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A B S T R A C T   

The paper deals with the inversion of intervals when a PLS (Partial Least Squares) model is used. However, 
instead of discretizing the interval, it is proved that the region resulting from the inversion of a PLS model is a 
convex set bounded by two parallel hyperplanes, each corresponding to the direct inversion of each endpoint of 
the given interval. 

When the domain of the input variables is a convex set, any feasible solution with predictions within the 
interval set in the response can be obtained as a convex combination of a point on each of the two hyperplanes. In 
this way, the new solutions preserve the internal structure of the input variables. 

This methodology can be of interest in several domains where the response under study is defined in terms of 
an interval of admissible values, such as specifications for a product in an industrial process, or tolerance in-
tervals for computing compliant class-models. 

The inversion of the corresponding fitted model defines a region in the input space (predictor variables) whose 
predictions fall within the specified interval. Then, estimating and exploring this region will increase the in-
formation about the problem under study.   

1. Introduction 

Latent Variable Model Inversion (LVMI) [1] refers to the local 
inversion of a prediction model, based on latent variables, that has been 
fitted to predict some response(s) in Y from p predictor variables in X. 
Briefly, it involves defining target values in the response space and 
finding the corresponding settings of the p predictors so that the pre-
dicted values are those previously fixed. 

The advantage of using latent variable prediction models is that they 
take into account the structure (rank and correlation) of the predictor 
variables, which vary in the input space. In addition, when using PLS 
(Partial Least Squares), the correlation with Y is also taken into account 
when computing the model. On the negative side, the mathematical 
inversion is more difficult, usually the inverse function, properly 
speaking, does not even exist. 

The methodology presented here deals with a single response, so the 
Y matrix is actually a vector, usually denoted as y, and the output space is 
one-dimensional. The inversion focuses on a range of values, that is, an 

interval in the space of the response. The inversion will provide specific 
regions in the input space associated with the predefined interval. 

The potential usefulness of the approach goes beyond, for example, 
considering the confidence interval on prediction (as in [2]). This is 
illustrated by some case-studies, where intervals are used in different 
ways. The ultimate goal of the inversion is to help gain insight by 
increasing knowledge about the process/procedure by exploring the 
region resulting from the model inversion for the entire interval. 

Two of the developed case-studies correspond to class-modelling [3]. 
This means that each of the n objects in X is known to belong (or not) to a 
class or category of interest, C. Then, vector y will consist of binary 
values {-1, 1}, where 1 denotes the category under study and − 1 iden-
tifies the objects that do not belong to C. 

When working with classes (categories), there is a difference be-
tween discriminant and class-modelling methods. Discriminant methods 
compute decision rules in the input space to assign each object neces-
sarily to one of the categories under study. In the situation established in 
the previous paragraph, a discriminant method will assign either 1 or -1 
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(necessarily one of them) to each object in X. Therefore, they are usually 
evaluated in terms of accuracy, i.e., the percentage of correct 
classifications. 

In contrast, class-modelling methods compute regions within the 
input space, called class-models. Thus, a class-model is a region of the 
input space, mathematically defined with the predictor variables, in 
which objects of that class are expected to fall. In this case, an object can 
be inside one or more class-models, and even outside all of them. Vali-
dation of such class-models is done in terms of sensitivity and specificity. 
Sensitivity reflects the ability of the class-model to contain all objects of 
the category, while specificity is related to the ability of the class-model 
to leave out foreign objects. Consequently, both parameters are related: 
larger class-models will have better sensitivity but worse specificity, 
while more restricted class-models are likely to have better specificity at 
the expense of reduced sensitivity. 

In terms of their estimates, sensitivity is estimated as the percentage 
of objects of C that are inside the class-model, while specificity is esti-
mated as the percentage of objects not belonging to C that are outside 
the class-model. However, if the class-model is built using only objects of 
C (the so-called one-class classifiers [4]), only sensitivity can be esti-
mated, with the risk of overestimating the class-model. To estimate 
specificity, objects that do not belong to C are also needed. When these 
samples are actually used to build the class-models, they are called 
compliant class-models [5]. With more than two classes studied 
together, simultaneous compliant class-models are built in ref [6], and 
single indices [7,8] have been proposed to assess the goodness of all 
class-models as a whole, taking into account that there are multiple 
values of sensitivity (one per class) and specificity (especially when 
pairwise specificities are of interest). 

A different aspect is how these models (whether they are decision 
rules between categories, or class-models per category) are built. Clas-
sical discriminant methods such as k-NN (k -Nearest Neighbors) or LDA 
(Linear Discriminant Analysis), or class-modelling methods such as 
SIMCA (Soft-Independent Modelling by Class Analogy) or UNEQ, build 
the models without regressing the response (label of the categories) on 
the predictor variables. However, there are other methods that work as a 
two-step process for classification: first, a regression model is fitted to 
the response, and then the predicted values are used to make the deci-
sion or define the class-model. Although NNs (neural networks) are 
common prediction methods, PLS is more frequently used in chemo-
metrics, especially when dimensionality reduction is an issue. When PLS 
is used as a discriminant method, it is known as PLS-DA (Partial Least 
Squares Discriminant Analysis [9]), and when the PLS predictions are 
used to define class-models, it is PLS-CM (Partial Least Squares in 
Class-Modelling [10,11]). 

In the cases studied here via model inversion, PLS will be the pre-
diction model. However, a new alternative for constructing class-models 
is proposed, namely the use of tolerance intervals. Unlike confidence 
intervals on a parameter estimate, tolerance intervals are computed to 
contain, with a certain probability, a given percentage of the entire 
population. The inversion for the values in this interval will define the 
class-model for the class under study. In addition, using a tolerance in-
terval with a high percentage of individuals in the population, but not all 
of them, prevents overestimation of the class-model at the cost, likely, of 
some loss of sensitivity. 

This is applied to two different cases with data taken from the 
literature. The first, in Section 3.2, is about medical diagnosis. The class 
of interest, C, is sick individuals. The interest is not to make a confidence 
interval on a mean, but a tolerance interval to contain a given number of 
sick individuals with a given confidence. The other (Section 3.3) deals 
with the typification of food. In this case, a tolerance interval is made 
individually for each of two varieties of rice (two classes). The key idea 
then is to avoid the intersection of these two intervals in the response, to 
focus not on the common characteristics but on the distinctive ones. 
Therefore, the inversion will provide the values of the predictor vari-
ables with more influence on the difference. 

Finally, latent variable model inversion is more widely used in the 
field of quality control of industrial processes. For this reason, another 
case-study is added in this context (Section 3.4), which also serves to 
illustrate some other properties that may be of interest when the input 
variables are manipulable, which is not the case in the first two case- 
studies. When constructing the compliant class-models for different 
classes, the predictors are not manipulable, only measurable, whereas in 
an industrial process the predictors usually consist of process variables 
that can be set to predefined values. The data [12] come from from an 
industrial chemical process with nine predictors and two responses, 
although only one of them is studied. In this case, the interval is that 
defined by the product specification to be met, which is typically 
bounded inferiorly by the Lower Specification Limit (LSL) and superiorly 
by the Upper Specification Limit (USL). Therefore, there is an interval 
[LSL, USL] for the response of interest. The results of inverting the PLS 
model for the interval are analyzed to explore how to intervene in the 
process to keep it within specification, or how to move [13] the process 
variables to “redirect” the process toward compliance with 
specifications. 

2. Theoretical aspects 

The paper addresses the inversion of PLS models, not for a single 
value, but for intervals. The intervals are defined in the response output 
space and represent desired target values. In particular, tolerance and 
specification intervals are considered, both of which are constructed 
using predicted values. 

The following sections briefly summarize the elements and establish 
the notation necessary to follow the paper. 

2.1. PLS prediction models 

In general, let X be a matrix of predictors, with n objects and p var-
iables (input variables), and Y be a matrix of responses, with the values 
quantifying q characteristics of interest of the same n objects. Unless 
otherwise specified, both matrices are autoscaled (that is, all variables 
are mean-centered and have variance one). 

In mathematical terms, there is also a domain D in the p-dimensional 
space formed by the set of possible or admissible values of the input 
variables represented in X. It encompasses all the relevant aspects of the 
problem at hand (measured variables to represent the classes in the case 
of class-modelling, or process variables, material attributes, 
manufacturing or environmental conditions, etc., in the case of process 
control). 

With matrices X and Y, a PLS model projects the data onto a space of 
a < p latent variables chosen to maximize, in decreasing order, the 
product between the covariance of X and the correlation between X and 
Y. In this latent space, the regression model between the projections and 
the responses is computed. The PLS decomposition can be written as: 

X = T PT + RX
Y = T QT + RY
T = X W

(1)  

where T is the orthonormal matrix of the projections, that is, the points 
in the latent space (scores), P is the matrix containing the loadings of the 
predictors in X and Q is the matrix of the loadings of Y, that is, the co-
efficients of the regression of Y on the common latent space T formed by 
the first a latent variables. W is a weight matrix (same size as P) such 
that PTW = Ia, where Ia is the identity matrix of size a×a. As usual, 
superscript T denotes transposition, and RX and RY are the matrices 
containing the residuals of the decomposition. 

With the notation in equation (1), where the objects and their 
associated values of response are in rows, a vector of predictors (a 
configuration of the process) x is projected into the space defined by the 
latent variables by means of the weight matrix W, so that the vector of 
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scores in the a latent variables is the row vector tT = (t1,…,ta) = xTW. 
In the usual notation for vectors, this is 

t=

⎛

⎝
t1
…
ta

⎞

⎠=WTx (2) 

Therefore, the predicted response (related to the characteristics in 
the output space) according to equation (1) will be the row vector ŷT =

tT QT, that is: 

ŷ =Q t (3) 

Composing the two maps by substituting equation (2) into equation 
(3), for each input vector x, the predicted responses are: 

ŷ =Q WTx = BTx (4) 

From equation (4), the fitted PLS model is a linear mapping between 
the p-dimensional input space and the q-dimensional output space, 
defined by the matrix of estimated coefficients BT (q × p). 

However, it is not convenient to use the coefficient matrix B directly 
because there are constraints that must be met, such as the projection of 
x must be a score t to which the regression model can be appropriately 
applied. To define the appropriateness of applying the PLS model, 
confidence levels are used to bound the Q and T2statistics. 

For each object, the value of the T2 statistic is the Hotelling’s distance 
from the projection to the origin of the latent space and indicates the 
position of the object within the projection space. The Q-residual, also 
called SPE (Squared Prediction Error), is the square of the Euclidean 
distance from the object to the orthogonal projection on the latent space. 
To impose a threshold on these two statistics is to use probabilistic 
criteria to limit the variation of the points inside and outside the latent 
space, defining the so-called PLS-box [14]. Thus, the PLS-box contains 
the “distant” points only up to the limit imposed by Q, whose projection 
is in the part of the variation space of the latent variables delimited by 
T2. 

Any valid (feasible setting of the process) x should belong to the 
intersection of the domain D and the PLS-box determined when fitting 
the PLS prediction model. 

Note that the domain D is supposed to be a convex set, meaning that 
the segment connecting any two points of D must be inside D. An 
equivalent definition of a convex set is that every convex combination of 
elements of D belongs to D. Therefore, all predictor variables should be 
continuous. 

A simple way to have a convex domain is to consider the hyper- 
parallelepiped defined by the individual range of each predictor vari-
able in the dataset X. In fact, this is how the domain is defined in all of 
the following case-studies. 

Alternatively, the convex hull of the points in X would also define a 
convex domain, although this is more difficult to compute analytically. 
Nevertheless, the algorithmic computation for a given set of points is 
included in several commercial software packages (e.g., Matlab), and 
some code is also available on various sites, such as https://github. 
com/qhull/qhull. Additional information on its computation can be 
found in ref. [15]. 

The convexity hypothesis is only necessary on D because the defi-
nition in terms of Q and T2 statistics implies that the PLS-box is also a 
convex set and, thus, its intersection with D is also a convex set as well. 

2.2. Latent variable model inversion 

When speaking about inversion, the interest shifts away from the 
input space to focus on the output. Thus, a target or desired value of the 
response(s) is set, and the goal of inversion is to determine the settings of 
the input variables to obtain the intended response. 

In mathematical terms, this means inverting the prediction model to 
compute the exact values of the input variables that must be used to 

achieve the desired values. In general, no such inverse mapping exists, 
but a local (algebraic) inversion of the model can be addressed. 

In the situation discussed in the present work, there is a single 
response, q = 1, so defining a target response means setting a value of yd 
(a scalar). In view of equation (3), the inversion consists of finding a 
vector ̂td such that Q t̂d = yd. With a single response, Q is in fact a row 
vector, and thus: 

Q t̂d =(q1, q2,…, qa)

⎛

⎜
⎜
⎝

t̂1
t̂2
⋯
t̂ a

⎞

⎟
⎟
⎠= q1 t̂1 + q2 t̂2 +…+ qa t̂a =

∑a

i=1
qi t̂ i = yd (5) 

Equation (5) is a linear equation with a single scalar solution ̂td if a =
1 or with infinitely many solutions, that can be explicitly parameterized, 
if a > 1. In the last case, all the solutions of Equation (5) are in a hy-
perplane in the latent space, the one with QT as normal vector. 

This property, clear from equation (5), is in fact consequence of the 
existence of a null space within the latent space [16]. The null space 
contains the points that are mapped into zero, so they do not change the 
predicted value, in other words, it is the space that relates the infinite 
solutions of equation (5). Precisely, if ts denotes one of such solutions, 
the remaining ones can be written as 

t̂d = ts + tnull where tnull is such that Qtnull = 0 ∈ R (6) 

To backpropagate these solutions to the input space and finishing the 
local inversion, it suffices to apply the loadings of X in equation (1) to 
obtain objects: 

x̂T = t̂
T
dPT ⇔ x̂ = Pt̂d (7) 

Eq. (1) is in fact an approximation for {X, y} that works properly for 
the inversion in equations (5)–(7) when T is the orthonormal matrix of 
scores. 

Except for the case a = p (meaningless in practice), and even with a 
unique solution of equation (5), due to an empty null space, there are 
more solutions to the inversion than the one(s) in equation (7) [14]. 

They correspond to what can be called the residual space, spanned by 
the discarded latent variables or, in other words, the solutions due to the 
null space of the projection defined by the WT weight matrix, that is, the 
set of vectors projecting onto the origin of the latent space. This null 
space is orthogonal to the null space associated with the latent space, so 
that the infinite solutions of the inversion all lie also in a hyperplane in 
the input space, that can be written as: 

x̂d =Pt̂d + xnull where xnull is such that WTxnull = 0 ∈ Ra (8) 

Therefore, the region resulting for the model inversion for the target 
yd (as predicted with the PLS model) is the intersection of that hyper-
plane with the domain D and the PLS-box. More details with some 
illustrative examples can be found in ref. [14]. Also, an example in low 
dimension is simulated in section 3.1 of the present paper to illustrate 
these equations. 

In any case, the region computed in this manner corresponds to the 
solutions of the algebraic equality, that is, imposing that the PLS- 
prediction ŷ coincides with yd, the so-called direct inversion [2]. 

2.3. Proof that only the endpoints are needed to invert a linear model for 
an interval 

The focus of this paper is not on a single yd, but rather on an interval 
[ya, yb]. In the cases studied here, the intervals in question are either 
specification limits for a product quality characteristic or tolerance in-
tervals on predictions for class-modelling situations. 

In ref. [2], an interval, a confidence interval on the prediction, has 
been already used to propagate the uncertainty in the prediction to the 
latent space. The inversion there is conducted by discretizing the con-
fidence interval and solving the equations algebraically (direct 
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inversion). Then, the null space is subsequently added to each calculated 
score on the latent space. 

Nevertheless, the linear nature of PLS precludes the necessity for 
discretization of the interval. It is sufficient to consider its endpoints, as 
will be demonstrated in the following paragraphs. 

With the interval of output values [ya, yb], let f denote the PLS model 
fitted with some training set {X, y}. The direct inversion described in the 
preceding paragraphs can be applied to both ya and yb to obtain parallel 
hyperplanes in the input space (the space where X is). These hyperplanes 
include the solutions of the corresponding inversion due to the two null 
spaces, that of the latent space and that of the residual space, which are 
orthogonal to each other. Moreover, the two hyperplanes are parallel 
because matrices Q and W (equations (6) and (8)) do not change, they 
only depend on the PLS model fitted f. From a practical standpoint, these 
estimations serve as boundaries of the sought region in the input space, 
which is also constrained by the domain D and the PLS-box. Since D and 
the PLS-box are convex sets, the mathematical intersection of them is 
also convex with at least two parallel linear faces. 

To prove that only the endpoints of the interval need to be taken into 
account, let y0 be a number in the interval 

[
ya, yb

]
, and xa and xb two 

feasible settings in the input space (i.e., p-dimensional vectors belonging 
to the domain D and the PLS-box) which are some individual solutions of 
the inversion of f for ya and yb, respectively. This means that 

f(xa)= ya, f(xb)= yb (9) 

As y0 ∈ [ya,yb], there is a unique λ ∈ [0,1], such that 

y0 =(1 − λ)ya + λyb (10) 

Let x0 be the same convex combination but in the input space, 
namely 

x0 =(1 − λ)xa + λxb (11)  

which is another feasible setting in the segment that joints xa and xb. 
This is so because there are two convex sets, one in each hyperplane. If xa 
and xb each belongs to one of them, then x0 also fulfills the constraints 
on the domain (it is in the hyper-parallelepiped) and on the two metrics 
T2 and Q (it lies in the PLS-box). 

PLS is a linear mapping, so the sequential substitution of equations 
(9)–(11), gives 

f(x0)= (1 − λ)f(xa)+ λf(xb)= (1 − λ)ya + λyb = y0 (12) 

Therefore, x0 is a solution to the inversion of f for y0. 
Reciprocally, if y0 is the image of a convex combination of two 

feasible settings (one in each hyperplane), it holds: 

y0 = f((1 − λ)xa + λxb)= (1 − λ)f(xa)+ λf(xb)= (1 − λ)ya + λyb (13) 

And y0 belongs to interval [ya, yb]. 
Consequently, a vector x belongs to the region in the input space 

resulting from the model inversion for the interval if and only if it is a 
convex combination of any two solutions, each one corresponding to the 
model inversion for an endpoint of the interval. 

2.4. Tolerance intervals 

In the present work, γ-content tolerance intervals will be employed 
as a means of defining a different type of class-models. 

In general, for a random variable X, interval [l, u] is a two-sided 
γ-content tolerance interval [17] at 1-α confidence level that contains 
at least 100γ% of the population of interest (values of X) with 1 - α 
confidence. 

Under normal distribution of X, the tolerance interval is defined as 
the range encompassing the mean value, plus or minus a multiple K of 
the standard deviation. The value of K depends on three parameters: 
sample size, confidence level (1–α), and content γ. The hypothesis of 
normal distribution renders the interval more precise than its non- 

parametric version. 

2.5. Specification limits in process control 

Quality characteristics are typically evaluated against specifications. 
In the case of a manufactured product, these specifications consist of 
desired measurements for the quality characteristics of the components 
and subassemblies that make up the product, as well as the desired 
values for the quality characteristics in the final product [12]. 

The desired value for a given quality characteristic is called the 
nominal or target value for that characteristic. Target values are typi-
cally bounded by a range of values that are believed not to affect the 
function or performance of the product when the quality characteristic 
at hand is within that range. 

This range defines an interval whose endpoints are the upper and 
lower specifications limits. The Upper Specification Limit (USL) is the 
largest allowable value, while the Lower Specification Limit (LSL) is the 
smallest. 

The range of specifications is precisely that of interest for the 
inversion, to gain more knowledge about how to control the input var-
iables (most likely process variables in this context) to maintain 
specifications. 

3. Results and discussion 

Three cases are developed with data from the literature, two within 
the class-modelling field and one from process control. However, there is 
an additional introductory example, with data simulated in three di-
mensions, to illustrate the general procedure of direct inversion of a PLS 
model for an interval explained in Section 2.2. 

3.1. PLS model inversion in a three-dimensional input space 

To illustrate the inversion procedure with an interval and the 
resulting region in the input space, in the general context of LVMI, a data 
set with 40 points in a three-dimensional space is simulated, following a 
multivariate normal distribution with a high correlation between two of 
the variables, namely with a correlation coefficient of 0.85 between X2 
and X3. The response to be predicted is simply a linear combination of 
the three predictor variables, 0.66 X1 –0.41X2 +0.06 X3, with the 
addition of a noise with distribution N(0, 0.25). 

Thus, X is 40 × 3 and y is 40 × 1, both autoscaled. The fitted PLS 
model has two latent variables, a = 2, which explain 94.91 % of the 
variance of X, with 98.69 % of the variance in the response y. The second 
latent variable mostly explains variance of X, which is necessary to 
reconstruct it via inversion. 

To carry out the inversion, the selected interval in the response is [ya, 
yb] = [− 1.07, 0.76], which was chosen to be relatively long to better 
illustrate the position of the different elements in the procedure, as 
shown in Fig. 1. 

Fig. 1a) shows the input space, and Fig. 1c) depicts the interval- 
related boundaries of the region resulting from the inversion. The 
different steps can be observed in Fig. 1 in a clockwise direction, and will 
be explained in the following paragraphs. 

In all cases, the black dots represent the samples in X, which serve as 
a graphical reference for the domain D, which is defined as the rectan-
gular cuboid that is limited by the range of the variables in the training 
set. The projection of the samples in X in the two-dimensional latent 
space (the scores) are in Fig. 1b), also in black dots. 

Step by step, matrix Q is in fact a 1 × 2 vector with coordinates q1 and 
q2 and the inversion for ya requires two scores t1, t2 such that 

t1q1 + t2q2 = ya (14) 

In this case, 6.18 t1 + 0.56 t2 = ya ⇔ t2 =
ya − 6.18 t1

0.56 =
ya

0.56 −

11.04 t1, which is a straight line in the latent space, the one depicted in 
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Fig. 1b) in blue. In fact, only the segment within the limits imposed with 
the T2 statistics are acceptable solutions, graphically those inside the 
ellipse in dashed line (built at 99 % confidence level). 

Similarly, the solutions of equation (14) with yb instead of ya follow a 
line with the same slope (determined by Q, − 11.04 in this case), which is 
also depicted in Fig. 1b) in red. 

Subsequently, by multiplying by P, equation (7), the corresponding 
three-dimensional points in the input space are all aligned. In the pre-
sent example, the solutions of equation (14) for ya follow the straight 
line with parametric equation given by eq. (15). 

x=

⎛

⎝
x1
x2
x3

⎞

⎠=

⎛

⎝
4.47
9.87
10.56

⎞

⎠ya −

⎛

⎝
0.23
0.67
0.71

⎞

⎠t1 (15)  

with parameter t1 and unitary line’s director vector v =

(− 0.23, − 0.67 − 0.71)T that, again, only depends on Q and P. The par-
allel lines corresponding to those in Fig. 1b) are depicted in Fig. 1d) in 
the input space, with the same color, i.e., blue for ya and red for yb. 

Since the entire interval of responses is valid, and PLS is a linear 
model, all the points in the domain that lie ‘between’ the aforemen-
tioned lines within the π-plane that contains them are inside the PLS-box 
and have their predictions in [ya, yb]. The plane π, which contains the 
red and blue segments, is not shown in Fig. 1d). 

However, there are some more solutions to the inversion that origi-
nate from the null space of the projection, which is a one-dimensional 
space, a line, orthogonal to that in equation (15). These two orthog-
onal directions define a two-dimensional space (a plane) in the input 
space. In the particular case of ya, the parametric equation of the plane 
is: 

x =

⎛

⎝
x1
x2
x3

⎞

⎠ =

⎛

⎝
4.47
9.87
10.56

⎞

⎠ya −

⎛

⎝
0.23
0.67
0.71

⎞

⎠t1 +

⎛

⎝
0.16
0.83
− 0.53

⎞

⎠θ where t1, θ

∈ ℝ
(16) 

This is the light-blue plane in Fig. 1c), limiting the values of t1 and θ 
to those corresponding to the constraints to be inside the domain D and 
the PLSbox. Therefore, this plane is orthogonal to π and contains the blue 
segment. The light-red plane, parallel to the blue, is the equivalent for 
yb. It contains the red line (corresponding to yb) and is also orthogonal to 
π. 

Consequently, the region resulting from the inversion that contains 
the settings of the input variables whose predictions will be in [ya, yb] is 
the one between these planes (blue and red) with points that must also 
belong to the domain D and the PLS-box, constraints already applied in 
Fig. 1c). 

Therefore, the inversion for the endpoints of the interval provides 
some boundaries of the convex set of interest. Particular solutions inside 
this set can be obtained as convex combinations of any two solutions, 
one in “the blue plane” and the other in the “red plane”. 

To avoid “tuning” the parameters t1 and λ, the cross product of the 
two director vectors gives the normal vector to the plane, whose general 
equation for ya is thus: 

x1 − 0.25x2 − 0.09x3 − 1.03ya =0 (17) 

Therefore, the needed convex combinations are in fact vectors 
(points) with three coordinates x1, x2, and x3 whose first coordinate is 
precisely: 

x1 =1.03[λya +(1 − λ)yb] +0.25x2 + 0.09x3 (18) 

Fig. 1. Simulated study in three dimensions. The black dots represent the objects in X, both in a) the three-dimensional input space and b) the two-dimensional latent 
space (scores). The straight lines in b) and d) are the solutions of the inversion for the endpoints of the interval but constrained to be inside the ellipse in b), whose 
boundary at 99 % confidence for T2 is the dashed line. They are backpropagated to the input space in d) with the same color code. Finally, the light-blue and light-red 
planes in c), containing the blue and red segments, respectively, represent the entire solution of the inversion for the endpoints, because it incorporates both the effect 
of the projection-related null space and the constraints of belonging to the domain and to the PLS-box. The region resulting from the direct inversion for the entire 
interval is the convex set ‘between’ the planes, which is obtained by a convex combination of any two elements, one in the blue plane and the other in the red plane. 
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Varying x2 and x3 in the domain D and λ in the interval [0, 1], new 
points are computed in the input space with predicted values in [ya, yb]. 
In higher dimensions, the expressions are perhaps less easily manipu-
lable but the structure of hyperplanes in the boundaries and convex 
combinations of two points (one in each corresponding hyperplane) is 
the same. 

3.2. Detection of tumors 

The first case-study is related to medical diagnosis. A data set 
comprising 569 tumor tissue samples was obtained from the UCI Ma-
chine Learning repository [18]. Of the 569 samples, 357 were identified 
as benign tumor tissues and 212 as malignant ones. The input variables 
are obtained by calculating measurements from a digitized fine needle 
aspiration (FNA) image of a breast sample. Ten measurements in real 
numbers are obtained for each cell nucleus. Additionally, for each 
image, the mean, the standard error, and the "worst" or largest (mean of 
the three largest values) of each case are also found, resulting in a total 
of 30 measured features. Accordingly, X is 569 × 30. 

In this case study, the focus is on malignant tumor tissues, which are 
coded as 1. The matrix of binary codes y is completed by coding benign 
tissues as − 1. A PLS model is then fitted with autoscaled X and y. 

In constructing the model, 99 % confidence level was used to bound 
the Q and T2 statistics, with absolute values of the standardized residuals 
limited to 3. The number of latent variables was selected through cross- 
validation, which entails extracting random subsets, conducting 10 data 
splits, and performing 5 iterations. The selected model includes some 
latent variables that do not appear to explain much of the variance in y. 
However, they do explain percentages of the variance in X, which is 
important, particularly because the model should be inverted. 

The model with the first six latent variables had 17 samples with 
values of Q and T2 statistics or regression residuals that far exceeded the 
imposed limits. Consequently, these objects were excluded from the 
training set. 

The remaining 552 samples were used to rebuild the PLS model, 
again with six latent variables that explained 85.11 % of the variance in 
X and 76.32 % of the variance in y. Table S1 in the supplementary 
material contains the details about the behavior of the explained and 
cumulative variance in both X and y, as well as the RMSECV (Root Mean 
Squared Error in Cross Validation) when adding the first latent vari-
ables. The coefficient of determination in cross-validation is R2

CV =

0.747. 
Various goodness-of-fit tests are used to verify that the responses 

predicted with the PLS model with six latent variables in the class of 
malignant tumor tissues are adequately fitted by a normal probability 
distribution with a mean of 0.99 and a standard deviation of 0.5498. 

Subsequently, a tolerance interval is established to encompass 99 % 
of the predictions for malignant tumor tissues, the population from 
which the relevant samples originate, with 95 % confidence. The in-
terval of predicted values, calculated using the fitted normal distribu-
tion, is [pa, pb] = [− 0.5576, 2.5378]. This implies that at 95 % 
confidence level, 99 % of the response population from which the 
sample of malignant tumors originates, is within this interval. The 
tolerance interval is centered on the mean and has been calculated under 
the assumption of a normal distribution of the data. 

The PLS model is inverted for the endpoints of the tolerance interval 
under the set of constraints previously mentioned. This entails identi-
fying the feasible solutions, which are points (vectors of dimension 30 
corresponding to the input variables) that belong to the domain and to 
the PLS-box. 

A total of one hundred solutions of the corresponding eq. (5) were 
computed so that multiplying by the loadings of X (eq. (7)) resulted in 
100 points in the input space. The addition of another hundred points 
from the null space of the projection resulted in the generation of 200 
solutions. All of the solutions are on a hyperplane, and they all have a 

PLS prediction value of pa = − 0.5576. The solutions were subsequently 
organized into a matrix X̂a. 

The equation of the hyperplane can be obtained by regressing one of 
the columns of X̂a on the remaining ones. For instance, if the first col-
umn is regressed on the remaining 29, the regression coefficients b 
(substituting the intercept, − 7.75 in this case, by − 1 in the first position) 
define the normal vector of the hyperplane. This regression is, in fact, an 
interpolation that gives the explicit expression of the first coordinate 
(first variable) x1 as a function of x2, …., x30, precisely x1 = − 7.75+
∑30

i=2bixi. 
A similar procedure with pb = 2.5378 gives another 200 solutions in 

the corresponding parallel hyperplane, with the same normal vector but 
different intercept. For this endpoint, the intercept is 35.28, instead of 
the − 7.75 obtained for the lower endpoint. 

Although the input space cannot be depicted in a cartesian diagram, 
the situation is analogous to that depicted in Fig. 1. Due to the linearity 
of the model, the objects that are obtained as convex combinations of 
points in the two hyperplanes corresponding to the inversion for the 
endpoints of the interval are the part of the input space that correspond 
to the characteristics of the tumor tissues that will be predicted as ma-
lignant. That is to say, the predicted values will be inside the tolerance 
interval. 

These points (x1, x2,…, x30) all have as first coordinate x1 = −

7.75λ+ 35.28(1 − λ)+
∑30

i=2bixi. 
The characteristics of the input variables in this region will provide 

insight into the commonalities shared by the majority of the samples to 
be predicted as malignant tumor tissues. 

It is important to remember that the structure of the covariance in 
the space of the 30 predictor variables is critical. Precisely, PLS models 
this structure and employs the limits of Q-residual and T2 to constrain the 
tolerable deviations of the projections in the space of the latent vari-
ables. Consequently, it is insufficient to merely ascertain that a new 
vector of 30 values has each coordinate within the admissible range for 
each of them (the defined domain D). Rather, it is essential to check that 
it also belongs to the PLS-box. 

As previously stated, the hyperplanes and the points defined by the 
30 values of the predictors are hard to visualize. To illustrate the sub-
sequent analysis, Fig. 2 provides a schematic representation of the 
elements. 

In Fig. 2, the planes π1 and π2 ‘represent’ the result of inverting the 
endpoints of the tolerance interval (those in Fig. 1c when the space is 
three-dimensional). Two feasible points, w=(w1, w2) and v=(v1, v2), are 
selected, one in π1 and the other in π2. These points share one of their 
two coordinates, specifically v1 = w1. Any point u in the segment joining 

1

2

Fig. 2. Illustration of convex combinations with points in the hyperplanes 
computed by inverting the model for the endpoints of the interval. 
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v and w (black dashed line in Fig. 2) is necessarily a convex combination 
of v and w. This implies the existence of a real number λ, 0 ≤ λ ≤ 1, such 
that u = λw+(1-λ)v. 

Using the same colors as in Fig. 2, Fig. 3a) depicts the parallel co-
ordinates plot for a hundred feasible solutions in the hyperplane, anal-
ogous to the π1 plane in Fig. 2, obtained by inverting the model for the 
upper endpoint of the tolerance interval, pb = 2.5378. Fig. 3b) is the 
parallel coordinates plot of another hundred feasible points in the hy-
perplane, related to the π2 plane, obtained for the lower endpoint, pa =

− 0.5576. 
A parallel coordinates plot is a tool for visualizing high-dimensional 

data, where each observation is represented by the sequence of its co-
ordinate values plotted against their coordinate indices. The graph is 
depicted with the standardized data, as otherwise the different magni-
tudes would prevent the visualization of any meaningful patterns. 

In terms of the predictor variables, the tolerance interval calculated 
for the population of diseased individuals is explored, like in the illus-
tration in Fig. 2, by selecting a point in each hyperplane, w and v, with 
specific characteristics that are of interest to the researcher. 

For example, solutions with the same value in the 15th predictor 
variable are selected and marked by black broken lines in Fig. 3a) and b), 
respectively, for w and v. Both solutions are plotted together in Fig. 3c), 
this time w is in green and v in red, along with the 552 samples (in gray) 
of X, for reference. 

Three different points with coordinates in the range defined by v and 
w are selected and superimposed in Fig. 3c) to create Fig. 4. In Fig. 4a), 
the coordinates of point u1 (depicted in black) were randomly generated 
using a uniform distribution within the range defined by the minimum 
and maximum of the corresponding coordinate in w and v. Conse-
quently, u1 belongs to the D domain but not to the PLS box. In fact, 
T2(u1)/T2

crit = 1.91 and Q(u1)/Qcrit = 2.76, where T2
crit and Qcrit are the 

bounds of the corresponding statistics at 99 % confidence level. There-
fore, u1 is not a feasible setting and the PLS model is therefore unsuitable 
for application to it. In other words, this point u1 does not share the 

internal covariance structure that was modeled by PLS. 
For Fig. 4b), the point u2, again in black, represents a feasible solu-

tion because it belongs to both the D domain and the PLS-box. In 
particular, its coordinates fall within the range defined by those of w and 
v (green and red). Nevertheless, the PLS prediction for u2 is − 0.6024, 
which is outside the tolerance interval. The reason for this apparent 
discrepancy is that u2 belongs to the convex set defined in the input 
space but it cannot be written as a convex combination of any pair of 
points, one in each of the hyperplanes. Consequently, its PLS prediction 
is not in the tolerance interval. 

Finally, the point u3 represented in black in Fig. 4c) was obtained by 
taking a value of the tolerance interval [pa, pb] = [− 0.5576, 2.5378] (in 
this case 1.99) and determining the weights of the corresponding convex 
combination with the endpoints of the tolerance interval. That is to say, 
find the value λ such that 1.99 = λpa + (1- λ) pb, which is λ = 0.18. Then, 
the same convex combination gives point u3 = 0.18v + 0.82w. Conse-
quently, it is a feasible solution and its prediction is inside the tolerance 
interval, and thus the individual will be declared sick. 

The analysis of figures analogous to Figs. 3 and 4, together with the 
constraints of interest on points w and v (sharing the value of variable 
number 15 in this example), permits the exploration of the behavior of 
the predictor variables that define the region in which 99 % of the 
population having a malignant tumor, will be found with 95 % 
confidence. 

3.3. Rice typification 

Also from the UCI Machine Learning repository, a dataset for clas-
sification of certified rice varieties grown in Turkey has 3810 samples, 
each of which characterized by seven morphological features that were 
obtained for each grain of rice from images of the grains. These char-
acteristics are: 1, Area (the number of pixels within the boundaries of the 
rice grain); 2, Perimeter (distance between pixels around the boundaries 
of the rice grain); 3, 4, Major and Minor Axis Lengths (the longest and 

Fig. 3. Parallel coordinates plot of different cases. a) Solutions when inverting the upper endpoint of the tolerance interval, with one of them highlighted. b) So-
lutions when inverting the lower endpoint of the tolerance interval, with one of them highlighted. c) Samples in X, along with the ones selected in a) and b) with the 
same color code. 
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shortest lines that can be drawn on the rice grain); 5, Eccentricity (how 
round the ellipse, which has the same moments as the rice grain, is); 6, 
Convex_Area (pixel count of the smallest convex shell of the region 
formed by the rice grain); and 7, Extent (ratio of the region formed by 
the rice grain to the bounding box). All the details can be found in ref. 
[19]. 

There are 2180 samples of the Osmancik species, which will be coded 
as − 1, and 1630 samples of the Cammeo species which will be coded as 
1. 

Again by cross-validation, two latent variables were selected for the 
PLS prediction model. The decomposition of variances is presented in 
Table S2 of the supplementary material. The two latent variables explain 
86.09 % of the variance in X and 68.38 % in y, with ŷ varying between 
− 2.46 and 2.26. 

The predictions of the PLS model for the Osmancik rice samples are 
well fitted with a N(-0.59, 0.456). Similarly, the predictions of the 
Cammeo rice samples are also well fitted with a normal distribution, 
with a mean of 0.79 and a standard deviation of 0.476. 

By modifying the threshold decision value, the fitted distributions 
can be used to compute sensitivity and specificity of the corresponding 
class-model. Fig. 5 shows the joint behavior of sensitivity and specificity 
that can be achieved for the Cammeo variety, which appears to be the 
same as that computed in ref. [19]. In that study, the authors reported 
sensitivities, obtained with different classification methods, up to 92.26 
% with a corresponding specificity of 93.58 %. Similar performances are 
highlighted in Fig. 5, where also the typical opposite behavior between 
sensitivity and specificity is evident. 

A different approach, based on the predictions obtained with PLS, is 
to compute individual tolerance intervals, at 95 % confidence level, 
containing 93 % of the predictions of Osmancik and also 93 % of the 
predictions of Cammeo rice. This probability is based on the values of 
sensitivity and specificity, which are used as a reference when seeking a 
balanced situation between the two rice species. 

The interval computed for Osmancik predictions is [− 1.44, 0.26], 
while that for Cammeo is [− 0.099, 1.68]. The intersection of the two 

intervals encompasses the predictions within [− 0.099, 0.26], with 
probability approximately 0.1 with both distributions (0.109 and 0.100 
for the distributions of the predictions for the Osmancik and Cammeo 
varieties, respectively). 

The inversion of the model for the two tolerance intervals yielded 
four hyperplanes (one for each endpoint of the corresponding interval). 
A thousand convex combinations of points in the corresponding hy-
perplanes resulted in 477 feasible points in the input space (that it, in the 
intersection of the PLS-box and the domain D) for Osmancik species and 
529 feasible points for Cammeo species. Of these, 142 are located in the 
common region. To see their position relative to the initial samples in X, 
i.e., visualize the solutions computed in relation to the objects of the two 
classes in the input space, a Principal Component Analysis (PCA) is 

Fig. 4. Parallel coordinates plots, highlighting three solutions, the red and green ones in Fig. 3, and a black one corresponding to a solution: a) outside the PLS-box, b) 
with prediction outside the tolerance interval, c) which is a convex combination of the red and green solutions and thus inside the PLS-box and with prediction in the 
tolerance interval. 

Fig. 5. Sensitivity and specificity of the different class-models for the Cammeo 
rice species. 
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applied, because with seven input variables, the conventional Cartesian 
representation is not a viable option. 

The PCA decomposition is calculated with the predictors in X, and 
then the computed solutions of the inversion of the PLS model for the 
tolerance intervals are projected onto the PCA model. 

Fig. 6 shows the scores on the first two principal components (PCs) of 
the Osmancik and Cammeo samples, in green and red, respectively. The 
two PCs explain 86.84 % of the variance of autoscaled X. Then, the 
scores of the solutions obtained by inverting the PLS model are depicted 
in blue: light blue circles correspond to the Osmancik species and dark 
blue empty squares represent the Cammeo rice. 

Despite the fact that the PCA model is constructed without taking 
into account the class to which the object belongs, and that the inversion 
is performed separately for each tolerance interval, the degree of 
confusion between the categories seems to be the same. This is not 
surprising because the confusion was already seen in the tolerance 
intervals. 

However, there are clear differences in the position of the points, 
Fig. 6 shows higher scores on the first PC for the Cammeo variety, and 
also for the blue computed points which are projected around the real 
samples of the corresponding variety in red. 

The loadings on the first PC, namely 0.46, 0.46, 0.45, 0.32, 0.23, 
0.46, and − 0.058 indicate larger values of the variables for the Cammeo 
variety, with a different behavior of the variables 4, 5 and especially 7. 

In any case, there is a certain degree of confusion between rice va-
rieties when they are characterized by their images, and the proposed 
procedure can be used to remove this intersection, leaving only the part 
of the input space that is uniquely related to each variety. Fig. 7a) shows 
the location of the scores of the computed solutions after removing those 
at the intersection of the tolerance intervals. Looking at the same points 
in the input space in Fig. 7b), in the form of a parallel coordinates plot, 
the separation is not so clear, especially in variable number 7. 

Numerically, the regions inside the input space that clearly corre-
spond to the characteristics of each rice variety can be described by 
using the solutions that are “extreme” in at least one of the variables, 
that is, that have a coordinate with the maximum or minimum of each 
variable per variety. These are the solutions in Table 1, and they 
constitute a kind of edges of the region of interest since they all belong to 
the boundary. Furthermore, any convex combination of the points in 
Table 1 is inside the corresponding computed region. 

3.4. Process control 

Montgomery [12] reports a case study with 40 observations from a 
cascade process, where there are nine input variables and two output 
variables, which he says is typical of applications in chemical and pro-
cess plants. For the sake of illustration, some specification limits will be 
imposed on one of the responses, y1. Assuming that the data contain 
solutions outside specifications, the interval defining the lower and 
upper specification limits [LSL,USL] is shorter than the extent of the 
process shown in the data, [951, 954] when the bounds of the response 
values are 948.9 and 956.5. 

X is then a 40 × 9 matrix of autoscaled predictors, that is, values of 
process variables, material properties, environmental conditions, and so 
on. The response y is a 40 × 1 vector of autoscaled values, that is, some 
characteristic of the objects produced with the values of the nine 
predictors. 

With autoscaled predictors and response, five latent variables are 
selected by cross-validation. These latent variables explain 87.2 % of the 
variance in X with 80.3 % of the variance in y, with a coefficient of 
determination of 0.80 (0.70 in cross-validation). Details of each indi-
vidual latent variable are provided in Table S3 in the supplementary 
material. 

One hundred solutions at each endpoint were computed by inverting 
the model for the two specification limits, those depicted in Fig. 8, in the 

Fig. 6. Scores of PCA on the first and the second PCs. Green points are for 
Osmancik rice, and red points are for Cammeo rice. The scores of the solutions 
from the inversion of the PLS model for the tolerance intervals are shown in 
blue, light blue filled circles for Osmancik rice, and dark blue empty squares for 
Cammeo rice. 

Fig. 7. Rice varieties. a) Scores on the first PC plane and b) parallel coordinates 
plot of the points in the input space. 
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form of a parallel coordinates plot in the nine-dimensional input space. 
As a reference of the variation of the predictor variables, the samples in 
X are also plotted as blue lines in Fig. 8. 

A number of procedures have been proposed for the selection of 
variables in PLS. With the so-called VIP (Variance Importance in Pre-
diction), variables number 2, 5, and 7 are removed because they do not 
contain relevant information for the prediction model. Interestingly, 
these variables in Fig. 8 have values of the obtained solutions that are 
similar in both specification limits. In other words, the selected variables 
are those that show differential behavior in the solutions obtained for 
inversion of each specification limit (except for variable number 8), 
although the model is fitted to predict the whole range of y values. 

A new PLS model was fitted with the selected variables, with four 
latent variables that explain 86.67 % of the variance in X and 79.78 % in 
y. R2 = 0.80,R2

CV = 0.71, and a single object showed a slight excess of 

the Q statistic at the 95 % confidence level. 
This new model is inverted and a hundred solutions are generated for 

each specification limit. The resulting solutions are depicted in Fig. 9, 
where it can be seen that they are analogous to those in Fig. 8. However, 
in this case, the differences between the corresponding predictor values 
in each hyperplane are evident. The corresponding values in the LSL are 
greater than those in the USL for the first four predictor variables. 
Variable number 8 appears to act as a kind of inflection point, where the 
observed behavior of greater values for the LSL than for the USL in the 
first variables changes and is exactly the opposite in variable number 9. 

Table 2 shows the mean values of the hundred solutions computed 
for each specification limit as representative of all of them. They are 
written in their original scale, rather than the autoscaled values in 
Figs. 8 and 9, and are rounded to the number of significant digits in the 
original data set [12]. Note that the linearity of PLS also makes the 
vector of means a feasible solution. 

The usefulness of the values in Table 2 is that any feasible solution 
with predictions inside the interval defined by the specification limits 
for y1 can be obtained as a convex combination of, for example, the two 
solutions in Table 2. 

However, the values whose means are shown in Table 2 do not 
necessarily define a “hypercube”, because further to maintain the pre-
dictors within the corresponding bounds, the structure among them 
must also be maintained. For example, the first column in Table 2 shows 
that X1 varies around [14.28, 16.53], let’s assume that in a particular 
situation x1 = 15, then there is a unique coefficient λ (λ = 0.32 in the 
example) such that 15 = 16.53 λ+ (1 − λ)14.28. To keep the product 
within the specification limits, the rest of the variables must have the 
same structure, i.e., the same convex combination, namely x3 = 87, x4 =

49, x6 = 7.23, x8 = 6.09, x9 = 1.106. In this way, some deviations in one 
of the variables can be “compensated” by variations in the others to keep 
the product within specifications. 

Much more possibilities can be obtained with convex combinations 
of the individual solutions computed. These solutions can be found in 
the file solutions_sm.xlsx in the supplementary material. 

In any case, if the nine variables are used to control the process, with 
the model with all nine variables, the equivalent of Table 2 is Table 3. 
Note the similarity of the means for predicting each specification limit in 
the common predictors. 

Variable X2 has the same mean in the solutions corresponding to the 
different specification limits. However, individual possible values can be 
seen in Fig. 8. 

Table 1 
Some solutions at the boundary of the computed regions.  

Area Perimeter Major 
Axis 
Length 

Minor 
Axis 
Length 

Eccentricity Convex 
Area 

Extent 

Osmancik variety 
8791.8 386.14 159.51 74.429 0.88596 9065.6 0.54803 
9870.7 414.76 178.05 72.440 0.90675 10108 0.76688 
10039 396.82 156.53 81.937 0.86389 10275 0.73783 
10047 401.52 164.73 79.179 0.87832 10306 0.53452 
10705 431.84 184.32 74.656 0.91265 11067 0.70358 
10998 444.67 189.49 75.302 0.91837 11367 0.50955 
12019 419.61 167.68 91.637 0.84024 12284 0.82123 
12259 454.98 188.11 84.674 0.88458 12627 0.69707 
13336 461.92 187.55 92.003 0.86452 13663 0.70857 
13358 442.78 176.66 95.876 0.8534 13661 0.61145 
13460 458.54 186.93 92.299 0.8666 13786 0.748 
13508 454.93 186.71 92.268 0.86711 13685 0.63703 
Cammeo variety 
11662 455.94 193.56 77.809 0.91828 12100 0.54042 
11814 450.78 196.98 76.350 0.92740 12005 0.71836 
12310 464.72 191.81 82.667 0.90508 12728 0.57377 
13151 483.36 209.06 80.706 0.92364 13487 0.49710 
15031 485.71 199.25 97.844 0.86505 15319 0.74830 
12965 478.19 208.22 79.095 0.93392 13274 0.67497 
14840 497.40 206.24 94.115 0.88436 15217 0.80727 
15896 522.25 223.94 92.398 0.91439 16242 0.69776 
16059 529.47 223.13 93.857 0.90997 16550 0.59719 
16327 511.69 210.76 99.848 0.88362 16712 0.75905 
16450 521.11 218.65 97.597 0.89723 16723 0.58775  

Fig. 8. Parallel coordinates plot of the predictors in blue, and the solutions 
found by inversion, in red for the Lower Specification Limit (USL) and in orange 
for the Upper Specification Limit (USL). 

Fig. 9. Parallel coordinates plot of the reduced set of predictors in blue, and the 
solutions found by inversion, in red for the Lower Specification Limit (USL) and 
in orange for the Upper Specification Limit (USL). 
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4. Conclusions 

The inversion of latent variable models for an interval of response 
values provides an approach to defining the design space for a range of 
acceptable values. 

The work shows a general methodology for constructing a set inside 
the domain (i.e., the region in which the input predictor variables are 
allowed to vary) and a way of moving within it to select settings of the 
predictors with a property of interest defined by an interval. 

The generalization for uncorrelated response characteristics is 
straightforward, as well as for correlated quality characteristics (in the 
responses space), provided that their requirements define a parallele-
piped in the output space. 
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