
O

S
J
U

A

K
S
P
S
C
R

C

S

1

t

h
R

SoftwareX 29 (2025) 102024

A
2

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

riginal software publication

SLearn: A Semi-Supervised Learning library for Python
osé L. Garrido-Labrador ∗, Jesús M. Maudes-Raedo, Juan J. Rodríguez, César I. García-Osorio
niversidad de Burgos, Escuela Politécnica Superior, Avd. Cantabria s/n, 09006, Burgos, Spain

R T I C L E I N F O

eywords:
emi-supervised learning
ython library
elf-training
o-training
estricted set classification

A B S T R A C T

SSLearn is an open-source Python-based library that advances semi-supervised learning (SSL) with a focus
on wrapper algorithms and restricted set classification (RSC), a novel paradigm. It fosters innovation by
allowing researchers to modify methods or create new ones, facilitating access to state-of-the-art algorithms
and comparative studies. As the only library incorporating RSC for constrained classification, SSLearn fills an
important gap in SSL tools. Fully compatible with Scikit-Learn, it integrates seamlessly into research workflows,
lowering the barrier to entry to SSL and catalyzing its adoption in diverse domains. This makes SSLearn a
critical resource for advancing SSL research and applications.
ode metadata

Current code version 1.0.5.3
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-24-00323
Permanent link to Reproducible Capsule https://colab.research.google.com/drive/1wKSz-

f7N4elqQwz_phrWXDrf3lRqaD6s#offline=true&sandboxMode=true
Legal Code License BSD 3-Clause
Code versioning system used git
Software code languages, tools, and services used Python
Compilation requirements, operating environments & dependencies Python ≥ 3.8, joblib ≥ 1.2.0, numpy ≥ 1.23.3, pandas ≥ 1.4.3, scikit-learn ≥ 1.2.0,

scipy ≥ 1.10.1, statsmodels ≥ 0.13.2
If available Link to developer documentation/manual https://jlgarridol.github.io/sslearn/sslearn.html
Support email for questions jlgarrido@ubu.es

oftware metadata

Current software version 1.0.5.3
Permanent link to executables of this version https://pypi.org/project/sslearn/
Permanent link to Reproducible Capsule https://colab.research.google.com/drive/1wKSz-

f7N4elqQwz_phrWXDrf3lRqaD6s#offline=true&sandboxMode=true
Legal Software License BSD 3-Clause
Computing platforms/Operating Systems GNU/Linux, Windows, macOS
Installation requirements & dependencies numpy, pandas, scikit-learn, scipy, statsmodels, joblib
If available, link to user manual - if formally published include a reference to the
publication in the reference list

https://jlgarridol.github.io/sslearn/sslearn.html

Support email for questions jlgarrido@ubu.es
. Motivation and significance

Semi-supervised machine learning (SSL) is a data mining technique
hat has been with us for almost three decades [1]. Despite its age, it

∗ Corresponding author.
E-mail address: jlgarrido@ubu.es (José L. Garrido-Labrador).

has only recently become more accessible due to the availability of code
libraries containing a variety of SSL algorithms.

This type of machine learning is concerned with the combination of
labeled (supervised) instances with unlabeled (unsupervised) instances.
ttps://doi.org/10.1016/j.softx.2024.102024
eceived 21 June 2024; Received in revised form 2 December 2024; Accepted 17 D
vailable online 7 January 2025
352-7110/© 2025 The Authors. Published by Elsevier B.V. This is an open access a
ecember 2024

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/softx
https://www.elsevier.com/locate/softx
https://github.com/ElsevierSoftwareX/SOFTX-D-24-00323
https://colab.research.google.com/drive/1wKSz-f7N4elqQwz_phrWXDrf3lRqaD6s#offline=true&sandboxMode=true
https://colab.research.google.com/drive/1wKSz-f7N4elqQwz_phrWXDrf3lRqaD6s#offline=true&sandboxMode=true
https://jlgarridol.github.io/sslearn/sslearn.html
mailto:jlgarrido@ubu.es
https://pypi.org/project/sslearn/
https://colab.research.google.com/drive/1wKSz-f7N4elqQwz_phrWXDrf3lRqaD6s#offline=true&sandboxMode=true
https://colab.research.google.com/drive/1wKSz-f7N4elqQwz_phrWXDrf3lRqaD6s#offline=true&sandboxMode=true
https://jlgarridol.github.io/sslearn/sslearn.html
mailto:jlgarrido@ubu.es
mailto:jlgarrido@ubu.es
https://doi.org/10.1016/j.softx.2024.102024
https://doi.org/10.1016/j.softx.2024.102024
http://creativecommons.org/licenses/by/4.0/

José L. Garrido-Labrador et al.

t
d
e
i

s

r
a
o

a
s

c
i
e

i
r
T
r
f
p

s

p
i
f
d
s

d

B
s
l

m
s

i
t
m

f

l

S

b
g
e

SoftwareX 29 (2025) 102024
This can be done either to create predictive models (inductive) or
o extend the labels from the labeled set to the unlabeled set (trans-
uctive) [2]. Combining both types of data can improve models by
xploiting the patterns of all data combined with the classes of a few
nstances [3]. Furthermore, this approach can reduce the cost of the

process of labeling all data [4].
Faced with the challenge of embarking on an SSL research project,

we encountered the difficulty of lacking the tools to experiment with
tate-of-the-art SSL algorithms. For this reason, SSLearn (semi-super

vised learning library), a Python-based open-source code library in-
spired by Scikit-Learn [5,6], has been designed with the aim of con-
tributing to the scientific community by offering a collection of al-
eady implemented algorithms. This allows for the comparison of new
lgorithms as they emerge with those representing the current state-
f-the-art. Moreover, being an open-source library, it promotes the

modification of existing algorithms to create new ones without the need
to start from scratch.

The initial versions of SSLearn have concentrated on wrapper algo-
rithms, which are a type of semi-supervised learning method. These
lgorithms build models using a supervised learning algorithm as a
tarting point and then incorporate new labeled instances from the

unlabeled set in an iterative process. The most relevant methods from
the literature have been incorporated into SSLearn [7,8].

Finally, this library incorporates algorithms for restricted set classifi-
ation (RSC) problems, which represent a novel data mining paradigm
ntroduced by Kuncheva et al. [9]. This paradigm is particularly rel-
vant in situations where the objects to be classified are neither in-

dependent nor identically distributed, which is a common assumption
n traditional classification tasks. In contrast, RSC addresses specific
estrictions on the number of objects that can belong to each class.
his paradigm, although novel, has already been the subject of previous
esearch, resulting in the development of semi-supervised algorithms
or this type of problem [10]. In order to support these new methods
resented in a library, they have been incorporated into SSLearn.

1.1. Related works

There are other data mining software solutions that employ SSL.
The most notable include three: two Python libraries and one desktop
oftware in Java. LAMDA-SSL [11] is arguably the most comprehensive

Python library for SSL, with a primary focus on image processing. It
encompasses a total of 30 algorithms, the majority of which are intrinsi-
cally semi-supervised or related to semi-supervised preprocessing. The
rimary distinction between the two is that the work presented here
ncludes only four wrapper algorithms, whereas SSLearn is currently
ocused exclusively on wrapper algorithms and includes a total of ten
ifferent algorithms. It is important to note that wrapper algorithms
upport any type of supervised classifier, including trees, neighbors,

deep learning, etc.
On the other hand, Scikit-Learn [5] stands out as the main Python

data mining library, although it only includes three SSL algorithms.
The Scikit-Learn API [6] has served as a model for the development of
SSLearn. And finally there is KEEL [12], which more than a library is a
ata mining tool similar to Weka [13] or Orange [14]. KEEL is written

in Java and supports a wide variety of machine learning algorithms,
including some specific wrapper SSL algorithms. This was the tool used
by Triguero et al. [7] in a review paper about SSL.

A comparison between all of these software products is in the
Table 1

2. Software description

Designed as a free Python library (open source under the 3-Clause
SD license), SSLearn provides a variety of SSL algorithms as well as a
et of tools for data set manipulation. It is a tool designed for machine
earning researchers engaged in semi-supervised data analysis and for
2
Table 1
Comparison between the related works and SSLearn. Wrappers and RSC are the
previously mentioned, where SSLearn focuses. Deep learning SSL refers to algorithms
that only use deep learning techniques. Other refers to a wide range of semi-supervised
algorithms (graph-based, generative, maxim-margin, etc.).

SSLearn LAMDA-SSL Scikit-Learn KEEL

Year 2024 2022 2024 2018
Type Library Library Library GUI App
License BSD 3-Clause MIT BSD 3-Clause GPLv3
Language Python Python Python Java
Wrapper algorithms 10 4 1 12
RSC for SSL 2 0 0 0
Deep learning SSL 0 18 0 0
Other SSL 0 8 2 0

the practitioners who need a set of semi-supervised learning algorithms
ready to be used in Python.

In the context of knowledge discovery and data mining (KDD), the
odules and functionalities of SSLearn are distributed across multiple

teps of the mentioned process. Fig. 1 illustrates the location of the
primary algorithms. All these algorithms and modules will be better
explained in their respective sections.

The current version of the library provides a solid foundation for
semi-supervised learning by including some of the most cited and
nfluential algorithms in the field. At present, these methods are limited
o those that are classification oriented and come from research that is
ore than a decade old. This time lag is deliberately intended to focus

on well-established techniques, and therefore does not include semi-
supervised regression, clustering, unbalanced or multi-label methods,
or deep learning methods. Although tools such as grid search and multi-
class methods are not yet implemented, these features are planned for
future updates. The library does not currently include example datasets,
but it does include sufficient functionality to import semi-supervised
datasets from the main SSL tools.

2.1. Data sets manipulation

The library includes tools for reading and writing SSL data sets,
ocusing on CSV and .dat files [15] (a version of KEEL’s .arff

files1), along with a couple of functions for randomly converting su-
pervised data sets into SSL data sets. These algorithms are particu-
arly useful for experimentation. They are included in the submodules
sslearn.datasets and sslearn.model_selection.

Fig. 2 shows the KEEL .dat data file and Fig. 3 shows the same
file in CSV format. In extending the indications for SSL provided by
cikit-Learn, instances whose label is shown as −1 are considered

unlabeled. In KEEL, this is designated as "unlabeled’’. The data loading
and manipulation functions provided by SSLearn are compatible with
−1.

2.2. Wrappers algorithms

The library includes ten wrapper-type algorithms for SSL, two self-
training algorithms, and eight co-training algorithms. All algorithms
follow the same design as those in Scikit-Learn, with default settings
ased on their original academic publications. These algorithms are
rouped under the sslearn.wrapper module and are designed to
xtend the Scikit-Learn API [6]. The class diagrams showing inheritance

relationships for these algorithms are shown in Figs. 4 and 5.
A brief summary of each of the wrapper algorithms implemented in

the library is provided below:

1 So it is possible to access all the data sets already prepared for SSL
experimentation available at https://sci2s.ugr.es/SelfLabeled.

https://sci2s.ugr.es/SelfLabeled

José L. Garrido-Labrador et al. SoftwareX 29 (2025) 102024
Fig. 1. KDD workflow comprises the principal algorithms and modules. The datasets module and the model_selection module are included in the data selection step,
while the subview module and the FakeProbaClassifier and OneVsRestSSLClassifier classes are part of the transformation step. Finally, the restricted and
wrapper modules are included in the data mining step.
Fig. 2. KEEL SSL data set example.
Fig. 3. CSV SSL data set example.
• SelfTraining [16] iteratively retrains a classifier, adding at each
iteration those instances for which the confidence in the assigned
label is above a given threshold, until the specified iteration limit
is reached.

• Setred [17] is similar to SelfTraining but with a rejection step,
filtering out potentially noisy predictions based on the neighbor-
hood of the instances and statistical significance.

• CoTraining [18,19] utilizes two classifiers on different views of
the dataset, enlarging each other’s labeled set based on accep-
tance criteria over several iterations.
3
• CoTrainingByCommittee [20] uses a committee of classifiers to
label new instances by ensemble voting, ensuring class balance
across multiple iterations.
It uses multiple classifiers to label instances where there is ma-
jority agreement, updating labels only if no increase in errors is
detected.

• DemocraticCoLearning [21] uses multiple classifiers to label
instances where there is majority agreement, updating labels only
if no increase in errors is detected.

José L. Garrido-Labrador et al.

r
c
a
c
a

s
m
a
t
a
m
m
u
p
p
a
o
f
d

a
t
d
g
l
a

c

d

C

SoftwareX 29 (2025) 102024
Fig. 4. Class diagram showing inheritance relationships diagram for the Self-Training
algorithms in the wrapper module.

• Rasco [22] trains classifiers on random subspaces, updating mod-
els with the most probable classes while keeping class ratios
consistent.

• RelRasco [23], which is similar to Rasco, but subspaces compete
for the best mutual information [24], selecting those with the
highest score.

• CoForest [25] is an adaptation of Random Forest for SSL which
trains trees with bootstrapping, using thresholds to maintain pre-
diction consistency.

• TriTraining [26] uses the predictions of three classifiers, adding
to each classifier’s training set those instances where the other
two classifiers agree on the predicted labels (but also considering
whether adding the new instances offsets any noise that may be
added).

• DeTriTraining [27] is like TriTraining but uses clustering and
nearest neighbors to refine labels, reassigning clusters based on
majority class..

2.3. Restricted set classification

Classification algorithms with constraints have also been incorpo-
ated into the sslearn.restricted module. This type of classifi-
ation is based on the relationships between instances, such that there
re instances that must share the same class, known as ‘‘must-link’’
onstraints, and instances that must not share the same class, known
s ‘‘cannot-link’’ constraints [9].

The algorithms are the following:

• WhoIsWhoClassifier [28] uses ‘‘cannot-link’’ constraints to
prevent instances that cannot share a label from being assigned
the same class.

• probability_fusion [10] trains a classifier with ‘‘must-
link’’ and ‘‘cannot-link’’ constraints, averaging probabilities for
linked instances and preventing shared labels for non-linkable
ones.

• feature_fusion [10], similar to probability_fusion, but aver-
ages features of linked instances instead of probabilities to ensure
shared class assignments.
4
Constraints are represented as lists or dictionaries, where ‘‘must-
link’’ and ‘‘cannot-link’’ are set. In the case of lists, each value repre-
sents a group (i.e., ‘‘must-link’’ and ‘‘cannot-link’’ sets of instances) of
instances and the index in it, to which instance it belongs. In the case
of dictionaries, each key represents the group, and the value, which
would be a collection, represents the indexes of the instances it affects.

The nature of the constraints depends on the problem, using as ex-
ample the work from Kuncheva et al. [10], focused on re-identifying an-
imals in video, ‘‘must-link’’ constraints represent instances that have an
important overlap to each other in consecutive frames, while ‘‘cannot-
link’’ on instances that belong to the same frame. A detailed example
can be found in the ‘‘Reproductive capsule’’.

2.4. Utilities

In addition to what has been presented, various utility tools are also
included.

Within sslearn.base, numerous classes and functions are de-
igned to serve as the solid found a limitation is that there are few
ethods and they are all classification-oriented, but this is actually
 consequence of having focused on the most relevant methods in
he literature (the papers where these methods were presented are
mong the first published, that is why they are the papers with the
ost citations). Example datasets are not included either, tion of the
odels. The function get_dataset separates the labeled from the
nlabeled set. The class FakedProbaClassifier implements the
redict_proba function for algorithms that do not have this im-
lementation, assigning a probability of 1 to the predicted class, thus
llowing its use by wrapper algorithms that require probabilities. More-
ver, the OneVsRestSSLClassifier adapts the Scikit-Learn class
or SSL data sets, ensuring that class -1 are not consider in the
istribution.

In sslearn.utils there are several functions available that
re used by the implemented algorithms and may also be useful
o others. safe_division prevents division by zero, confi-
ence_interval calculates confidence intervals as its name sug-
ests, choice_with_proportion ensures class ratio, calcu-
ate_prior_probability computes the distribution of classes,
nd mode identifies the majority class.

In sslearn.datasets there are functions to read and write
sv and dat.2

Lastly, sslearn.subview includes two classes, SubView-
Classifier and SubViewRegressor, which are model decora-
tors that allow training a base classifier with a particular view of the
ata defined during training.

3. Illustrative examples

In this section, we present two examples that demonstrate the main
features. In addition, the library documentation includes an example
for each classifier and algorithm.

In the first example, we show how to use a wrapper classifier, the
oForest, trained with the Iris data set and manipulated to only have

a 10% of labeled instances. Initially, a train/test split is performed
using the train_test_split function from Scikit-Learn, and the
StratifiedKFoldSS class is used to generate SSL data sets from
the training partition. Triguero et al. [7] introduced a distinction in the
calculation of metrics, referring to metrics on the unlabeled training
set as transductive and on new data as inductive. This distinction is
evident in the two score calculations, where in Scikit-Learn the score
corresponds to accuracy.

2 KEEL format based on Weka arff format.

José L. Garrido-Labrador et al.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

f
v
u
s
a

SoftwareX 29 (2025) 102024
Fig. 5. Class diagram showing inheritance relationships diagram for the Co-Training algorithms in the wrapper module.
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

w

from sklearn.datasets import load_iris
from sklearn.model_selection import

train_test_split
from sslearn.wrapper import CoForest
from sslearn.model_selection import

StratifiedKFoldSS

X, y = load_iris(return_X_y=True)
skf = StratifiedKFoldSS(n_splits=10)
10
X_train, X_test, y_train, y_test = \

train_test_split(X, y, test_size=.30)

transductive_acc = list()
inductive_acc = list()

for X_t, y_t, l_index, u_index in skf.split(
X_train, y_train):
coforest = CoForest(n_estimators=10).fit

(X_t, y_t)
X_u = X_train[u_index]
y_u = y_train[u_index]
transductive_acc.append(coforest.score(

X_u, y_u))
inductive_acc.append(coforest.score(

X_test, y_test))
In the second example, a DemocraticCoLearning classifier is

eatured, unique in that each base classifier is trained using a different
iew of data via the SubViewClassifier class. This enables the
ser to select which features each algorithm utilizes, with the under-
tanding that the wrapper will disseminate the same feature space to
ll of its base learners,3 in this case three.

In addition, data is loaded directly from a KEEL data set file,4 incor-
porating the training set which already includes unlabeled instances,

3 It is crucial to highlight that numerous wrappers generate their own
subviews, which impairs the functionality of the SubView classes.

4 https://sci2s.ugr.es/keel/datasets.php
5
and the test set for evaluation.

from sklearn.tree import
DecisionTreeClassifier as DT

from sslearn.datasets import read_keel
from sslearn.subview import

SubViewClassifier
from sslearn.wrapper import

DemocraticCoLearning

X_train, y_train = read_keel("
movement_libras−ssl10−10−1tra.dat")

X_test, y_test = read_keel("movement_libras−
ssl10−10−1tst.dat")

view1 = SubViewClassifier(DT(), "abcissa",
mode="include")

Only the features which has abcissa in the
name

view2 = SubViewClassifier(DT(), "ordinate",
mode="include")

Only the features which has ordinate in
the name

view3 = SubViewClassifier(DT(), "
^[2−4][0−3].∗", mode="regex")

The features which start with 20 to 23, 30
to 33 and 40 to 43

tri = DemocraticCoLearning(base_estimator=[
view1,view2,view3])

tri.fit(X_train, y_train)
tri.score(X_test, y_test)

Finally, we have included a comparative example of the different
rappers included in the library using the breast-cancer dataset.5 All

of them trained with 10, 20, 30 and 40 percent labeling, using 𝑘 = 10
cross-validation to evaluate performance. The accuracy results are in

5 The code is available in the reproducible capsule.

https://sci2s.ugr.es/keel/datasets.php
https://colab.research.google.com/drive/1wKSz-f7N4elqQwz_phrWXDrf3lRqaD6s#sandboxMode=true&scrollTo=L4vJsnE0AwVE
https://colab.research.google.com/drive/1wKSz-f7N4elqQwz_phrWXDrf3lRqaD6s#sandboxMode=true&scrollTo=L4vJsnE0AwVE
https://colab.research.google.com/drive/1wKSz-f7N4elqQwz_phrWXDrf3lRqaD6s#sandboxMode=true&scrollTo=L4vJsnE0AwVE
https://colab.research.google.com/drive/1wKSz-f7N4elqQwz_phrWXDrf3lRqaD6s#sandboxMode=true&scrollTo=L4vJsnE0AwVE
https://colab.research.google.com/drive/1wKSz-f7N4elqQwz_phrWXDrf3lRqaD6s#sandboxMode=true&scrollTo=L4vJsnE0AwVE
https://colab.research.google.com/drive/1wKSz-f7N4elqQwz_phrWXDrf3lRqaD6s#sandboxMode=true&scrollTo=L4vJsnE0AwVE
https://colab.research.google.com/drive/1wKSz-f7N4elqQwz_phrWXDrf3lRqaD6s#sandboxMode=true&scrollTo=L4vJsnE0AwVE
https://colab.research.google.com/drive/1wKSz-f7N4elqQwz_phrWXDrf3lRqaD6s#sandboxMode=true&scrollTo=L4vJsnE0AwVE
https://colab.research.google.com/drive/1wKSz-f7N4elqQwz_phrWXDrf3lRqaD6s#sandboxMode=true&scrollTo=L4vJsnE0AwVE
https://colab.research.google.com/drive/1wKSz-f7N4elqQwz_phrWXDrf3lRqaD6s#sandboxMode=true&scrollTo=L4vJsnE0AwVE
https://colab.research.google.com/drive/1wKSz-f7N4elqQwz_phrWXDrf3lRqaD6s#sandboxMode=true&scrollTo=L4vJsnE0AwVE
https://colab.research.google.com/drive/1wKSz-f7N4elqQwz_phrWXDrf3lRqaD6s#sandboxMode=true&scrollTo=L4vJsnE0AwVE
https://colab.research.google.com/drive/1wKSz-f7N4elqQwz_phrWXDrf3lRqaD6s#sandboxMode=true&scrollTo=L4vJsnE0AwVE
https://colab.research.google.com/drive/1wKSz-f7N4elqQwz_phrWXDrf3lRqaD6s#sandboxMode=true&scrollTo=L4vJsnE0AwVE
https://colab.research.google.com/drive/1wKSz-f7N4elqQwz_phrWXDrf3lRqaD6s#sandboxMode=true&scrollTo=L4vJsnE0AwVE
https://colab.research.google.com/drive/1wKSz-f7N4elqQwz_phrWXDrf3lRqaD6s#sandboxMode=true&scrollTo=L4vJsnE0AwVE
https://colab.research.google.com/drive/1wKSz-f7N4elqQwz_phrWXDrf3lRqaD6s#sandboxMode=true&scrollTo=L4vJsnE0AwVE
https://colab.research.google.com/drive/1wKSz-f7N4elqQwz_phrWXDrf3lRqaD6s#sandboxMode=true&scrollTo=L4vJsnE0AwVE
https://colab.research.google.com/drive/1wKSz-f7N4elqQwz_phrWXDrf3lRqaD6s#sandboxMode=true&scrollTo=L4vJsnE0AwVE

José L. Garrido-Labrador et al.

c

e

l

g
d
c

a
d

t

n
o
r

l

A
s
a

e

m
c
s

M
S
&

S

J

SoftwareX 29 (2025) 102024
Table 2
Mean accuracy of a 10-fold cross validation with breast-cancer dataset for 10, 20, 30
and 40 percent of label rate.

10% 20% 30% 40%

Self-Training 89.99% 90.52% 91.05% 89.81%
Setred 88.76% 90.86% 90.86% 91.04%
Co-Training 90.69% 92.27% 91.75% 91.75%
Co-Training by Committee 91.22% 92.62% 91.75% 91.75%
Democratic Co-Learning 91.92% 92.80% 93.68% 94.20%
RASCO 90.86% 91.74% 94.38% 93.33%
RelRASCO 90.87% 93.15% 92.45% 93.50%
CoForest 91.39% 92.80% 92.63% 92.45%
TriTraining 91.56% 90.68% 91.04% 91.75%
DeTriTraining 85.24% 85.06% 85.06% 85.24%

Table 2.

4. Impact

Semi-supervised learning (SSL) is a powerful paradigm within ma-
hine learning [1,2], bridging the gap between supervised and unsu-

pervised learning by leveraging labeled and unlabeled data. One of
the main advantages of SSL is its ability to significantly reduce the
dependence on large labeled data sets, which are often expensive, time-
consuming and labor-intensive to obtain. In many real-world scenarios,
acquiring a large amount of labeled data is impractical, while unla-
beled data is abundant and easily accessible [4]. SSL algorithms make
ffective use of this unlabeled data, allowing us to obtain models that

in many cases can improve the performance of models that only use
abeled data.

Another important advantage of SSL is its potential to improve the
eneralization and robustness of models. By incorporating unlabeled
ata into the learning process, SSL can help models capture a more
omplete understanding of the underlying data distribution.

The library presented here makes it easy to quickly exploit all these
dvantages by providing a rich set of wrapper algorithms specifically
esigned to take advantage of the full potential of SSL, eliminating the

complex task of having to understand the details of the algorithms in
the literature and avoiding having to implement them. Furthermore,
since the library is fully compatible with Scikit-Learn, it is easier to
incorporate the algorithms provided into the search workflows for the
best model, semi-supervised or supervised, to solve the problems at
hand.

To illustrate the potential impact of such a library, it is noteworthy
hat the number of proposed methods has increased substantially in

ensembles alone over the past decade. Indeed, more than 120 new tech-
niques have been introduced in the literature. Additionally, more than
400 articles have been published in indexed journals exploring the use
of ensembles in semi-supervised learning [29]. The majority of these
ovel methodologies lack both code availability and incorporation into
pen-source libraries. In addition, SSLearn is presented as a collabo-
ative platform that adheres to the principles of free software [30]. It

encourages the incorporation of new methods into its library.
Being open source, it facilitates the addition of new features, allows

researchers to study the code of the algorithms they wish to use,
and allows adaptation to their specific needs. On this last point, this
software can serve as the foundation for new SSL algorithms, inspired
by those already implemented, as exemplified by Barbero-Aparicio
et al. [31], who modified the TriTraining algorithm to function
in regression contexts in a work on protein fitness landscape analysis.

It should be noted that while there are other open source libraries
and desktop software for semi-supervised learning, SSLearn incorpo-
rates a number of methods into the Scikit-learn ecosystem that are not
grouped in another library and highlight again that this is the only
library that incorporates restricted set classification techniques for SSL.

Moreover, this library has already been utilized in other studies such
as Stress Stimuli in Learning Contexts [32] and the re-identification
6
of animals by video [10]. Despite the library’s recent inception, its
influence is already evident, although its use is not yet sufficiently
widespread.

5. Conclusions

The SSLearn library, presented in this article, has been designed
to provide tools for research in SSL within the Python ecosystem. Fol-
owing the design guidelines of Scikit-Learn [6] and the philosophy of

open-source software, it offers the research community the opportunity
to review the code itself and contribute new algorithms, suggestions,
bug fixes, etc.

Deployment is available on the Python Package Index (PyPI) and
includes documentation for all algorithms.

While it is not the first Python library for SSL, most algorithms
are not available in any other library compatible with Scikit-Learn.

dditionally, various tools are offered to manipulate data, generate SSL
ets from supervised data sets, support for KEEL data set format, and
ll algorithms are compatible with both Numpy and Pandas.

As future lines of development, the objective is to continue the
xpansion of this library by incorporating new semi-supervised wrap-

per methods, in addition to those employed in other semi-supervised
algorithmic families. Furthermore, the incorporation of tools for the

anipulation of semi-supervised sets, such as the adaptation of multi-
lass strategies (One-vs-One or Error-Correcting Output-Code), and the
upport of new file formats, is also envisaged.

CRediT authorship contribution statement

José L. Garrido-Labrador: Writing – original draft, Software,
Methodology, Investigation, Data curation, Conceptualization. Jesús
. Maudes-Raedo: Writing – review & editing, Validation,

upervision, Software. Juan J. Rodríguez: Writing – review
 editing, Software, Resources, Project administration, Funding

acquisition, Conceptualization. César I. García-Osorio: Writing
– review & editing, Supervision, Software, Resources, Project
administration, Investigation, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work was supported through the Junta de Castilla 𝑦 León (JCyL)
(regional government) under project BU055P20 (JCyL/FEDER, UE), the
panish Ministry of Science and Innovation under project PID2020-

119894GB-I00 co-financed through European Union FEDER funds, and
project TED2021-129485B-C43 funded by MCIN/AEI/ 10.13039/501
100011033 and the European Union NextGenerationEU/PRTR. J.L.
Garrido-Labrador is supported through Consejería de Educación of the
unta de Castilla 𝑦 León and the European Social Fund through a

pre-doctoral grant EDU/875/2021 (Spain). We express our gratitude
to G. Lucas-Pérez for his assistance with the documentation, to R.
Marticorena-Sanchez, J.A. Barbero-Aparicio, A. Olivares-Gil, and J.M.
Ramírez-Sanz for their bug reports and suggestions for functionality,
and to C. López-Nozal for his advice on this article.

José L. Garrido-Labrador et al. SoftwareX 29 (2025) 102024
References

[1] van Engelen JE, Hoos HH. A survey on semi-supervised learning. Mach Learn
2020;109(2):373–440. http://dx.doi.org/10.1007/s10994-019-05855-6.

[2] Chapelle O, Schölkopf B, Zien A, editors. Semi-Supervised Learning. The MIT
Press; 2006, http://dx.doi.org/10.7551/mitpress/9780262033589.001.0001.

[3] Singh A, Nowak R, Zhu J. Unlabeled data: Now it helps, now it doesn’
t. In: Koller D, Schuurmans D, Bengio Y, Bottou L, editors. Advances
in neural information processing systems, vol. 21. Curran Associates, Inc.;
2008, p. 1513–20, URL https://proceedings.neurips.cc/paper_files/paper/2008/
file/07871915a8107172b3b5dc15a6574ad3-Paper.pdf.

[4] Rodríguez Díez JJ. Aprendizaje Automático en ciencia de datos. 2023,
URL https://www.ubu.es/sites/default/files/portal_page/files/leccion_inaugural_
2023-2024.pdf.

[5] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al.
Scikit-learn: Machine learning in Python. J Mach Learn Res 2011;12:2825–30.

[6] Buitinck L, Louppe G, Blondel M, Pedregosa F, Mueller A, Grisel O, et al. API
design for machine learning software: experiences from the scikit-learn project.
In: ECML PKDD workshop: languages for data mining and machine learning.
2013, p. 108–22.

[7] Triguero I, García S, Herrera F. Self-labeled techniques for semi-supervised learn-
ing: Taxonomy, software and empirical study. Knowl Inf Syst 2013;42(2):245–84.
http://dx.doi.org/10.1007/s10115-013-0706-y.

[8] Ning X, Wang X, Xu S, Cai W, Zhang L, Yu L, et al. A review of research on
co-training. In: Concurrency and computation: practice and experience. Wiley
Online Library; 2021, e6276. http://dx.doi.org/10.1002/cpe.6276.

[9] Kuncheva LI, Rodríguez JJ, Jackson AS. Restricted set classification: Who is
there? Pattern Recognit 2017;63. http://dx.doi.org/10.1016/j.patcog.2016.08.
028.

[10] Kuncheva LI, Garrido-Labrador JL, Ramos-Pérez I, Hennessey SL, Rodríguez JJ.
Semi-supervised classification with pairwise constraints: A case study on animal
identification from video. Inf Fusion 2024;74:101994. http://dx.doi.org/10.
1016/j.inffus.2023.102188.

[11] Jia L-H, Guo L-Z, Zhou Z, Li Y-F. LAMDA-SSL: Semi-supervised learning
in Python. 2022, http://dx.doi.org/10.48550/arXiv.2208.04610, arXiv preprint
arXiv:2208.04610.

[12] Alcalá-Fdez J, Sánchez L, García S, del Jesus MJ, Ventura S, Garrell JM, Otero J,
Romero C, Bacardit J, Rivas VM, Fernández JC, Herrera F. KEEL: a software
tool to assess evolutionary algorithms for data mining problems. Soft Comput
2008;13(3):307–18. http://dx.doi.org/10.1007/s00500-008-0323-y.

[13] Frank E, Hall MA, Holmes G, Kirkby R, Pfahringer B, Witten IH. Weka: A machine
learning workbench for data mining.. In: Data mining and knowledge discovery
handbook: a complete guide for practitioners and researchers. Berlin: Springer;
2005, p. 1305–14.

[14] Demšar J, Curk T, Erjavec A, Gorup Č, Hočevar T, Milutinovič M, et al.
Orange: Data mining toolbox in Python. J Mach Learn Res 2013;14:2349–53,
URL http://jmlr.org/papers/v14/demsar13a.html.

[15] Derrac J, Garcia S, Sanchez L, Herrera F. Keel data-mining software tool: Data
set repository, integration of algorithms and experimental analysis framework. J
Mult Valued Logic Soft Comput 2015;17:255–87.

[16] Yarowsky D. Unsupervised word sense disambiguation rivaling supervised meth-
ods. In: Proceedings of the 33rd annual meeting on association for computational
linguistics. Association for Computational Linguistics; 1995, p. 189–96. http:
//dx.doi.org/10.3115/981658.981684.
7
[17] Li M, Zhou Z-H. SETRED: Self-training with editing. In: Ho TB, Cheung D,
Liu H, editors. Advances in knowledge discovery and data mining. Lecture
notes in computer science, Springer; 2005, p. 611–21. http://dx.doi.org/10.
1007/11430919_71.

[18] Blum A, Mitchell T. Combining labeled and unlabeled data with co-training. In:
Proceedings of the eleventh annual conference on computational learning theory.
1998, p. 92–100. http://dx.doi.org/10.1145/279943.279962.

[19] Han X-H, Chen Y-W, Ruan X. Multi-class co-training learning for object and scene
recognition. In: MVA. 2011, p. 67–70.

[20] Hady MFA, Schwenker F. Co-training by committee: A new semi-supervised
learning framework. In: 2008 IEEE international conference on data mining
workshops. 2008, p. 563–72. http://dx.doi.org/10.1109/ICDMW.2008.27.

[21] Zhou Y, Goldman S. Democratic co-learning. In: 16th IEEE international confer-
ence on tools with artificial intelligence. IEEE; 2004, p. 594–602. http://dx.doi.
org/10.1109/ICTAI.2004.48.

[22] Wang J, Luo S-w, Zeng X-h. A random subspace method for co-training. In: 2008
IEEE international joint conference on neural networks (IEEE world congress on
computational intelligence). IEEE; 2008, p. 195–200. http://dx.doi.org/10.1109/
IJCNN.2008.4633789.

[23] Yaslan Y, Cataltepe Z. Co-training with relevant random subspaces. Neuro-
computing 2010;73(10–12):1652–61. http://dx.doi.org/10.1016/j.neucom.2010.
01.018.

[24] Kraskov A, Stögbauer H, Grassberger P. Estimating mutual information. Phys Rev
E 2004;69:066138. http://dx.doi.org/10.1103/PhysRevE.69.066138.

[25] Li M, Zhou Z-H. Improve computer-aided diagnosis with machine learn-
ing techniques using undiagnosed samples. IEEE Trans Syst Man Cybern A
Syst Hum 2007;37(6):1088–98. http://dx.doi.org/10.1109/TSMCA.2007.904745,
Conference Name: IEEE Transactions on Systems, Man, and Cybernetics - Part
A: Systems and Humans.

[26] Zhou Z-H, Li M. Tri-training: exploiting unlabeled data using three classifiers.
IEEE Trans Knowl Data Eng 2005;17(11):1529–41. http://dx.doi.org/10.1109/
TKDE.2005.186.

[27] Deng C, Guo MZ. Tri-training and data editing based semi-supervised clustering
algorithm. In: MICAI 2006: Advances in artificial intelligence. Springer Berlin
Heidelberg; 2006, p. 641–51. http://dx.doi.org/10.1007/11925231_61.

[28] Kuncheva LI. Full-class Set classification using the Hungarian algorithm. Int
J Mach Learn Cybern 2010;1(1):53–61. http://dx.doi.org/10.1007/s13042-010-
0002-z.

[29] Garrido-Labrador JL, Serrano-Mamolar A, Maudes-Raedo J, Rodríguez JJ, García-
Osorio C. Ensemble methods and semi-supervised learning for information fusion:
A review and future research directions. Inf Fusion 2024;107:102310. http:
//dx.doi.org/10.1016/j.inffus.2024.102310.

[30] Raymond ES. The Cathedral and the Bazaar. Sebastopol, CA: O’Reilly Media;
1999.

[31] Barbero-Aparicio JA, Olivares-Gil A, Rodríguez JJ, García-Osorio C, Díez-
Pastor JF. Addressing data scarcity in protein fitness landscape analysis: A
study on semi-supervised and deep transfer learning techniques. Inf Fusion
2024;102:102035. http://dx.doi.org/10.1016/j.inffus.2023.102035.

[32] Ramírez-Sanz JM, Peña-Alonso HM, Serrano-Mamolar A, Arnaiz-González Á,
Bustillo A. Detection of stress stimuli in learning contexts of iVR environments.
In: De Paolis LT, Arpaia P, Sacco M, editors. Extended reality. Cham: Springer
Nature Switzerland; 2023, p. 427–40. http://dx.doi.org/10.1007/978-3-031-
43404-4_29.

http://dx.doi.org/10.1007/s10994-019-05855-6
http://dx.doi.org/10.7551/mitpress/9780262033589.001.0001
https://proceedings.neurips.cc/paper_files/paper/2008/file/07871915a8107172b3b5dc15a6574ad3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2008/file/07871915a8107172b3b5dc15a6574ad3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2008/file/07871915a8107172b3b5dc15a6574ad3-Paper.pdf
https://www.ubu.es/sites/default/files/portal_page/files/leccion_inaugural_2023-2024.pdf
https://www.ubu.es/sites/default/files/portal_page/files/leccion_inaugural_2023-2024.pdf
https://www.ubu.es/sites/default/files/portal_page/files/leccion_inaugural_2023-2024.pdf
http://refhub.elsevier.com/S2352-7110(24)00394-7/sb5
http://refhub.elsevier.com/S2352-7110(24)00394-7/sb5
http://refhub.elsevier.com/S2352-7110(24)00394-7/sb5
http://refhub.elsevier.com/S2352-7110(24)00394-7/sb6
http://refhub.elsevier.com/S2352-7110(24)00394-7/sb6
http://refhub.elsevier.com/S2352-7110(24)00394-7/sb6
http://refhub.elsevier.com/S2352-7110(24)00394-7/sb6
http://refhub.elsevier.com/S2352-7110(24)00394-7/sb6
http://refhub.elsevier.com/S2352-7110(24)00394-7/sb6
http://refhub.elsevier.com/S2352-7110(24)00394-7/sb6
http://dx.doi.org/10.1007/s10115-013-0706-y
http://dx.doi.org/10.1002/cpe.6276
http://dx.doi.org/10.1016/j.patcog.2016.08.028
http://dx.doi.org/10.1016/j.patcog.2016.08.028
http://dx.doi.org/10.1016/j.patcog.2016.08.028
http://dx.doi.org/10.1016/j.inffus.2023.102188
http://dx.doi.org/10.1016/j.inffus.2023.102188
http://dx.doi.org/10.1016/j.inffus.2023.102188
http://dx.doi.org/10.48550/arXiv.2208.04610
http://arxiv.org/abs/2208.04610
http://dx.doi.org/10.1007/s00500-008-0323-y
http://refhub.elsevier.com/S2352-7110(24)00394-7/sb13
http://refhub.elsevier.com/S2352-7110(24)00394-7/sb13
http://refhub.elsevier.com/S2352-7110(24)00394-7/sb13
http://refhub.elsevier.com/S2352-7110(24)00394-7/sb13
http://refhub.elsevier.com/S2352-7110(24)00394-7/sb13
http://refhub.elsevier.com/S2352-7110(24)00394-7/sb13
http://refhub.elsevier.com/S2352-7110(24)00394-7/sb13
http://jmlr.org/papers/v14/demsar13a.html
http://refhub.elsevier.com/S2352-7110(24)00394-7/sb15
http://refhub.elsevier.com/S2352-7110(24)00394-7/sb15
http://refhub.elsevier.com/S2352-7110(24)00394-7/sb15
http://refhub.elsevier.com/S2352-7110(24)00394-7/sb15
http://refhub.elsevier.com/S2352-7110(24)00394-7/sb15
http://dx.doi.org/10.3115/981658.981684
http://dx.doi.org/10.3115/981658.981684
http://dx.doi.org/10.3115/981658.981684
http://dx.doi.org/10.1007/11430919_71
http://dx.doi.org/10.1007/11430919_71
http://dx.doi.org/10.1007/11430919_71
http://dx.doi.org/10.1145/279943.279962
http://refhub.elsevier.com/S2352-7110(24)00394-7/sb19
http://refhub.elsevier.com/S2352-7110(24)00394-7/sb19
http://refhub.elsevier.com/S2352-7110(24)00394-7/sb19
http://dx.doi.org/10.1109/ICDMW.2008.27
http://dx.doi.org/10.1109/ICTAI.2004.48
http://dx.doi.org/10.1109/ICTAI.2004.48
http://dx.doi.org/10.1109/ICTAI.2004.48
http://dx.doi.org/10.1109/IJCNN.2008.4633789
http://dx.doi.org/10.1109/IJCNN.2008.4633789
http://dx.doi.org/10.1109/IJCNN.2008.4633789
http://dx.doi.org/10.1016/j.neucom.2010.01.018
http://dx.doi.org/10.1016/j.neucom.2010.01.018
http://dx.doi.org/10.1016/j.neucom.2010.01.018
http://dx.doi.org/10.1103/PhysRevE.69.066138
http://dx.doi.org/10.1109/TSMCA.2007.904745
http://dx.doi.org/10.1109/TKDE.2005.186
http://dx.doi.org/10.1109/TKDE.2005.186
http://dx.doi.org/10.1109/TKDE.2005.186
http://dx.doi.org/10.1007/11925231_61
http://dx.doi.org/10.1007/s13042-010-0002-z
http://dx.doi.org/10.1007/s13042-010-0002-z
http://dx.doi.org/10.1007/s13042-010-0002-z
http://dx.doi.org/10.1016/j.inffus.2024.102310
http://dx.doi.org/10.1016/j.inffus.2024.102310
http://dx.doi.org/10.1016/j.inffus.2024.102310
http://refhub.elsevier.com/S2352-7110(24)00394-7/sb30
http://refhub.elsevier.com/S2352-7110(24)00394-7/sb30
http://refhub.elsevier.com/S2352-7110(24)00394-7/sb30
http://dx.doi.org/10.1016/j.inffus.2023.102035
http://dx.doi.org/10.1007/978-3-031-43404-4_29
http://dx.doi.org/10.1007/978-3-031-43404-4_29
http://dx.doi.org/10.1007/978-3-031-43404-4_29

	SSLearn: A Semi-Supervised Learning library for Python
	Motivation and significance
	Related works

	Software description
	Data sets manipulation
	Wrappers algorithms
	Restricted set classification
	Utilities

	Illustrative examples
	Impact
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

