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Abstract: Wind-turbine blades pose significant disposal challenges in the wind-energy sector due
to the increasing demand for wind farms. Therefore, this study researched the revaluation of Raw-
Crushed Wind-Turbine Blade (RCWTB), obtained through a non-selective blade crushing process, as
a partial substitute for aggregates in Self-Compacting Concrete (SCC). The aim was to determine the
most adequate water/cement (w/c) ratio and amount of superplasticizing admixtures required to
achieve adequate flowability and 7-day compressive strength in SCC for increasing proportions of
RCWTB, through the production of more than 40 SCC mixes. The results reported that increasing
RCWTB additions decreased the slump flow of SCC by 6.58% per 1% RCWTB on average, as well as
the compressive strength, although a minimum value of 25 MPa was always reached. Following a
multi-criteria decision-making analysis, a w/c ratio of 0.45 and a superplasticizer content of 2.8%
of the cement mass were optimum to produce SCC with up to 2% RCWTB. A w/c ratio of 0.50
and an amount of superplasticizers of 4.0% and 4.6% were optimum to produce SCC with 3% and
4% RCWTB, respectively. Concrete mixes containing 5% RCWTB did not achieve self-compacting
properties under any design condition. All modifications of the SCC mix design showed statistically
significant effects according to an analysis of variance at a confidence level of 95%. Overall, this
study confirms that the incorporation of RCWTB into SCC through a careful mix design is feasible in
terms of flowability and compressive strength, opening a new research avenue for the recycling of
wind-turbine blades as an SCC component.

Keywords: self-compacting concrete; wind-turbine blade; glass fiber-reinforced polymer; concrete design;
water/cement ratio; admixtures; flowability; slump flow; mechanical performance; compressive strength

1. Introduction

Concrete is an artificial composite material obtained by mixing a hydraulic binder,
usually Portland cement, with aggregates, water, and in certain cases admixtures [1].
Cement, water and the finest fraction of the aggregates are responsible for creating a
cement paste that is capable of adequately dragging all the concrete components, thus
providing proper workability [2]. When mixed with water, cement undergoes an exothermic
hydration process, creating a hardened cementitious matrix that surrounds the aggregates
when setting ends. Such cementitious matrix unifies the whole and binds the aggregates
together, providing strength. Its microstructure largely determines the mechanical and
durability properties of concrete [3]. Besides, aggregates provide volume, stiffness, and
tensile strength to concrete [4]. Finally, the admixtures play a fundamental role in modifying
both the fresh and the hardened properties of concrete, thus improving workability, setting
time, strength, waterproof, and durability, among others [5].

Concrete has a wide range of applications in the construction sector, being used in
buildings, infrastructures, pavements, hydraulic works, and for both structural (beams and
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columns) and non-structural (furniture and curbs) precast elements [6,7]. Each of these
applications has a number of specific requirements, the design and dosage of concrete
being achieved through means of mathematical modelling and experimental testing to
meet such specifications [1,8]. The two most important properties in concrete performance
are workability and compressive strength, which guarantee successful placement and
adequate in-service strength behavior [9,10]. Despite this, attention must also be paid
to other relevant properties such as tensile strength, flexural strength, elastic stiffness,
permeability, durability and fire resistance, among others, which vary depending on each
specific concrete application [11,12].

Self-Compacting Concrete (SCC) represents a significant evolution in concrete technol-
ogy. This concrete type exhibits rheological properties that allow it to flow and compact
under its own weight without the need for vibration or external forces [13]. This behavior is
achieved through careful raw-material proportioning, mainly regarding the aggregate fines,
and the addition of superplasticizing admixtures. On the one hand, aggregate fines enable a
compact cement paste to be formed, which is able to uniformly drag all the coarse-aggregate
particles [14]. A granulometry with high-fine content also prevents blockage when the SCC
goes through the reinforcements [15,16]. On the other hand, superplasticizing admixtures
coat the aggregate particles, reducing the internal friction enabling the concrete to flow
homogeneously [13]. This high flowability is what allows SCC to completely and success-
fully fill any formwork, even those with a complex geometry [10], to properly encase heavy
reinforcement without leaving gaps [17]. Additionally, the absence of vibration reduces
energy consumption, thereby reducing the carbon footprint of concrete and contributing to
a higher sustainability within the construction sector [18,19]. However, this performance
will only be adequate if SCC demonstrates excellent stability and resistance to segregation,
in a way that a homogeneous mixture is guaranteed when concreting [20].

In addition to its high flowability, SCC offers numerous substantial advantages that
are making it increasingly popular in the construction sector, leading to its use in a growing
number of applications [21]. First, the absence of vibration prevents the segregation of the
concrete constituents, which results in a more homogeneous surface finish that is free of
pores and imperfections [22]. Second, this absence of pores in the surface finish and the
greater packing density of SCC contribute to a higher resistance to the penetration of any
aggressive external agents within the concrete, therefore reducing reinforcement corrosion,
improving durability and lowering maintenance costs [23,24]. Third, the ease of placement
of SCC and the elimination of the need for vibration notably reduce the time and labor
required for the execution of the works, thus increasing in-situ productivity and output in
precast-concrete plants [25]. Finally, noise is also minimized due to the elimination of the
need for vibration [26]. Therefore, although the initial cost of SCC may be slightly higher
than that of conventional concrete, the long-term benefits enumerated often offset such
economical difference [27].

Fibers can be incorporated into any concrete type, which modifies concrete perfor-
mance in various dimensions. Fibers mainly improve toughness, ductility and waterproof
of concrete, which in turn lead to a greater resistance to cracking, tensile stresses and
impacts [28]. However, fibers can also negatively influence other properties such as work-
ability and compressive strength [29,30]. Therefore, it is essential to carefully select the
proportion of fibers to be added, and to adapt the concrete composition to their addition,
mainly through the water/cement (w/c) ratio and aggregates’ gradation, in such a way
that those detrimental effects are counterbalanced [31].

Concrete can incorporate various types of fibers, each one with different characteristics
and applications. The most common fibers are steel, polypropylene, and glass fibers [32].
Steel fibers impart high tensile and bending strengths to concrete, making them ideal for
structural applications where high load capacities are required [33]. Polypropylene fibers
improve the toughness and ductility of concrete, reducing the formation and propagation
of cracks. These fibers are especially useful in applications where impacts or cyclic loads
are expected, such as pavements [34]. Finally, glass fibers, offering a balanced combination
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of strength and durability, are commonly used in environments in which high resistance to
alkalinity and chemical agents is required [35]. Therefore, selecting the appropriate fiber
type depends on the specific performance requirements of the concrete and the in-service
conditions it will face [36]. Additionally, the use of recycled fibers is another possibility
that is currently becoming increasingly widespread [7], as they offer the advantages of
conventional fibers while reducing the environmental impact of fiber manufacturing [37].

The combination of the properties of SCC with those provided by the fibers allows
for fiber-reinforced SCC with excellent performance in various applications such as floors,
pavements, precast elements, and structures subjected to cyclic loads [28,31–35]. The
development of SCC containing recycled fibers can be even more interesting, as such type of
fibers are able to provide the described behaviors while reducing the overall environmental
impact [38]. Another type of recycled fiber is that derived from the crushing of Glass
Fiber-Reinforced Polymer (GFRP) [39], which is used in the manufacture of components
such as wind-turbine blades, and which does not yet have a widely accepted recycling
pathway [40]. However, wind-turbine blades are not only made of GFRP, but also of
balsa wood and polymers [41]. The simultaneous crushing of all the blade constituents
yields a material called Raw-Crushed Wind-Turbine Blade (RCWTB), which is composed
of GFRP fibers and polymer and balsa-wood particles [42]. The author’s research group is
committed to the revaluation of RCWTB as a raw material in concrete. To date, this waste
has been successfully employed as a raw material for the development of concrete with
conventional workability [43]. Consequently, the development of SCC containing RCWTB
is the next step in this research line.

A previous initial approach revealed that conventional SCC design was not suitable
when RCWTB was incorporated due to its complex composition, which caused large
decreases in flowability and compressive strength when added to this concrete type [44].
Therefore, this paper reports the design and optimization of an SCC composition exclusively
developed for the incorporation of RCWTB to this concrete type. An initial SCC-mix design
usually applied in precast-concrete plants was first adopted following the experience of the
author’s research group [25], to later define the adjustments of water and superplasticizing
admixtures necessary to achieve an adequate balance between flowability and compressive
strength when adding different percentages of this waste. Over forty SCC mixes were
designed for this purpose. This research aims to mitigate the environmental impact of both
the concrete industry and the wind-energy sector. First, by producing SCC, which enables
energy savings by eliminating vibration [13]. Second, by using RCWTB as a raw material in
concrete, thus revaluing a material that is currently being landfilled or incinerated, causing
a considerable environmental impact at the end of the service life of wind turbines [45,46].

2. Materials and Methods
2.1. Raw Materials
2.1.1. Conventional Materials

The present SCC was made with conventional materials similar to those used in the
production of precast-concrete elements, including superplasticizers [25].

Portland cement type II with a 28-day compressive strength of 42.5 MPa that contained
6–20% limestone in its composition was used. This cement type is labelled CEM II/A-L
42.5R according to EN 197-1 [47]. The use of this type of cement is currently quite extended,
as it is considered optimal for its use in most concrete applications [48].

Water was supplied by the local network of the city of Burgos, Spain. More precisely,
the water was taken from the large-structures workshop located at the La Milanera campus
of the University of Burgos.

Two different third-generation superplasticizing admixtures were added, allowing
the development of SCC mixtures with a lower water/cement ratio while maintaining an
adequate flowability [49].
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Four different fractions of natural aggregates were used to guarantee proper aggregate
packing and fresh flowability [50]. Particle gradation of the aggregates is reflected in
Figure 1, and consisted of (density and 24-h water absorption as per EN 1097-6 [47]):

• Siliceous gravel sized 4/12 mm, with a density of 2.66 kg/dm3 and a 24-h water-
absorption level of 0.66% wt.

• Siliceous sand sized 0/4 mm, with a density of 2.65 kg/dm3 and a 24-h water-
absorption of 0.74% wt.

• Limestone sand sized 0/2 mm, with a density of 2.64 kg/dm3 and a 24-h water-
absorption level of 0.52% wt.

• Limestone filler sized < 0.063 mm, with a density of around 2.77 kg/dm3.
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2.1.2. Raw-Crushed Wind-Turbine Blade (RCWTB)

Wind-turbine blades are composed of different materials, among which GFRP, balsa
wood and polymers stand out for their higher proportions [41]. Pieces of wind-turbine
blades with dimensions from 20 × 20 cm up to 30 × 30 cm containing these materials
were crushed by using a knife mill. Particles with a size less than 10 mm were required
in order to guarantee a proper distribution of the waste within the SCC [42]. Therefore,
any resulting particles exceeding a size greater than 10 mm were crushed again until they
reached the required dimensions. The processed material obtained was labelled as RCWTB
and added to the SCC mixes.

RCWTB had a real density of 1.63 kg/dm3 and an apparent density of around
247 kg/m3. It was composed of GFRP fibers (density of 2.04 kg/dm3); balsa wood (density
of 0.33 kg/dm3) and polymers in the form of roughly spherical particles with an average
size of around 5 mm; and micro-fibers in the form of fluffs interspersed with tiny balsa-
wood and polymer particles that could not be mechanically separated from the micro-fibers.
The weight percentages of each RCWTB constituent obtained through a manual screening
and selection process can be observed in Figure 2a, while Figure 2b shows the appear-
ance of the RCWTB. Furthermore, Table 1 shows the chemical composition of the RCWTB
components obtained by Energy Dispersive X-ray (EDX) analyses.

Characterization of the GFRP fibers was also conducted. The length of these fibers was
measured with a caliper, an average length of 13.07 mm being obtained. Their equivalent
diameter was also evaluated, and an average value of 0.73 mm was yielded. Additionally,
their tensile strength was determined by conducting pure-tensile tests in which loading
was applied in the direction parallel to the longitudinal axis of the fibers, resulting in an
average result of 270 MPa.
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Table 1. Chemical composition of RCWTB components following EDX analyses.

Component Carbon Oxygen Silicon Calcium Others

GFRP fibers 53.49 22.79 4.96 4.37 14.39
Balsa wood 61.36 18.70 3.90 0.95 15.09
Polymers 60.57 13.41 9.49 0.47 16.06

2.2. Mix Design

As mentioned at the final part of the introduction, the aim of this study is to develop
an SSC mix design in which RCWTB is incorporated in a satisfactory way in terms of
flowability and compressive strength [51]. For this purpose, the starting point was a refer-
ence SCC composition that did not incorporate any type of residue and that is commonly
used in precast-concrete industries according to the authors’ experience [25]. This initial
composition of SCC was characterized by the following aspects:

• A cement content of 320 kg/m3.
• Values of the w/c ratio of 0.45 (145 kg/m3 of water) and 0.50 (160 kg/m3 of water),

which covered all the usual range of w/c ratios in precast-concrete plants [52].
• Superplasticizing-admixture contents of 2.2% and 2.8% of the cement mass (6.9 kg/m3

and 9.0 kg/m3 of superplasticizing admixtures, respectively). These two values
corresponded to the lower and upper limits of the range within the amount of this
type of admixture is found when SCC is produced industrially [52].

• Aggregate contents were determined by an optimal adjustment of the overall gradation
to Fuller’s curve with an exponent of 0.35. This optimization enabled to fix adequate
aggregate proportions to reach self-compactability [50]. Such adjustment is shown
in Figure 3. This process yielded contents of 555 kg/m3 of siliceous gravel sized
4/12 mm, 610 kg/m3 of siliceous sand sized 0/4 mm, 625 kg/m3 of limestone sand
sized 0/2 mm, and 170 kg/m3 of limestone filler sized < 0.063 mm.

Taking this SCC composition as guidance, incremental additions of RCWTB were
introduced in steps of 1% by volume replacing the siliceous gravel, siliceous sand and
limestone sand. Such replacement was conducted by maintaining the initial aggregate
proportions. Limestone filler was not partly substituted by RCWTB because of its critical
role for obtaining adequate self-compactability according to different studies in the litera-
ture [53–55]. An adjustment by volume dependent on the density of each SCC component
was considered when adding the RCWTB.
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This incremental process continued until the RCWTB addition reached a point where
the mix lost its self-compacting capability. From this threshold RCWTB content and dosage,
the behavior of the SCC was evaluated by increasing both the w/c ratio in steps of 0.05
and the superplasticizing admixtures in steps of 0.6% of the cement mass. The cement
content and the aggregate proportions were not modified to guarantee proper strength
and aggregate packing of the SCC [50]. In agreement with concrete specialists of a precast-
concrete facility, no limitation was established for the w/c ratio. However, it was specified
that the maximum superplasticizer content applied in practice was 6.4% of the cement
mass, which thus served as the upper boundary for this research.

The SCC mixtures were labelled as W%, where the symbol % represented the value
of the percentage of RCWTB added to the SCC. Therefore, the result of this research was
the development of SCC compositions suitable for each RCWTB content. In accordance,
the detailed composition of all the SCC mixtures prepared is shown in Section 3, which is
destined to the exposition of the results obtained in the study.

2.3. Experimental Plan

A three-stage mixing process was applied during the production of all the SCC mixes.
The aim was to ensure a uniform distribution of the RCWTB within the SCC, regardless
of the waste content added [42,56]. Before starting the mixing process, all the fractions of
aggregates, RCWTB, and cement were weighed following the mix design. Subsequently,
the water was weighed by removing 0.50 kg, which was used to dilute the superplasticizing
admixtures. The mixing water was divided into two batches that accounted for 30% and
70% of its remaining weight. The stages that comprised this process were as follows:

• In the first step of mixing, all aggregates, RCWTB and 30% water were poured into a
planetary mixer and mixed for three minutes.

• The second step consisted of adding the cement with 70% water, followed by mixing
for another three minutes.

• In the last mixing stage, the superplasticizing admixtures diluted in 0.50 l of water
were added. The last three minutes of mixing were then conducted.

Immediately after the batching process was completed, slump-flow measurements
were performed according to EN 12350-8 [47] by measuring the spreading diameter of
the SCC in two perpendicular directions. When self-compactability was not reached, the
slump test was conducted as per EN 12350-2 [47], in which the vertical displacement of
the concrete due to its own weight was evaluated. Then, three cylindrical specimens of 10
cm in diameter and 20 cm in height were made, in which compressive-strength tests after
7 days of curing in a humid chamber were performed following EN 12390-3 [47]. For this
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purpose, the specimens were subjected to an increasing stress at a rate of 0.6 MPa/s until
failure was reached.

Finally, a three-way ANalysis Of VAriance (ANOVA) was calculated to elucidate the
significance of the impact of the three factors evaluated (RCWTB content, w/c ratio, and
percentage of admixtures) in both properties of SCC at a confidence level of 95%. This
practice is usual in such kind of research [57,58]. Optimization through Multi-Criteria
Decision-Making (MCDM) algorithms was also conducted to define the optimum mix
design for each RCWTB amount added to SCC. TOPSIS algorithm was applied, as their use
is common in concrete optimization [25,59].

3. Results and Discussion

The stages related to the design of SCC containing RCWTB carried out in this research
can be divided into four groups:

• Group 1. In the first group of mixes, amounts of 0%, 1%, 2% and 3% of RCWTB were
added to an SCC with a conventional design. According to all the aspects explained in
the mix design section, w/c ratios of 0.45 and 0.50 and contents of superplasticizing
admixtures (ad.) of 2.2% and 2.8% of the cement mass were considered for each
RCWTB amount. Therefore, four SCC mixes were produced for each RCWTB content
(0.45 w/c and 2.2% ad.; 0.45 w/c and 2.8% ad.; 0.50 w/c and 2.2% ad.; and 0.50 w/c
and 2.8% ad.), yielding sixteen different mixes.

• Group 2. 3% RCWTB with water and admixture contents indicated for Group 1 did
not enable to achieve a slump flow higher than 550 mm, minimum required value to
consider this concrete as self-compacting according to EN 206 [47]. Therefore, the w/c
ratio was increased up to 0.55 and the content of superplasticizer admixtures up to
3.4% of the cement mass. These six mixes conformed the second group.

• Group 3. From the experience of increasing the w/c ratio to 0.55, it was found that
the water started to segregate from the mix, providing the adjustment unsuitable for
achieving stable SCC with 3% RCWTB. Consequently, SCC with 3% RCWTB was
designed by fixing the w/c ratio at both 0.45 and 0.50 while increasing the amount of
superplasticizing admixtures. Admixture proportions of 3.4, 4.0%, 4.6%, 5.2%, 5.8%
and 6.4% of the cement mass were considered. The twelve SCC mixes developed
following these criteria comprised the third group.

• Group 4. In the last group of mixes, 4% and 5% of RCWTB were added to an SCC
with a w/c ratio of 0.50, as it was previously demonstrated to be the most adequate
w/c ratio when 3% RCWTB was added to SCC. The minimum content of super-
plasticizing admixtures for each RCWTB amount was the one that allowed reaching
self-compactability with the immediately lower RCWTB content. Admixture propor-
tions up to 6.4% of the cement mass were added in increasing steps of 0.6%, resulting
in nine different mixes.

3.1. Group 1: RCWTB Content Between 0% and 3%; w/c Ratio Between 0.45 and 0.50; Admixture
Amount Between 2.2% and 2.8% of the Cement Mass

The composition of the mixtures in this first group is detailed in the following tables:
Table 2 (W0 mixes, 0% RCWTB), Table 3 (W1 mixes, 1% RCWTB), Table 4 (W2 mixes,
2% RCWTB), and Table 5 (W3 mixes, 3% RCWTB).

In Figure 4a, the slump flows of the mixes that reached self-compactability are pre-
sented. If the mixes did not perform as such, the slumps were measured, which are
recorded in Figure 4b. Analyzing the trends of the three factors (w/c ratio, amount of
superplasticizing admixtures, and RCWTB content), the next insights can be highlighted:

• A clear improvement (16.28% on average) in the slump flow was observed when
increasing the w/c ratio from 0.45 to 0.50. This was due to the development of a
greater amount of cement paste surrounding the aggregate particles and the RCWTB.
Besides, this phenomenon resulted in a decrease in the internal friction between the
SCC components, which allowed them to flow more easily [60].
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• Regarding the increase in the admixture percentage, there was no clear trend, as
opposed to the w/c ratio. The influence of increasing admixture content varied
depending on the w/c ratio, with no consistent behavior observed. Thus, the slump
flow was improved by 5.11% on average for a w/c ratio of 0.45, while the slump
flow decreased by 1.34% on average when a w/c ratio of 0.50 was considered in
the SCC. The SCC mixture segregated more quickly, inhibiting the attainment of a
high value of slump flow when the maximum admixture percentage and w/c ratio
were simultaneously applied, as also found in other experiences with alternative raw
materials in SCC [61,62]. The use of superplasticizing admixtures allowed for the
reduction of water while maintaining workability [63]. Therefore, low w/c ratios
yielded the highest efficiency when increasing the admixtures up to 2.8% wt. of the
cement mass for the studied RCWTB contents.

• The described efficiency of increasing the percentage of admixtures was not found
when the amount of RCWTB rose. For a w/c ratio of 0.45, increasing the admixture
percentage from 2.2% to 2.8% of the cement mass resulted in an increase of the slump
flow of 33 mm for 0% RCWTB and only 5 mm for 2% RCWTB. The GFRP fibers within
this waste hindered the flow of the other SCC components [64], mainly the coarse ag-
gregate particles, which an increasing admixture proportion could not counterbalance,
as in similar research [65].

• The increase in the percentage of RCWTB in general caused a decrease in the slump
flow. The most pronounced reduction was found in the mixes with a w/c ratio of 0.45
and 2.8% of admixtures, for which 2% RCWTB reduced the slump flow by 17.21%
compared to the W0 mix. This reduction was driven by two primary factors. On the
one hand, the GFRP fibers increased the specific surface area of the SCC components
to be covered by the cementitious paste [30]. On the other hand, the GFRP fibers
hindered the flow of the rest of the SCC components [64]. The decrease in the slump
flow that suffered the W3 mixes was so great that self-compactability could not be
reached with the water admixture contents considered in this first group when adding
that RCWTB amount.

Table 2. Mix design (kg/m3) of the W0 mixes (0% RCWTB).

Component 0.45 w/c; 2.2% ad. 0.50 w/c; 2.2% ad. 0.45 w/c; 2.8% ad. 0.50 w/c; 2.8% ad.

Cement 320 320 320 320
Water 145 160 145 160

Admixtures 6.9 6.9 9.0 9.0
Filler 170 170 170 170

Sand 0/2 mm 625 625 625 625
Sand 0/4 mm 610 610 610 610

Gravel 4/12 mm 555 555 555 555
RCWTB 0 0 0 0

w/c: water/cement ratio; ad.: amount of superplasticizing admixtures.

Table 3. Mix design (kg/m3) of the W1 mixes (1% RCWTB).

Component 0.45 w/c; 2.2% ad. 0.50 w/c; 2.2% ad. 0.45 w/c; 2.8% ad. 0.50 w/c; 2.8% ad.

Cement 320 320 320 320
Water 145 160 145 160

Admixtures 6.9 6.9 9.0 9.0
Filler 170 170 170 170

Sand 0/2 mm 620 620 620 620
Sand 0/4 mm 605 605 605 605

Gravel 4/12 mm 550 550 550 550
RCWTB 11 11 11 11

w/c: water/cement ratio; ad.: amount of superplasticizing admixtures.
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Table 4. Mix design (kg/m3) of the W2 mixes (2% RCWTB).

Component 0.45 w/c; 2.2% ad. 0.50 w/c; 2.2% ad. 0.45 w/c; 2.8% ad. 0.50 w/c; 2.8% ad.

Cement 320 320 320 320
Water 145 160 145 160

Admixtures 6.9 6.9 9.0 9.0
Filler 170 170 170 170

Sand 0/2 mm 615 615 615 615
Sand 0/4 mm 600 600 600 600

Gravel 4/12 mm 545 545 545 545
RCWTB 22 22 22 22

w/c: water/cement ratio; ad.: amount of superplasticizing admixtures.

Table 5. Mix design (kg/m3) of the W3 mixes (3% RCWTB) for 0.45–0.50 w/c and 2.2–2.8% ad.

Component 0.45 w/c; 2.2% ad. 0.50 w/c; 2.2% ad. 0.45 w/c; 2.8% ad. 0.50 w/c; 2.8% ad.

Cement 320 320 320 320
Water 145 160 145 160

Admixtures 6.9 6.9 9.0 9.0
Filler 170 170 170 170

Sand 0/2 mm 605 605 605 605
Sand 0/4 mm 595 595 595 595

Gravel 4/12 mm 540 540 540 540
RCWTB 33 33 33 33

w/c: water/cement ratio; ad.: amount of superplasticizing admixtures.
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Since the W3 mixes were not self-compacting for the w/c ratios and the amounts of
superplasticizing admixtures considered in the first group of mixes, their slumps were
therefore measured (Figure 4b). Expectedly, the slump increased with higher w/c ratios and
admixture proportions, as widely reported in the scientific literature related to design of
both conventional concrete and SCC [66]. A 14.22% increase in the slump flow was achieved
when increasing the w/c ratio from 0.45 to 0.50, while the improvement of the slump was of
8.84% when varying the admixture content from 2.2% to 2.8% of the cement mass.

The results of the 7-day compressive strength of the mixes of the first group of concrete
mixes are detailed in Figure 5. Notably, an average reduction in compressive strength
of 12.88% and 4.18% was obtained for the increase in the w/c ratio and the content of
admixtures, respectively. This reduction was more pronounced with the increase of the
w/c ratio, as led to an increase of residual water in the mix, and therefore augmented
the porosity of the cementitious matrix [67]. Moreover, the increase in the percentage of



J. Compos. Sci. 2024, 8, 540 10 of 23

RCWTB also produced a decrease in strength, which reached a value of 20.21% when 3%
RCWTB was incorporated to concrete. This situation was caused by the lower density and
strength found in RCWTB in comparison with the substituted aggregates [68]. Additionally,
the authors’ research group found that the particles of polymers and balsa wood within this
waste create weak Interfacial Transition Zones (ITZ) due to their reduced adhesion to the
cementitious matrix [69]. Finally, the stitching effect of the GFRP fibers in the RCWTB was
not very effective in improving the performance of concrete under compression stresses [43].
It is important to note that the waste content was the factor that altered the strength the most,
although the loss of the self-compactability when 3% RCWTB was added counterbalanced
such negative effect, as can be noted in the last column in Figure 5.
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of superplasticizing admixtures).

3.2. Group 2: 3% RCWTB; w/c Ratio Between 0.45 and 0.55; Admixture Amount Between 2.8%
and 3.4% of the Cement Mass

As stated before, self-compactability with 3% RCWTB was not achieved by considering
w/c ratios of 0.45 and 0.50 and superplasticizing-admixture amounts between 2.2% and
2.8% of the cement mass. Therefore, the w/c ratio was increased up to 0.55 and the amount
of admixtures up to 3.4%, without modifying the waste content in the concrete to evaluate
the most suitable way to develop SCC with this specific RCWTB amount. These mix designs
comprised the second group of concrete mixes, whose composition is detailed in Table 6
(W3 mixes, 3% RCWTB).

Table 6. Mix design (kg/m3) of the W3 mixes (3% RCWTB) for 0.45–0.55 w/c and 2.8–3.4% ad.

Component 0.45 w/c;
2.8% ad.

0.50 w/c;
2.8% ad.

0.55 w/c;
2.8% ad.

0.45 w/c;
3.4% ad.

0.50 w/c;
3.4% ad.

0.55 w/c;
3.4% ad.

Cement 320 320 320 320 320 320
Water 145 160 175 145 160 175

Admixtures 9.0 9.0 9.0 10.9 10.9 10.9
Filler 170 170 170 170 170 170

Sand 0/2 mm 605 605 605 605 605 605
Sand 0/4 mm 595 595 595 595 595 595

Gravel 4/12 mm 540 540 540 540 540 540
RCWTB 33 33 33 33 33 33

w/c: water/cement ratio; ad.: amount of superplasticizing admixtures.

Workability test results of the mixes in the second group are detailed in Figure 6.
When self-compactability was reached, the slump flow was measured, as can be seen in
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Figure 6a. For those instances where the mix design was not adequate to achieve SCC con-
ditions, the slump was measured through the Abrams-cone test, whose values are depicted
in Figure 6b.
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A notable increase in the workability of concrete was found when raising the w/c ratio
from 0.45 to 0.55. For an amount of admixtures of 2.8% of the cement mass, the concrete
exhibited a slump of around 170–190 mm for w/c ratios of 0.45 and 0.50, but it reached
a slump flow of approximately 560 mm when a w/c ratio of 0.55 was considered. This
phenomenon was also found when adding an admixture content of 3.4%. As discussed
for the mixes in the first group, the recorded increase in workability was due to the
increased amount of cement paste coating the aggregates and the RCWTB. It reduced the
internal friction between the aggregate particles and the RCWTB components, which in
turn facilitated their relative displacements and flow, as found by other authors [60].

The effects of increasing contents of superplasticizing admixtures on workability of
the concrete could also be easily perceived. The slump obtained in the mixes with w/c
ratios of 0.45 and 0.50 increased by 12.22% on average when the quantity of admixtures
was 3.4% of the cement mass compared to the mixes with 2.8% admixture. The slump
flow reached with a w/c ratio of 0.55 (SCC mixes) was also augmented. Superplasticizing
admixtures reduced the water demand of the cement for proper hydration, which increased
the amount of free water within the concrete. This phenomenon facilitated the flow of
the particles of the different aggregates and the RCWTB constituents, as supported by the
literature related to SCC fresh performance [63].

Based on the behavior described in the preceding paragraphs, it can be deduced that
the use of a w/c ratio of 0.55 and high amounts of superplasticizing admixtures could
be optimal for the development of SCC with 3% RCWTB. Nevertheless, an accelerated
segregation process of the mixing water was noted when workability tests were conducted
in the mixes with a w/c ratio of 0.55, regardless of the admixture content. This phenomenon
is shown in Figure 7 for a w/c ratio of 0.55 and an admixture content of 2.8%. Concrete
workability was improved with an increased proportion of admixtures without causing
segregation [67], as opposed to the effects of higher water content. Therefore, it was
considered that a 0.55 w/c ratio was not advisable to develop a suitable SCC containing
3% RCWTB. To avoid this issue, a maximum value of 0.50 was then set for the w/c ratio
to develop a proper SCC when adding 3% RCWTB, and consequently the content of
superplasticizing admixtures had to be adjusted. Such w/c ratio is widely used in the
concrete industry when developing many types of concrete mixes for different applications
in the construction sector [70]. Another possibility could be the use of thickeners, such as
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carboxymethyl cellulose, which limit stratification and segregation of SCC when the water
content is increased [13]. This is an aspect that could be evaluated in future research.
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Figure 8 describes the behavior of the concrete mixes in terms of compressive strength.
In general, it decreased as w/c ratios and superplasticizing-admixture contents increased
(average reductions of 13.39% and 0.60%, respectively), along with higher variability in
strength values. As previously discussed for the mixes of the first group, the compressive
strength worsened to a greater extent with increasing the w/c ratios, since it led to a higher
content of residual water within the concrete, which increased the porosity of the cementi-
tious matrix and weakened it [67]. However, the enhanced aggregate-packing structure
derived from the addition of higher proportions of admixtures partly counterbalanced such
negative effects [71]. Notably, despite of the phenomena described, a compressive strength
of 25 MPa was always reached, which is the minimum required value to use the concrete in
structural applications according to design standards [52].
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3.3. Group 3: 3% RCWTB; w/c Ratio Between 0.45 and 0.50; Admixture Amount Between 3.4%
and 6.4% of the Cement Mass

In accordance with the conclusions reached in the second group of mixes, SCC contain-
ing 3% RCWTB was developed by fixing the w/c ratio at 0.45 and 0.50 and increasing the
superplasticizing-admixture content in 0.6% steps up to 6.4% of the cement mass, which is
the maximum recommended amount according to the design followed in a precast-concrete
plant, as previously discussed. Third-group concrete compositions are detailed in Table 7
(W3 mixes, 3% RCWTB, 0.45 w/c ratio) and Table 8 (W3 mixes, 3% RCWTB, 0.50 w/c ratio).

Table 7. Mix design (kg/m3) of the W3 mixes (3% RCWTB) for 0.45 w/c and 3.4–6.4% ad.

Component 0.45 w/c;
3.4% ad.

0.45 w/c;
4.0% ad.

0.45 w/c;
4.6% ad.

0.45 w/c;
5.2% ad.

0.45 w/c;
5.8% ad.

0.45 w/c;
6.4% ad.

Cement 320 320 320 320 320 320
Water 145 145 145 145 145 145

Admixtures 10.9 12.8 14.7 16.6 18.6 20.5
Filler 170 170 170 170 170 170

Sand 0/2 mm 605 605 605 605 605 605
Sand 0/4 mm 595 595 595 595 595 595

Gravel 4/12 mm 540 540 540 540 540 540
RCWTB 33 33 33 33 33 33

w/c: water/cement ratio; ad.: amount of superplasticizing admixtures.

Table 8. Mix design (kg/m3) of the W3 mixes (3% RCWTB) for 0.50 w/c and 3.4–6.4% ad.

Component 0.50 w/c;
3.4% ad.

0.50 w/c;
4.0% ad.

0.50 w/c;
4.6% ad.

0.50 w/c;
5.2% ad.

0.50 w/c;
5.8% ad.

0.50 w/c;
6.4% ad.

Cement 320 320 320 320 320 320
Water 160 160 160 160 160 160

Admixtures 10.9 12.8 14.7 16.6 18.6 20.5
Filler 170 170 170 170 170 170

Sand 0/2 mm 605 605 605 605 605 605
Sand 0/4 mm 595 595 595 595 595 595

Gravel 4/12 mm 540 540 540 540 540 540
RCWTB 33 33 33 33 33 33

w/c: water/cement ratio; ad.: amount of superplasticizing admixtures.

Figure 9 depicts the workability of the mixes of the third group: Figure 9a graphed the
slump flows of SCC mixes and Figure 9b shows the achieved slump of non-SCC mixes. It
can be noted that the W3 mixes always led to a lower flowability than RCWTB contents of
up to 2% (Figure 4), due to irregular shape of the particles of balsa wood and polymers and
the interposition of the GFRP fibers in the flow of the other SCC components.

The increase of the w/c ratio from 0.45 to 0.50 notably augmented workability. First,
a 3.4% amount of superplasticizers did not lead to self-compactability for any w/c ratio,
but when a 0.50 w/c was used the slump achieved increased by 18.95% compared to a
0.45 w/c ratio (first and last columns in Figure 9b). Second, a w/c ratio of 0.50 allowed for
SCC with 3% RCWTB when implementing contents of admixtures from 4.0%, while SCC
with a w/c ratio of 0.45 was only achieved for 6.4% admixture. Finally, the slump flow of
SCC with 6.4% admixture was 10.34% higher when a w/c ratio of 0.50 was considered.

Higher amounts of superplasticizing admixtures in general resulted in increased
workability for both w/c ratios considered:

• Self-compactability was not achieved for a w/c ratio of 0.45 and admixture con-
tents up to 5.8% of the cement mass, though the slump of concrete improved by
13.68%. Furthermore, SCC with a slump flow of 580 mm was only obtained for a
superplasticizing-admixture amount of 6.4% of the cement mass. This increase in
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superplasticizers reduced cement’s water demand, which allowed to increase the free
water of the mix and thus its workability [59].

• Only an admixture content of 3.4% did not lead to self-compactability when consid-
ering a w/c ratio of 0.50 (slump of around 225 mm). For the remaining admixture
contents, SCC was obtained, although two different trends were found. On the one
hand, a reduction of the slump flow of up to 8.37% was noted in the mixes with
admixture contents from 4.0% to 5.2%. The increase of free water generated by the
admixtures and their inadequate interaction with RCWTB led to a premature segre-
gation of the mixing water [65]. On the other hand, the trend completely changed
from a superplasticizing-admixture content of 5.2% of the cement mass, as the slump
flow increased by 11.30% for an admixture content of 6.4%. Therefore, higher admix-
ture contents led to better results in terms of flowability when adding 3% RCWTB to
SCC. Finally, it should be noted that the mix with 6.4% admixture exhibited a slump
flow 1.99% higher than that of the mix with 4.0% admixture. The increase in the
superplasticizing-admixture proportion successfully compensated the negative effect
of the premature segregation of the mixing water found at lower admixture levels, as
established in specific literature related to the effects of the admixtures in concrete [2].
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from 4.0% ad.); (b) slump (0.45 w/c up to 5.8% ad.; 0.50 w/c for 3.4% ad.) (w/c: water/cement ratio;
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Figure 10 shows the results of the 7-day compressive strength of the mixes, where
two clear trends can be perceived. First, increasing the w/c ratio from 0.45 to 0.50 caused
an average reduction of 15.43% in the compressive strength. Second, the increase in the
admixture content also led to a loss of strength, average reductions of 15.35% and 25.80%
being obtained for w/c ratios 0.45 and 0.50, respectively. It seems clear that higher amounts
of residual water augmented the porosity and weakened the cementitious matrix [67]. As
a result of these two trends, admixture contents of 5.8% and 6.4% did not accomplish a
compressive strength of 25 MPa when combined with a w/c ratio of 0.50, rendering those
mixes as not being adequate for structural applications [52]. Finally, the SCC mixes with
3% RCWTB had a lower compressive strength than the mixes with lower waste amounts
(Figure 5). Similar to conventional concrete [43], the particles of balsa wood and polymers
present in the RCWTB created weak ITZ, while the GFRP fibers did not perform in an
effective way when applying compression stresses to concrete.
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3.4. Group 4: RCWTB Content Between 4% and 5%; 0.50 w/c Ratio; Admixture Amount Between
4.0% and 6.4% of the Cement Mass

The mixtures with more than 3% RCWTB were developed with 0.50 w/c ratio and
admixture contents up to 6.4% were considered. The minimum admixture content for
4% and 5% RCWTB was 4.0% and 4.6%, respectively, as the lower limit for admixtures
was determined by the mix that achieved self-compactability with the immediately lower
RCWTB content. The compositions of all the mixtures within this fourth group are detailed
in Table 9 (W4 mixes, 4% RCWTB) and Table 10 (W5 mixes, 5% RCWTB).

Table 9. Mix design (kg/m3) of the W4 mixes (4% RCWTB) for 0.50 w/c and 4.0–6.4% ad.

Component 0.50 w/c; 4.0% ad. 0.50 w/c; 4.6% ad. 0.50 w/c; 5.2% ad. 0.50 w/c; 5.8% ad. 0.50 w/c; 6.4% ad.

Cement 320 320 320 320 320
Water 160 160 160 160 160

Admixtures 12.8 14.7 16.6 18.6 20.5
Filler 170 170 170 170 170

Sand 0/2 mm 600 600 600 600 600
Sand 0/4 mm 585 585 585 585 585

Gravel 4/12 mm 535 535 535 535 535
RCWTB 44.3 44.3 44.3 44.3 44.3

w/c: water/cement ratio; ad.: amount of superplasticizing admixtures.

Table 10. Mix design (kg/m3) of the W5 mixes (5% RCWTB) for 0.50 w/c and 4.0–6.4% ad.

Component 0.50 w/c; 4.6% ad. 0.50 w/c; 5.2% ad. 0.50 w/c; 5.8% ad. 0.50 w/c; 6.4% ad.

Cement 320 320 320 320
Water 160 160 160 160

Admixtures 14.7 16.6 18.6 20.5
Filler 170 170 170 170

Sand 0/2 mm 595 595 595 595
Sand 0/4 mm 580 580 580 580

Gravel 4/12 mm 525 525 525 525
RCWTB 55.3 55.3 55.3 55.3

w/c: water/cement ratio; ad.: amount of superplasticizing admixtures.

The fresh properties (slump flow or slump) of the mixes of this fourth group are shown
in Figure 11, in the same way as previous figures.
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As the w/c ratio was fixed at a value of 0.50, the amount of superplasticizing admix-
tures and the RCWTB content were the two factors that influenced the fresh performance
of concrete. The following aspects did stand out:

• SCC containing 4% RCWTB was developed when the admixture content was at least
4.6% of the cement mass. Additionally, the slump flow results obtained for W4 when
increasing the admixture proportion exhibited the same behavior trend as that of
SCC from W3 with 0.50 w/c ratio. Thus, the slump flow decreased by 5.17% when
increasing the admixtures from 4.6% to 5.2% of the cement mass, and then increased by
17.72% when reaching 6.4% admixture. While superplasticizing admixtures favored a
premature segregation of the free water when used up to 5.2% of the cement mass [2],
higher amounts of superplasticizers reduced that segregation and interacted better
with the RCWTB, allowing higher slump flows to be obtained [65].

• SCC was not achieved for 5% RTCWB, although the slump increased by 5.47% on
average with increasing percentages of admixtures. Superplasticizers reduced the
water consumed by cement during its hydration, which facilitated the relative displace-
ment and flow of the particles compositing the concrete [72], yet not being enough to
reach self-compactability.

• The addition of RCWTB reduced the workability of concrete in all cases, whether or not
self-compactability was reached. Thus, 5% RCWTB did not allow SCC to be developed
for admixture quantities for which SCC containing 4% RCWTB was successfully
produced. Furthermore, the W4 mixes showed lower slump flows than the W3 mixes
with exactly the same w/c ratio and admixture content (Figure 9). The GFRP fibers in
this residue hindered the displacement and flow of the coarse-aggregate particles [64].
In addition, RCWTB increased the specific surface area of the SCC components to be
covered by the cement paste [30].

The compressive strength of the W4 and W5 mixes measured at 7 days is shown in
Figure 12. Consistent with other groups of mixes analyzed in this study, the increase of the
admixture amount caused a reduction in the compressive strength. For the W4 mixes, a
reduction of 13.00% between admixture proportions of 4.0% and 6.4% was recorded, these
mixes exhibiting similar levels of compressive strength than the SCC W3 mixes (Figure 10).
In the W5 mixes, a reduction of 31.98% was measured from an admixture content of 4.6%
to an amount of 6.4%. In fact, the mixes with admixture amounts of 5.8% and 6.4% of
the cement mass did not reach the minimum value for use in structural applications of
25 MPa [52]. This negative effect of RCWTB on compressive strength was due to the
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replacement of the aggregates with weaker particles of balsa wood and polymers contained
in this residue, which also decreased the bond in the ITZ [69]. However, the loss of self-
compactability that occurred when adding 5% RCWTB to concrete could partly counteract
that phenomenon [73].
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3.5. Statistical Evaluation Through an ANOVA

The results obtained in this study were statistically validated according to an ANOVA
performed at a confidence level of 95%, as in other research in the literature [58]. This
procedure was used to define whether each of the three factors analyzed (RCWTB content,
w/c ratio and superplasticizing-admixture amount) significantly affected the two prop-
erties evaluated, slump flow and 7-day compressive strength. For this purpose, all the
experimental replicates were used [57], i.e., all the values of slump flow and compressive
strength recorded in the mixes that reached self-compactability, not only the average results.
Table 11 shows the results of such ANOVA. On the one hand, a p-value below 0.05 indicates
that the effect of a factor was significant for the SCC performance. On the other hand,
homogeneous groups indicate the values of the factors that statistically led to the same
behavior in the SCC.

Table 11. ANOVA results.

Property
p-Value Homogeneous Groups

RCWTB w/c ad. RCWTB w/c ad.

Slump flow 0.0000 0.0000 0.0000 0%, 1%, and 2%
3% and 4% None

2.2% and 2.8%
3.4% and 4.0%

4.6%, 5.2%, and 5.8%
Compressive strength 0.0000 0.0000 0.0000 2%, 3%, and 4% None 2.8%, 3.4%, and 4.0%

RCWTB: content of RCWTB; w/c: water/cement ratio; ad.: amount of superplasticizing admixtures.

All three factors had a significant influence on the performance of SCC both in terms
of slump flow and compressive strength. These results therefore justified the need to
study the behavioral variations of SCC produced with different RCWTB contents and
changing w/c ratios and admixture contents, which has been addressed in this research.
The homogeneous groups also revealed interesting aspects:

• Each w/c ratio led to a different SCC behavior in terms of slump flow and com-
pressive strength, underscoring the importance of carefully controlling this design
parameter [74], especially when RCWTB is added.
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• The incorporation of RCWTB only affected the slump flow of the SCC in a relevant way
when it was added in a proportion equal to or higher than 3%. Over this threshold,
conventional SCC design was not valid due to the interposition of the GFRP fibers
in the flow of the rest of the SCC components [31]. In terms of compressive strength,
however, RCWTB amounts above 2% always led to equivalent performance.

• The superplasticizing-admixture content could be divided into three groups that led
to equivalent fresh behavior of the SCC. First, the admixture contents corresponding
to a conventional design (2.2% and 2.8%). Second, intermediate contents of 3.4% and
4.0%. Finally, high contents (4.6%, 5.2% and 5.8%). Conventional admixture contents
were adequate when adding up to 2% RCWTB, while the proportion of admixtures
had to be increased to values generally above 4.0% of the cement mass for RCWTB
contents of 3.0% or higher. It is common that the addition of wastes to SCC leads to
higher amounts of superplasticizers in the mix design to maintain flowability [63].
The levels of compressive strength were equivalent for admixture amounts between
2.8% and 4.0%.

3.6. MCDM Optmization

To conclude the study, the optimal w/c ratio and superplasticizing-admixture amount
for each RCWTB content level at which SCC was successfully produced, was determined.
The aim was to define the most adequate mix design to get a balanced flowability and
strength performance in SCC. For this purpose, a MCDM analysis was performed using
the TOPSIS algorithm, which is common in concrete optimization [59], and considering
the slump flow and the 7-day compressive strength as the decision factors. These two
factors were rated as equally important, so that each of them represented a 50% weight in
the decision.

The results obtained are shown in Figure 13, which aligned closely with all the aspects
discussed throughout the paper. On the one hand, the optimum w/c ratio when adding up
to 2% RCWTB to SCC was 0.45, while the optimum admixture content was 2.8% (Figure 13a).
Therefore, a conventional SCC design was valid up to the W2 mixes, the best option being
to maintain a low w/c ratio to avoid a high loss of compressive strength [51] and a high
enough admixture content to maximize flowability [63]. On the other hand, it was necessary
to use intermediate w/c ratios (0.50 in this case) to compensate for the negative effects of
the GFRP fibers on the flowability of the SCC for RCWTB contents from 3%. However,
this resulted in a decrease in compressive strength, so that the minimum admixture con-
tents that allowed self-compactability to be achieved (4.0% for 3% RCWTB and 4.6% for
4% RCWTB) were optimal to avoid excessive strength losses [75].
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4. Conclusions and Future Research Lines

The urgent need in the wind-energy sector to find a sustainable way to recycle wind-
turbine blades has led to the exploration of various possibilities to repurpose this waste
material. This research introduces a non-selective crush and sieve of wind-turbine blades
to generate Raw-Crushed Wind-Turbine Blade (RCWTB), which contains a high proportion
of GFRP fibers but also particles of balsa wood and different polymers. Such waste can be
incorporated in Self-Compacting Concrete (SCC). The research is focused on defining an
SCC design that yields proper flowability and compressive strength when incorporating
this waste. This research dimension has been addressed in this paper, the key conclusions
regarding the design of SCC incorporating RCWTB being the following:

• Increasing the water/cement (w/c) ratio was necessary to achieve self-compactability
with higher RCWTB contents. A w/c ratio of 0.45 and 0.50 was adequate for up to
2% RCWTB, while for higher contents, a 0.50 w/c ratio was required. A w/c ratio of
0.55 caused premature segregation of SCC.

• Higher proportions of superplasticizers were needed to achieve self-compactability
with larger RCWTB contents. The effectiveness of conventional amounts of admixtures
decreased at high RCWTB levels. An admixture content of 2.8% of the cement mass is
recommended up to 2% RCWTB, and 4–6% for higher RCWTB amounts.

• Compressive strength decreased with increased RCWTB due to the presence of weak
balsa-wood and polymer particles, and increasing w/c ratios and admixture propor-
tions. However, a minimum strength of 25 MPa was always achieved, suitable for
structural applications such as slabs, beams, pavements, and precast elements, among
others, according standards [47].

• Following a multi-criteria decision-making analysis, the optimal w/c ratio was 0.45
for up to 2% RCWTB, and 0.50 for higher contents. The optimal admixture content
was 2.8% of the cement mass up to 2% RCWTB, 4.0% for 3% RCWTB, and 4.6% for
4% RCWTB.

• SCC could not be developed with 5% RCWTB, even with admixture amounts up to
6.4%. The irregular shape and surface roughness of balsa-wood and polymer particles,
as well as the GFRP fibers interfered with the flow of the other components, which
could not be counterbalanced by adjusting the w/c ratio and admixture content.

Overall, it is determined that the addition of RCWTB to SCC is possible through
a careful mix design, which depends on the percentage of waste incorporated into the
concrete mix. This approach enables a balance between an adequate slump flow and a
proper compressive strength required for structural use. However, the authors suggest that
further research steps are needed for a comprehensive evaluation performance of SCC with
RCWTB produced following the key aspects of design found in this research:

• First of all, it would be necessary to evaluate the passing ability of the SCC mixes
produced. For this, it is not enough with an adequate flowability [76], but also an
adequate segregation resistance that guarantees the cohesion of the mixture when
flowing [77], and an adequate packing structure that is capable of properly dragging
all the aggregate particles of the SCC [78]. In this way, the proportion of aggregate
fines could be accurately adjusted according to fresh requirements [77], while not
affecting and even improving the mechanical performance of SCC [79–81]. Thus, an
SCC containing RCWTB that would be valid for a wide range of applications could be
developed from the point of view of the fresh performance.

• Second, an overall analysis of the mechanical, durability, environmental, including tox-
icity, and economic performance of SCC would be needed. In this way, it is guaranteed
that the performance of SCC containing RCWTB is adequate in all performance di-
mensions [37], not only in terms of fresh behavior and compressive strength, although
it is the basic strength property of concrete [51].
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• Multi-criteria optimization could then be conducted by accounting all the properties of
SCC [58,59]. Thus, the optimal RCWTB content in SCC could be defined, point from which
the analysis of real elements manufactured with such type of mixes could be addressed [52].
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6. Özalp, F.; Yilmaz, H.D.; Kara, M.; Kaya, Ö.; Şahin, A. Effects of Recycled Aggregates from Construction and Demolition Wastes

on Mechanical and Permeability Properties of Paving Stone, Kerb and Concrete Pipes. Constr. Build. Mater. 2016, 110, 17–23.
[CrossRef]

7. Merli, R.; Preziosi, M.; Acampora, A.; Lucchetti, M.C.; Petrucci, E. Recycled Fibers in Reinforced Concrete: A Systematic Literature
Review. J. Clean. Prod. 2020, 248, 119207. [CrossRef]

8. Habibi, A.; Ghomashi, J. Development of an Optimum Mix Design Method for Self-Compacting Concrete Based on Experimental
Results. Constr. Build. Mater. 2018, 168, 113–123. [CrossRef]
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