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Abstract
We study weakly compact multilinear operators. We prove a variant of Gantmacher’s
weak compactness theorem for multilinear operators. We also present Lions–Peetre
type results on weak compactness interpolation for multilinear operators. Further-
more, we provide an analogue of Persson’s result on interpolation of weakly compact
operators under the assumption that the target Banach couple satisfies a certain weakly
compact approximation property.
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1 Introduction

In recent years, the theory of multilinear operators has been intensively developed.
Interest of multilinear interpolation theorems arose of their important applications in
analysis. For instance, we refer to the articles by Bényi and Torres [4], Bényi and
Oh [3] for some applications in harmonic analysis, and König’s paper [20] on the
study of the tensor stability of some operator ideals.
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We note that the behaviour under interpolation of compactness of bilinear operators
has been studied intensively in the last years (see, e.g., [9, 16, 18, 19]). General
interpolation results on the stability of compactness of bilinear operators acting on
products of Banach spaces generated by abstract methods of interpolation, in the
sense of Aronszajn and Gagliardo, were proved in [25]. Moreover, quantitative results
in terms of interpolation estimates for the measure of non-compactness of bilinear
operators between general spaces obtained by real methods have been proved in [24]
(for Banach spaces) and in [6] (for the case of quasi-Banach spaces).

The rich theory of ideals of linear operators (see, e.g., [13, 14, 28]) and their impor-
tant applications have naturally motivated the study of classes multilinear operators
that become ideals in a multilinear setting. For example, with respect to interpola-
tion, results for general ideals of multilinear operators can be found in [22, 23]. These
interpolation results apply in particular to the ideal ofweakly compactmultilinear oper-
ators. However, it can be said that the specific study of the interpolation properties of
weakly compact multilinear operators has started very recently in the papers by Cobos,
Fernández-Cabrera and Martínez [10] and by Cobos and Fernández-Cabrera [8] (see
also [11]).

In this work we investigate weakly compact multilinear operators acting on Banach
spaces. Next, we provide a brief overview of the main results. In Sect. 2, we review
the key definitions and notation used throughout the paper. In Sect. 3 we present
a factorization theorem in the multilinear setting, which is a generalization of the
famous theorem of Davis, Figiel, Johnson and Pełczyński [12] on the factorization
of a weakly compact operator by a reflexive Banach space. Applying this result, we
prove a variant of Gantmacher’s theorem for a weakly compact multilinear operator
in terms of the weak compactness of its generalized adjoint. In Sects. 4 and 5 we
study interpolation of weakly compact multilinear operators. In particular, multilinear
Lions–Peetre interpolation results for this class of operators are obtained in Sect. 4.
Furthermore, in Sect. 5, we establish a result of Persson type on the stability of theweak
compactness of interpolated operators, under the assumption that the target Banach
couple satisfies a weakly compact approximation property.

2 Background and notation

Throughout the paper we will use standard notation of theory of Banach spaces and
operators. Given a Banach space X , we denote by UX the closed unit ball of X and
by X∗ and X∗∗ the dual and bidual, respectively, of X . The mapping κX stands for the
canonical embedding of X into its bidual X∗∗. For 1 ≤ p < ∞, the Banach space of
all strongly p-summable sequences x = {xk}k∈N in X is denoted by �p(X) and it is
equipped with a natural norm given by

‖x‖ :=
( ∞∑
k=1

‖xk‖p
X

) 1
p

.
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If X1, . . . , Xn (n ≥ 2) are Banach spaces, then X1 × · · · × Xn is their product
endowed with the standard norm ‖x‖ := max{‖x1‖X1 , . . . , ‖xn‖Xn }, for any x =
(x1, . . . , xn) ∈ X1 × · · · × Xn . Let X1 ⊗ · · · ⊗ Xn denote the tensor product of the
Banach spaces X1, . . . , Xn and let π be the projective norm given by

π(u) := inf
m∑
j=1

‖x j
1‖ · · · ‖x j

n‖, u ∈ X1 ⊗ · · · ⊗ Xn,

where the infimum is taken over all possible representations of u of the form
u = ∑m

j=1 x
j
1 ⊗ · · · ⊗ x j

n , x
j
i ∈ Xi (i = 1, . . . , n). The projective tensor prod-

uct of X1, . . . , Xn , i.e., the completion of (X1 ⊗ · · · ⊗ Xn, π), will be denoted by
X1⊗̂π · · · ⊗̂π Xn .

As usual, if Y is another Banach space, an operator S : X → Y is a continuous
linearmapping. Analogously, by an n-linear operator T : X1×· · ·×Xn → Y wemean
a multilinear mapping that is continuous. The Banach space of all n-linear operators
T : X1 × · · · × Xn → Y with the usual norm

‖T ‖ := sup
{‖T (x1, . . . , xn)‖Y ; x1 ∈ UX1 , . . . , xn ∈ UXn

}
,

will be represented by L(X1, . . . , Xn; Y ). In the case when Y is the scalar field R or
C, we will write L(X1, . . . , Xn).

From now on, the n-linear operator J : X1 × · · · × Xn → L(X1, . . . , Xn)
∗ is

such that (J x)� := �x , for x ∈ X1 × · · · × Xn and � ∈ L(X1, . . . , Xn). If
T ∈ L(X1, . . . , Xn; Y ), following [29], we consider the generalized adjoint operator
T× : Y ∗ → L(X1, . . . , Xn), defined as (T×y∗)x := y∗(T x), for y∗ ∈ Y ∗ and x ∈
X1 × · · · × Xn . It will be useful later to keep in mind that (see [17, Lemma 2.1])

(T×)∗ ◦ J = κY ◦ T . (2.1)

Let X1, . . . , Xn (n ≥ 2) and Y be Banach spaces. Recall that for a given multilinear
operator T ∈ L(X1, . . . , Xn; Y ) there exists a unique continuous linear operator
T̃ : X1⊗̂π · · · ⊗̂π Xn → Y such that T admits the factorization

T : X1 × · · · × Xn

⊗
−→ X1⊗̂π · · · ⊗̂π Xn

T̃−→ Y ,

where ⊗(x1, . . . , xn) := x1 ⊗ · · · ⊗ xn for all (x1, . . . , xn) ∈ X1 × · · · × Xn .
Now we are going to recall some basic definitions and specific notation that will

be used for our purposes in Sects. 4 and 5. We denote by � the set of all functions
ϕ : (0,∞) × (0,∞) → (0,∞), which are non-decreasing in each variable and pos-
itively homogeneous (i.e., ϕ(λs, λt) = λϕ(s, t) for all λ, s, t > 0). Note that any
function interpolation function ϕ ∈ � is continuous and can be extended by continu-
ity to [0,∞) × [0,∞). We denote this extension by the same symbol ϕ. The simplest
examples of interpolation functions are as + bt , max{as, bt}, and min{as, bt}, where
a, b > 0, and the power functions s1−θ tθ with 0 ≤ θ ≤ 1.
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Let �X = (X0, X1) be a Banach couple, that is, X0 and X1 are two Banach spaces
which are continuously embedded in some Hausdorff topological vector space. The
sum X0+ X1 and the intersection X0∩ X1 of X0 and X1 become Banach spaces when
endowed with the norms

‖x‖X0+X1 := inf{‖x0‖X0 + ‖x1‖X1; x = x0 + x1, xi ∈ Xi }, x ∈ X0 + X1,

and

‖x‖X0∩X1 := max{‖x‖X0 , ‖x‖X1}, x ∈ X0 ∩ X1.

A Banach space X is called an intermediate space with respect to �X = (X0, X1) if
X0 ∩ X1 ↪→ X ↪→ X0 + X1, where “↪→” means continuous inclusion.

An intermediate space X with respect to �X = (X0, X1) is said to be of class
CK (θ; �X), where 0 < θ < 1, if there is a constant C > 0 such that for all t > 0 and
x ∈ X ,

K (1, t, x; �X) ≤ Ctθ‖x‖X .

Here K (s, t, x; �X) is defined, for every s, t > 0 and any x ∈ X0 + X1, as

K (s, t, x; �X) := inf{s‖x0‖X0 + t‖x1‖X1; x = x0 + x1, xi ∈ Xi , i = 0, 1}.

The real interpolation space (X0, X1)θ,q and the complex interpolation space
[X0, X1]θ are examples of spaces of class CK (θ; �X) (see [5]).

If X is an intermediate space X with respect to �X = (X0, X1), we will consider
the following functions, which belong to �:

φX (s, t) := sup{‖x‖X ; x ∈ X0 ∩ X1, ‖x‖X0 ≤ s, ‖x‖X1 ≤ t}, s, t > 0 ,

ψX (s, t) := sup{K (s, t, x; �X); x ∈ UX }, s, t > 0 .

For given Banach couples �X1 = (X1
0, X

1
1), . . . ,

�Xn = (Xn
0 , X

n
1 ) and �Y = (Y0,Y1),

we put T ∈ L( �X1, . . . , �Xn; �Y ) if T : (X1
0 + X1

1) × · · · × (Xn
0 + Xn

1 ) → Y0 + Y1
is an n-linear operator whose restrictions T : X1

i × · · · × Xn
i → Yi are continuous

(i = 0, 1).
When X1, . . . , Xn and Y are intermediate spaces with respect to the couples

�X1, . . . , �Xn and �Y , respectively, wewill write (X1, . . . , Xn; Y ) ∈ Lϕ( �X1, . . . , �Xn; �Y )

if there exists a function ϕ ∈ � such that for every T ∈ L( �X1, . . . , �Xn; �Y ) the restric-
tion T : X1 × · · · × Xn → Y is continuous and

‖T ‖X1×···×Xn→Y ≤ ϕ
(‖T ‖X1

0×···×Xn
0→Y0

, ‖T ‖X1
1×···×Xn

1→Y1

)
.

Finally let us recall that, in a similar way to the linear case, an n-linear operator
T : X1 × · · · × Xn → Y is said to be weakly compact if T (UX1 × · · · × UXn ) is
a relatively weakly compact subset in Y .
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3 Gantmacher’s theorem for weakly compact multilinear operators

We will derive a version of Gantmacher’s theorem for multilinear operators from
the following extension to the multilinear setting of the famous factorization result
established byDavis, Figiel, Johnson andPełczyński.Although this factorization result
is surely well-known to specialists (see [10, Theorem 5.1] for bilinear operators), we
include a possible proof. Let us remind that the linear version of this theorem states
that any weakly compact operator T : X → Y between Banach spaces factors through
a reflexive Banach space (see [12]).

Proposition 3.1 Let X1, . . . , Xn,Y beBanach spaces and let T ∈ L(X1, . . . Xn; Y )be
weakly compact. Then there exist a reflexive Banach space Z and an n-linear operator
R : X1 × · · · × Xn → Z and a linear operator S : Z → Y such that T = S ◦ R.

Proof Similarly as in the case n = 2 (see [21, Chapter 8, Section 41.4] or [30, Proposi-
tion 2.2]) we have a version of Grothendieck’s representation theorem for each n > 2,
which states that the closed unit ball of X1⊗̂π · · · ⊗̂π Xn is the closed convex hull
of the set UX1 ⊗ · · · ⊗ UXn . Combining this fact with the mentioned factorization
T̃ ◦ ⊗ = T , we conclude that

T̃
(
UX1⊗̂π ···⊗̂π Xn

) ⊂ conv(T (UX1 × · · · ×UXn )).

Since the closed convex hull of a weakly compact subset is also weakly compact
(see, e.g., [15, Theorem V.6.4]), the operator T̃ : X1⊗̂π · · · ⊗̂π Xn → Y is weakly
compact. Applying to the linear operator operator T̃ the factorization theorem due to
Davis, Figiel, Johnson andPełczyński, there are a reflexiveBanach space Z andweakly
compact operators P : X1⊗̂π · · · ⊗̂π Xn → Z and Q : Z → Y so that T̃ = Q ◦ P .
Thus, we have the following diagram:

X1 × · · · × Xn

�
X1⊗̂π · · · ⊗̂π Xn

T

⊗ T̃

Y�

�
�

�
�

�
���

�

�

ZP

Q

It shows that the operators P ◦ ⊗: X1 × · · · × Xn → Z and Q : Z → Y provide
a factorization of the multilinear operator T as T = Q ◦ (P ◦ ⊗). ��

From Proposition 3.1 and (2.1) we deduce a variant of Gantmacher’s theorem for
multilinear operators. This result has been proved for bilinear operators in [10, Lemma
2.3].

Corollary 3.2 Let X1, . . . , Xn,Y be Banach spaces. Then an n-linear operator
T : X1 × · · · × Xn → Y is weakly compact if and only if the linear operator
T× : Y ∗ → L(X1, . . . , Xn) is weakly compact.
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Proof Assume that T : X1 × · · · × Xn → Y is weakly compact. Applying Proposi-
tion 3.1, there exist a reflexive Banach space Z and operators R : X1 ×· · ·× Xn → Z
and S : Z → Y with T = S ◦ R. Then, given any y∗ ∈ Y ∗ and x ∈ X1 × · · · × Xn it
holds that

(T×y∗)x = y∗(T x) = y∗(S(Rx)) = (S∗y∗)(Rx)
= (R×(S∗y∗))x = [(R× ◦ S∗)y∗]x .

This implies that T× = R× ◦ S∗, and R× ◦ S∗ is a weakly compact operator.
Now suppose that the linear operator T× : Y ∗ → L(X1, . . . , Xn) is weakly com-

pact. Gantmacher’s theorem (see, e.g., [15, Theorem VI.4.8]) gives that (T×)∗ is also
weakly compact. By (2.1), we have that κY ◦ T : X1 × · · · × Xn → Y ∗∗ is weakly
compact. Since κY is a metric injection, it follows that T : X1 × · · · × Xn → Y is
weakly compact. ��

4 Onweak compactness results of Lions–Peetre type for multilinear
operators

In this section we establish multilinear Lions–Peetre interpolation results on weak
compactness, namely Theorems 4.2 and 4.4, in a similar line that those on com-
pactness (of bilinear operators) given in [25, Lemmata 2.4 and 2.5]. Before of stating
Theorem 4.2, we mention the following characterization of a weakly compact n-linear
operator.

Remark 4.1 Given Banach spaces X1, . . . , Xn and Y , an n-linear operator T : X1 ×
· · · × Xn → Y is weakly compact if and only if, for each ε > 0, there are a Banach
space Z and a weakly compact n-linear operator R : X1 × · · · × Xn → Z such that

∥∥∥ m∑
j=1

T (x j
1 , . . . , x j

n )

∥∥∥
Y

≤
∥∥∥ m∑
j=1

R(x j
1 , . . . , x j

n )

∥∥∥
Z

+ ε

m∑
j=1

‖x j
1‖X1 · · · ‖x j

n‖Xn ,

for any m ∈ N and all x j
1 ∈ X1, . . . , x

j
n ∈ Xn, j = 1, . . . ,m.

The necessity of this fact obviously holds. On the other hand, it is not hard to check
that the class of weakly compact n-linear operators is a closed injective n-ideal (see
[7, p. 303] or [22, Definition 2.4]) and so the sufficiency of the above assertion is a
consequence of [7, Theorem 2.4].

Theorem 4.2 Let X1, . . . , Xn be Banach spaces, and �Y = (Y0,Y1) a Banach couple.
Suppose that Y is an intermediate space with respect to �Y = (Y0,Y1) such that
φY (t, 1) → 0 as t → 0. If T ∈ L(X1, . . . , Xn; Y0 ∩ Y1) and the operator T : X1 ×
· · · × Xn → Y0 is weakly compact, then T : X1 × · · · × Xn → Y is also weakly
compact.
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Proof Take any ε > 0. Fix a sufficiently small t > 0 satisfying that

φY (t, 1) ≤ ε

‖T ‖X1×···×Xn→Y1
.

Due to T : X1 × · · · × Xn → Y0 is weakly compact, by Remark 4.1 there exist a
Banach space Z and a weakly compact n-linear operator R : X1 × · · · × Xn → Z in
such a way that

∥∥∥ m∑
j=1

T (x j
1 , . . . , x j

n )

∥∥∥
Y0

≤
∥∥∥ m∑
j=1

R(x j
1 , . . . , x j

n )

∥∥∥
Z

+ t ‖T ‖X1×···×Xn→Y1

m∑
j=1

‖x j
1‖X1 · · · ‖x j

n‖Xn ,

for all m ∈ N and any x j
1 ∈ X1, . . . , x

j
n ∈ Xn, j = 1, . . . ,m.

If we define the weakly compact n-linear operator S : X1 × · · · × Xn → Z as

S(u1, . . . , un) = ε

t ‖T ‖X1×···×Xn→Y1
R(u1, . . . , un),

and we put γ := ‖T ‖X1×···×Xn→Y1 , then for any m ∈ N and arbitrary x j
1 ∈

X1, . . . , x
j
n ∈ Xn, j = 1, . . . ,m, it holds that

∥∥∥ m∑
j=1

T (x j
1 , . . . , x j

n )

∥∥∥
Y

≤ φY

(∥∥∥ m∑
j=1

T (x j
1 , . . . , x j

n )

∥∥∥
Y0

,

∥∥∥ m∑
j=1

T (x j
1 , . . . , x j

n )

∥∥∥
Y1

)

≤ φY

(∥∥∥ m∑
j=1

R(x j
1 , . . . , x j

n )

∥∥∥
Z

+ t γ
m∑
j=1

‖x j
1 ‖X1 · · · ‖x j

n ‖Xn , γ

m∑
j=1

‖x j
1 ‖X1 · · · ‖x j

n ‖Xn

)

≤ φY

(
t
[∥∥∥ m∑

j=1

(1
t
R
)
(x j

1 , . . . , x j
n )

∥∥∥
Z

+ γ

m∑
j=1

‖x j
1 ‖X1 · · · ‖x j

n ‖Xn

]
,

∥∥∥ m∑
j=1

(1
t
R
)
(x j

1 , . . . , x j
n )

∥∥∥
Z

+ γ

m∑
j=1

‖x j
1 ‖X1 · · · ‖x j

n ‖Xn

)

=
[ ∥∥∥ m∑

j=1

(1
t
R
)
(x j

1 , . . . , x j
n )

∥∥∥
Z

+ γ

m∑
j=1

‖x j
1‖X1 · · · ‖x j

n‖Xn

]
· φY (t, 1)

≤
∥∥∥ m∑
j=1

S(x j
1 , . . . , x j

n )

∥∥∥
Z

+ ε

m∑
j=1

‖x j
1 ‖X1 · · · ‖x j

n ‖Xn .

Therefore, the operator T : X1 × · · · × Xn → Y is weakly compact. ��
To prove Theorem 4.4 we will use certain ideas inspired by techniques of [25,

Lemma 2.5]. We will also use a well-known fact that we recall in the next remark.
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Remark 4.3 A subset D of a Banach space Y is relatively weakly compact if and
only if, for each ε > 0, there are a Banach space Z and a weakly compact operator
R : Z → Y such that

D ⊂ R(UZ ) + εUY . (4.1)

In fact, a result of Grothendieck (see [1, Theorem 3.44]) establishes that a subset D of
a Banach space Y is relatively weakly compact if and only if, for every ε > 0, there
exists a weakly compact subset W of Y satisfying that

D ⊂ W + εUY .

In that case, it is possible to find a reflexive Banach space Z and a weakly compact
operator R : Z → Y such that W ⊂ R(UZ ) (see [1, Theorem 5.37]) and so

D ⊂ R(UZ ) + εUY .

Of course if, for each ε > 0, (4.1) holds for some Banach space Z and weakly compact
operator R : Z → Y , then D is relatively weakly compact subset.

Theorem 4.4 Let �X1 = (X1
0, X

1
1), . . . ,

�Xn = (Xn
0 , X

n
1 ) be Banach couples and let

Y be a Banach space. Suppose that X j is an intermediate space with respect to
�X j = (X j

0 , X
j
1) such that ψX j (t, 1) → 0 as t → 0, for j = 1, . . . , n. If T ∈

L(X1
0 + X1

1, . . . , X
n
0 + Xn

1 ; Y ) and the restriction T : X1
0 × · · · × Xn

0 → Y is weakly
compact, then T : X1 × · · · × Xn → Y is also weakly compact.

Proof For simplicity in notation we prove the result for n = 3, but an analogous
reasoning works for any fixed natural number n.

We may assume without loss of generality the following:

the inclusion map X j ↪→ X j
0 + X j

1 has a norm less than or equal to 1,

for j = 1, 2, 3, and also ‖T ‖(X1
0+X1

1)×(X2
0+X2

1)×(X3
0+X3

1)→Y ≤ 1.
(4.2)

Ifwe putψ j (t) := ψX j (1, t), the assumption aboutψX j is equivalent to
ψ j (t)

t
→ 0

as t → ∞ ( j = 1, 2, 3).
Take ε > 0 arbitrarily. Choose a big enough t > 0 for which

max

{
ψ j (t)

t
; j = 1, 2, 3

}
≤ min

{ ε

23 · 23 , 1
}

. (4.3)

Since T : X1
0 × X2

0 × X3
0 → Y is weakly compact, the subset T (UX1

0
×UX2

0
×UX3

0
)

is relatively weakly compact in Y . By Remark 4.3, there are a Banach space Z and a
weakly compact operator R : Z → Y satisfying that

T (UX1
0
×UX2

0
×UX3

0
) ⊂ R(UZ ) + 1

23 · t3UY . (4.4)
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Given any (x1, x2, x3) ∈ UX1 × UX2 × UX3 , it is possible to find decompositions

x j = a j + b j , with a j ∈ X j
0 and b j ∈ X j

1 , such that

‖a j‖X j
0

+ t‖b j‖X j
1

≤ 2ψ j (t), j = 1, 2, 3. (4.5)

According to (4.4), there exists z ∈ UZ so that

∥∥∥T( a1
‖a1‖X1

0

,
a2

‖a2‖X2
0

,
a3

‖a3‖X3
0

)
− Rz

∥∥∥
Y

≤ 1

23 · t3 ,

and, by (4.5),

‖T (a1, a2, a3) − R(‖a1‖X1
0
‖a2‖X2

0
‖a3‖X3

0
z)‖Y

≤ 1

23 · t3 ‖a1‖X1
0
‖a2‖X2

0
‖a3‖X3

0
≤ ψ1(t)

t

ψ2(t)

t

ψ3(t)

t
≤ ε

23 · 23 . (4.6)

On the other hand, it follows that

T (x1, x2, x3) = T (a1, x2, x3) + T (b1, x2, x3)

= T (a1, a2, x3) + T (a1, b2, x3) + T (b1, x2, x3)

= T (a1, a2, a3)

+ T (a1, a2, b3) + T (a1, b2, x3) + T (b1, x2, x3).

Taking into account that a2 = x2 − b2 and a1 = x1 − b1, it holds for the second line
on the right hand side of the last equality that

T (a1, a2, b3) + T (a1, b2, x3) + T (b1, x2, x3)

= T (a1, x2, b3) − T (a1, b2, b3) + T (a1, b2, x3) + T (b1, x2, x3)

= T (x1, x2, b3) − T (b1, x2, b3) − T (x1, b2, b3) + T (b1, b2, b3)

+ T (x1, b2, x3) − T (b1, b2, x3) + T (b1, x2, x3).

Keeping in mind the above and arranging addends,

T (x1, x2, x3) = T (a1, a2, a3) + T (a1, a2, b3) + T (a1, b2, x3) + T (b1, x2, x3)

= T (a1, a2, a3) + T (b1, x2, x3) + T (x1, b2, x3) + T (x1, x2, b3)

− T (b1, b2, x3) − T (b1, x2, b3) − T (x1, b2, b3) + T (b1, b2, b3).
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Then

‖T (x1, x2, x3) − R(‖a1‖X1
0
‖a2‖X2

0
‖a3‖X3

0
z)‖Y

≤ ‖T (a1, a2, a3) − R(‖a1‖X1
0
‖a2‖X2

0
‖a3‖X3

0
z)‖Y

+ ‖T (b1, x2, x3)‖Y + ‖T (x1, b2, x3)‖Y + ‖T (x1, x2, b3)‖Y
+ ‖T (b1, b2, x3)‖Y + ‖T (b1, x2, b3)‖Y + ‖T (x1, b2, b3)‖Y
+ ‖T (b1, b2, b3)‖Y .

Using (4.2), (4.5) and (4.6), we have that

‖T (x1, x2, x3) − R(‖a1‖X1
0
‖a2‖X2

0
‖a3‖X3

0
z)‖Y ≤ ε

23 · 23
+ 2

(ψ1(t)

t
+ ψ2(t)

t
+ ψ3(t)

t

)
+ 22

(ψ1(t)

t

ψ2(t)

t
+ ψ1(t)

t

ψ3(t)

t
+ ψ2(t)

t

ψ3(t)

t

)
+ 23

ψ1(t)

t

ψ2(t)

t

ψ3(t)

t

≤ ε

23 · 23 + 3
ε

22 · 23 + 3
ε

2 · 23 + ε

23
≤ (1 + 3 + 3 + 1)

ε

23
= 23

ε

23
= ε.

Note that the number of addends on the right hand side of the first inequality of
the last string of inequalities corresponds, respectively, to the binomial coefficients( 3
0

)
,
( 3
1

)
,
( 3
2

)
,
( 3
3

)
. An analogous model occurs for an arbitrary natural number

n, but then involving k-combinations (without repetition) from a set of n elements.
Therefore, we have proved that

T (UX1 ×UX2 ×UX3) ⊂ R(UẐ ) + εUY ,

where Ẑ is the space Z endowed with the norm
1

23ψ1(t)ψ2(t)ψ3(t)
‖ · ‖Z . It implies

that T : X1 × X2 × X3 → Y is a weakly compact 3-linear operator. ��

5 A variant of Persson’s result related to weak compactness

The following definition is, in a certain way, motivated by a well-known approxima-
tion property introduced by Persson [27] that has also been useful in the study of
interpolation properties of compact bilinear operators (see [16, 18]).

We say that a Banach couple �Y = (Y0,Y1) has the propertyWP1 if for any weakly
compact subset D ⊂ Y0 there is a constant C > 0 such that, for each ε > 0, there
exists an operator P : Y0 + Y1 → Y0 ∩ Y1 satisfying the following conditions:

(i) ‖P‖Yi→Yi ≤ C, i = 0, 1,
(ii) supy∈D ‖y − Py‖Y0 ≤ ε.
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We note that when �Y = (Y0,Y1) satisfies the condition (h) (see [18, p. 1668])
and Y0 has Schur property (i.e., if the weakly convergent sequences in Y0 are norm
convergent), then �Y = (Y0,Y1) has WP1.

Under the assumption that the Banach couple in the target has WP1, we next
establish a one-sided interpolation result for weakly compact n-linear operators.

Theorem 5.1 Let �X1 = (X1
0, X

1
1), . . . ,

�Xn = (Xn
0 , X

n
1 ),

�Y = (Y0,Y1) be Banach
couples. Assume that X j is an intermediate space of class CK (θ j , �X j ), j =
1, . . . , n (0 < θ j < 1), and let Y be an intermediate space with respect to �Y in
such a way that (X1, . . . , Xn; Y ) ∈ Lϕ( �X1, . . . , �Xn; �Y ) with ϕ(t, 1) → 0 as t → 0.
For any T ∈ L( �X1, . . . , �Xn; �Y ) such that the restriction T : X1

0 × · · · × Xn
0 → Y0

is weakly compact, it holds that T : X1 × · · · × Xn → Y is also weakly compact
whenever �Y has WP1.

Proof Consider the subset D = T (UX1
0
× · · · ×UXn

0
), which is weakly compact in Y0.

There is a constant C > 0 such that, for any natural number n, there exists Pn : Y0 +
Y1 → Y0 ∩ Y1 such that ‖Pn‖Yi→Yi ≤ C (i = 0, 1) and supy∈D ‖y − Pn y‖Y0 ≤ 1/n.
Hence,

‖T − Pn ◦ T ‖X1
0×···×Xn

0→Y0
≤ 1/n,

‖T − Pn ◦ T ‖X1
1×···×Xn

1→Y1
≤ (1 + C)‖T ‖X1

1×···×Xn
1→Y1

.

Therefore,

‖T − Pn ◦ T ‖X1×···×Xn→Y

≤ ϕ(‖T − Pn ◦ T ‖X1
0×···×Xn

0→Y0
, ‖T − Pn ◦ T ‖X1

1×···×Xn
1→Y1

)

≤ ϕ(1/n, (1 + C)‖T ‖X1
1×···×Xn

1→Y1
)

= (1 + C)‖T ‖X1
1×···×Xn

1→Y1
ϕ
( 1

n(1 + C)‖T ‖X1
1×···×Xn

1→Y1

, 1
)

→ 0, (5.1)

as n → ∞.
Since Pn◦T ∈ L(X1

0+X1
1, . . . , X

n
0+Xn

1 ; Y ) andweakly compactn-linear operators
are a closed surjective n-ideal in the sense of [23], applying [23, Corollary 4.6] we
have that Pn ◦ T : X1 × · · · × Xn → Y is weakly compact. It follows from (5.1) that
T : X1 × · · · × Xn → Y is also weakly compact. ��

We also define the next property, which is stronger than WP1. A Banach couple
�Y = (Y0,Y1) has the property WP2 if there is a constant C > 0 such that, for all
weakly compact subset D ⊂ Y0 and any ε > 0, there exists an operator P : Y0+Y1 →
Y0 ∩ Y1 satisfying the following conditions:

(i’) ‖P‖Y0+Y1→Yi ≤ C, i = 0, 1,
(ii) supy∈D ‖y − Py‖Y0 ≤ ε.

Notice that the constant C in the definition of propertyWP2 is the same indepen-
dently of the weakly compact subset D ⊂ Y0. Moreover, condition (i’) clearly implies
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(i) of the definition ofWP1. Thus, if �Y = (Y0,Y1) hasWP2, then the Banach couple
has also property WP1.

On the other hand, when Y0 and Y1 are the same Banach space Y , with Y having the
weakly compact approximation property in the sense of [26, p. 1125] (see also [2]), the
couple �Y = (Y ,Y ) hasWP2. We refer to the articles [26, 31], which show examples
of Banach spaces with the weakly compact approximation property.

Next we show that if a Banach couple �Y = (Y0,Y1) has WP2, the Banach couple
formed by the corresponding spaces �p(Yi ) of strongly p-summable sequences (i =
0, 1) also enjoys this property.

Proposition 5.2 Let �Y = (Y0,Y1) be a Banach couple satisfying WP2. Then, the
Banach couple (�p(Y0), �p(Y1)) has alsoWP2 for any 1 ≤ p < ∞.

Proof For each n ∈ N, we consider the natural projection Rn : �p(Y0) + �p(Y1) →
Y0 + Y1 given, for y = y0 + y1 with yi = {yik}k∈N ∈ �p(Yi ) (i = 0, 1), by

Rn(y) := y0n + y1n

and the inclusion map Sn : Y0 ∩ Y1 → �p(Y0) ∩ �p(Y1) defined, for y ∈ Y0 ∩ Y1, as

Sn(y) := {δnk y}k∈N,

where δnk is the Kronecker delta.
Take a weakly compact subset � ⊂ �p(Y0) and fix ε > 0. The restriction of Rn to

�p(Y0) acts from �p(Y0) into Y0 continuously. Then, for each n ∈ N, the set Rn(�) is
weakly compact in Y0. By assumption, there exists C > 0 (which is independent of
n) and an operator Pn : Y0 + Y1 → Y0 ∩ Y1 such that

‖Pn‖Y0+Y1→Yi ≤ C, i = 0, 1. (5.2)

and
sup
y0∈�

‖Rn y
0 − Pn(Rn y

0)‖Y0 ≤ ε

2n/p
. (5.3)

Now consider the linear mapping ⊗P defined on �p(Y0) + �p(Y1) by

⊗Py :=
∞∑
n=1

Sn(Pn(Rn y)), y ∈ �p(Y0) + �p(Y1).

We claim that ⊗P : �p(Y0) + �p(Y1) → �p(Y0) ∩ �p(Y1) is a bounded operator. In
fact, if y = y0 + y1, with yi = {yik}k∈N ∈ �p(Yi ), i = 0, 1, keeping in mind (5.2), we
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have

‖ ⊗ Py‖�p(Y0)∩�p(Y1) = max
i=0,1

{( ∞∑
n=1

∥∥∥Pn(Rn y)
∥∥∥p

Yi

)1/p}

≤ max
i=0,1

{( ∞∑
n=1

(
‖Pn‖Y0+Y1→Yi ‖y0n + y1n‖Y0+Y1

)p)1/p}

≤ C
( ∞∑
n=1

(‖y0n‖Y0 + ‖y1n‖Y1
)p)1/p

≤ C

(( ∞∑
n=1

‖y0n‖p
Y0

)1/p +
( ∞∑
n=1

‖y1n‖p
Y1

)1/p)

= C
(
‖y0‖�p(Y0) + ‖y1‖�p(Y1)

)
.

Taking infimum over all representations y = y0 + y1 one obtains

‖ ⊗ Py‖�p(Y0)∩�p(Y1) ≤ C‖y‖�p(Y0)+�p(Y1)

and this proves the claim. Clearly, the above estimate yields

‖ ⊗ P‖�p(Y0)+�p(Y1)→�p(Yi ) ≤ C, i = 0, 1.

To conclude we note that, given any y0 ∈ �, it follows from (5.3) that

‖y0 − ⊗Py0‖�p(Y0) =
∥∥∥y0 −

∞∑
n=1

Sn(Pn(Rn y
0))

∥∥∥
�p(Y0)

=
( ∞∑
n=1

‖Rn y
0 − Pn(Rn y

0)‖p
Y0

)1/p ≤
( ∞∑
n=1

ε p

2n

)1/p = ε,

and whence

sup
y0∈�

‖y0 − ⊗Py0‖�p(Y0) ≤ ε.

This completes the proof. ��
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