}}(T_{X,Y}) &\leq \left(\psi_{X} \left(\frac{\chi_{\mathcal{A}}(T_{X_{0}+X_{1},Y})}{\chi_{\mathcal{A}}(T_{X_{0}\cap X_{1},Y})} \right) + \frac{\psi_{X} \left(\chi_{\mathcal{A}}(T_{X_{0}\cap X_{1},Y}) / \chi_{\mathcal{A}}(T_{X_{0}+X_{1},Y}) \right)}{\chi_{\mathcal{A}}(T_{X_{0}\cap X_{1},Y}) / \chi_{\mathcal{A}}(T_{X_{0}+X_{1},Y})} \right) + \\ &+ \left(\psi_{X} \left(\frac{\chi_{\mathcal{A}}(T_{X_{0}\cap X_{1},Y})}{\chi_{\mathcal{A}}(T_{X_{0}+X_{1},Y})} \right) + \frac{\psi_{X} \left(\chi_{\mathcal{A}}(T_{X_{0}+X_{1},Y}) / \chi_{\mathcal{A}}(T_{X_{0}\cap X_{1},Y}) \right)}{\chi_{\mathcal{A}}(T_{X_{0}+X_{1},Y}) / \chi_{\mathcal{A}}(T_{X_{0}\cap X_{1},Y})} \right) \\ &- \chi_{\mathcal{A}}(T_{X_{0}+X_{1},Y}) \\ &= 2 \left(\frac{\psi_{X} \left(\chi_{\mathcal{A}}(T_{X_{0}+X_{1},Y}) / \chi_{\mathcal{A}}(T_{X_{0}\cap X_{1},Y}) \right)}{1 / \chi_{\mathcal{A}}(T_{X_{0}\cap X_{1},Y})} + \\ &+ \frac{\psi_{X} \left(\chi_{\mathcal{A}}(T_{X_{0}+X_{1},Y}) / \chi_{\mathcal{A}}(T_{X_{0}+X_{1},Y}) \right)}{1 / \chi_{\mathcal{A}}(T_{X_{0}+X_{1},Y})} \right). \\ \Box$$

Corollary 20. Let $[\mathcal{A}, \alpha]$ be a Banach operator ideal. Let $\overline{X} = (X_0, X_1)$ be a Banach couple and let Y be a Banach space. Assume that X is an intermediate space with respect to \overline{X} and $T \in \mathcal{A}^{sur}(X_0 + X_1, Y)$. If $T: X_0 \cap X_1 \to Y$ is surjectively \mathcal{A} -compact and

$$\lim_{t \to 0} \psi_X(t) = \lim_{t \to \infty} \frac{\psi_X(t)}{t} = 0,$$

then $T: X \to Y$ is a surjectively A-compact operator.

Corollary 21. Let $[\mathcal{A}, \alpha]$ be a Banach operator ideal. Let $\overline{X} = (X_0, X_1)$ be a Banach couple and let Y be a Banach space. Suppose X is of class $C_K(\theta; \overline{X}), 0 < \theta < 1$. For $T \in \mathcal{A}^{sur}(X_0 + X_1, Y)$, it follows that $T: X \to Y$ is surjectively \mathcal{A} -compact if and only if $T: X_0 \cap X_1 \to Y$ is surjectively \mathcal{A} -compact.

Observe that the above corollaries, applied to the Banach operator ideal $[\mathcal{A}, \alpha]$ given by the dual ideal of *p*-summing operators, imply interpolation results on *p*-compact operators. This fact motivates the study of the dual case and its connections with the measure $n_{\mathcal{A}}$.

Theorem 22. Let $[\mathcal{A}, \alpha]$ be a Banach operator ideal. Let X be a Banach space and let $\overline{Y} = (Y_0, Y_1)$ be a Banach couple. Assume that Y is an intermediate space with respect to \overline{Y} . For every $T \in \mathcal{A}^{inj}(X, Y_0 \cap Y_1)$, the following statements are true:

(i) When $n_{\mathcal{A}}(T_{X,Y_0+Y_1}) = 0$,

$$n_{\mathcal{A}}(T_{X,Y}) \leq 2n_{\mathcal{A}}(T_{X,Y_0 \cap Y_1}) \cdot \left(\lim_{t \to 0} \frac{t}{\rho_Y(t)} + \lim_{t \to \infty} \frac{1}{\rho_Y(t)}\right).$$

(ii) When
$$n_{\mathcal{A}}(T_{X,Y_0+Y_1}) > 0$$
,

$$n_{\mathcal{A}}(T_{X,Y}) \leq 3 \left(\frac{n_{\mathcal{A}}(T_{X,Y_0+Y_1})}{\rho \left(n_{\mathcal{A}}(T_{X,Y_0+Y_1}) / n_{\mathcal{A}}(T_{X,Y_0\cap Y_1}) \right)} + \frac{n_{\mathcal{A}}(T_{X,Y_0\cap Y_1})}{\rho \left(n_{\mathcal{A}}(T_{X,Y_0\cap Y_1}) / n_{\mathcal{A}}(T_{X,Y_0+Y_1}) \right)} \right).$$

Proof. Suppose $\sigma > n_{\mathcal{A}}(T_{X,Y_0+Y_1})$. Then, there exist finitely many functionals $f_1^*, \ldots, f_m^* \in X^*$, a Banach space H and an operator $R \in \mathcal{A}(X, H)$, with $\alpha(R) \leq \sigma$, so that

(14)
$$||Tx||_{Y_0+Y_1} \le \sup_{1 \le k \le m} |\langle f_k^*, x \rangle| + ||Rx||_H, \quad x \in X.$$

Moreover, if $\delta > n_{\mathcal{A}}(T_{X,Y_0 \cap Y_1})$, then there exist functionals $g_1^*, \ldots, g_n^* \in X^*$, a Banach space G and an operator $S \in \mathcal{A}(X,G)$, with $\alpha(S) \leq \delta$, such that

(15)
$$||Tx||_{Y_0 \cap Y_1} \le \sup_{1 \le k \le n} |\langle g_k^*, x \rangle| + ||Sx||_G, \quad x \in X$$

Take $\varepsilon > 0$ and $t \ge 1$ arbitrarily. Let $Z := (H \oplus G)_1$ and define $P \in \mathcal{L}(X, Z)$ by

$$Px := \left((1+\varepsilon) \left(\frac{1}{\rho_Y(t^{-1})} + \frac{t}{\rho_Y(t)} \right) Rx, (2+\varepsilon) \left(\frac{t^{-1}}{\rho_Y(t^{-1})} + \frac{1}{\rho_Y(t)} \right) Sx \right).$$

Thus, $P = (1+\varepsilon) \left(\frac{1}{\rho_Y(t^{-1})} + \frac{t}{\rho_Y(t)}\right) (\varphi_H \circ R) + (2+\varepsilon) \left(\frac{t^{-1}}{\rho_Y(t^{-1})} + \frac{1}{\rho_Y(t)}\right) (\varphi_G \circ S)$, where $\varphi_H \colon H \to Z$ and $\varphi_G \colon G \to Z$ are the natural inclusions. Whence $P \in \mathcal{A}(X, Z)$ and

$$\alpha(P) \le (1+\varepsilon) \left(\frac{1}{\rho_Y(t^{-1})} + \frac{t}{\rho_Y(t)}\right) \sigma + (2+\varepsilon) \left(\frac{t^{-1}}{\rho_Y(t^{-1})} + \frac{1}{\rho_Y(t)}\right) \delta.$$

On the other hand, for each $x \in X$, there is a decomposition of Tx as $Tx = y_0 + y_1$, with $y_i \in Y_i$ and

(16)
$$||y_i||_{Y_i} \le ||y_0||_{Y_0} + ||y_1||_{Y_1} \le (1+\varepsilon)||Tx||_{Y_0+Y_1}, \quad i = 0, 1.$$

By (16) and (14),

(17)
$$||y_i||_{Y_i} \le (1+\varepsilon) \sup_{1\le k\le m} |\langle f_k^*, x\rangle| + (1+\varepsilon) ||Rx||_H, \quad i=0,1.$$

Since $y_i \in Y_0 \cap Y_1$ (i = 0, 1), it follows from (16) that

$$\begin{aligned} \|y_i\|_{Y_{1-i}} &= \|Tx - y_{1-i}\|_{Y_{1-i}} \le \|Tx\|_{Y_{1-i}} + \|y_{1-i}\|_{Y_{1-i}} \\ &\le \|Tx\|_{Y_0 \cap Y_1} + (1+\varepsilon)\|Tx\|_{Y_0 + Y_1} \le (2+\varepsilon)\|Tx\|_{Y_0 \cap Y_1} \,, \end{aligned}$$

for i = 0, 1. Using (15),

(18)
$$||y_i||_{Y_{1-i}} \le (2+\varepsilon) \sup_{1\le k\le n} |\langle g_k^*, x\rangle| + (2+\varepsilon) ||Sx||_G, \quad i=0,1.$$

Observe that, for every $y \in Y_0 \cap Y_1$ and for all s > 0, $||y||_Y \leq J(s,y)/\rho_Y(s)$. Thus, using (17) and (18), it follows that

$$\begin{split} \|Tx\|_{Y} &\leq \|y_{0}\|_{Y} + \|y_{1}\|_{Y} \leq \frac{j(t^{-1}, y_{0})}{\rho_{Y}(t^{-1})} + \frac{j(t, y_{1})}{\rho_{Y}(t)} \\ &\leq \frac{1}{\rho_{Y}(t^{-1})} \max\left\{\|y_{0}\|_{Y_{0}}, t^{-1}\|y_{0}\|_{Y_{1}}\right\} + \frac{1}{\rho_{Y}(t)} \max\left\{\|y_{1}\|_{Y_{0}}, t\|y_{1}\|_{Y_{1}}\right\} \\ &\leq \frac{1}{\rho_{Y}(t^{-1})} \max\left\{(1 + \varepsilon) \sup_{1 \leq k \leq m} |\langle f_{k}^{*}, x\rangle| + (1 + \varepsilon)\|Rx\|_{H}, \\ t^{-1}\Big[(2 + \varepsilon) \sup_{1 \leq k \leq n} |\langle g_{k}^{*}, x\rangle| + (2 + \varepsilon)\|Sx\|_{G}\Big] \right\} \\ &+ \frac{1}{\rho_{Y}(t)} \max\left\{(2 + \varepsilon) \sup_{1 \leq k \leq n} |\langle g_{k}^{*}, x\rangle| + (2 + \varepsilon)\|Sx\|_{G}, \\ t\Big[(1 + \varepsilon) \sup_{1 \leq k \leq m} |\langle f_{k}^{*}, x\rangle| + (1 + \varepsilon)\|Rx\|_{H}\Big] \right\} \\ &\leq \max\left\{(1 + \varepsilon) \frac{1}{\rho_{Y}(t^{-1})} \sup_{1 \leq k \leq m} |\langle f_{k}^{*}, x\rangle|, (2 + \varepsilon) \frac{t^{-1}}{\rho_{Y}(t^{-1})} \sup_{1 \leq k \leq n} |\langle g_{k}^{*}, x\rangle| \right\} \\ &+ (1 + \varepsilon) \frac{1}{\rho_{Y}(t^{-1})} \|Rx\|_{H} + (2 + \varepsilon) \frac{1}{\rho_{Y}(t^{-1})} \|Sx\|_{G} \\ &+ \max\left\{(1 + \varepsilon) \frac{t}{\rho_{Y}(t)} \sup_{1 \leq k \leq m} |\langle f_{k}^{*}, x\rangle|, (2 + \varepsilon) \frac{1}{\rho_{Y}(t^{-1})} \|Sx\|_{G} \\ &+ (1 + \varepsilon) \frac{t}{\rho_{Y}(t)} |Rx\|_{H} + (2 + \varepsilon) \frac{1}{\rho_{Y}(t)} \sup_{1 \leq k \leq n} |\langle g_{k}^{*}, x\rangle| \right\} \\ &+ (1 + \varepsilon) \frac{t}{\rho_{Y}(t^{-1})} + \frac{t}{\rho_{Y}(t)} \exp\left|\langle f_{k}^{*}, x\rangle|, (2 + \varepsilon) \frac{1}{\rho_{Y}(t^{-1})} \|Sx\|_{G} \\ &\leq 2 \max\left\{(1 + \varepsilon) \left(\frac{1}{\rho_{Y}(t^{-1})} + \frac{t}{\rho_{Y}(t)}\right) \sup_{1 \leq k \leq m} |\langle f_{k}^{*}, x\rangle|, (2 + \varepsilon) \left(\frac{t^{-1}}{\rho_{Y}(t^{-1})} + \frac{1}{\rho_{Y}(t)}\right) \|Sx\|_{G}, \\ &+ (1 + \varepsilon) \left(\frac{1}{\rho_{Y}(t^{-1})} + \frac{t}{\rho_{Y}(t)}\right) \|Rx\|_{H} + (2 + \varepsilon) \left(\frac{t^{-1}}{\rho_{Y}(t^{-1})} + \frac{1}{\rho_{Y}(t)}\right) \|Sx\|_{G}, \end{aligned}$$

and so

$$||Tx||_Y \le \sup_{1\le k\le l} |\langle h_k^*, x\rangle| + ||Px||_Z$$

for certain functionals $h_1^*, \ldots, h_l^* \in X^*$ and $P \in \mathcal{A}(X, Z)$, with

$$\alpha(P) \le (1+\varepsilon) \left(\frac{1}{\rho_Y(t^{-1})} + \frac{t}{\rho_Y(t)} \right) \sigma + (2+\varepsilon) \left(\frac{t^{-1}}{\rho_Y(t^{-1})} + \frac{1}{\rho_Y(t)} \right) \delta.$$

Hence,

$$n_{\mathcal{A}}(T_{X,Y}) \leq (1+\varepsilon) \Big(\frac{1}{\rho_Y(t^{-1})} + \frac{t}{\rho_Y(t)}\Big)\sigma + (2+\varepsilon) \Big(\frac{t^{-1}}{\rho_Y(t^{-1})} + \frac{1}{\rho_Y(t)}\Big)\delta.$$

Thus, for any $t \ge 1$,

(19)
$$n_{\mathcal{A}}(T_{X,Y}) \leq \left(\frac{1}{\rho_{Y}(t^{-1})} + \frac{t}{\rho_{Y}(t)}\right) n_{\mathcal{A}}(T_{X,Y_{0}+Y_{1}}) + 2\left(\frac{t^{-1}}{\rho_{Y}(t^{-1})} + \frac{1}{\rho_{Y}(t)}\right) n_{\mathcal{A}}(T_{X,Y_{0}\cap Y_{1}})$$

If $n_{\mathcal{A}}(T_{X,Y_0+Y_1}) = 0$, we obtain that

$$n_{\mathcal{A}}(T_{X,Y}) \le 2\Big(\frac{t^{-1}}{\rho_Y(t^{-1})} + \frac{1}{\rho_Y(t)}\Big)n_{\mathcal{A}}(T_{X,Y_0\cap Y_1}),$$

and keeping in mind that $\frac{t^{-1}}{\rho_Y(t^{-1})} + \frac{1}{\rho_Y(t)}$ is non-increasing, we conclude that

$$n_{\mathcal{A}}(T_{X,Y}) \leq 2n_{\mathcal{A}}(T_{X,Y_0 \cap Y_1}) \cdot \left(\lim_{t \to \infty} \frac{t^{-1}}{\rho_Y(t^{-1})} + \lim_{t \to \infty} \frac{1}{\rho_Y(t)}\right)$$
$$= 2n_{\mathcal{A}}(T_{X,Y_0 \cap Y_1}) \cdot \left(\lim_{t \to 0} \frac{t}{\rho_Y(t)} + \lim_{t \to \infty} \frac{1}{\rho_Y(t)}\right).$$

On the other hand, if $n_{\mathcal{A}}(T_{X,Y_0+Y_1}) > 0$, then $n_{\mathcal{A}}(T_{X,Y_0\cap Y_1}) > 0$ too, because $n_{\mathcal{A}}(T_{X,Y_0+Y_1}) \leq n_{\mathcal{A}}(T_{X,Y_0\cap Y_1})$. Then, taking

$$t := \frac{n_{\mathcal{A}}(T_{X,Y_0 \cap Y_1})}{n_{\mathcal{A}}(T_{X,Y_0 + Y_1})} \ge 1$$

in (19), we deduce that

$$\begin{split} n_{\mathcal{A}}(T_{X,Y}) &\leq \\ &\leq \frac{n_{\mathcal{A}}(T_{X,Y_{0}+Y_{1}})}{\rho\left(n_{\mathcal{A}}(T_{X,Y_{0}+Y_{1}})/n_{\mathcal{A}}(T_{X,Y_{0}\cap Y_{1}})\right)} + \frac{n_{\mathcal{A}}(T_{X,Y_{0}\cap Y_{1}})}{\rho\left(n_{\mathcal{A}}(T_{X,Y_{0}+Y_{1}})/n_{\mathcal{A}}(T_{X,Y_{0}\cap Y_{1}})\right)} \\ &+ 2\left(\frac{n_{\mathcal{A}}(T_{X,Y_{0}+Y_{1}})}{\rho\left(n_{\mathcal{A}}(T_{X,Y_{0}+Y_{1}})/n_{\mathcal{A}}(T_{X,Y_{0}\cap Y_{1}})\right)} + \frac{n_{\mathcal{A}}(T_{X,Y_{0}\cap Y_{1}})}{\rho\left(n_{\mathcal{A}}(T_{X,Y_{0}\cap Y_{1}})/n_{\mathcal{A}}(T_{X,Y_{0}\cap Y_{1}})\right)}\right) \\ &= 3\left(\frac{n_{\mathcal{A}}(T_{X,Y_{0}+Y_{1}})}{\rho\left(n_{\mathcal{A}}(T_{X,Y_{0}+Y_{1}})/n_{\mathcal{A}}(T_{X,Y_{0}\cap Y_{1}})\right)} + \frac{n_{\mathcal{A}}(T_{X,Y_{0}\cap Y_{1}})}{\rho\left(n_{\mathcal{A}}(T_{X,Y_{0}\cap Y_{1}})/n_{\mathcal{A}}(T_{X,Y_{0}+Y_{1}})\right)}\right). \end{split}$$

We specify two particular cases stated in the following corollaries.

Corollary 23. Let $[\mathcal{A}, \alpha]$ be a Banach operator ideal. Let X be a Banach space and let $\overline{Y} = (Y_0, Y_1)$ be a Banach couple. Assume that Y is an intermediate space with respect to \overline{Y} and $T \in \mathcal{A}^{inj}(X, Y_0 \cap Y_1)$. If $T: X \to Y_0 + Y_1$ is injectively \mathcal{A} -compact and

$$\lim_{t \to 0} \frac{t}{\rho_Y(t)} = \lim_{t \to \infty} \frac{1}{\rho_Y(t)} = 0$$

then $T: X \to Y$ is an injectively A-compact operator.

Corollary 24. Let $[\mathcal{A}, \alpha]$ be a Banach operator ideal. Let X be a Banach space and let $\overline{Y} = (Y_0, Y_1)$ be a Banach couple. Suppose Y is of class $C_J(\theta; \overline{Y}), 0 < \theta < 0$ 1. For $T \in \mathcal{A}^{inj}(X, Y_0 \cap Y_1)$, it follows that $T: X \to Y$ is injectively \mathcal{A} -compact if and only if $T: X \to Y_0 + Y_1$ is injectively \mathcal{A} -compact.

Let us point out that if $[\mathcal{A}, \alpha]$ is the Banach operator ideal of *p*-summing operators, then the above corollaries yield interpolation results on quasi p-nuclear operators.

We now observe that applying Corollaries 20 and 23 and [6, Lemmata 3.7 and 3.8, respectively, it is possible to establish results in the same line that [8, Corollaries 3.11 and 3.10].

Corollary 25. Let $[\mathcal{A}, \alpha]$ be a Banach operator ideal. Let $\overline{X} = (X_0, X_1)$ be a Banach couple and let Y be a Banach space. Suppose that $T \in \mathcal{A}^{sur}(X_0 + X_1, Y)$ and X is a rank-one interpolation space with respect to X. If $T: X_0 \cap X_1 \to Y$ is a surjectively A-compact operator, then at least one of the following conditions is fulfilled:

- (i) $T: X \to Y$ is surjectively \mathcal{A} -compact.

Corollary 26. Let $[\mathcal{A}, \alpha]$ be a Banach operator ideal. Let X be a Banach space and let $\overline{Y} = (Y_0, Y_1)$ be a Banach couple. Suppose that $T \in \mathcal{A}^{inj}(X, Y_0 \cap Y_1)$ and Y is a rank-one interpolation space with respect to \overline{Y} . If $T: X \to Y_0 + Y_1$ is an injectively \mathcal{A} -compact operator, then at least one of the following conditions is fulfilled:

- (i) $T: X \to Y$ is injectively \mathcal{A} -compact. $\begin{array}{cc} (ii) & Y \hookrightarrow Y_0^{\sim}. \\ (iii) & Y \hookrightarrow Y_1^{\sim}. \end{array}$

Acknowledgements. We thank the referees for the helpful comments that led to an improvement of the paper.

References

- [1] K. Ain, R. Lillements, E. Oja, Compact operators which are defined by ℓ_p -spaces, Quaest. Math. 35 (2012) 145–159.
- [2] K. Ain, E. Oja, On (p, r)-null sequences and their relatives, Math. Nachr. 288 (2015) 1569– 1580.
- [3] K. Astala, On measures of non-compactness and ideal variations in Banach spaces, Ann. Acad. Sci. Fenn. Ser. A. I. Math. Dissertationes 29 (1980) 1-42.
- [4] J. Bergh, J. Löfström, Interpolation Spaces. An Introduction, Springer, Berlin-Heidelberg-New York, 1976.
- [5] B. Carl, I. Stephani, On \mathcal{A} -compact operators, generalized entropy numbers and entropy ideals, Math. Nachr. 119 (1984) 77–95.
- [6] F. Cobos, M. Cwikel, P. Matos, Best possible compactness results of Lions-Peetre type, Proc. Edinburgh Math. Soc. 44 (2001) 153–172.
- [7] F. Cobos, A. Manzano, A. Martínez, Interpolation theory and measures related to operator ideals, Quarterly J. Math. 50 (1999) 401-416.
- [8] F. Cobos, A. Manzano, A. Martínez, P. Matos, On interpolation of strictly singular operators, strictly co-singular operators and related operator ideals, Proc. Royal Soc. Edinburgh Sect. A 130 (2000) 971–989.

- [9] A. Defant, M.S. Ramanujan, Surjective A-compactness and generalized Kolmogorov numbers, Note Mat. 11 (1991) 109–117.
- [10] J.M. Delgado, E. Oja, C. Piñeiro, E. Serrano, The *p*-approximation property in terms of density of finite rank operators, J. Math. Anal. Appl. 354 (2009) 159–164.
- [11] J.M. Delgado, C. Piñeiro, An approximation property with respect to an operator ideal, Studia Math. 214 (2013) 67–75.
- [12] J.M. Delgado, C. Piñeiro, Duality of measures of non-A-compactness, Studia Math. 229 (2015) 95–112.
- [13] J.M. Delgado, C. Piñeiro, E. Serrano, Operators whose adjoints are quasi p-nuclear, Studia Math. 197 (2010) 291–304.
- [14] J.M. Delgado, C. Piñeiro, E. Serrano, Density of finite rank operators in the Banach space of p-compact operators, J. Math. Anal. Appl. 370 (2010) 498–505.
- [15] J. Diestel, H. Jarchow, A. Tonge, Absolutely Summing Operators, Cambridge University Press, Cambridge, 1995.
- [16] A.A. Dmitriev, The interpolation of one-dimensional operators, Voronež Gos. Univ. Trudy Naučn.-Issled. Inst. Mat. VGU Vyp. 11Sb. Statej Funkcional. Anal. i Prilozen 11 (1973) 31–43 (in Russian).
- [17] J. Fourie, J. Swart, Banach ideals of p-compact operators, Manuscripta Math. 26 (1979) 349–362.
- [18] D. Galicer, S. Lassalle, P. Turco, The ideal of p-compact operators: a tensor product approach, Studia Math. 211 (2012) 269–286.
- [19] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16, 1955.
- [20] H. Jarchow, Locally Convex Spaces, Teubner, Stuttgar, 1981.
- [21] J.M. Kim, K.Y. Lee, B. Zheng, Banach compactness and Banach nuclear operators, Results Math. 75,161 (2020). https://doi.org/10.1007/s00025-020-01295-0.
- [22] S.G. Krein, J.I. Petunin, E.M. Semenov, Interpolation of Linear Operators, Amer. Math. Soc., Providence R. I, 1982.
- [23] S. Lassalle, P. Turco, The Banach ideal of *A*-compact operators and related approximation properties, J. Funct. Anal. 265 (2013) 2452–2464.
- [24] S. Lassalle, P. Turco, On null sequences for Banach operator ideals, trace duality and approximation properties, Math. Nachr. 290 (2017) 2308–2321.
- [25] A. Lebow, M. Schechter, Semigroups of operators and measures of non-compactness, J. Funct. Anal. 7 (1971) 1–26.
- [26] J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces I, Springer Verlag, Berlin-Heidelberg-New York, 1977.
- [27] L. Maligranda, M. Mastyło, Notes on non-interpolation spaces, J. Approx. Theory 56 (1989) 333–347.
- [28] E. Oja, A remark on the approximation of p-compact operators by finite-rank operators, J. Math. Anal. Appl. 387 (2012) 949–952.
- [29] A. Pietsch, Operator Ideals, North-Holland, Amsterdam, 1980.
- [30] C. Piñeiro, J.M. Delgado, p-convergent sequences and Banach spaces in which p-compact sets are q-compact, Proc. Amer. Math. Soc. 139 (2011) 957–967.
- [31] E. Pustylnik, Embedding functions and their role in interpolation theory, Abstract Appl. Anal. 1 (1996) 305–325.
- [32] D.P. Sinha, A.K. Karn, Compact operators whose adjoints factor through subspaces of ℓ_p , Studia Math. 150 (2002) 17–33.
- [33] I. Stephani, Injectively A-compact operators, generalized inner entropy numbers and Gelfand numbers, Math. Nachr. 133 (1987) 247–272.
- [34] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978.
- [35] H.O. Tylli, The essential norm of an operator is not self-dual, Israel J. Math. 91 (1995) 93–110.

ANTONIO MANZANO, DEPARTAMENTO DE MATEMÁTICAS Y COMPUTACIÓN, UNIVERSIDAD DE BURGOS, ESCUELA POLITÉCNICA SUPERIOR, CALLE VILLADIEGO S/N, 09001 BURGOS. SPAIN. *E-mail address*: amanzano@ubu.es

MIECZYSŁAW MASTYŁO, FACULTY OF MATHEMATICS AND COMPUTER SCIENCE, ADAM MICK-IEWICZ UNIVERSITY, UNIWERSYTETU POZNAŃSKIEGO 4, 61-614 POZNAŃ, POLAND. *E-mail address:* mastylo@math.amu.edu.pl