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Abstract
The pursuit of cement-based materials with enhanced mechanical performance in the construction industry involves formu-
lating numerous mixtures with varied contents of raw materials. However, the scarcity or contamination of these materials 
demands optimization methods to minimize the number of trials required. Response Surface Methodology (RSM) is a statis-
tical experimental optimization method with which relations between sets of factors and responses can be established. This 
systematic review aims to analyze the existing literature on RSM models developed to achieve optimum levels in cementi-
tious mixes. Over 100 papers were analyzed in accordance with the Preferred Reporting Items for Systematic reviews and 
Meta-Analyses (PRISMA) format. A comprehensive review of the RSM analyses in those studies and their effectiveness is 
conducted, through the evaluation of their optimized factors and responses, the selection of their design models, their use of 
ANalysis Of VAriance (ANOVA), and the determination of their coefficients of determination (R2). Factors such as water/
cement ratio and binder content prevailed in most models, the predominant responses of which were, respectively, compres-
sive strength and workability. Although the use of ANOVA is commonly used to demonstrate the validity of the models, 
the studies replicating the mix with optimal levels of all factors are necessary to validate the results. On the basis of this 
review and depending on the responses that need to be maximized or minimized, the application of RSM can clearly be very 
crucial when quantifying the effects of new raw materials, whether recovered waste or natural resources, on mix behaviour.
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Abbreviations
RSM  Response surface method
SCM  Supplementary cementitious materials
CCD  Central composite design
FFD  Full factorial design
BBD  Box–Behnken design
FCCD  Face-centred central composite design
PRISMA  Preferred reporting items for systematic 

reviews and meta-analyses
SCC  Self-consolidating concrete
GGBFS  Ground granulated blast-furnace slag

ANOVA  ANalysis Of VAriance
OPC  Ordinary Portland cement

1 Introduction

High consumption levels of cementitious materials are 
among the major contributors to  CO2 atmospheric emis-
sions [1]. Such high levels were reflected in the figures 
of the International Energy Agency that estimated global 
cement production at 4.2 Gt in 2020 [2]. Fossil-fuel calci-
nation and heating processes required to supply sufficient 
energy for cement manufacturing release roughly 600 kg of 
carbon dioxide for every ton of cement that is produced [2]. 
Moreover, approximately 14 billion metric tons of Portland 
cement-based concrete, the most widely used material in 
the construction industry, are produced each year [3]. The 
cement industry has, therefore, set itself the urgent task of 
decarbonizing the building sector by 2050 [3].
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On the one hand, the use of natural aggregates is a key 
issue to be solved in concrete production, given that natural 
aggregates comprise between 75 and 80% of the total mix 
[4]. Their extraction and processing result in environmen-
tal damage, scarred landscapes, the destruction of natural 
habitats, and the contamination of natural watercourses, 
among others [5]. On the other hand, assuming that infra-
structural development will develop at the same rate as the 
rapid growth of the global population, then the relative scar-
city of natural aggregates will soon be turned into a harsh 
reality [6].

Appropriate substitution of raw materials by recovered 
waste offering equivalent performance levels has been inves-
tigated for the development of sustainable mixtures, such as 
supplementary cementitious materials (SCM) in the case 
of total or partial cement replacement [7], and the use of 
various alternative sustainable aggregates to replace natu-
ral aggregates [8]. Other recycled materials are proposed as 
partial substitutes for those constituents, leading to a dual 
solution: recycling the waste itself, and conserving the natu-
ral resources required for concrete mixture production [9].

The desire to achieve optimal concrete mixes through 
the addition of recovered waste, in terms of economic and 
performance-related requirements, has led many research-
ers to use optimization methods for different wastes such 
as plastics [10], waste-tire steel fibres [11], PET [12], and 
crumb rubber [13], among others. The experimental opti-
mization is typically based on trial-and-error or single 

factor experimental design method. Among the differ-
ent methods that can be used, Response Surface Method 
(RSM) optimizations of mix proportions have been inves-
tigated in many studies [14]. RSM is based on mathemati-
cal models (linear, square polynomial functions, and oth-
ers) [15], and statistical analyses for experimental design 
where each response is connected to a number of variables 
for exploring impacts [16], interaction of parameters, and 
optimization processes [17]. RSM analysis considers the 
experimental design along with its responses, also known 
as the experimental results [18]. The numerical response 
surface model then validates the accuracy and optimizes 
the variables to achieve the desired responses [19].

In recent decades, the number of publications focus-
ing on RSM as a central aspect of research has under-
gone exponential growth. Figure 1 illustrates the number 
of publications on RSM available in the search database 
“SCOPUS” between the years 2000 and 2024. It is evident 
that at the beginning of the Millennium the volume of 
publications concerning RSM is scarce, failing to reach 
1800 by 2000. Contrasting those earlier numbers with the 
15,000 publications or so for 2023, the interest in the sub-
ject has very clearly increased at a steady rate. It reflects 
the significant use of this method not only within fields 
such as engineering, but also across disciplines where the 
efficacy of scientific research is pursued, e.g., biotechnol-
ogy and environmental science.

Fig. 1  Number of publications on Response Surface Methodology (RSM) by year since 2000
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There are multiple studies on RSM optimization of 
cementitious mixes, where a large number of variables influ-
ence the responses [20]. The studies on the effectiveness of 
RSM as a method for concrete mix optimizations abound, 
although the addition of waste materials to create more sus-
tainable mixes is an area that requires further investigation, 
as so many sorts of sustainable materials may be analyzed 
[14].

Despite the usefulness of RSM experimental optimization 
to estimate the optimum content of sustainable raw materials 
in concrete mixes, the method has certain drawbacks. The 
chief among those drawbacks is the considerable number of 
samples and tests required to obtain the optimum mixture 
[21], resulting in higher material consumption and labora-
tory work [22]. Moreover, the results obtained from indi-
vidual studies on experimental optimization are of limited 
applicability and validity, due to specific characteristics and 
origin of constituents and environmental variables such as 
temperature and humidity that condition the mix design 
and concrete performance [23]. Nevertheless, although 
RSM results can in each particular case be used to find the 
approximate optimal mix dosage [14], a degree of methodi-
cal generalization might be useful for the widespread use of 
various sustainable raw materials. Some researchers have 
focused on designing and verifying computational design 
optimization tools for concrete mix proportioning [23].

The main objective of this review is to summarize the 
basics of RSM and its application to the optimization of 
cementitious materials, by performing a novel classifi-
cation of the reviewed scientific articles into four groups 
based on the aim of the RSM optimization. A further aim 
is to evaluate the efficacy of RSM at defining the optimum 
amounts of sustainable materials through a combined analy-
sis of various studies on content optimization through RSM, 
an approach that is also novel in literature. The review is 
organized as follows. A brief explanation of the research 
methodology, based on the Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses (PRISMA), is pro-
vided in Sect. 2. Fundamentals of RSM and strategies for 
experimental design are then briefly reviewed in Sect. 3. In 
Sect. 4, literature on optimization design for cement-based 
material applications is presented to uphold the feasibility of 
the optimization strategies that are selected for each mate-
rial. Finally, the main conclusions of the review are sum-
marized in Sect. 5.

2  Research methodology

2.1  Systematic review

A systematic approach based on PRISMA format was 
closely observed to conduct this comprehensive literature 

review [24]. Involving the selection of the most relevant 
papers in a given discipline, and their analysis and evalu-
ation, PRISMA is a highly efficient and widely used tech-
nique for the systematic review of past research papers. It 
also implies the synthesis of results to complete lines of 
knowledge that have not previously been investigated, pro-
viding a solid basis for the conclusions reached. Further-
more, if it is conducted by several people simultaneously, a 
high degree of objectivity in the article identification process 
can be achieved.

2.2  Data extraction

Two databases were used in this literature review: SCOPUS 
and Web of Science. Initially, 371 and 165 results, respec-
tively, were returned in a search for articles with keywords 
related to “Optimization” and “Concrete” between 2000 
and 2024. Duplicate articles were removed and papers that 
were unrelated to engineering, and materials were discarded, 
narrowing the search to English language documents. After 
the initial screening, a total of 171 articles were selected. 
Further refinement of the query, using “Cement” as a key-
word and focusing on response surface method resulted in a 
total of 132 articles, some of which were discarded as being 
beyond the scope of this review. In all, 100 relevant papers 
were finally included for in-depth examination, as shown 
below in the following flow-chart (Fig. 2).

A word cloud visualization was generated to present the 
most common keywords found in the selected articles, as 
shown in Fig. 3a., highlighting such terms as “Concrete”, 
“Design”, and “Response Surface Method”. Those words 
signify the topics that will be further covered in the course 
of this systematic review and validate the PRISMA meth-
odology conducted to select the reviewed papers. This word 
cloud was created with an online Word Cloud Generator. 
Among the 100 articles selected for review, 72 were Q1 
quality according to the JCR database criteria. A ranked 
order of their sources is shown in Fig. 3b.

3  Response surface method

The enhancement of concrete mix mechanical properties is 
dependent on the optimal content of each component: first 
and foremost, the cement, and then the materials that not 
only improve mix behaviour, but also mitigate the environ-
mental impact caused by its production. To optimize the 
selected variables, a large number of parameters involved 
in the mixing process requires significant amount of trials 
to be manufactured [10], which can be time-consuming and 
resource-intensive. RSM has, therefore, been proposed as an 
efficient concrete mix optimization method. Its underlying 
principle is that correlations may be established between 
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different factors and their responses through various math-
ematical procedures and statistical analyses.

3.1  Selection of factors and responses

To comprehensively grasp the utilization of this method, 
it is advantageous to define the two principal terms gov-
erning its application: factors, also known as “independ-
ent variables”, and responses, referred to as “dependent 
variables”. A factor is an experimental variable that is 
adjusted for testing, regardless of the other variables that 

constitute the mixture design. The response is the value 
of the property that is measured after conducting the cor-
responding trials [26] and after having set the value of the 
factor. It is standard practice to consider cement or binder 
content, water/cement ratio, volume of aggregates and 
admixtures as factors in concrete mix designs. Compres-
sive strength, flexural strength and slump are responses 
used in most of those optimizations. Existing literature 
[20] highlights the use of RSM to optimize the addition 
of new materials, often waste recovered from industrial 
processes that can be added to concrete mixes to improve 

Fig. 2  PRISMA statement flow 
diagram [25]

Fig. 3  a Keywords Word cloud 
visualization; b List of Journals 
that published Q1 articles 
between 2000 and 2024 on 
RSM-based optimizations of 
concrete mixes
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their mechanical behaviour. The number of factors that 
can be optimized for each design will vary in relation to 
both the number of mix variables [27] and the interval 
in which the variables lie. This decision will result in a 
certain number of combinations that constitute what is 
referred to as “Experimental design”.

3.2  Selection of experimental design strategy

A correct experimental design strategy will result in a 
polynomial function, either linear or quadratic, that 
accounts for response variations based on independent 
variables [28]. In cases where the model is quadratic, the 
result of defining Eq. (1) is a curvature or surface that 
can be defined as:

where Y  represents the response; � represents the regression 
coefficients; Xi represents the factor or independent vari-
ables; k represents the number of optimized variables; and �0 
refers to the measured error. The quadratic model performs 
well in cases where the surface is narrow, i.e., the range of 
values between which the variables to be optimized fluctuate 
is considered to be small [14]. Rather than linear models, 
second-order models provide a more comprehensive descrip-
tion of the relationships between different factors and their 
interactions.

In addition, higher-order models are used to define 
non-linear or more complex relationships. Some of the 
most widely used designs for the optimization of con-
crete mixtures are full factorial design, central composite 
design, and Box–Behnken design [29].

(1)Y = 𝛽0 +

k
∑

i=1

𝛽iXi +

k
∑

i=1

𝛽iiX
2
i
+

k
∑

i=1

k
∑

j>1

𝛽ijXiXi + 𝜀0,

3.2.1  Full factorial design

Full factorial design (FFD) is an experimental design in 
which all factors are replicated at two or three levels. In 
a two-level FFD, each factor has a low value (− 1) and a 
high value (+ 1), whereas in a three-level FFD, an additional 
value is considered as the centre value. The total number of 
designs is defined as either 2k or 3k , respectively, where k 
denotes the number of design factors. Figure 4a. shows a 
schematic representation of the combination obtained with 
a three-level FFD. Many experimental runs are required for 
a three-level FFD; its application is, therefore, only conveni-
ent for less than five factors [30], otherwise it will produce 
undesirable higher-order interactions.

3.2.2  Central composite design

Central composite design (CCD) stands out as the most 
popular RSM method for defining a quadratic model to 
establish the statistical relations between factors and their 
responses. Its major advantage is the capability to predict 
linear and quadratic effects for the responses while mini-
mizing experimental trials. CCD requires the three-level 
FFD with complementary centre and axial points, provid-
ing greater scope and representativeness. It has contributed 
to the widespread adoption of CCD in the concrete design 
industry and engineering.

The number of design points required for CCD design is 
determined by Eq. (2):

where k is the number of independent variables, 2k 
refers to the axial runs, 2k refers to the factorial runs, and 
c refers to the centre-point runs. Factorial points include 

(2)Number of design points = 2k + 2k + c,

Fig. 4  (a) Three-level full factorial design approach (k = 3); (b) Axial, factorial, and centre points in a central composite design for k = 3; (c) 
Spherical design for a Box–Behnken Design for k = 3
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all combinations of coded values placed at the corners of 
the cube, while axial points are located at a fixed distance 
from the origin, defined by an alpha value ( ±� ). A three-
dimensional CCD design with k = 3 independent variables 
is shown in Fig. 4b.

3.2.3  Box–Behnken design

Box–Behnken design (BBD), an alternative to FFD, is com-
monly applied for quadratic models. Its distinguishing aspect 
is that no factorial points are used, so it therefore has neither 
impractical low nor high extreme points where factors reach 
their maximum and minimum values. The spherical nature 
and quasi-rotational capability of BBD means that it is suit-
able for accurate estimation of the behaviour of defined fac-
tors. The number of design points in BBD is determined by 
Eq. (3).

where k is the number of independent variables and c 
refers to the centre-point runs. Notwithstanding the numer-
ous advantages of the BBD over the FFC and the CCD meth-
ods, there are specific limitations to its applicability. The 
method is unsuitable for experiments requiring the inclu-
sion of extreme points for optimization. Its applicability is, 
therefore, dependent on the presence of three or more fac-
tors. It is particularly relevant in situations where the opti-
mal value falls within an intermediate range of factors. The 
arrangement of points for a Box–Behnken Design is shown 
in Fig. 4c.

Beyond the three predominant designs employed for 
RSM, it is crucial to recognize the existence of additional 
strategies, which are utilized in some models examined in 
the literature. These designs include Bucher–Bourgund 
design, fractional factorial design, simplex centroid design, 
simplex lattice design, factorial design and face-centred cen-
tral composite design.

3.3  Statistical analysis and model validation

Optimization through RSM relies on the robust statistical 
tool known as ANalysis Of VAriance (ANOVA), which 
facilitates a comprehensive examination of factors that sig-
nificantly influence responses. The coefficients of determina-
tion (R2) and P-value analyses are used to assess the predic-
tive quality of the ANOVA results. The R2, a measure of 
the disparity between predicted and experimental values, is 
indicative of model quality, while P-values below 0.05 sig-
nify model adequacy. This criterion serves to validate opti-
mized models. The examination of p-values across models 
featuring different optimized factors for the same concrete 
mix allows for inferences regarding the optimal combination 

(3)Number of design points = 2k(k − 1) + c,

of several factors within a given model. This stage in the 
optimization process is acknowledged as model validation.

The flow diagram shown in Fig. 5 serves to enhance the 
comprehension of the main steps of a standard RSM model 
optimization process, particularly focusing on concrete and 
cementitious mixes.

4  Literature on RSM optimization 
of concrete mix design

The papers selected for this review were classified into four 
separate groups for their effective analysis. The primary cri-
terion to distinguish between groups was based on the raw 
materials of the mixtures which served as factors for the 
optimization process.

The first group, labelled “Studies on the use of the 
Response Surface Method (RSM) for mix design optimi-
zation”, was a compilation of publications where the key 
optimization factors included water/cement ratio, cement 
content, or the content by volume of different aggregate-
sized particles. It is, therefore, a compilation of all the mod-
els for which the enhancement of mix properties is related to 
optimum levels and interactions between the design param-
eters, unrelated to the replacement of traditional materials 
for alternative or sustainable ones. The references in this 
group are presented in Table 1.

The second group included papers on varied types of 
SCM that were incorporated into concrete mixtures, either 
as complete or partial replacement of conventional cement, 
their content being optimized through RSM. Table 2, “Stud-
ies on the use of the Response Surface Method (RSM) for 
Supplementary Cementitious Material (SCM) content 
optimization in concrete mixes” presents optimizations 
that involve different binders other than Ordinary Port-
land Cement (OPC), such as silica fume, fly ash, ground 
granulated blast furnace slag (GGBFS), etc. This group had 
the highest number of optimized models on cementitious 
materials that served to provide insight into optimal binder 
contents when optimizing responses such as compressive 
strength and workability.

Furthermore, many recovered waste materials are incor-
porated as new raw materials to provide alternatives in par-
tial replacement of the natural aggregate content, leading to 
what is known as “sustainable concrete”. Literature on the 
optimization of sustainable concrete mixes using RSM is 
still limited. Table 3, “Studies on the use of the Response 
Surface Method (RSM) for waste content optimization in 
concrete mixes” provides an analysis of optimized mixture 
models that include the content of a specific waste as one 
of the factors.

Finally, the optimized mixes could further reduce the 
environmental impact of their production compared to 
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conventional concrete when their waste materials are com-
bined as aggregates with different types of SCM. These are 
the cases reviewed in the fourth group of the classification, 
reflected in Table 4, “Studies on the use of the Response 
Surface Method (RSM) for Supplementary Cementitious 
Material (SCM) and waste content optimization in con-
crete mixes presented”.

When an article could be classified within two different 
groups according to the factors considered in the RSM 
optimization, a meeting was held between the authors of 
this review article to discuss the most appropriate group 
to include it in. For this purpose, the relevance given in 
the RSM optimization to each aspect covered in each clas-
sification group suitable for the article was examined and 
discussed. The fact that this work was carried out jointly 
by all the authors enabled the subjectivity component to 
be reduced, which would have been greater if this task had 
been performed by a single person.

In the tables, fundamental information on each publi-
cation is provided on the optimization models, including 
RSM design, software, factors and responses, and finally 
the optimum levels of the optimized variables in each case.

4.1  Optimization of mix design

Among the different types of design models selected for 
this PRISMA review, the initial applications of statistical 
optimization processes can be said to highlight the use of 
factorial models to optimize the design parameters of the 
cementitious mixtures [31]. When addressing the analysis 
of the most commonly used designs strategies, CCD and 
BBD stand out as the most frequently applied [14]. CCD 
is the most common one, appearing in 39% of the models, 
as shown in Table 1. The inclusion of both factor orthogo-
nality and single-factor boundaries means that its experi-
mental points are significantly more comprehensive and 
representative [29], thus positioning it as the most widely 
adopted method in mix design. The reduced number of tri-
als needed in CCD is also a significant factor contributing 
to its increased adoption. For instance, Sun et al. [32], using 
only three central points and combinations of two factors, 
achieved their model design after 11 trial tests. Similarly, 
in CCD designs involving three factors, the increment in 
the number of tests was not substantially higher. Şimşek 
et al. [33] devised a model comprising eight factor points, 

Fig. 5  Flow diagram of the RSM optimization process for concrete mixes
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six axial points, and six centre points, resulting in a total of 
20 combinations. In another investigation, the CCD model 
was selected for multi-objective optimization of a concrete 
mixture aiming for maximum flexural strength with minimal 
metallic hybrid fibre content [19], in which the production 
of the same mix under optimum conditions confirmed the 
rigor of the model.

Moving from the discussion of CCD to BBD models, it is 
noteworthy that the BBD strategy has also been employed to 
model concrete mixes, with almost 18% of the models using 
this approach. However, its usage is comparatively lower 
than CCD, due to the absence of factorial points, implying 
that neither the upper nor lower limits for each variable are 
considered as constraints for response optimization during 
its application. Evaluations of the effect of three independ-
ent variables have been simultaneously performed in BBD 
models [34]. The BBD strategy can be successfully used to 
elucidate, for instance, how factors such as alkali content, 
w/c ratio, and ground clay affect the mechanical behaviour 
of alkali–silica reaction concrete [35], how the interaction 
of three different admixtures affects the permeability of the 
concrete mix [36], and how different proportions of silica 
aggregates affect the void content of the mix [28]. How-
ever, this strategy has proved inadequate when attempting 
an accurate determination of the optimum levels to be used. 
Asadzadeh et al. [28] conducted both individual and multi-
objective optimization of variables related to cost, compres-
sive strength, and dry density of foam concrete exploring 
possible applications by fixing desired values; rather than 
obtaining a specific proportion of each factor, BBD was used 
to establish nine combinations of the three factors (cement, 
water, and foam).

Despite it being a traditionally popular method, the 
simplex-centroid design is not currently applied in most 
investigations, and it was not even detailed in Sect. 3.2. Its 
basic premise is an interdependence between different factor 
levels, which are all represented within a tri-linear coor-
dinate system using the three sides of the same triangle. 
Nevertheless, some authors have applied this methodology 
to optimize the design parameters of their concrete mixes 
[37]. Its application to determine minimum cement content 
through compact aggregate packing [38] yielded an effec-
tive design with highly linear design spaces. The above was 
also applicable to the investigation of Wu et al. [39] where 
a type of low-carbon cement combining cement, hydrated 
lime, and mineral admixtures was obtained with simplex-
centroid design that demonstrated rapid convergence to the 
optimum.

The success of RSM applications is based on careful 
selection of the factors that influence a mix. Since cementi-
tious mixes are compositionally variable, a slight variation 
in the values of the components may improve the desired 
property but result in a deterioration of another property. C
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One conclusion following an analysis of some studies was 
that more than one variable was optimized in the most effec-
tive methods, adjusting a high number of factors—more than 
three [29]. In addition to the careful selection of the vari-
ables, defining the levels of each variable was almost equally 
important, to obtain a valid optimization process; something 
which may be seen in the investigation of Bayramov et al. 
[40]. Having previously set the design points of the FFD 
model that was employed, those authors were able to define 
an optimum fibre content. Their design points were neither 
too close nor too distant, both of which may have otherwise 
prompted less effective model applications.

With regard to the selection of factors for Table 1, mix 
design optimization mainly included cement content and 
w/c ratio [41]. It is noteworthy that even minor alterations 
of those factors can considerably alter the properties of the 
cementitious blends. Likewise, when a variable selected for 
variation represents a significant portion of the total con-
stituents within the mixture, as exemplified by aggregate 
volume, it assumes critical importance in numerous mod-
els [41]. A clear example is shown for self-consolidating 
concrete (SCC) mixes [37], where achieving the required 
balance between deformation and stability to produce SCC 
occasionally required a higher cement content and hence 
the adjustment of the w/c ratio. Therefore, Ghezal et al. 
[42] introduced a CCD model in which SCC mixes were 
optimized by limiting the cement and admixture content, 

resulting in valid models for cement contents ranging from 
250 to 400 kg/m3.

Several cases of CCD model applications were found in 
which the optimized responses were primarily compressive 
strength and workability [36], as a balance between both 
is key for proper use of the resulting mixture. In addition 
to optimization of the two aforementioned properties, the 
importance of the mechanical properties of concrete is 
such that many models are focused on optimizing flexural 
strength [19] and the permeability coefficient [29].

Li et al. [43] applied RSM to develop an optimization 
model for recycled aggregate concrete. Their model incorpo-
rated compressive strength and the permeability coefficient 
as responses, with factors including maximum aggregate 
particle size, w/c ratio, and target porosity, but not the waste 
content, hence the classification in this group. They sought 
to optimize the mix performance by adjusting the mix design 
for certain waste contents, without defining the amounts that 
might result in the best performance. Figure 6 illustrates, 
through response surfaces and contour plots, the interaction 
between factors affecting the compressive strength of RAC. 
Each model depicts the two optimized factors on the x-axis 
and y-axis respectively, with the response always represented 
on the z-axis. Thus, for each pair of interacting factors, a 
surface is provided displaying the resulting values on the 
response. In the cases of Fig. 6b, c, the maximum compres-
sive strength value could be identified on both surfaces, 

Table 3  Studies on the use of the Response Surface Method (RSM) for waste content optimization in concrete mixes by year of publication

Water/Cement (W/C); Fine Aggregates by plastic waste aggregates regular (FA-PWAR); Fine Aggregates by plastic waste aggregates irregular 
(FA-PWAI); Not available data (-)

Reference RSM Design / Software Factors Responses Optimum Year

[99] Simplex centroid design / Sta-
tistica 6.0

Red clay, granite waste, 
kaolin waste

Water absorption, shrinkage, 
modulus of rupture

- 2008

[20] CCD / Design Expert 10 W/C, crumb rubber replace-
ment

Compressive strength, flex-
ural strength, modulus of 
elasticity

- 2018

[10] CCD / Design Expert 6.0.7 Two types of plastic, segrega-
tion waste aggregate

Workability, compressive 
strength

[FA-PWAR] = 0.0% + [FA-
PWAI] = 24%

2018

[103] CCD / Design Expert 11.1.2 Plastic wastewater bottle caps, 
W/C ratio

Compressive, split tensile, 
flexural strength

- 2023

[101] FCCD / Design Expert Recycled concrete aggregate, 
cement content

Unconfined compressive 
strength, flexural strength, 
elastic modulus, indirect 
tensile strength

- 2023

[102] CCD / Design Expert 13 Banana fibre, waste glass 
powder

Compressive strength (7, 28 
and 56 d)

7 days (1% banana fibre, 
17.4% cement replacement); 
28 days (1.1% banana fibre, 
20.8% cement replacement); 
56 days (1% banana fibre, 
21% cement replacement)

2023

[100] CCD / - W/C ratio, residual mortar 
coefficient

Workability, compressive 
strength, flexural strength, 
elastic modulus

w/c ratio = 0.40 + residual 
mortar coefficient = 1.78

2023
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which occurred when the maximum aggregate particle size 
was incorporated together with the lowest w/c ratio, and the 
lowest target porosity in the mixture.

There were few investigations within the group of ref-
erences reviewed in this section, which were focused on 
mix-design optimization and that validated their models in 
subsequent laboratory campaigns with the optimized mix 
design. Şimşek et al. [33] demonstrated the effectiveness of 
the method by assessing the response of the model and sub-
sequently its reproduction at an experimental scale, achiev-
ing very low standard deviation values (< 0.347). In all 

cases, the effectiveness of RSM was demonstrated through 
the ANOVA results, as explained earlier in this review; not 
only was a relevant R2 value obtained, which in most cases 
exceeded 0.90, but it was also essential when verifying that 
the model formulation corresponded to the experimental 
reality. In the study of Ghezal et al. [42], validation was 
particularly crucial when considering compressive strength 
as the main response where the models for both cement and 
admixture content adjustment proved valid with correla-
tion coefficient values above 0.96, guaranteeing adequate 
mechanical behaviour of the mixtures. Once the optimized 

Table 4  Studies on the use of the Response Surface Method (RSM) for SCM and waste content optimization in concrete mixes by year of publi-
cation

Water/Cement (W/C); fly ash to cementitious material (fly ash/CM); Portland Cement (PC); Fly Ash (FA); Silica Sand (SS); Crumb Rubber 
(CR); MetaKaolin (MK); Marble powder to cement (M/C ratio); Water to Binder (W/B); Waste Foundry Sand (WFS); Nano-Palm Oil Fuel Ash 
(NPOFA); Palm Oil Clinker (POC); Ultrasonic Pulse Velocity (UPV); SuperPlasticizer (SP); Not available data (-)

Reference RSM Design / Software Factors Responses Optimum Year

[56] CCD / - Filler/cement ratio, fly ash, 
foam volume

Compressive strength, dry 
density

49% fly ash as fine aggr. 
replacement (28 d)

71% fly ash as fine aggr. 
replacement (90 days)

2006

[107] - / MiniTab W/C ratio, residual content 
(Serie 1) Waste content, fly 
ash/CM (Serie 2)

Slump, compressive strength 
(28 and 90 days)

- 2012

[108] Simplex centroid design / 
MiniTab 14.20

Portland cement, fly ash, 
mine flotation

Compressive strength PC = 5 wt%, FA = 15 wt%, 
SS = 80 wt%

2013

[13] CCD / MiniTab Crumb rubber, metakaolin Compressive strength, water 
absorption, unit weight

3.3% replacement of sand with 
CR + 19.5% replacement of 
cement with MK

2016

[109] CCF / Design Expert Micro-coral sand/cement 
ratio, coral sand/cement 
ratio

Compressive strength Micro coral = 15% + coral 
sand = 30%

2017

[110] CCD / Design Expert W/B, marble powder/cement 
ratio

Workability, compressive 
strength

W/C ratio = [0.52—0.55] + M/C 
ratio = 0.6

2017

[111] CCD / Design Expert Alkali content, waste glass 
powder ratio

Flexural strength, compres-
sive strength

Glass pow-
der = 14.57% +  Na2O = 8.31%

2018

[17] CCD / Design Expert 10.0.6 Fine aggregates, waste 
foundry sand, fly ash

Compressive strength Replacing fine aggregates with 
WFS = 38% + fly ash = 30%

2019

[105] CCD / Maple 17 Sisal fibre, activator, curing 
time

Modulus of elasticity, tenac-
ity

Sisal fibres = 5.15% 2019

[104] CCD / Design Expert 10 Nano-silica, waste glass 
powder

Workability, compressive 
strength, drying shrinkage

Nano-silica 
fume = [0–5%] + waste glass 
powder = [0–20%]

2019

[11] CCRD / - Aspect ratio, cement5, W/B 
ratio

Workability, compressive 
strength, Flexural strength, 
split tensile strength, water 
absorption

- 2019

[112] CCD / Design Expert 12 NPOFA %, POC % UPV, flexural strength, tensile 
strength

5.331% NPOFA = 5.331%, 
POC = 2.408%

2022

[113] CCD / Design Expert 12 Temperature, heating rate, 
residence time

Yield, carbon, potassium, 
silica, oxygen

Conditions (pyrolysis experi-
ments) = 409 °C, 15 °C/min, 
120 min

2023

[106] CCD / Design Expert 13 Laterite aggregates, fly ash, 
sisal fibres, SP

Compressive strength, split 
tensile strength, flexural 
strength

25% Laterite aggregate, 10.52% 
replacement of fly ash, 1% 
addition of sisal fibres, 1.48% 
addition of SP

2024
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mix design is achieved, it must be reproduced, for more 
accurate comparisons between the experimental results and 
the model. Ahmad et al. [44] meticulously replicated the 
optimized mixture by finely adjusting the w/c ratio and fine/
total aggregate ratio within fixed upper and lower limits, 
achieving optimal mix designs tailored to various strength 
targets. That sort of validation practice was only described in 
a few papers among the group of references analyzed in this 
section, whose conclusions were usually limited to model 
effectiveness rather than the optimized mixture itself.

4.2  Optimum SCM content

In recent years, it has become increasingly common in the 
construction industry to replace a percentage of cement with 
recycled industrial manufacturing by-products as binders 
[52]. The use of these materials, known as supplementary 
cementitious materials (SCMs), not only reduces produc-
tion costs, but also mitigates  CO2 emissions associated with 
the clinkering process required for cement production [53]. 
Whether fly ash, GGBFS, or silica fume, many of the opti-
mization models are focused on optimizing those contents.

Table 2 provides a detailed categorization of the design 
parameters from a perspective that is focused on the type 
of SCM used for each mixture. Among the references that 
were analyzed, the following were the most commonly used 
binders:

• Fly ash was the most optimized factor among all the 
SCM that were studied, with 42% of the cases using a 
CCD model. In the particular investigation conducted by 
Fauzi et al. [95], the application of the CCD model with 
the objective of developing a sustainable controlled low-
strength material demonstrated that an increase in fly ash/

cementitious materials ratio enhanced the plastic prop-
erties of the mix. Not only was the CCD model found 
valid for optimizing fly ash quantities; percentages of 
that binder ranging between 15–20% of the total cement 
replacement were determined using the simplex-centroid 
design method [53]. Furthermore, factorial design estab-
lished that a quantity of 13.3% was optimal to maximize 
compressive strength for concrete production with binary 
blends [54]. Regarding the selected responses, compres-
sive strength was chosen for all those models, either as 
the sole response or, in cases of multi-objective analy-
sis, it was evaluated usually along with workability [12]. 
In some other cases, compressive strength was used 
together with the modulus of elasticity [55] or density 
in the case of a foamed concrete [56]. ANOVA applied 
to those models not only demonstrated the suitability of 
their optimization, but also determined the substitution 
percentages based on the response to be either maxi-
mized or minimized.

• GGBFS, as an optimization factor, was not found in any 
uniform design strategy. In the literature, models such 
as CCD [52], BBD [57], face-centred central composite 
design (FCCD) [58], simplex-centroid design [59], and 
factorial design [60] were utilized to optimize this SCM. 
As with fly ash, the amount of binder in the total con-
crete mix has a major impact on the compressive strength 
results, which is the fundamental reason why the opti-
mized response of the models is invariably compressive 
strength [61]. The optimization of more complex mod-
els involving independent variables such as the water/
binder ratio or superplasticizer entailed the development 
of more intricate models [62]. Those models consistently 
proved to be successful at providing valuable insight 
into the optimization of GGBFS mixes, with  R2 values 

Fig. 6  Response surface for optimization of compressive strength: (a) maximum coarse aggregate diameter—w/c ratio interaction; (b) maximum 
coarse aggregate diameter – target porosity interaction; (c) w/c ratio—target porosity interaction. Image from Ref. [43]
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exceeding 0.94 [62]. It is important to note that the opti-
mized response significantly influences the efficacy of 
each model. Specifically, the R2 value for slump optimi-
zation surpassed that obtained for compressive strength 
in this instance. In the absence of experimental valida-
tion of the optimal results obtained in each mixture, 
Mohammed et al. demonstrated the validity of the opti-
mization through replication of the model-derived out-
come, endorsing the combination of 100% GGBFS with 
11.9% solid sodium metasilicate that provided the highest 
strength values [58]. In the study from Srinivasa et al. 
[63], a three-level BBD model was applied with GGBFS 
as one of the independent variables, represented on the 
X1-axis. A depiction of the test points corresponding 
to the BBD model is illustrated in Fig. 7., with Fig. 7a. 
showing the coded values and Fig. 7b. showing the cor-
responding uncoded values for each variable: GGBFS, 
w/s, and activator (%).

• Silica fume as the primary independent variable was opti-
mized in models that used CCD (58% utilization of the 
model) [64], and simplex-centroid design [65] strategies, 
the main responses of which were compressive strength 
and workability. Aziminezhad et al. [27] determined 
through a CCD model that silica fume significantly 
affected the workability of self-consolidating mortar 
while simultaneously enhancing compressive strength 
values. Since the study conducted was multi-objective, 
it was established that, compared to superplasticizer or 
water added to the mortars, as indicated by contour plots, 
silica fume was more efficient in improving hardened 
properties, as indicated in the contour plots. The high 
influence of the water/binder ratio in all these models, 

as demonstrated by the corresponding ANOVAs, usu-
ally exceeded the water/cement ratio, and was a domi-
nant factor for compressive strength. As with the previ-
ous GGBFS optimization models, only the most recent 
designs were found to achieve the optimal silica fume 
content for a specific concrete mixture. An example of a 
mixture categorized as “green” or “sustainable”, owing 
to the partial substitution of cement by other SCM such 
as recycled aggregate concretes, indicated that incorpo-
rating 7.78% silica fume [52] yielded the highest com-
pressive strength values. Conversely, employing two 
CCD models, Azmi et al. [66] and Alani et al. [67] found 
that a 20% silica fume content significantly enhanced 
that property at both 28 and 90 days for green ultra-high 
strength concrete mixes.

In addition to the three main binder types, there were 
models with other independent variables such as pulverized 
fuel ash [68], calcium aluminate silicate [69], sodium sili-
cate content [70], and metakaolin [71]. The response sur-
faces obtained to optimize the compressive strength of mixes 
with metakaolin in Ahmad et al. [96] are shown below in 
Fig. 8. The meta-kaolin content is represented on the x-axis, 
while the y-axis is used to depict the values of the  Na2SiO3/
NaOH ratio and  Na2SiO3/KOH ratio, respectively. Notably, 
both graphs revealed a significant decline in compressive 
strength values with increasing meta-kaolin content. Fur-
thermore, the concave curvature suggests that the optimal 
values of NNR and NKR, in both scenarios, were likely to 
be situated at the center of the interval.

Clearly, the above models confirm that binders are com-
monly used in combination with each other when using SCM 

Fig. 7  Three-level Box–Behnken design for one-part geopolymer binder with GGBFS, W/S and activator as independent variables: (a) coded 
values arrangement, (b) uncoded values arrangement. Image from Ref. [63]
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for concrete mixes. There is no evidence that model efficacy 
is more pronounced with certain types of binders compared 
to others. It is evident that RSM is an excellent tool for 
multi-objective analysis when combining various types of 
SCM, as they all have effects on the mechanical properties 
of concrete. Despite the fact that the use of ANOVA usually 
reveals a high degree of correlation between independent 
variables and responses such as compressive strength, spe-
cific models such as the ones developed by Li et al. [72] for 
optimizing hydration heat, yield stress, and plastic viscosity 
showed that the adjustment was not statistically significant, 
as indicated by the p-values > 0.05. A result that emphasizes 
the intricate variability in model significance across various 
variables.

4.3  Optimum waste content

Economic advances coupled with demographic growth have 
resulted in high rates of industrial activity, causing signifi-
cant environmental issues. First, there is the depletion of 
natural resources that are essential to the construction indus-
try, and second, there are high levels of waste streams. All 
those issues form the basis of the papers found in Table 3. 
After analyzing the models within that group, it was asserted 
that comprehensive knowledge of the waste to be optimized 
as part of the mixes is crucial. It posed no problem when 
conducting the RSM described in Sects. 4.1 and 4.2, as the 
boundaries within which each of the independent variables 
was defined could be understood thanks to the extensive 
previous literature. It highlights that the selection of vari-
ables, and their levels is crucial when incorporating waste 
materials.

Despite the limited availability of studies within this 
group, a distinct pattern has emerged with regard to the 
model, which differs little from both groups analyzed in 

previous sections: CCD remains the most utilized model. 
Seventy-one percent of the literature analyzed for this sec-
tion applies this design, with rare exceptions opting for the 
simplex-centroid design model [99].

Granite waste, crumb rubber, plastic wastewater caps, and 
banana fibre were among the various types of waste selected 
as the primary factors, showcasing the diversity inherent in 
these models. While those factors served as primary vari-
ables, the models were always multi-objective, so they were 
always optimized in conjunction with other factors such as 
the w/c ratio [100] or cement content [101]. For instance, 
Mohammed et al. [20] attempted to optimize, “rubbercrete” 
mixes by simultaneously evaluating the content of crumb 
rubber along with the w/c ratio; they demonstrated through 
response surfaces that a high rubber content in that case 
resulted in a mix that was susceptible to strength loss.

In the pattern of the responses that were evaluated, com-
pressive strength remained the most frequent alongside flex-
ural strength. In most models, the choice of those responses 
was not based on their effectiveness within the context of a 
specific set of variables, but instead on an exploration of the 
properties of the resulting material. In the study of Menezes 
et al. [99], for example, whose authors proposed the optimi-
zation of ceramic-tile waste content, and evaluated its effect 
on water absorption and shrinkage, the usual RSM responses 
were not selected for the cementitious mixtures. Thus, set-
ting the extreme values of the batches, based on prior knowl-
edge of the waste, meant that the statistical analyses returned 
successful models for the investigation.

Defining optimal waste contents, especially when study-
ing novel materials, is a complex task that is reflected in 
some of the models found in the literature [102]. Aldah-
dooh et al. successfully optimized cementitious mixtures 
with a waste that exists in large quantities such as plastic 
[10]. Given their inherent resistance to degradation, some 

Fig. 8  Response surface for compressive strength (Fc) of meta-kaolin (MK) based mixtures. Image from Ref. [71]
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researchers have also investigated the possibility of intro-
ducing plastic bottle caps as a replacement for up to 12% of 
coarse aggregate [103]. In a novel approach to determine the 
effectiveness of RSM, they performed the same model using 
the artificial neural network-Levenberg–Marquardt tool. 
After developing the models and conducting the correspond-
ing ANOVA, the good performance and the precision of the 
RSM results were demonstrated through comparisons. Olu-
kayode et al. [102] demonstrated another example of waste 
recovery in a proposal for an optimal combination of waste 
glass with banana fibre. With coefficients of determination 
of 0.97, 0.94, and 0.95 for responses such as compressive 
strength, the test results were sufficient to establish optimal 
conditions for the models using RSM.

The following case [100] offered an example of concrete-
mix aggregate optimization using gravel and waste rock 
aggregates. The w/c ratio and the residual mortar coefficient 
(α) were defined as independent variables and the optimiza-
tion process included, among others, workability, compres-
sive strength, flexural strength, and the modulus of elastic-
ity. The response surfaces for each of the aforementioned 

responses are depicted in Fig. 9. The RSM model proved to 
be suitable for predicting both the fresh and the hardened 
properties of the concrete with a reduced number of tests. 
Regarding the hardened properties, the response surfaces 
showed concave curves, contrasting with the curve observed 
for the single fresh property that was analyzed: slump flow. 
The difference arose due to the optimization objective of 
maximizing compressive strength, flexural strength, and the 
modulus of elasticity. In the case of slump flow, a higher 
value will not necessarily correlate with improved work-
ability. Therefore, the convex shape of the curve indicated 
that the optimal point was likely to be found towards the 
lower end of the curve.

4.4  Optimum combination of SCM and waste 
content

The distinctive feature underlying the classification of stud-
ies listed in Table 4 lies in the overarching goal pursued by 
the RSM. As reiterated throughout this review, the RSM 
is used in those studies to minimize the requisite number 

Fig. 9  3D surface graphs for: (a) slump, (b) compressive strength, (c) flexural strength, (d) elastic modulus. Image from Ref. [100]
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of tests for understanding and enhancing the behaviour of 
cementitious mixes based on the interplay between their 
components and properties. Following a comprehensive 
analysis of around 100 appropriately categorized papers, it 
became evident that the binders and the waste materials had 
the most substantial influence on the experimental results. 
The review was therefore to categorize the models that were 
focused on optimizing both factors as the main objective.

As for the design strategy, there was no particularity 
within this group, as the most effective approach remained 
the CCD (71% utilization), focusing on compressive strength 
as the primary response. Given that the models classified 
in this group were after 2012, all of them were capable of 
defining the optimal contents of both binders and wastes 
after model validation thanks to more efficient models and 
software.

Achieving the optimal balance between binder content 
and its substitute waste content can be complex, neces-
sitating the use of response surface plots for the optimiza-
tion process. The research by Mosaberpanah et al. [104], 
for instance, showed a comparison between content A 
(nano-silica) and content B (waste glass powder) through 
response surface plots, (Fig. 10.) on two of the most opti-
mized responses of the models (flowability, compressive 
strength). On the one hand, a higher amount of nano-silica 
combined with an increased content of waste glass pow-
der in the mixture resulted in an increase in strength at 
28 days, leading to a concave surface as shown in Fig. 10a. 
However, the same trend was not observed for flowabil-
ity, as a descending trend is evident in Fig. 10b. with the 
increase in factor A [104]. In another study, Rezaifar 
et al. [13] developed an additional experimental test for 
concrete mixes made with crumb rubber and metakaolin, 

demonstrating a close alignment between the statistical 
analysis and the optimization results, with a mean error 
of 3.3%.

Optimization efforts have also been extended to novel 
waste materials. The paper from da Silva Alves et al. [105], 
for example, was focused on sisal fibres alongside metakao-
lin, with a specific focus on evaluating their influence on 
the modulus of elasticity and the toughness of the concrete 
mixes. It is noteworthy that the CCD model was initially 
employed to determine the optimal combination of sodium 
silicate and sodium hydroxide molarities and, subsequently, 
another CCD model was utilized to establish the optimum 
percentage of sisal fibres at 5.15% to maximize the modulus 
of elasticity. The RSM optimization approach proved to be 
a superior strategy when selecting four factors to optimize 
[106], including one binder and one waste product. Design 
time was reduced with that method, enhancing the func-
tionality of the existing process, reinforcing reliability, and 
ensuring robustness.

5  Conclusions

The objective of this systematic review has been to analyze 
studies within the existing literature on the use of RSM for 
developing cementitious mixtures with optimal quantities of 
each component, whether they involve traditional raw mate-
rials or new blends that incorporate waste materials in their 
models. Furthermore, all the parameters for the development 
of the model have been evaluated in order to determine the 
effectiveness of the methodology. The conclusions drawn 
from this analysis are presented below:

Fig. 10  Response surface for UHPC: a flowability, b compressive strength. Image from Ref. [104]
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(1) The two most commonly used strategies are CCD and 
BBD, offering different approaches to explore inter-
actions between variables and responses in cementi-
tious mix design. Simplex-centroid design emerges as 
a particularly effective strategy for the optimization of 
ternary blends involving three different components, 
promoting a more sustainable and resource-efficient 
approach to concrete formulation.

(2) Factors such as cement content and w/c ratio stand out 
as the most widely utilized variables, playing a key role 
in determining the mechanical properties of concrete. 
Compressive strength and workability are among the 
most frequently employed responses.

(3) During the enhancement of concrete mix design, it is 
essential to categorize the independent variables based 
on the desired levels of the response variables and their 
corresponding levels. Additionally, the choice of those 
levels, commencing with testing frequencies, should be 
made appropriately to reduce losses and to align with 
the concurrency level.

(4) Model validation is crucial for ensuring precision and 
dependability when depicting the connections between 
independent variables (factors) and responses. It is cru-
cial to conduct replications using the optimal param-
eters determined by the models to cultivate credible and 
dependable models, which serve as the cornerstone of 
the optimization process.

(5) It is imperative to develop models in which the focal 
points of optimization are wastes, aiming to transition 
the concrete industry towards greater sustainability. 
Further research is required to advance the develop-
ment of multi-objective models, concurrently aiming 
to optimize multiple variables.

Through the comprehensive review of more than 100 ref-
erences, it has been established that RSM offered valuable 
behavioural models when applied as an optimization tech-
nique for cementitious mixtures, with which the relations 
between variables and responses could be elucidated. That 
approach has facilitated concrete mix design and has reduced 
testing requirements. Its simplified trial processes and mini-
mization of raw material consumption are aligned with the 
commitment of the construction industry to sustainability.

It is imperative to integrate waste materials from indus-
tries into these models, to further advance sustainability 
goals in the construction sector. Therefore, in-depth study 
of the optimization of cementitious mixtures through RSM 
is needed as it will likely become even more critical as the 
industry faces increasing pressures to reduce environmen-
tal impact and improve efficiency. It is necessary both to 
define optimum contents of new residues that can be used 
in cementitious mixtures, so as to evaluate their validity in 
this type of mixtures, and to establish optimum contents 

of wastes that are widely accepted as valid in cementitious 
mixtures when there are small variations in the mix design 
of the cementitious mixes or in the characteristics of the 
residue. In this way, the certainty for the successful use 
of these residue contents in cementitious mixtures will be 
increased. As the construction sector continues to prioritize 
sustainability, RSM will play a key role in achieving these 
objectives, driving innovation, and setting new standards for 
eco-friendly practices.
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