Plant Cell, Tissue and Organ Culture (PCTOC) GENETIC STABILITY, AMINO ACID AND POLYAMINE PROFILE ANALYSES IN RADIATA PINE SOMATIC EMBRYOS MATURATED AT HIGH TEMPERATURES --Manuscript Draft--

Manuscript Number:	PCTO-D-23-00561			
Full litle:	GENETIC STABILITY, AMINO ACID AND POLYAMINE PROFILE ANALYSES IN RADIATA PINE SOMATIC EMBRYOS MATURATED AT HIGH TEMPERATURES			
Article Type:	Original Article			
Keywords:	aberrant somatic embryo; embryogenic cell line; Pinus radiata; ploidy; somatic embryogenesis; zygotic embryo.			
Corresponding Author:	Paloma Moncaleán NEIKER Basque Institute of Agricultural Research and Development: NEIKER Instituto Vasco de Investigacion y Desarrollo Agrario SA Arkaute Vitoria, SPAIN			
Corresponding Author Secondary Information:				
Corresponding Author's Institution:	NEIKER Basque Institute of Agricultural Re Vasco de Investigacion y Desarrollo Agrario	search and Development: NEIKER Instituto		
Corresponding Author's Secondary Institution:				
First Author:	Itziar Aurora Montalbán			
First Author Secondary Information:				
Order of Authors:	Itziar Aurora Montalbán			
	Ander Castander-Olarieta, PhD			
	Antonia Maiara Marques Do Nascimento, PhD			
	Sonia Suárez-Álvarez, BS			
	Ana Herrán, BS			
	Luiza Giacomolli Polesi, PhD			
	Neusa Steiner, PhD			
	Miguel Pedro Guerra, PhD			
	Paloma Moncaleán, PhD			
Order of Authors Secondary Information:				
Funding Information:	Ministerio de Ciencia e Innovación (AGL2016-76143-C4-3R)	Dr Paloma Moncaleán		
	Ministerio de Ciencia e Innovación (PID2020-112627RB-C32)	Dr Paloma Moncaleán		
	Ekonomiaren Garapen eta Lehiakortasun Saila, Eusko Jaurlaritza (PhD fellowship)	Dr Antonia Maiara Marques Do Nascimento		
	CYTED Ciencia y Tecnología para el Desarrollo (P117RT0522)	Dr Paloma Moncaleán		
	European Cooperation in Science and Technology (CA21157)	Not applicable		
	Horizon 2020 Framework Programme (Multiforever Project)	Dr Paloma Moncaleán		
	Conselho Nacional de Desenvolvimento Científico e Tecnológico (302798/2018-8)	Dr Miguel Pedro Guerra		

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

	Conselho Nacional de Desenvolvimento Científico e Tecnológico (407974/2018-0)	Dr Miguel Pedro Guerra	
Abstract:	Applying stress factors such as high temperatures during the different stages of somatic embryogenesis is either important interesting to uncover the molecular mechanisms involved in stress response and adaptation, and as a strategy to produce plants adapted to harsh environmental conditions derived from climate changes. In this sense, the present work aims to study the effect of high temperatures applied during maturation of somatic embryogenesis in the ploidy stability, the amino acid and polyamine profiles of the somatic embryos obtained and in the morphological characteristics of the somatic plantlets. The results revealed that the maturation temperature did not affect the morphology of the resulting somatic plantlets, neither the ploidy and genome size of phenotypically normal somatic embryos, whose ploidy and DNA content levels were similar to those found in mature zygotic embryos. Nonetheless, a slight but significant reduction of the genome size of aberrant somatic embryos was observed. Of the 21 amino acids are precursors of the polyamines detected. Regarding this, putrescine levels were higher in somatic embryos from the highest maturation temperature (5 min pulse at 60 °C), however the amount of this polyamine in all samples was much lower than spermidine, spermine and cadaverine. In conclusion, the different temperatures applied did not led to substantial changes in the ploidy level, endogenous PAs of the somatic embryos developed, or in the morphology of the somatic plantlets. Significant changes in the endogenous amino acids were observed, which may be linked not only to PAs metabolism but to another metabolic		
Suggested Reviewers:	Jorge Canhoto, PhD Professor, Centre for Functional Ecology: Universidade de Coimbra Centre for Functional Ecology - Science for People & the Planet jorgecan@uc.pt Dr. Canhoto has an ample experience on the field.		
	ad de Costa Rica n the area of expertise of our manuscript.		

1		GENETIC STABILITY, AMINO ACID AND POLYAMINE PROFILE ANALYSES IN RADIATA PINE				
2		SOMATIC EMBRYOS MATURATED AT HIGH TEMPERATURES.				
3		Itziar Aurora Montalbán ¹ , Ander Castander-Olarieta ¹ , Antonia Maiara Marques do Nascimento ¹ ,				
4		Sonia Suárez-Álvarez ¹ , Ana Herrán ¹ , Luiza Giacomolli Polesi ² , Neusa Steiner ³ , Miguel Pedro				
5		Guerra ² , Paloma Moncaleán ¹ *				
6	1	NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology				
7		Alliance (BRTA), Campus Agroalimentario de Arkaute, N-104, km. 355, 01192 Arkaute (Álava), Spain;				
8		maiara2011.marques@gmail.com; and.castander@gmail.com; ssuarez@neiker.eus; aherran@neiker.eus				
9	2	Laboratório de Fisiología do Desenvolvimento e Genética Vegetal, Universidade Federal de Santa Catarina,				
10		Florianópolis, Brazil; luizagpolesi@gmail.com; miguel.guerra@ufsc.br				
11	3	Departamento de Botânica, Universidade Federal de Santa Catarina, Florianópolis, Brazil;				
12		neusasteiner@yahoo.com.br				
13	*	Correspondence: pmoncalean@neiker.eus				
14						
15		Itziar Aurora Montalbán (https://orcid.org/0000-0002-1868-5058)				
16		Ander Castander Olarieta (https://orcid.org/0000-0001-5062-7731)				
17		Sonia Suárez-Alvarez (https://orcid.org/0000-0002-5157-8561)				
18		Ana Herrán (https://orcid.org/0000-0001-6779-8430)				
19		Miguel Pedro Guerra (https://orcid.org/0000-0002-4117-7625)				
20		Neusa Steiner (https://orcid.org/0000-0001-6063-9242)				
21		Luiza Giacomolli Polesi (https://orcid.org/0000-0002-5329-0721)				
22		Antonia Maiara Marques Do Nascimento (https://orcid.org/0000-0002-9878-2084)				
23		Paloma Moncaleán (https://orcid.org/0000-0003-0143-4647)				
24						
25		Abstract				
26		Applying stress factors such as high temperatures during the different stages of somatic embryogenesis is				
27		either important interesting to uncover the molecular mechanisms involved in stress response and				
28		adaptation, and as a strategy to produce plants adapted to harsh environmental conditions derived from				
29		climate changes. In this sense, the present work aims to study the effect of high temperatures applied during				
30		maturation of somatic embryogenesis in the ploidy stability, the amino acid and polyamine profiles of the				

- somatic embryos obtained and in the morphological characteristics of the somatic plantlets. The results
 revealed that the maturation temperature did not affect the morphology of the resulting somatic plantlets,
- a neither the ploidy and genome size of phenotypically normal somatic embryos, whose ploidy and DNA
- content levels were similar to those found in mature zygotic embryos. Nonetheless, a slight but significant
 reduction of the genome size of aberrant somatic embryos was observed. Of the 21 amino acids detected
- 36 significant differences depending on the maturation temperature were found for glycine, arginine, lysine
- 37 and ornithine. These last three amino acids are precursors of the polyamines detected. Regarding this,
- 38 putrescine levels were higher in somatic embryos from the highest maturation temperature (5 min pulse at
- ³⁹ 60 °C), however the amount of this polyamine in all samples was much lower than spermidine, spermine
- 40 and cadaverine. In conclusion, the different temperatures applied did not led to substantial changes in the

- 41 ploidy level, endogenous PAs of the somatic embryos developed, or in the morphology of the somatic
- 42 plantlets. Significant changes in the endogenous amino acids were observed, which may be linked not only
- 43 to PAs metabolism but to another metabolic pathways involved in stress response.
- 44

45 Keywords: aberrant somatic embryo; embryogenic cell line; Pinus radiata; ploidy; somatic 46 embryogenesis; zygotic embryo.

47

48 Key message: Maturation temperature doesn't affect ploidy levels of radiata pine somatic embryos, 49 however, it affects the endogenous levels of glycine, arginine, lysine and putrescine.

50

51 Acknowledgements: This research was funded by MICINN project (AGL2016-76143-C4-3R and 52 PID2020-112627RB-C32), CYTED (P117RT0522), DECO (Basque government, AMM PhD fellowship), 53 COST Action CA21157 "European Network for Innovative Woody Plant Cloning", www.copytree.eu, 54 supported by COST (European Cooperation in Science and Technology) www.cost.eu, and 55 MULTIFOREVER project, supported under the umbrella of ERA-NET Cofund ForestValue by ANR(FR), 56 FNR (DE), MINCyT (AR), MINECO-AEI (ES), MMM (FI), and VINNOVA (SE). ForestValue has 57 received funding from the European Union's Horizon 2020 Research and Innovation Programme under 58 grant agreement no. 773324. MPG received funds from CNPq/Brazil (Proc. 302798/2018-8, and 59 407974/2018-0). Thanks to Maria Eduarda Bosquetti Bittencourt and Franklin Panato Back for their help 60 to carry out the analysis of polyamines.

61

62 1. Introduction

63 Radiata or Monterey pine (Pinus radiata D. Don) is native to some locations in North America (the United 64 States, Coast of California, Baja California and Mexico). Although the native regions of this species are 65 severely fragmented, P. radiata is one of the most widely cultivated pine species in the world for its 66 appreciated timber value. Currently, it is widely cultivated in New Zealand, Australia, Chile, South Africa 67 and Spain. In Spain, plantations of P. radiata can be found in the Basque Country region representing 28% 68 of the total wooded forest area, which are intended for forest timber productivity (about 80-85% of the 69 annual timber logging) (HAZI, 2022).

70 In the present scenario of climate changes, breeding programs are focused on developing highly efficient 71 propagation methods to obtain plants with better tolerance to drought and high temperatures (Da Ros et al. 72 2021). Clonal plant propagation allows the capture of elite-genotypes (Hazubska-Przybył et al. 2022), but 73 in *Pinaceae* the superior character is only visible after reproductive stage, when the success of clonal 74 propagation decreases (Imanuddin et al. 2020). Somatic embryogenesis (SE) associated to traditional 75 techniques allows the implementation of multi-varietal forestry (MVF), incorporating tested tree varieties 76 in a commercial forest (Park 2002; Montalbán et al. 2011). Furthermore, an important advantage of SE is 77 that embryogenic tissue can be frozen in liquid nitrogen and stored at -80 °C (Montalbán and Moncaleán 78 2017) until the corresponding field trials have been carried out. In this way, interesting genotypes can be 79 selected, the cell lines can be thawed, and a clonal selected plant can be obtained again. In this sense, 80 establishing cryobanks of embryogenic cell lines is advantageous, however these cryopreservation 81 techniques require an analysis after the regeneration of the tissue to ensure genetic stability (Martínez et al. 82

83 SE is based on cellular totipotency, in which it is possible to produce a whole new plant from a single cell 84 through internal and external stimuli, which is genotype-, developmental stage-, explant- and transcription 85 factor-dependent (Fehér 2019). In conifers, SE has five complex important stages (initiation, proliferation, 86 maturation, germination and acclimatization ex vitro) (Montalbán et al. 2016). Maturation is influenced by 87 many factors, such as the osmotic potential of the medium and the temperature (Teyssier et al. 2011; Moncaleán et al. 2018). In previous works carried out in our laboratory, significant differences were 88 89 observed in the number of somatic embryos (ses) obtained in maturation process under different 90 temperatures (Do Nascimento et al. 2020). Indeed, somatic plants obtained from embryonal masses 91 maturated at 50 °C showed better adaptation to drought stress based on water potential and transpiration 92 (Do Nascimento et al. 2022). This approach is of great interest and could be used as a tool to produce plants 93 with improved characteristics that could meet the actual demand of the agricultural and forestry sectors, 94 which are drastically influenced by climate change.

95 Nonetheless, in vitro propagation techniques can cause loss of genetic homogeneity of the plants produced, 96 and in some cases, morphologically abnormal somatic embryos or plantlets are obtained; this can occur for 97 several reasons, among them, ploidy mutations (Kunitake et al. 1998; Borchert et al. 2007). Molecular 98 analyses and flow cytometry have been used in many species to evaluate the trueness-to-type of plantlets 99 regenerated via somatic embryogenesis (Konar et al. 2018; Nunes et al. 2018). However, the effect of the 100 high temperatures exposure during SE on the genetic stability of the regenerated plants has not been tested yet.

101

102 Amino acids as well poliamines (PAs) play an important role in plant stress tolerance and morphogenesis 103 and this has been discussed in vitro as well as in vivo plant development (Steffenon et al. 2020; Lando et al 104 2019). Proline have traditionally been linked with osmotic adjustment under stress conditions (De Diego et 105 al. 2015). In this sense, P. pinaster somatic plants produced under different maturation temperatures not 106 only had different proline basal contents, but they also showed significant differences in the levels of this 107 amino acid under heat stress conditions (Sales et al. 2022). Similarly, experiments carried out in P. radiata 108 with heat-primed embryonal masses suggested that other amino acids such as isoleucine could also be 109 implicated in stress responses (Castander-Olarieta et al. 2019). On the other hand, PAs, small aliphatic 110 amines, such as putrescine (Put), spermidine (Spd), spermine (Spm) and cadaverine (Cad), have as primary 111 precursors ornithine, arginine or lysine and the different routes are species dependent (Kuznetsov et al. 112 2007).

113 PAs can play a regulatory role in the growth and development of plants, and they have been reported as 114 metabolic hallmarks or interacting with other metabolic pathways in response to abiotic stress (Alcázar et 115 al. 2020). In the case of arginine or ornithine derived PAs, they have been reported to be implicated in 116 osmotic adjustment (Ozturk et al. 2021) or detoxification of reactive oxygen species (Seo et al. 2019). In 117 the case of Cad, it also modulates plant development; however, when it comes to stress response, it has 118 been reported either acting as a stress protectant (Tomar and Arora 2021) or exacerbating stress damage 119 (Jancewicz et al. 2016). In both cases, plant development and stress response, a cross-talk between Cad and 120 Put derived PAs has been suggested (Liu et al. 2014). Furthermore, PAs play important functions in the 121 tolerance of plants to high temperature (Goyal and Ashtir, 2010).

- 122 In this sense, our hypothesis is that embryogenic cultures exposed to different temperatures during 123 maturation could show differences in somatic embryo and plant development. To verify it, the effect of 124 high temperatures during maturation stage of SE was evaluated on morphological characteristics of 125 developed somatic plantlets. The analyses of the ploidy stability, amino acids and polyamines content are 126 also presented and discussed in terms of how in vitro high temperatures can affect metabolism of *in vitro* 127 somatic plant conversion.
- 128

129 2. Materials and Methods

130 2.1. Plant material and maturation experiment

131 The ses and somatic plants were obtained according to Do Nascimento et al. (2020). Briefly, immature 132 female cones of *P. radiata* were collected from open-pollinated trees in a orchard established by Neiker-133 BRTA, Deba (Spain). Megagametophytes were isolated from seeds and used for initiation and proliferation 134 of embryogenc cultures as described by Castander-Olarieta et al. (2022). Maturation experiments were 135 carried out according to the procedure described in Do Nascimento et al. (2020), where embryogenic cultures 136 were exposed to different temperatures (MT) and times (control 23 °C for 16 weeks, 40 °C for 90 min, 50 °C 137 for 30 min and 60 °C for 5 min). After this, all cultures were kept in darkness at 23 °C for 16 weeks, when the 138 mature ses were germinated and the plantlets were acclimatized according to Montalbán and Moncaleán 139 (2019). For the conversion to plantlets, the ses were kept at 23 °C under 16 h photoperiod at 120 μ mol m⁻² s⁻¹ 140 provided by cool white fluorescent tubes (TFL 58 W/33; Philips, France).

141

142 2.2. Ploidy assessment by flow cytometry

First, the ploidy level of fresh *ses* versus *ses* stored at -80 °C was evaluated. For this purpose, a pool of fresh normal phenotype mature ses and a pool of fresh aberrant phenotype ses were compared with a pool of normal ses and a pool of aberrant *ses* stored at -80°C for 8 weeks, each pool included *ses* from 3 different embryogenic
cell lines (ECLs).

147 Then, normal phenotype and aberrant phenotype ses obtained from three ECLs subjected to four MT (23, 40,

148 50 and 60 °C) were analyzed; based on results from the abovementioned experiment, the ses were stored at -

149 80 °C for eight weeks; also, as control, zygotic embryos from the same mother trees used to generate the ECLs

- 150 were studied. Nuclear DNA content analysis of *ses* was conducted as described above..
- 151 For the preparation of nuclear suspensions, 2-4 embryos per sample (approximately 10 mg) were extracted

in 1 ml of Woody Plant Buffer (Loureiro et al. 2007) together with young leafs of *Vicia faba* (2C=26.9 pg).

- 153 The nuclei were released by making rapid cuts in the tissues with a scalpel blade for approximately 15
- seconds. The resulting extract was filtered to remove large debris (CellTrick® 50 µm nylon filter) and 0.5
- 155 ml of the filtrate was transferred to an Eppendorf vial. Nuclear suspensions were treated with $50 \ \mu l/ml$ of
- 156 RNAase (Sigma, St.Louis, USA) and stained with 50 µl/ml of the nuclear counterstain propidium iodine
- (PI) (Fluka). Once labelled, the suspensions were vortexed for 2 seconds and incubated on ice for 2 minbefore analysis.
- Nuclei suspensions were analyzed in a CytoFLEX flow cytometer (Beckman Coulter) according to
 Martínez et al. (2022). In brief, samples were injected at 60 µl/min and excited with a blue (488 nm) diode

- 161 laser. Forward light scattering signal (FSC) and PI fluorescence emission (588 nm±42nm) were acquired
- and analyzed using CytExpert 2.1 Software (Beckman Coulter).
- 163 Intact nuclei were distinguished from other fluorescent signals (e.g., partial nuclei and other debris) by
- 164 plotting PE-fluorescence versus FSC and doublets were discarded in FSC-area versus FSC-high graphs.
- 165 Thus, the nuclei populations were plotted in PE-fluorescence histograms and ploidy level examined from
- 166 Go/G1 peak patterns. Mean fluorescence emission and coefficient of variation (CV) were calculated for
- 167 each identified peak. A minimum of 2000 nuclei were analyzed per sample.
- 168 The DNA index and the nuclear DNA content were calculated from the relative position of the G0/G1 peaks
- 169 of embryos and internal reference material, applying the following equations:
- 170 DNA Index (DI) = [(F G0/G1 of the sample)]/[(F G0/G1 reference)]
- 171 F: Average population fluorescence
- 172 Nuclear DNA content (2C): = Sample DI x reference genome size (V. faba 2C = 26.9 pg; 1 pg = 978 Mbp).
- 173
- 174 2.3. Free amino acids content determination

175 Amino acid quantification was carried out according to Astarita et al. (2003), with some modifications. The 176 ses (200 mg) from five ECLs maturated at the different MT were grinded in 6 mL of ethanol 80% (v/v) and 177 concentrated in a SpeedVac freeze dryer (45°C). After that, ultrapure water was added to resuspend the 178 samples in a total of 2 mL, followed by centrifugation (15000 g, 10 min, 4°C). The supernatant was 179 collected and stored in -20°C freezer for future analysis. Amino acids were derivatized with o-180 phthaldialdehyde in a borate buffer (400 mM pH 9.5 adjusted with NaOH), filtered with 0.45 µm membrane 181 and submitted to high-performance liquid chromatography (HPLC) quantification. Mobile phases included 182 A) buffered (50mM of sodium acetate and 50mM sodium phosphate) methanol/tetrahydrofuran/water 183 2/2/100 (v/v/v) pH 8.1 adjusted with acetic acid and B) methanol/water 35/65 (v/v). The gradient started at 184 20% B until 32 min, changed to 100% B until 71 min, was maintained in 100% B until 93.5 min, when it 185 was returned to 20% B for reconditioning to the next injection until 106 min. The flow rate was constantly 186 1 mLmin⁻¹ and oven temperature were maintained at 40°C. Stationary phase was a Luna 5 μm C18 100 Å 187 column with 250x4.6 mm equipped with a pre-column, both from Phenomenex (Allcrom, Brasil). The 188 analyses were carried out in a Shimadzu Prominence HPLC equipped with a fluorescent detector calibrated 189 to excitation of 250 nm and emission of 480 nm wavelengths. To determine amino acids concentration, 190 peak areas of 20 µL samples were compared to peak areas of correspondent amino acid standards, all in 191 triplicates.

- 192
- **193** 2.4. Free polyamines content determination

The *ses* obtained from five ECLs maturated at the different MT were analyzed for free polyamine content for *P. radiata*. Polyamine (PA) quantification was carried out according to Silveira et al. (2004) with modifications. Samples (200 mg of fresh weight) were briefly grounded in 1.4 mL of 5% perchloric acid (v/v) in Precellys[®] shaker. After 1 h, the extraction solution was centrifuged for 20 min (15000 *g*, 4 °C) and supernatant was collected. The pellet was once again suspended in 0.2 mL of perchloric acid and centrifuged for 20 min (15000 *g*, 4 °C). Both extraction solutions were merged, homogenized and frozen at -20°C for future analyses. Derivatization was performed according to Silveira et al. (2004), where 40 μ L 201 of each sample were mixed with 20 µL of diaminoheptane 0.05 mM, 50 µL of saturated sodium carbonate 202 solution and 100 µL of dansyl chloride in acetone 1.8 mM. After 50 min of incubation in the dark at 70°C, 203 25 µL of proline was added to the solution followed by another 30 min incubation at room temperature. 204 After that, 200 μ L of toluene was added, the solution was vigorously shaken and 175 μ L of the organic 205 phase with polyamines was taken to a SpeedVac freeze dryer for 40 min at 40 °C. Finally, pellets were 206 suspended in 175 μ L of acetonitrile, filtered with 0.45 μ m membrane, and then subjected to high-207 performance liquid chromatography (HPLC) quantification. Mobile phases were composed of A) 10% (v/v) 208 acetonitrile/ultrapure water pH 3.5 adjusted with HCl and B) 100% of acetonitrile. The gradient started at 209 65% of B and lasted for 11 min; it was raised to 100% B until 25 min, maintained in 100% B until 35.5 min 210 and then returned to 65% B until the end at 44 min. The flow rate was constantly 1 mLmin⁻¹ and oven 211 temperature was maintained at 40 °C. Stationary phase was a 5 μm Shim-pack CLC-ODS(M) 100Å column 212 with 250x4.6 mm equipped with a pre-column, both from Shimadzu[®]. The analyses were carried out in a 213 Shimadzu Prominence HPLC equipped with a fluorescent detector configured to excitation of 340 nm and 214 emission of 510 nm wavelengths. To determine Pas levels peak areas of 20 µL samples were compared to 215 triplicates of peak areas of correspondent standards of Put, Spd, Cad and Spm, bought from Sigma-Merck[®]. The 1,7- diaminoheptane (Sigma-Merck®) was used as an internal standard. 216

217

218 2.5. Morphological characteristics

At the end of germination experiment the number of needles and secondary roots were counted in eight
plantlets from six established cell lines (ECLs) subjected at different MT (three treatments and the control).
Length of the plantlets, length of the aerial part, width of needles, stem diameter, and length of primary root
were measured in mm using a digital caliber (Fowler High Precision).

223

224 2.6. Data collection and statistical analysis

To determine if there were differences in the nuclear content between the samples at -80 °C versus the fresh samples an analysis of variance (ANOVA) was carried out for normal and aberrant *ses*. ANOVA was also performed to determine if there were differences between normal and aberrant *ses* from different MT.

Data on amino acid and polyamine contents were subjected to ANOVA to elucidate if the MT or the ECLs
tested influence these contents. This analysis was also performed to compare the contents of the different
PAs, in this case, data were log(x) transformed to meet homocedasticity. Finally, ANOVA was conducted
to assess the effect of MT on the morphological characteristics of somatic plantlets. Data on stem diameter
were log transformed and data on number of roots were square root transformed to meet homocedasticity.
When necessary, Tukey's post-hoc test was performed to determine differences between groups.

- 234

3. Results

236 3.1. Ploidy assessment by flow cytometry

237 The degree of ploidy was determined by comparing the position and number of peaks appearing in the PE238 fluorescence histogram.

- 239 Fresh and frozen *ses* showed an identical pattern, with two fluorescence peaks occupying an invariable
- relative position in the histogram (Fig. 1). The first corresponded to nuclei in Go/G1 phase of the internal

- standard (*V. faba*) and the second to G0/G1 nuclei of *P. radiata*. The existence of a single population of *P.*
- 242 *radiata* nuclei in a stable position with respect to the standard indicated that all the embryos analyzed were
- diploid (2C) and guaranteed genetic stability at this level for the entire set of material analysed.
- 244 Both the nuclear DNA content (estimated from the DI) and the corresponding CVs were similar in fresh
- and frozen embryos (Table 1). Statistical analysis confirmed that there were no significant differences
- between both types of material in normal and aberrant ses (Supplementary material, Table S1).
- 247

Table 1 DNA index and nuclear genome size in fresh normal and aberrant phenotype somatic embryos and
in normal and aberrant somatic embryos stored at -80°C for eight weeks. Mean ± S.E.

Storage	Morphology	DNA content (pg/2C)	CV (%)	DNA index
Fresh	Normal	49.57 ± 0.71	4.45	1.84 ± 0.03
-80 °C	Normal	49.64 ± 0.70	4.35	1.85 ± 0.03
Fresh	Aberrant	49.11 ± 0.46	4.09	1.82 ± 0.02
-80 °C	Aberrant	48.40 ± 0.22	4.17	1.80 ± 0.01

250

251

When the ploidy level of embryos subjected to different MT treatments was assessed, no differences related to morphology or MT were observed in the PE-fluorescence cytograms: the peak pattern of samples was identical to that shown in Fig. 1 (see Figure S1) and consistent with a 2C genome (Fig. S1). The same pattern was observed for zygotic embryos (Supplementary Material, Fig. S2).

256 For normal ses, the DI ranged between 1.84 and 1.87, which indicates that the genome size of the ses from 257 the four MT tested ranged from 49.48 to 50.32 pg/2C (Table 2). These values were similar to those recorded 258 for zygotic embryos, being the average DI and DNA content 1.85 and 49.81, respectively. In the case 259 aberrant ses, the DI oscillated between 1.74 and 1.81 and the relative size of the genome in the range of 260 46.85-48.77 pg/ 2C (Table 2). Statistically, no significant effect of the MT or the interaction between MT 261 and morphology was observed. Following this analysis significant differences were found for the 262 morphology of the ses, however when the effect of morphology was evaluated within each MT, the 263 statistical analysis revealed a significant reduction in the genome size of aberrant embryos compared to 264 normal ones when MT was 40 °C and no statistically significant differences for the rest of MT 265 (Supplementary material, Tables S2 and S3).

Fig. 1 Flow cytometry analyses to evaluate the genetic stability between morphologically normal fresh and
frozen *Pinus radiata* somatic embryos. The 2C nuclei populations at G0G1 corresponding to *P. radiata* and *Vicia faba* (internal standard) are shown in the forward scatter (FSC) vs. PE (fluorescence) cytogram and
in the PE histogram. In the upper graphs fresh embryos are shown, the lower graphs show frozen embryos.

Table 2 DNA content (pg/2C; $M \pm SE$), coefficient of variation (CV, %) and DNA index ($M \pm SE$) in normal and aberrant somatic embryos of *Pinus radiata* from different maturation temperatures (23, 40, 50 and 60 °C) and in zygotic embryos from the same mother trees of the ECLs used in this study.

Temperature (°C)	Morphology	DNA content (pg/2C)	CV (%)	DNA index
23	Normal	49.64 ± 0.70	4.35	1.85 ± 0.03
40	Normal	50.32 ± 0.79	4.56	1.87 ± 0.03
50	Normal	50.05 ± 0.67	4.59	1.86 ± 0.02
60	Normal	49.48 ± 0.50	4.27	1.84 ± 0.02
23	Aberrant	48.40 ± 0.22	4.17	1.80 ± 0.01
40	Aberrant	46.85 ± 0.99	4.65	1.74 ± 0.04
50	Aberrant	48.77 ± 0.92	4.38	1.81 ± 0.03
60	Aberrant	48.42 ± 0.22	4.42	1.80 ± 0.01
Mature Zygotic embryos		49.81 ± 0.52	5.87	1.85 ± 0.02

275

276 3.2. Free amino acids

-

277 Among all the amino acids analyzed, the following did not present significant differences regardless of the

278 MT: alanine, GABA, glutamine, histidine, methionine, phenylalanine, tyrosine, tryptophane, valine (above

 $90\ \mu\text{g/g FW}), a \text{spartate, citrulline, isoleucine, serine, threonine (between 120 and 400\ \mu\text{g/g FW}), a \text{sparagine, } 120\ \mu\text{g/g FW}), a \text{sparagi$

 $\label{eq:general} \mbox{280} \qquad \mbox{glutamate and leucine (above 410 $\mu g/g FW)$, (Supplementary material Table S5)}.$

281 In the case of arginine, glycine, lysine, and ornithine significant differences were found depending on the

282 MT (Table 3). Diverse patterns could be observed for these amino acid contents. Arginine and ornithine

contents were significantly higher in ses from MT 50°C than in ses from MT 23 and 60 °C. For glycine, ses

maturated at 40°C and 60°C showed significantly higher values than those maturated at 23°C. The contents

of lysine showed high variability. Due to this, despite high contents of this amino acid were found in ses

from MT 60 °C, the Tukey post hoc test did not detect differences between MT (Table 3).

Table 3 Free amino acids (µg/g FW) in *Pinus radiata* D. Don somatic embryos maturated under different

288 maturation temperatures (23 °C, 12 weeks; 40 °C, 4 h; 50 °C, 30 min; 60 °C, 5 min).

Amino acids	Temperature of maturation (°C)			
(µg/g FW)	23	40	50	60
Alanine	$14.31\pm2.99^{\text{ a}}$	16.10 ± 2.36^{a}	$15.60\pm0.45^{\ a}$	$13.47\pm2.25^{\text{ a}}$
Arginine	$46.32\pm0.07~^{bc}$	$54.17\pm2.81~^{ab}$	56.34 ± 3.29^{a}	24.62 ± 0.39^{c}
Asparagine	$497.11 \pm 11.86~^{a}$	$419.37 \pm 97.71~^{a}$	$675.50 \pm 6.24 \ ^{a}$	$653.74 \pm 97.94 \ ^{a}$
Aspartate	$197.00\pm27.41~^a$	$242.95\pm 53.78{}^{\rm a}$	$218.34 \pm 17.04 ^{a}$	238.98 ± 49.16^{a}
Citrulline	206.22 ± 88.70^{a}	325.75 ± 108.73^{a}	288.14 ± 29.42^{a}	$332.90 \pm 51.51 \ ^{a}$
GABA	$38.60\pm10.83^{\:a}$	$56.96 \pm 18.82^{\mathrm{a}}$	38.95 ± 3.28^{a}	$37.80\pm10.09^{\ a}$
Glutamine	$83.76 \pm 23.50^{\ a}$	$65.75\pm10.81~^{a}$	$74.46\pm11.59^{\ a}$	$71.90 \pm 13.33~^{a}$
Glutamate	$517.48 \pm 87.90^{\ a}$	$560.45\pm 54.77~^{\rm a}$	$494.36 \pm 82.85~^{a}$	$558.99\pm95.27~^{a}$
Glycine	$66.45 \pm 12.03 \ ^{\text{b}}$	266.81 ± 35.51 ª	$165.94 \pm 15.22 \ ^{ab}$	$202.20\pm21.09^{\text{ a}}$
Histidine	$20.13\pm2.27^{\ a}$	$24.83\pm4.75^{\:a}$	29.49 ± 4.86^{a}	22.71 ± 4.19^{a}
Isoleucine	386.31 ± 42.19^{a}	$397.85 \pm 47.37~^{a}$	$381.20 \pm 8.90^{\ a}$	$368.47 \pm 60.71 \ ^{a}$
Leucine	560.20 ± 39.19^{a}	$647.90\pm 70.29^{\ a}$	581.21 ± 62.94^{a}	$677.41 \pm 146.36^{\ a}$
Lysine	174.20 ± 19.32 a	$135.50 \pm 14.30 \ ^{a}$	107.61 ± 21.33 ^a	$413.53 \pm 134.61 \ ^{\rm a}$
Methionine	39.47 ± 6.37^{a}	42.28 ± 7.04^{a}	39.86 ± 3.72^{a}	$38.21\pm7.75^{\ a}$
Ornithine	$46.16\pm7.79\ ^{b}$	$86.92\pm5.36~^{ab}$	113.69 ± 7.38 a	$58.18 \pm 19.28 \ ^{\text{b}}$
Phenylalanine	23.40 ± 3.92^{a}	19.48 ± 2.62^{a}	20.30 ± 2.64^{a}	25.28 ± 0.80^{a}
Serine	317.75 ± 38.90 ^a	315.45 ± 78.96^{a}	$304.67 \pm 7.03^{\ a}$	$315.77\pm 36.17~^{a}$
Tyrosine	$9.51\pm1.68^{\text{ a}}$	9.42 ± 2.19 a	10.82 ± 2.78^{a}	$7.23\pm1.09^{\text{ a}}$
Threonine	137.23 ± 9.98 ^a	129.12 ± 13.91 $^{\mathrm{a}}$	137.20 ± 13.17 $^{\mathrm{a}}$	130.90 ± 15.57 $^{\mathrm{a}}$
Tryptophane	$5.92\pm0.81~^{a}$	$7.19\pm1.46^{\ a}$	$7.20\pm1.45~^{a}$	$6.88 \pm 1.99^{\text{ a}}$
Valine	$10.23\pm3.01~^{a}$	12.24 ± 4.05 ^a	$13.68\pm2.74^{\mathrm{a}}$	$12.24\pm3.19^{\text{ a}}$

289 Data are presented as mean values \pm SE. Significant differences within a line at *p*<0.05 are indicated by

different letters.

291 3.3. Free polyamines

292 Four PAs types were detected in radiata pine ses: Put, Spd, Spm and Cad. A significantly higher content of

293 Spd than of Spm was detected, and a significantly higher content of the latter than of Cad. The Put content

was significantly lower than the rest, being two orders of magnitude below the Spd content (Fig. 2,

295 Supplementary material Table S6).

296

Fig. 2 Putrescine (Put), Spermidine (Spd), Spermine (Spm) and Cadaverine (Cad) contents (mean +S.E.)
in *Pinus radiata* D. Don somatic embryos. Significant differences at *p*<0.05 are indicated by different
letters.

300

301 When the effect of temperature on each polyamine content was analyzed, significant differences were only

302 found for Put (Supplementary material, Table S7). Somatic embryos submitted to 60 °C had a significantly

higher Put content than those maturated at the other temperatures tested (Fig. 3).

304

305

Fig. 3 The effect of maturation temperature (23 °C, 12 weeks; 40 °C, 4 h; 50 °C, 30 min; 60 °C, 5 min) on putrescine content (mean + S.E.) of *Pinus radiata* D. Don somatic embryos. Significant differences at p < 0.05 are indicated by different letters.

309

310 3.4. Morphological characterization of plantlets

311 The MT did not have a significant effect on any of the morphological parameters measured (Supplementary 312 material, Table S8). Significant differences were only found between the ECLs for the following 313 parameters: number of needles, length of aerial part, stem diameter and number of roots. Three genotypes 314 presented the highest values (R2, R16 and R49) and one genotype the lowest ones (R130) for these 315 parameters; the other two (R9 and R138) showed intermediate to low values depending on the parameter 316 (Table 4). A significant interaction between the ECL and the MT was observed for the number of roots, 317 however the ECLs showed the trend mentioned above (Supplementary material, Fig. S3). 318 The length of the plantlets (from 54 to 90 mm), the width of the needles (from 0.23 to 0.51 mm) and the 319 length of the roots (from 26 to 51mm) did not present significant differences between MT treatments or

- 320 ECLs (Supplementary material, Table S9).
- 321

322 Table 4 Morphological characteristics (mean ± S.E) in different embryogenic cell lines (ECLs). Different

ECL	Number of	Length of	Stem	Number of
ECLS	needles	aerial part	diameter	roots
R2	24.41 ± 0.81 a	35.12 ± 1.59 a	$1.33 \pm 0.05 \text{ ab}$	4.31 ± 0.53 ab
R9	$21.53 \pm 1.03 \text{ abc}$	30.96 ± 1.27 ab	$1.23\pm0.06\ bc$	$1.69\pm0.37~c$
R16	$20.22 \pm 1.10 \text{ abc}$	$33.85\pm1.82\ a$	$1.54 \pm 0.08 \ a$	$4.72\pm0.73\ ab$
R49	$22.94 \pm 0.98 \ ab$	$36.46\pm2.22\ a$	$1.33\pm0.06\ ab$	6.72 ± 0.79 a
R130	$18.09 \pm 1.19 \text{ c}$	$26.05\pm1.81\ b$	$1.07\pm0.05\ c$	$2.41 \pm 0.68 c$
R138	$19.66\pm1.01\ bc$	$31.91 \pm 2.53 \text{ ab}$	$1.20\pm0.07\ bc$	$3.78\pm0.74\ bc$

323 letters within a column indicate significant differences by Tukey's post hoc test.

324 325

326 4. Discussion

327 In this work the impact of different temperatures treatments (23 °C, 12 weeks; 40 °C, 4 h; 50 °C, 30 min; 328 60 °C, 5 min) on SE maturation stage has been studied. First, the ploidy level in somatic embryos obtained 329 at these temperatures was assessed; all the normal ses analysed corresponded to diploid material. The 330 aberrant ses show similar ploidy levels, however those from MT 40 °C had significantly lower DNA 331 content; these differences being also observed between P. pinaster normal and aberrant ses (Marum et al. 332 2009). As reported by these authors, being these differences below 3%, polyploidization does not appear to 333 have occurred during SE process; however, the possibility of an euploidy could not be totally excluded. In 334 the present study as control, the ploidy levels of zygotic embryos from the same mother trees of the ses was 335 checked. The average values for the DNA content and the DNA index were similar to those found in our 336 ses and slightly superior to those reported by O'Brien et al. (1996) and comparable to the results by 337 Wakamiya et al. (1993).

338 From the 21 amino acids detected, differences in their content depending on the MT were found for only 339 four of them: arginine, glycine, lysine and ornithine. These amino acids were reported to have an important 340 role as nitrogen reserve in Picea obovata and Pinus sylvestris buds. Castander-Olarieta et al. (2019) found 341 significant differences for another four amino acids (isoleucine, leucine, histidine and tyrosine) and 342 observed changes at the proteome level for enzymes involved in the synthesis of isoleucine (Castander-343 Olarieta et al. 2022) when similar temperature pulses were applied at SE initiation stage. Our amino acid 344 average values were much higher (twice to fifty times higher, depending on the amino acid) than those 345 reported in the abovementioned study. This may be due to the fact that in both cases, the data were given 346 in fresh weight and ECLs are mostly water (around 10% dry weight, Peng et al. 2020) whereas ses have 347 dry weight values around 30% (data not shown). If compared with other studies carried out in our laboratory 348 with radiata pine somatic plantlets after six weeks of germination, the amino acid profiles vary considerably 349 (Castander-Olarieta et al. 2023). In that work it was shown that arginine is one of the most abundant free 350 amino acids, contrasting with the results obtained at embryo level. This is in accordance with Cañas et al. 351 (2006), where they observed that storage proteins found in pine embryos are rich in arginine, which is 352 released and found at high levels as free forms after germination.

It is known that the metabolite profiles vary along maturation progression in somatic end zygotic embryogenesis (Morel et al. 2014), however it is also proven that the environmental conditions such as temperature can have an impact in these profiles (Pereira et al. 2023). In this sense, glycine was present at significantly higher concentrations in ses from MT 40 and 60 °C when compared with the control in the present study. This result is opposite to those reported by Pereira et al. (2023) for the same amino acid and culture temperatures in *P. halepensis* ECLs.

359 Lysine was also present in a higher amount in ses from MT 60 °C. In P. obovata buds its contents were 360 related to a cryoprotectant role for cell membranes (Alaudinova and Mironov 2018), in addition, some 361 catabolites of this amino acid are implicated in osmoprotection in bacteria and plants (Tomar et al. 2013). 362 Apart from this, lysine decarboxylation results in Cad (Jancewicz et al. 2016). Cadaverine's catabolism 363 leads to the synthesis of some alkaloids involved in plant protection against biotic stresses (Jancewicz et al. 364 2016). Regarding abiotic stress, Kuznetsov et al. (2002) suggested that together with ethylene, it could be 365 involved in the long distant translocation of stress signal in plants. However, despite the higher 366 accumulation of lysine in ses from the highest MT, the Cad content in ses did not vary with temperature. 367 This diamine has also been reported to be related to seed's germination. The levels found in mature ses 368 were lower than those described by Do Nascimento et al. (2021) in somatic plantlets (after two weeks of 369 germination) from the same species; this would be in accordance with Shalaby (2000), who reported an 370 increase in Cad content during germination in legume seeds.

371 In the case of arginine and ornithine, the highest values were obtained at MT 50 °C. These two amino acids 372 are the precursors of Put, which is produced directly from ornithine by ornithine decarboxylase or indirectly 373 from arginine by arginine decarboxylase via agmatine (Kumar et al. 1997). Arginine and ornithine together 374 with Put and Spd have been reported to be stress-related metabolites in many plant species, with several 375 roles, in the case of these amino acids, in cellular cultures submitted to stress they can serve as substrate 376 for Put biosynthesis; but also, as suggested by Liebsch et al. (2022) may represent a pool of reduced carbon 377 that can feed the tri-carboxylic acid cycle. Matsunaga et al. (2021) also reported in Triticum aestivum that 378 depending on the growth stage of the plant the amino acids accumulated during heat stress were different, 379 these authors also observed an accumulation of arginine and linked it to recovery from stress due to their 380 involvement in the urea cycle (and detoxification of NH4⁺), as other authors have postulated for ornithine 381 (Blume et al. 2019).

382 Polyamines, specifically Put, Spd, Spm and Cad have demonstrated a fundamental role during seed 383 formation and development of somatic embryos (De Oliveira et al. 2015) and contribute to the accumulation 384 of reserve substances, particularly proteins and triglycerides, which are then used during embryonic 385 germination (Baron and Stasolla 2008). In P. radiata, Cad has been detected for the first time in our 386 laboratory by Do Nascimento et al. (2021). Changes in the profile of PAs have been detected along the 387 process of SE in Picea abies (Serapiglia et al. 2008), P. rubens (Minocha et al. 1993), Pinus taeda (Silveira 388 et al. 2004), and Araucaria angustifolia (Steiner et al., 2007). Even, it has been demonstrated the 389 improvement of SE with the exogenous applications of PAs (Dutra et al. 2013). Do Nascimento et al. (2020) 390 found that the highest temperatures applied during maturation in this experiment (60°C, 5 min) led to a

- 391 significantly lower number of *ses*. Interestingly, the same *ses* showed the highest Put levels, which follows
- the same pattern described by Jo et al. (2014), where they correlated high Put levels in embryonal masses

393 of *Araucaria angustifolia* with low embryogenic capacity. In pines, however, Peng et al. (2022) showed 394 that cell lines with no embryogenic capacity, or lost embryogenic capacity due to aging, presented lower 395 Put contents than highly productive cell lines. As a result, it would be interesting to confirm whether the 396 increased profile of Put in *ses* maturated at higher temperatures is a result of higher levels of this polyamine 397 in embryonal masses, and if this is the cause of lower embryo production rates.

398 Besides, Put, Spd and Spm are the three most common PAs implicated in the response to abiotic stress 399 (Yang et al., 2007). These authors observed high levels of Put at an early stage of drought stress, followed 400 later by an accumulation of Spd and Spm in drought-resistant cultivars of rice. Rajpal and Tomar (2020) 401 pointed out that in many cases, just one of the three polyamines showed an apparent enhancement. In our 402 study, Put showed significant higher values in ses from MT 60 °C. It must be noted in one hand that the ses 403 were analysed 16 weeks later from the stress application and on the other hand, that the Put content in 404 samples from all MT was very small when compared with Spd or Spm levels. In Picea rubens and P. abies 405 ses a higher proportion of these two PAs was also observed (Minocha et al. 2004, Fischerova et al. 2022). 406 In radiata pine (Minocha et al 1999) observed that the content of Spd and Put tend to equal at late stages of 407 maturation but in none of these species the Put content was as low as that observed in our samples. On the 408 contrary, in previous studies carried out in P. radiata SE at control temperature (23 °C), Cad and Spm, 409 showed significant differences with the levels of Spm and Put (Do Nascimento et al. 2021).

410 Morphological features were not affected by temperature treatments, only genotype influenced some 411 features; contrary, in previous experiments Castander-Olarieta et al. (2019) showed that different initiation 412 temperatures can modify both the size and the shape of the somatic embryos obtained later during 413 maturation in radiata pine. Similarly, Do Nascimento et al. (2021) observed that the supplementation of 414 maturation medium with different amino acids or carbohydrates led to significant differences in some 415 parameters of the somatic plantlets as the stem diameter or the number of secondary roots.

In conclusion, the different temperatures applied did not led to substantial changes in the ploidy level, endogenous PAs of the *ses*, or in the morphology of the somatic plantlets. Significant changes in the endogenous amino acids were observed, which may be linked not only to PAs metabolism but to another metabolic pathways involved in stress response. Further research is needed to confirm this latter hypothesis together with physiological analyses in the resulting plants.

421

422 Authors Contributions: Conceptualization, IAM, PM; Ploidy analyses: ACO, AMMN, SSA, AH; amino
423 acid and polyamine analyses; LGP, NS, MPG; statistical analyses: IAM, AMM; writing and original draft
424 preparation: IAM, ACO, PM; visualization and resources: ACO, AMM, SSA; funding acquisition: PM. All
425 authors revised and agreed the final version of the manuscript.

- 426
- 427 Declarations

428 The authors have no competing interests to declare that are relevant to the content of this article.

429

430 References

Alaudinova EV, Mironov PV (2018) Free amino acids in vegetative organs of *Picea obovata* L. and *Pinus sylvestris* L. Russ J Bioorg Chem 44(7):887-892. https://doi.org/10.1134/S1068162018070026

- Alcázar R, Bueno M, Tiburcio AF (2020) Polyamines: Small amines with large effects on plant abiotic
 stress tolerance. Cells 9:2373. https://doi.org/10.3390/cells9112373
- 435 Astarita LV, Floh EIS, Handro W (2003) Free amino acid, protein and water content changes associated

with seed development in *Araucaria angustifolia*. Biol Plantarum 47(1):53-59.
https://doi.org/10.1023/A:1027376730521

438 Baron K, Stasolla C (2008) The role of polyamines during in vivo and in vitro development. In Vitro Cell

439 Dev Biol-Plant: 44(5):384-395. https://doi.org/10.1007/s11627-008-9176-4

- Blume C, Ost J, Mühlenbruch M, Peterhänsel C, Laxa M (2019) Low CO₂ induces urea cycle intermediate
 accumulation in *Arabidopsis thaliana*. Plos One 14(1): e0210342.
 https://doi.org/10.1371/journal.pone.0210342
- Borchert T, Fuchs J, Winkelmann T, Hohe A (2007) Variable DNA content of *Cyclamen persicum* regenerated via somatic embryogenesis: rethinking the concept of long-term callus and
 suspension cultures. Plant Cell Tiss Org. 90:255-263. https://doi.org/10.1007/s11240-007-9264-x
- 446 Cañas RA, de la Torre F, Cánovas FM, Cantón FR (2006) High levels of asparagine synthetase in
- 447 hypocotyls of pine seedlings suggest a role of the enzyme in re-allocation of seed-stored nitrogen. Planta
 448 224:83-95. https://doi.org/10.1007/s00425-005-0196-6
- 449 Castander-Olarieta A, Montalbán IA, De Medeiros Oliveira E, Dell'Aversana E, D'Amelia L, Carillo P,
- 450 Steiner N, Fraga HPDF, Guerra MP, Goicoa T, Ugarte MD, Pereira C and Moncaleán P (2019) Effect of
- 451 thermal stress on tissue ultrastructure and metabolite profiles during initiation of radiata pine somatic
- 452 embryogenesis. Front Plant Sci 9:2004. https://doi.org/10.3389/fpls.2018.02004
- 453 Castander-Olarieta A, Montalbán IA, Moncaleán P (2023) Multi-strategy approach towards optimization
- 454 of maturation and germination in radiata pine somatic embryogenesis. Plant Cell Tiss Org 153:173-190.

455 https://doi.org/10.1007/s11240-023-02457-y

- 456 Castander-Olarieta A, Pereira C, Mendes VM, Correia S, Manadas B, Canhoto J, Montalbán IA, Moncaleán
- 457 P (2022) Thermopriming-associated proteome and sugar content responses in *Pinus radiata* embryogenic
- 458 tissue. Plant Sci 321:11132. https://doi.org/10.1016/j.plantsci.2022.111327
- 459 Da Ros LM, Thomas BR, Mansfield SD (2021) Wood quality trait associations with climate: Room for
 460 improvement in two northern commercial tree species? Forest Ecol Manag 497:119492.
- 461 https://doi.org/10.1016/j.foreco.2021.119492
- 462 De Diego N, Saiz-Fernández I, Rodríguez JL, Pérez-Alfocea P, Sampedro MC, Barrio RJ, Lacuesta M,
- 463 Moncaleán P (2015) Metabolites and hormones are involved in the intraspecific variability of drought
- 464 hardening in radiata pine. J Plant Physiol 188:64-71. https://doi.org/10.1016/j.jplph.2015.08.006
- 465 De Oliveira LF, Macedo AF, Dos Santos ALW, Floh EIS (2015) Polyamine levels, arginine and ornithine
- decarboxylase activity in embryogenic cultures of *Araucaria angustifolia* (Bert.) O. Kuntze. Acta Hortic
 1083:419-425.
- 468 Do Nascimento AMM, Barroso PA, Do Nascimento NFF, Goicoa T, Ugarte MD, Montalbán IA,
- 469 Moncaleán P (2020) Pinus spp. somatic embryo conversion under high temperature: Effect on the
- 470 morphological and physiological characteristics of plantlets. Forests 11:1-14.
- 471 https://doi.org/10.3390/f11111181
- 472 Do Nascimento AMM, Polesi LG, Back FP, Steiner N, Guerra MP, Castander-Olarieta C, Moncaleán P,

- 473 Montalbán IA (2021) The chemical environment at maturation stage in *Pinus* spp. Somatic embryogenesis:
- 474implications in the polyamine profile of somatic embryos and morphological characteristics of the475developedplantlets.FrontPlantSci12:771464.
- 476 https://doi.org/10.3389/fpls.2021.7714643389/fpls.2019.00138
- 477 Do Nascimento AMM, Montalbán IA, Llamazares De Miguel D, Goicoa T, Ugarte MD, Moncaleán P

478 (2022) High temperature and water deficit cause epigenetic changes in somatic plants of *Pinus radiata* D.

- 479 Don. Plant Cell Tiss Org. 151(1):107-121. https://doi.org10.1007/s11240-022-02336-y
- 480 Dutra NT, Silveira V, de Azevedo IG, Gomes-Neto LR, Façanha AR, Steiner N, Guerra MP, Floh EIS,
- 481 Santa-Catarina C (2013) Polyamines affect the cellular growth and structure of pro-embryogenic masses in
- *Araucaria angustifolia* embryogenic cultures through the modulation of proton pump activities and
 endogenous levels of polyamines. Physiol Plantarum 148(1):121-132. https://doi.org/10.1111/j.13993054.2012.01695.x
- Fehér A (2019) Callus, dedifferentiation, totipotency, somatic embryogenesis: What these terms mean in
 the era of molecular plant biology? Front. Plant Sci. 10:536. https://doi.org/10.3389/fpls.2019.00536
- 487 Fischerová L, Gemperlová L, Cvikrová M, Matušíková I, Moravčíková J, Gerši Z, Malbeck J, Kuderna J,
- 488 Pavlíčková J, Motyka V, Eliášová K, Vondráková Z (2022) The humidity level matters during the
 489 desiccation of Norway spruce somatic embryos. Front Plant Sci (13):968982.
 490 https://doi.org/10.3389/fpls.2022.968982
- Goyal M, Ashtir B (2010) Polyamine catabolism influences antioxidative defense mechanism in shoots and
 roots of five wheat genotypes under high temperature stress. Plant Grow Reg 60 (1): 13-25.
- 493 HAZI. El bosque vasco en cifras (2022) Informe de HAZI Fundazioa sobre el inventario forestal del País
- 494 Vasco. http://www.nasdap.net/inventarioforestal.
- Hazubska-Przybył T, Wawrzyniak MK, Kijowska-Oberc J, Staszak AM, Ratajczak E (2022) Somatic
 embryogenesis of Norway spruce and Scots pine: Possibility of application in modern forestry. Forests
 13(2):155. https://doi.org/10.3390/f13020155
- 498 Imanuddin R, Hidayat A, Rachmat HH, Turjaman M, Pratiwi, Nurfatriani F, Indrajaya Y, Susilowati A
- 499 (2020) Reforestation and sustainable management of *Pinus merkusii* forest plantation in Indonesia: A
- 500 review. Forests 11(12):1-22. https://doi.org/10.3390/f11121235
- Jancewicz AL, Gibbs NM, Masson PH (2016) Cadaverine's Functional Role in Plant Development and
 Environmental Response. Front Plant Sci 7:870. https://doi.org/10.3389/fpls.2016.00870
- 503 Jo L, Dos Santos ALV, Bueno CA, Barbosa HR, Floh EIS (2014) Proteomic analysis and polyamines,
- 504 ethylene and reactive oxygen species levels of Araucaria angustifolia (Brazilian pine) embryogenic
- 505cultureswithdifferentembryogenicpotential. TreePhysiol34:94-506104. https://doi.org/10.1093/treephys/tpt102
- 507 Konar S, Karmakar J, Ray A, Adhikari S, Bandyopadhyay TK (2018) Regeneration of plantlets through
- 508 somatic embryogenesis from root derived calli of Hibiscus sabdariffa L. (Roselle) and assessment of
- 509 genetic stability by flow cytometry and ISSR analysis. Plos One 13(8):e0202324.
- 510 https://doi.org/10.1371/journal.pone.0202324
- 511 Kumar A, Altabella T, Taylor MA, Tiburcio AF (1997) Recent advances in polyamine research. Trends in
- 512 Plant Sci 2(4):124-130. https://doi.org/10.1016/S1360-1385(97)01013-3

- 513 Kunitake H, Nakashima T, Mori K, Tanaka M (1998) Somaclonal and chromosomal effects of genotype,
- ploidy and culture duration in *Asparagus officinalis* L. Euphytica 102:309-316.
 https://doi.org/10.1023/A:1018371004374
- 516 Kuznetsov VV, Rakitin VY, Sadomov NG, Dam DV, Stetsenko LA, Shevyakova NI (2002) Do polyamines
- 517 participate in the long-distance translocation of stress signals in plants? Russ J Plant Physl 49(1):120-130.
- 518 https://doi.org/10.1023/A:1013776631284.
- 519 Kuznetsov V, Shorina M, Aronova E, Stetsenko L, Rakitin V, Shevyakova N (2007) NaCl- and ethylene-
- dependent cadaverine accumulation and its possible protective role in the adaptation of the common ice
 plant to salt stress. Plant Sci 172 (2):363-370. https://doi.org/10.1016/j.plantsci.2006.09.012
- 522 Lando AP, Viana WG, Silva RA, Costa CDD, Fraga HPF, Santos M, Mioto PT, Guerra MP, Steiner N
- (2019) The physiological relationship etween abscisic acid and gibberellin during seed germination of
 Trichocline catharinensis (Asteraceae) is associated with polyamine and antioxidant enzymes. J Plant
- 525 Growth Regul 39:395-410. https://doi.org/10.1007/s00344-019-09990-1
- 526 Liebsch D, Juvany M, Li Z, Wang H-L, Ziolkowska A, Chrobok D, Boussardon C, Wen X, Law SR,
- 527 Janečková, H, Brouwer B, Lindén P, Delhomme N, Stenlund H, Moritz T, Gardeström P, Guo H, Keech O
- 528 (2022) Metabolic control of arginine and ornithine levels paces the progression of leaf senescence. Plant
- 529 Physiol 189(4):1943-1960. https://doi.org/10.1093/plphys/kiac244
- 530 Liu T, Dobashi H, Kim DW, Sagor GHM, Niitsu M, Berberich T, Kusano T (2014) Arabidopsis mutant 531 plants with diverse defects in polyamine metabolism show unequal sensitivity to exogenous cadaverine 532 probably based on their spermine content. Physiol Mol Biol Plants 20:151-159. 533 https://doi.org/10.1007/s12298-014-0227-5
- **555** https://doi.org/10.1007/812298-014-0227-5
- Loureiro J, Rodríguez E, Dolezel J, Santos C (2007) Two new nuclear isolation buffers for plant DNA flow
- 535 cytometry. A test with 37 species. Ann Bot 100:875-888. https://doi.org/10.1093/aob/mcm152
- 536 Marum L, Loureiro J, Rodriguez E, Santos C, Oliveira MM, Miguel C (2009) Flow cytometric analyses of
- 537 *Pinus pinaster* somatic embryogenesis. J Biotechnol 143:288-295.
 538 https://doi.org/10.1016/j.jbiotec.2009.08.001
- 539 Martínez MT, Suárez S, Moncaleán P, Corredoira E (2022) Cryopreservation of holm oak embryogenic
- 540 cultures for long-term conservation and assessment of polyploid stability. Plants 11(9):1266.
 541 https://doi.org/10.3390/plants11091266
- 542 Matsunaga S, Yamasaki Y, Mega R, Toda Y, Akashi K, Tsujimoto H (2021) Metabolome profiling of heat
- 543 priming effects, senescence, and acclimation of bread wheat induced by high temperatures at different
- 544 growth stages. Int J Mol Sci 22:13139. https://doi.org/10.3390/ijms222313139
- 545 Minocha R, Kvaalen H, Minocha SC, Long S (1993) Polyamines in embryogenic cultures of Norway spruce
- 546 (*Picea abies*) and red spruce (*Picea rubens*). Tree Physiol 13(4):365-377.
 547 https://doi.org/10.1093/treephys/13.4.365
- 548 Minocha R, Smith DR, Reeves C, Steele KD, Minocha SC (1999) Polyamine levels during the development
- of zygotic and somatic embryos of *Pinus radiata*. Physiol Plantarum 105:155-164.
 https://doi.org/10.1034/j.1399-3054.1999.105123.x
- 551 Minocha R, Minocha SC, Long S (2004) Polyamines and their biosynthetic enzymes during somatic 552 embryo development in red spruce (*Picea rubens* Sarg.). In Vitro Cell Dev-Plant 40:572-580.

553 https://doi.org/10.1079/IVP2004569

- 554 Moncaleán P, García-Mendiguren O, Novák O, Strnad M, Goicoa T, Ugarte MD, Montalbán IA (2018)
- Temperature and water availability during maturation affect the cytokinins and auxins profile of radiata
 pine somatic embryos. Front Plant Sci 9:1898. https://doi.org/10.3389/fpls.2018.01898
- 557 Montalbán IA, De Diego N, Moncaleán P (2011) Testing novel cytokinins for improved in vitro
- 558 adventitious shoots formation and subsequent ex vitro performance in *Pinus radiata*. Forestry 84(4):363-
- 559 373. https://doi.org/10.1093/forestry/cpr022
- 560 Montalbán IA, García-Mendiguren O, Moncaleán P (2016) Somatic embryogenesis in Pinus spp. In:
- 561 Germana M, Lambardi M (eds) In vitro embryogenesis in higher plants. Methods in Molecular Biology,
- vol 1359. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3061-6_21
- Montalbán IA, Moncaleán P (2017) Long term conservation at -80 °C of *Pinus radiata* embryogenic cell
 lines: Recovery, maturation and germination. Cryoletters 38(3):202-209. PMID: 28767743
- Montalbán IA, Moncaleán P (2019) Rooting of *Pinus radiata* somatic embryos: factors involved in the
 success of the process. J For Res 30:65-71. https://doi.org/10.1007/s11676-018-0618-5
- 567 Morel A, Trontin J-F, Corbineau F, Lomenech A-M, Beaufour M, Reymond I, Le Metté C, Ader K,
- 568 Harvengt L, Cadène M, Label P, Teyssier C, Lelu-Walter M-A (2014) Cotyledonary somatic embryos of
- 569 Pinus pinaster Ait. most closely resemble fresh, maturing cotyledonary zygotic embryos: biological,
- 570 carbohydrate and proteomic analyses. Planta 240(5):1075-1095. https://doi.org/10.1007/s00425-014-2125 571 z
- 572 Nunes S, Marum L, Farinha N, Pereira VT, Almeida T, Sousa D, Mano N, Figueiredo J, Dias MC, Santos
- 573 C (2018) Somatic embryogenesis of hybrid *Pinus elliottii* var. elliottii × *P. caribaea* var. hondurensis and
- ploidy assessment of somatic plants. Plant Cell Tiss Org 132(1):71-84. https://doi.org/10.1007/s11240-017-
- 575 1311-7
- 576 O'Brien IEW, Smith DR, Gardner RC, Murray BG (1996) Flow cytometric determination of genome size
- 577 in *Pinus*. Plant Sci 115:91-99. https://doi.org/10.1016/0168-9452(96)04356-7
- 578 Ozturk M, Turkyilmaz Unal B, García-Caparrós P, Khursheed A, Gul A, Hasanuzzaman M (2021)
- 579 Osmoregulation and its actions during the drought stress in plants. Physiol Plantarum 172(2):1321-1335.
 580 https://doi.org/10.1111/ppl.13297
- 581 Park YS (2002) Implementation of conifer somatic embryogenesis in clonal forestry: technical
 582 requirements and deployment considerations. Ann For Sci 59:651-656.
 583 https://doi.org/10.1051/forest:2002051
- Peng C, Gao F, Wang H, Shen H Yang L (2020) Physiological and biochemical traits in Korean pine
 somatic embryogenesis. Forests 11(5):577. https://doi.org/10.3390/f11050577
- 586 Peng C, Gao F, Tretyakova IN, Nosov AM, Shen H, Yang L (2022) Transcriptomic and metabolomic
- analysis of Korean pine cell lines with different somatic embryogenic potential. Int J Mol Sci 23: 13301.
 https://doi.org/10.3390/ijms232113301
- 589 Pereira C, Castander-Olarieta A, Montalbán IA, Mendes VM, Correia S, Pedrosa A, Manadas B, Moncaleán
- 590 P, Canhoto J (2023) Proteomic and metabolic analysis of *Pinus halepensis* Mill. embryonal masses induced
- 591 under heat stress. Int J Mol Sci 24:7211. https://doi.org/10.3390/ijms24087211
- 592 Rajpal C, Tomar PC (2020) Cadaverine: a potent modulator of plants against abiotic stresses. J Microbiol

- 593 Biotech Food Sci 10(2):205-210. https://doi.org/10.15414/jmbfs.2020.10.2.205-210
- 594 Sales E, Cañizares E, Pereira C, Pérez-Oliver MA, Nebauer SG, Pavlović I, Novák O, Segura J, Arrillaga
- 595 I (2022) Changing temperature conditions during somatic embryo maturation result in *Pinus pinaster* plants
- with altered response to heat Stress. Int J Mol Sci 23(3):1318. https://doi.org/0.3390/ijms23031318
- 597 Seo SY, Kim YJ, Park KY (2019) Increasing polyamine contents enhances the stress tolerance via
- reinforcement of antioxidative properties. Front Plant Sci 10:1331. https://doi.org/10.3389/fpls.2019.01331
- 599 Serapiglia MJ, Minocha R, Minocha SC (2008) Changes in polyamines, inorganic ions and glutamine
- 600 synthetase activity in response to nitrogen availability and form in red spruce (*Picea rubens*). Tree Physiol
- 601 28(12): 1793-1803. https://doi.org/10.1093/treephys/28.12.1793
- 602 Shalaby AR (2000) Changes in biogenic amines in mature and germinating legume seeds and their behavior
- during cooking. Nahrung 44(1):23-27. https://doi.org/10.1002/(SICI)1521-3803(20000101)44:1<23::AID-
 FOOD23>3.0.CO;2-B
- Silveira V, Floh EIS, Handro W, Guerra MP (2004) Effect of plant growth regulators on the cellular growth
 and levels of intracellular protein, starch and polyamines in embryogenic suspension cultures of *Pinus*
- 607 *taeda*. Plant Cell Tiss Org 76(1):53-60. https://doi.org/10.1023/A:1025847515435
- 608 Stefenon VM, Ree JF, Pinheiro MVM, Goeten D, Steiner N, Guerra MP (2020) Advances and constraints
- in somatic embryogenesis of *Araucaria angustifolia*, *Acca sellowiana*, and *Bactris gasipaes*. Plant Cell
 Tiss Org 143:241-263. https://doi.org/10.1007/s11240-020-01928-w
- 611 Teyssier C, Grondin C, Bonhomme L, Lomenech A-M, Vallance M, Morabito D, Label P, Lelu-Walter M-
- 612 A (2011) Increased gelling agent concentration promotes somatic embryo maturation in hybrid larch (Larix
- 613 × *eurolepsis*): A 2-DE proteomic analysis. Physiol Plantarum 141(2):152-165.
 614 https://doi.org/10.1111/j.1399-3054.2010.01423.x
- Tomar PC, Lakra N, Mishra SN (2013) Cadaverine: A lysine catabolite involved in plant growth and
 development. Plant Sig Behavior 8(10):e25850. https://doi.org/10.4161/psb.2585
- 617 Tomar PC, Arora K (2021) Response of cadaverine on the protein profiling of cultured tissues of *Brassica*
- *juncea* (RH-30) under multiple stress. J Microbiol Biotechnol Food Sci 10(6):e4002.
 https://doi.org/10.15414/jmbfs.4002
- 620 Wakamiya I, Newton RJ, Johnston JS, Price HJ (1993) Genome size and environmental factors in the genus
- 621 *Pinus*. Am J Bot 80(11):1235-1241. https://doi.org/10.2307/2445706
- 622 Yang J, Zhang J, Liu K, Wang Z, Liu L (2007) Involvement of polyamines in the drought resistance of
- 623 rice. J Exp Bot 58(6):1545-1555. https://doi.org/10.1093/jxb/erm032
- 624
- 625

Key message: Maturation temperature doesn't affect ploidy levels of radiata pine somatic embryos, however, it affects the endogenous levels of glycine, arginine, lysine and putrescine.

supplementary material

Click here to view linked References

Click here to access/download attachment to manuscript renamed_e29a9.docx attachment to manuscript

Click here to view linked References

Click here to access/download attachment to manuscript Data availability statement.docx