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Abstract14 

This study aimed to explore the non-volatile metabolomic variability of a large panel of strains (44) 15 

belonging to the Saccharomyces cerevisiae and Saccharomyces uvarum species in the context of the 16 

wine alcoholic fermentation. For the S. cerevisiae strains flor, fruit and wine strains isolated from 17 

different anthropic niches were compared. This phenotypic survey was achieved with a special focus on 18 

acidity management by using natural grape juices showing opposite level of acidity. A 1H NMR based 19 

metabolomics approach was developed for quantifying fifteen wine metabolites that showed important 20 

quantitative variability within the strains. Thanks to the robustness of the assay and the low amount of 21 

sample required, this tool is relevant for the analysis of the metabolomic profile of numerous wines. The 22 

S. cerevisiae and S. uvarum species displayed significant differences for malic, succinic, and pyruvic 23 

acids, as well as for glycerol and 2,3-butanediol production. As expected, S. uvarum showed weaker 24 

fermentation fitness but interesting acidifying properties. The three groups of S. cerevisiae strains 25 

showed different metabolic profiles mostly related to their production and consumption of organic acids. 26 

More specifically, flor yeast consumed more malic acid and produced more acetic acid than the other S. 27 

cerevisiae strains which was never reported before. These features might be linked to the ability of flor 28 

yeasts to shift their metabolism during wine oxidation.  29 
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1. Introduction 35 

Metabolic activities of microorganisms strongly impact the chemical composition of fermented 36 

products and modify their nutritional and organoleptic properties [1,2]. Thus, the quantification of 37 

chemical compounds in fermented goods is a critical step to understand the role of microbes and to 38 

control their development. In this context, wine alcoholic fermentation has been particularly well 39 

investigated, and many wine compounds were identified using GC-MS, LC-MS and NMR [3 6]. As 40 

widely reviewed [7 9], the yeast metabolism impacts the chemical composition of resulting wines with 41 

direct enological consequences. Although they broadly share the same metabolic pathways, yeast 42 

species and strains show a high variability in their metabolites production. Thus, yeast species involved 43 

in grape juice fermentation are characterized by specific metabolic signatures for primary metabolites 44 

[10,11], fermentative esters [12 14], and off-flavor compounds [15]. In mixed cultures, metabolic 45 

profiling is also useful for characterizing microbial interactions [16 18] that may impact wine 46 

complexity [19]. At the intra specific level, analytical chemistry methods are also decisive for driving 47 

yeast selection aiming to better control ethanol content [20], wine acidity [10,21], volatile thiols content 48 

[22] or fermentative esters production [13].  49 

The natural genetic variability of the species Saccharomyces cerevisiae [23] constitutes an important 50 

source of metabolomic variability that has been deciphered for volatile [24,25] and non-volatile 51 

compounds [26,27] by applying quantitative genetic. These studies required the use of analytical 52 

methods such as HPLC [28], enzymatic assays [26], targeted GC-MS [24] allowing the quantification, 53 

for large sample sizes of wine metabolites belonging to different chemical family. Alternatively, 54 

untargeted metabolomics approaches may be applied for quantifying hundreds of metabolic features 55 

able to discriminate the biochemical signature of few Saccharomyces cerevisiae strains during the 56 

alcoholic fermentation [29][5]. However, the exact identification of such discriminating compounds 57 

remains a chemical challenge [30].58 

In this context, the exploration of extracellular metabolomic variability of yeast strains during the 59 

alcoholic fermentation for different classes of compounds constitute a challenging task. A performing 60 

and versatile analytical technique to quantify yeast metabolites is the proton Nuclear Magnetic 61 

Resonance (1H NMR) spectroscopy [31,32]. The main 1H NMR spectroscopy assets are the simplicity 62 

of sample preparation and high reproducibility of the quantification. It is also possible to investigate a 63 

large range of metabolites belonging to different chemical families that are displayed on the same 64 

spectrum. This non-destructive technique also gives the opportunity to carry out several analyses on the 65 

same sample. NMR spectroscopy is quantitative since the signal intensity is directly proportional to the 66 

metabolite concentration and the number of nuclei in the molecule [33,34]. Despite its high potentiality 67 

to study fermented products, 1H NMR investigations are still scarce and face two major challenges [31]. 68 

First, the sensitivity of the technique is lower than mass spectrometry which explains that the latter is 69 

often preferred for non-targeted analyses. This issue can be addressed by applying a high number of 70 
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scans during the analysis, but this will extend the time required for the analysis. Secondly, peak overlaps 71 

from multiple metabolites pose major challenges. 2D NMR or supplementation with pure compounds 72 

of interest can be carried out to address this issue [35]. 73 

In the present study, we explored the metabolomic variability of different wine yeasts with a special 74 

focus on the management of wine acidity by malic acid. Indeed, the level of this organic acid tends to 75 

drastically decrease in grape juices due to climate change with important enological consequences [36]. 76 

As previously reported by several authors, strains and species of the Saccharomyces genus may 77 

modulate malic acid concentrations of wines [37 43]. Recently, pools of alleles belonging to flor or 78 

wine yeast populations were partially linked to the metabolic variability of malic acid [44] suggesting a 79 

possible effect of the yeast ecological origin. In this context, we reevaluated the natural variability of 80 

several Saccharomyces strains presenting different level of malic acid production or consumption during 81 

wine fermentation. In order to have a wide overview of possible metabolic trade-off related to malic 82 

acid metabolism, we developed new protocols aiming to quantify extracellular yeast metabolites using 83 

1H-NMR based metabolomics, adapting methods already used for describing wine composition [45, 46]. 84 

 85 

2. Materials and Methods 86 

2.1. Yeast strains used and culture methods87 

The forty-four strains of S. cerevisiae and S. uvarum isolated in different enological niches are listed 88 

in Table 1. S. cerevisiae strains were propagated on YPD 2 % (1 % peptone, 1 % yeast extract, 2 % 89 

glucose) at 30°C in both liquid and plate cultures (2 % agar). S. uvarum strains were propagated on YPD 90 

6 % to avoid sporulation as described by [47]. Long term storage at -80°C was achieved by adding one 91 

volume of glycerol to YPD overnight cultures. 92 

  93 
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Table 1: Yeast strains used. 94 

Strain Species 
Ecological 

niche 
Substrate/origin Geographical area Collection Reference 

FMGS1_889 S. cerevisiae Control 
Extreme malic 
acid consuming 

strain 

Miscelaneous 
(Breeding) 

UMR Oenology 
(ISVV) 

[21] 

FMGS3_191 S. cerevisiae Control 
Extreme malic 
acid producing 

strain 

Miscelaneous 
(Breeding) 

UMR Oenology 
(ISVV) 

[70] 

14.280 (SV2) S. cerevisiae Flor Velum Dijon, France Prof. Hervé Alexandre [71] 

23.10 (S34V) S. cerevisiae Flor Velum Dijon, France Prof. Hervé Alexandre [71]

34.220 (SV3) S. cerevisiae Flor Velum Dijon, France Prof. Hervé Alexandre [71] 

36.2J (S4V) S. cerevisiae Flor Velum Dijon, France Prof. Hervé Alexandre [71] 

8.1J (S6V) S. cerevisiae Flor Velum Dijon, France Prof. Hervé Alexandre [71]

DBVPG4695 S. cerevisiae Flor Vino Santo 
Lungarotti winery, 

Italy
1002 genomes [23] 

CBS4079 S. cerevisiae Flor Velum Spain 1002 genomes [23] 

CBS4092 S. cerevisiae Flor Velum Spain 1002 genomes [23] 

CBS4093a S. cerevisiae Flor Velum Spain 1002 genomes [23] 

Y-1301 S. cerevisiae Flor Wine Unknown NRRL collection 

YB-210 S. cerevisiae Fruit Spoiled banana Costa Rica NRRL collection  

Y-747 S. cerevisiae Fruit Cider Illinois, USA NRRL collection 

YB-1191 S. cerevisiae Fruit Citrus juice Louisiana, USA NRRL collection  

Y-6678 S. cerevisiae Fruit Olives Spain NRRL collection 

Y-2230 S. cerevisiae Fruit Fruit juice The Netherlands NRRL collection  

YB-360 S. cerevisiae Fruit Applesauce Unknown NRRL collection 

YB-2541 S. cerevisiae Fruit
Benzolated cider 

at 18C 
Unknown NRRL collection  

Y-641 S. cerevisiae Fruit Cider Unknown NRRL collection 

Y-35 S. cerevisiae Fruit
Fruit (Ilex 

aquifolium) 
Unknown NRRL collection  

Y-6275 S. cerevisiae Fruit
Orange 

concentrate 
Unknown NRRL collection 

 

Y-129 S. cerevisiae Fruit Orange juice Unknown NRRL collection  

YB-4081 S. cerevisiae Fruit Ripe goyave Unknown NRRL collection 

YB-2573 S. cerevisiae Fruit Sauerkraut Unknown NRRL collection  

YB-369 S. cerevisiae Fruit Sauerkraut Unknown NRRL collection

Y-964 S. cerevisiae Fruit Sour figs Unknown NRRL collection  

Y-767 S. cerevisiae Fruit
Tomato product 

(B-117) 
Unknown NRRL collection 

 

RC4-15 S. cerevisiae Uvarum Wine Alsace, France 
UMR Oenology 

(ISVV) 
[49] 

BR6-2 S. uvarum Uvarum Cider 
Britany/Normandy, 

France 
UMR Oenology 

(ISVV) 
[49] 

CBS 377 S. uvarum Uvarum Fruit juice Germany 
UMR Oenology 

(ISVV) 
[49] 

P3 S. uvarum Uvarum Wine Sancerre, France 
UMR Oenology 

(ISVV) 
[49] 

CBS 425 S. uvarum Uvarum Cider Switzerland 
UMR Oenology 

(ISVV) 
[49] 

GN S. cerevisiae Wine
meiotic spore 

clone from 
Zymaflore VL1 

Bordeaux, France 
UMR Oenology 

(ISVV) 
[43] 
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 95 

2.1.1. Grape Juices 96 

Two grape juices, Sauvignon blanc 2019 (SB19) and Grenache 2021 (GR21) were collected in 97 

Bordeaux and Montpellier areas, respectively and were stored at -20°C. The GR21 is a red grape juice 98 

representing warm climate matrix with a very low malic acid content. The SB19 is a white grape juice 99 

that was supplemented with L-malic acid in order to artificially increase its acidity. The final 100 

composition of these grape juices in fermenting sugar, malic acid content and pH is listed in Table 2. 101 

 102 

Table 2: Composition of the different grape juices used in the experiments.  103 

Composition SB19 a GR21 

L-malic acid (g/L) 5.31 0.52 

pH 3.20 3.52 

Fermentable sugars (g/L) 202.4 240.0 

Assimilable nitrogen (mg N/L) 124 106

Total SO2 (mg/L) 53 32 

 104 
a The SB19 has been supplemented to increase its malic acid content and decrease the pH. Its original composition was a malic 105 

acid concentration at 3.73 g/L and a pH of 3.38.106 

 107 

 108 

2.1.2. Alcoholic fermentation monitoring 109 

Small-volume alcoholic fermentations were implemented in screwed vials fermentations according 110 

to the general procedure described in [48]. Rapidly, 20 mL-screwed vials (Thermo Fisher Scientific, 111 

Bordeaux, France) were filled with 12 mL of grape juice and were tightly closed with screw cap-112 

C1-4 S. cerevisiae Wine Wine Cordoba, Spain
UMR Oenology 

(ISVV) 
[40]

C4-2 S. cerevisiae Wine Wine Cordoba, Spain 
UMR Oenology 

(ISVV)
[40] 

C9-10 S. cerevisiae Wine Wine Cordoba, Spain
UMR Oenology 

(ISVV) 
[40]

SB S. cerevisiae Wine
meiotic spore 

clone from 
Actiflore BO213 

France 
UMR Oenology 

(ISVV) 
[43] 

F15msp S. cerevisiae Wine
meiotic spore 

clone from 
Zymaflore F15 

France 
UMR Oenology 

(ISVV) 
[72] 

M10-7 S. cerevisiae Wine Wine Madrid, Spain 
UMR Oenology 

(ISVV) 
[40] 

M2-2 S. cerevisiae Wine Wine Madrid, Spain 
UMR Oenology 

(ISVV) 
[40] 

M2-9 S. cerevisiae Wine Wine Madrid, Spain 
UMR Oenology 

(ISVV) 
[40] 

M2msp S. cerevisiae Wine

meiotic spore 
clone from 

Enoferm M2 
(Lallemand)

Unknown 
UMR Oenology 

(ISVV) 
[72] 

BO213 S. cerevisiae Wine Wine starter France Laffort [26] 
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magnetic (Agilent Technologies, hdsp cap 18 mm PTFE/il 100 pk, Les Ulis, France) perforated with 113 

hypodermic needles (G26-0.45 x 13 mm, Terumo, Shibuya, Tokyo, Japan) for allowing CO2 release. 114 

Vessel was inoculated by 2.106 viable cell.mL-1 precultured in liquid media 50 % filtered must, 50 % 115 

sterile H2O for 24h. Cellular concentration and viability was estimated by flow cytometry using a 116 

CytoFlex (Beckman Coulter, Villepinte, France). Fermentation took place at 24°C in shaken vials by 117 

using an orbital shaker (SSL1, Stuart, Vernon Hills, IL, USA) at 175 rpm. Fermentation kinetics were 118 

estimated by monitoring manually (1-2 times per day) the weight loss caused by CO2 release using a 119 

precision balance with automatic weight recording (LabX system, Mettler Toledo, Viroflay, France). 120 

The amount of CO2 released according to time was modeled by local polynomial regression fit [48]. 121 

This model allows the estimation of the time necessary to reach the maximum CO2 produced, the lag 122 

phase, the speed between 15 % and 50 % of the fermentation (V15_50), the speed between 50 % and 80 123 

% (V50_80), the time to reach 80 % of CO2 produced (T80) and the maximal theoretic CO2 produced 124 

(CO2max). Final pH was monitored using Five Easy Plus pH-meter (Mettler Toledo, Viroflay France) 125 

with a micro probe LE422 (Mettler Toledo, Viroflay France). 126 

2.2. Microsatellite genotyping 127 

The genomic DNA of the 39 S. cerevisiae strains was quickly extracted in 96-wells microplate 128 

format using a customized LiAc-SDS protocol [49]. Fourteen polymorphic microsatellite loci (SCAAT3, 129 

C3, C5, SCYOR267C, C8, C11, SCAAT2, YKL172, C9, C4, SCAAT5, SCAAT1, C6, SCAAT5, SCAAT1, 130 

C6, YPL009) were used for estimating the genetic relationships within those strains using PCR 131 

conditions previously described [50]. Two multiplex PCRs allowing genotyping of seven loci were 132 

carried out in a final volume of 12.5 µL containing 6.25 µL of Qiagen Multiplex PCR master mix and 133 

1 µL of DNA template. 1.94 µL of each mix was added in the mixture using the concentrations indicated. 134 

Both reactions were run with the following program: initial denaturation at 95°C for 5 min, followed by 135 

35 cycles of 95°C for 30 s, 57°C for 2 min, 72°C for 1 min, and a final extension at 60°C for 30 min. 136 

The size of PCR products was analyzed by the MWG company (Ebersberg, Germany) using 0.2 µL of 137 

600 LIZ (GeneScan) as a standard marker. Chromatograms were analyzed with the GeneMarker 138 

(V2.4.0, Demo) program.  139 

 140 

2.3.  Metabolites analysis by 1H NMR 141 

2.3.1. Wine samples preparation 142 

Samples were collected during the alcoholic fermentation. Sixty µL of centrifuged wine sample was 143 

diluted ten times in phosphate buffer prepared in D2O (pD 4.2, 0.1 M final). Sixty µL of solution of 144 

calcium formate (FCa) 1 mM and trimethylsilylpropanoic acid (TSP) 1.25 mM in D2O was added to the 145 

preparation. The FCa is used as an internal standard for calculating the concentration of metabolites and 146 

the TSP to set the spectrum at 0 ppm.  147 

 148 
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2.3.2. NMR spectra acquisition149 

Spectra were recorded on a 600 MHz Avance III NMR spectrometer (Bruker, Wissembourg, France) 150 

operating at 600.25 MHz, equipped with a TXI 5 mm probe with z gradient coils. The measurement was 151 

performed at 293 K using TopSpin 4.0.8 software (Bruker, Wissembourg, France). TheA 1D-NOESY 152 

pulse sequence (noesygppr1d) was used was a noeysygpps1d. The acquisitionwith low power 153 

presaturation at the water frequency during relaxation delay and mixing time and spoil gradient. 154 

Relevant parameters were set as follows: 64 free induction decays (FIDs) were collected into a time 155 

domain: spectral size: 64k; number of 64k data points, with ascans: 64; spectral width of 16: 18 ppm, 156 

an; acquisition time of: 3.4064 s and a; relaxation delay (RD) of: recovery delay: 5 s per scan; mixing 157 

time: 100 ms. The 90° pulse calibration was carried out for each sample automatically, and the shimming 158 

was set manually in gs mode for each spectrum in order to obtain the finest possible line width (lower 159 

than 1 Hz). Water suppression was achieved during the RD using a shape pulse with a band selective 160 

solvent suppression (20 Hz centered on water signal), with a power level for presentation of 50.37 dB 161 

and a shaped pulse for presaturation of 34.83 dB. The FIDs were multiplied by an exponential function 162 

corresponding to a 0.3 Hz line-broadening factor prior to the Fourier transformation. Manual phase 163 

followed by automatic baseline corrections were applied to the resulting spectrum, which was aligned 164 

to zero using the TSP signal. 165 

Wine metabolite identification was performed using databases, literature data [51], and addition of 166 

pure standards when faced with uncertainties. Additionally, some two-dimensional2D experiments were 167 

used (TOCSY and HSQC) to insure the identification. The FCa signal at 8.28 ppm was used as internal 168 

standard for calculating the concentration of the identified compounds. Peak deconvolutions were 169 

performed by the global spectral deconvolution method (GSD) [52], using the simple mixture analysis 170 

(SMA) plugin of MestReNova 12.0 software (Mestrelab Research, Santiago de Compostela, Spain). 171 

Quantification was achieved according to the formula of Goldelmann et al. [62]. 172 

 173 

2.4. Statistical analyses 174 

All the statistical and graphical analyses were carried out using R software [53] and plots were 175

generated using the base or ggplot2 packages. 176 

2.4.1. Phylogenic analysis 177 

The microsatellite dataset was manipulated using the adegenet package implemented in R and the 178 

poppr package 179 

[73]. The phylogram was built by Neighbor Joining (ape package) [74]. In order to evaluate a possible 180 

genetic structuration between fruit, wine and flor yeasts, a Discriminant Analysis of the seventh Principal 181 

Components was applied using the adegenet package omitting the two control strains (FMGS_889 and 182 

AC1_191). The pairwise Fst between populations was estimated using the genet.dist function. 183 

2.4.2. Multivariate analyses 184 
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Spearman correlation tests between traits were computed using the corr function (psych package) 185 

corrected for multiple tests using the Benjamini-Hochberg method (  = 0.001). Results were displayed 186 

with the corrplot function (corrplot package). The multivariate phenotypic variability of yeast strains 187 

was visualized by a Principal Component Analysis (PCA) using the ade4 package. In order to highlight 188 

the most discriminating variables of PCA, Discriminant Analysis of Principal Component (DAPC) 189 

(adegenet package) was applied by selecting principal components allowing to capture up to 60% of the 190 

cumulated inertia. 191 

2.4.3. Analysis of variance 192 

Analyses of Variance (ANOVA) were carried out using the car package. The phenotypic values 193 

measured in the grape juices SB19 and GR21 were analyzed using the linear model (LM1) in order to 194 

estimate the effect of the following factors: media, population, strain in population as well as the first 195 

order interaction of all the factors according to the formula (1). 196 

(1) yijk = mediai + populationj + strain(population)jk + inter2
ijk ijkl 197 

where y is value of all the variables for a media i (i=1,2) in which j (j=1,2,3,4) groups of yeast strains 198 

fermented. Each population is composed of k strains. The factor strain is nested in the factor population 199 

and k varies between 1:5 and 1:16 according to the number of strains per population. The term inter2
ijk 200 

represents the first order interaction of each factor and ijkl the residual. The analysis of variance of model 201 

LM1 allows the estimation of the primary effect of the media, population, and strain in population on 202 

several quantitative variables, as well as their primary interaction effect. The normal distribution of 203 

residues as well as the homoscedasticity of variances were tested by Shapiro test and Levene test (car 204 

package), respectively. When necessary, non-parametric comparison of samples were carried out using 205 

the Wilcoxon-Mann-Whitney or Kruskal test with corrected p values (Benjamini-Hochberg method,  206 

= 0.05). 207 

 208 

3. Results 209 

3.1. Genetic characterization of a panel of Saccharomyces strains 210 

The forty-two strains used were classified according to their origin and were denominated thereafter 211 

flor Flor and wine yeast 212 

populations (S. cerevisiae) share the same ecological niches but have been clearly separated by 213

molecular phylogenetic studies [54,55]. As mentioned in the introduction, several genes related to 214 

central metabolism and proton homeostasis have been linked to the ability to consume, or not, malic 215 

acid during the alcoholic fermentation [44]. For most of them, alleles of the flor origin were related to a 216 

stronger consumption of malic acid suggesting a possible metabolic adaptation of this population to 217 

malic acid. However, phenotypic differences of malic acid consumption between flor and wine yeasts 218 

were never reported to our knowledge. To enlarge the genetic diversity of this metabolic survey, several 219 

S. cerevisiae strains (16) related to the fermentation of fruits (agrums, apple) and acidic substrates 220 



 

9 

 

(sauerkraut or tomato juice) were included in the panel. Finally, five S. uvarum strains presenting 221 

different genetic origin [42] were integrated to this panel since this psychrophilic species of the 222 

Saccharomyces genus is a strong producer of malic acid [56]. In addition, two S. cerevisiae strains 223 

224 

two strains have been recently selected for their extreme ability to consume or produce malic acid 225 

[21,57] and have a mixed inheritance between flor and wine origin. 226 

between the 37 Saccharomyces cerevisiae strains used was computed by using 14 microsatellites 227 

markers as previously described [26]. The genetic distances range is between 0.11 and 0.96, indicating 228 

that all the strains are unique as illustrated by the genetic tree shown in Figure 1A with some confusions 229 

between flor and wine populations. A discriminant analysis of the ten first Principal Components (60 % 230 

of the cumulative variance) allows the separation of the three populations (Figure 1B) with a probability 231 

of assignation of 0.90, 1.00 and 0.93 for flor, wine, and fruit populations respectively. The pairwise Fst 232 

between flor and wine strains was 0.169 indicating a clear separation between the two populations. The 233 

five strains of S. uvarum are also unique and represent the variability of holoarctic S. uvarum as reported 234 

in a former study [42].  235 

 236 

3.2. Assessment of wine metabolites variability of fermenting yeasts by targeted 1H-NMR analysis. 237 

3.2.1. Targeted 1H-NMR analysis of yeast 238 

A targeted 1H-NMR metabolomics approach was applied for quantifying metabolites of fermenting 239 

yeasts belonging to the Saccharomyces genus. The main wine metabolites produced and consumed by 240 

yeasts during the alcoholic fermentation were quantified from sixty microliters of wine stored at -80°C. 241 

Samples were simply thawed and diluted in an appropriate buffer before analysis as detailed in methods. 242 

The typical 1H-NMR spectrum after water suppression is presented in Figure 2. The signals at 0.00 ppm 243 

and 8.28 ppm correspond to TSP and FCa respectively; other signals correspond to wine constituents. 244 

The 1H-NMR spectra were dominated by ethanol, and glycerol, followed by organic acids. Even if 245 

different amino acids were observed in juice, due to their consumption by yeast [58], only tyrosine and 246 

arginine were quantified after the alcoholic fermentation. The Table 3 shows the chemical shifts and the 247

coupling constants used for identification and quantification of 15 metabolites including six organic 248

acids (acetic acid, citric acid, malic acid, pyruvic acid, succinic acid, and tartaric acid), three alcohols 249

(ethanol, 2,3-butanediol, glycerol), two reducing sugars (fructose and glucose), one ester (ethyl acetate), 250

one aldehyde (ethanal), and two amino acids (tyrosine and arginine). The concentration range and the 251 

average coefficient of variation (CV) of each metabolite measured in one red (GR21) and one white 252 

grape juice (SB19) is also indicated, as well as the average concentration in both grape juices.  253 

 254 

 255 
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 256 

Table 3: Typical chemical shifts and coupling constants used for compounds identification after fermentation. The signals 257 
chosen for quantification are in bold. Variation coefficients and average concentration are displayed for all compounds in both 258 
media. 259 

Compound 
Assignment) 

Average 
CV SB19 

Relative 
Average 

concentration 
SB19 (g/L) 

Average 
CV GR21 

Relative 
Average 

concentration 
GR21 (g/L) 

acetic acid 2.08 (s, CH3) 21.06 0.2786 20.27 0.3166 
arginine 1.68 (m, CH2) 8.67 0.0031 43.09 0.0074 

2,3-
butanediol 

1.13 (d, 6.2, 2CH3), 15.84 0.4027 17.77 0.5089 

citric acid 2.6769 (d, 15.6, CH2), 7.49 0.4265 49.74 0.0953 

ethanal
2.23 (d, 3.0, CH3),  
9.79 (q, 2.85, CH)

60.44 0.0023 34.15 0.0141 

ethanol 1.17 (t, 7.2, CH3), 3.65 (q, CH2) 7.89 59.6569 4.82 104.2476 

ethyl acetate 
1.26 (t, 7.2, CH3), 2.03 (s, CH3), 

4.12 (q, CH2) 
8.48 0.7078 5.97 1.1418 

fructose 
3.97 (dd, 10.1, 3.5, CH), 4.01 (m, 

CH), 4.09 (dd, 12.8, 1.0, CH) 
37.38 1.3929 49.99 1.8364 

glucose 4.65 (d, 7.9, CH), 5.23 (d, 3.6, CH) 25.47 0.2182 32.71 0.1882 

glycerol 
3.55 (dd, 11.8 and 6.5, 2CH2),  

3.77 (m, CH) 
5.50 10.1624 9.01 9.0169 

malic acid 
2.59 (dd, 16.3 and 7.0, CH), 2.7981 

(dd, 16.3 and 4.5, CH),  
4.36 (dd, CH) 

5.44 6.9769 12.28 1.2349 

pyruvic acid 2.38 (s, CH3) 18.14 0.0542 21.83 0.0341 
succinic 

acid 
2.5458 (s, 2CH2) 10.81 1.8568 15.24 1.4810 

tartaric acid 4.39 (s, 2CH) 40.52 0.5950 15.31 1.1052 

tyrosine 
6.86 (m, 2CH),  
7.17 (m, 2CH) 

16.34 0.0470 15.05 0.0517 

 260 

In both grape juices, most compounds had a CV lower than 30 % and in the SB19, six compounds 261 

had a CV under 10 % which shows the good repeatability and reliability of the analysis. Some 262 

compounds (residual sugars, ethanal, arginine and tartaric acid) were not accurately quantified due to 263 

their low concentrations and their instability to sample concentration (see discussion).  264 

The relative concentrations presented in the table 3 allows the statistical comparisons between 265 

samples. For some key compounds (acetic acid, malic acid, succinic acid, and glycerol)), we quantified 266 

their absolute concentrations by applying correcting factors calculated as described byusing the standard 267 

addition method and applied using the formula of Goldelman et al. [62] (table 4). This absolute 268 

quantification was compared to enzymatic assay methods commonly used in enology [43]. As expected, 269 

strong correlations between enzymatic and 1H-NMR quantifications were found for all the metabolites 270 

(Spearman correlation analysis). The average CV of both methods were similar in the two grape juices, 271 

demonstrating that 1H-NMR assay was also very reproducible for such metabolites (Figure S1 panels A 272 
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and B). For acetic acid, malic acid, and succinic acid, the high correlations coefficient (rho > 0.82) 273 

indicated a good level of agreement between the two methods. Glycerol concentrations were also 274 

52, p-value = 2.79x10-21). Linear regressions 275 

suggested that quantification by 1H-NMR of acetic acid and glycerol were slightly overestimated respect 276 

to enzymatic assays (slopes of 0.82 and 0.74, respectively). In contrast succinic acid concentration was 277 

slightly overestimated (slope of 1.22). However, both methods resulted in very similar quantifications 278 

and were in agreement with enological values expected. 279 

 280 

Table 4: Correction factors and absolute average concentration measured for acetic, malic, succinic acids and glycerol in red 281 
and white wines. 282 

Compound

Correction factors  Absolute 
average 

concentration 
SB19 (g/L) 

Absolute 
average 

concentration 
GR21 (g/L) 

SB19 GR21 

acetic acid 0.94 1.17 0.26 0.37 
glycerol 0.63 0.64 6.40 5.77 

succinic acid 0.44 0.44 0.82 0.65 
malic acid 0.57 0.68 3.97 0.84 

 283 

3.2.2. Multivariate analysis of wine metabolites 284 

Fermentations were monitored daily by following weight loss, and six kinetic parameters (lag phase, 285 

V15_50, V50_80, T35, T80 and CO2max) were extracted as previously reported [48]. The fifteen end-286 

point metabolites were quantified for a panel of 44 strains of different origins (Table 1) in two grape 287 

juices (SB19 an GR21) fermented in triplicate. A Principal Component Analysis (PCA) was applied to 288 

average values in order to capture the overall variability of the 15 wine metabolites quantified by 1H-289 

NMR (Figure 3). The final concentrations of wine metabolites are mostly structured by the grape juice 290 

nature and are clearly separated by the first component (40.3 % of inertia). Indeed, the SB19 was 291 

enriched in malic acid and citric acid compared to the GR21. In contrast, GR21 displayed a higher sugar 292 

content resulting in a higher production of ethanol, ethyl-acetate and ethanal. Beside this grape juice 293 

effect, S. uvarum and S. cerevisiae species are partially separated by the second component which 294 

captured 16.9 % of the total inertia. This axis is mostly correlated with glycerol and succinic acid content 295 

which are overproduced by S. uvarum strains. In addition, the presence of reducing sugars at the end of 296 

the alcoholic fermentation was detected for some S. uvarum and fruit strains which is also strongly 297 

related to the axis 2. In contrast, the quantification of the 15 metabolites did not allow a clear separation 298 

of the three S. cerevisiae populations in both matrices. 299 

In order to identify metabolic signatures able to better discriminate yeast populations, the two grape 300 

juice datasets were analyzed separately using a Discriminant Analysis of Principal Component (DAPC). 301 

In the SB19, malic acid is the most discriminating compound followed by glycerol and succinic acid. 302 

The cumulated variability explained by these three metabolites on main linear discriminant axis is 98.3 303 
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%. As shown in Figure 4A, wines fermented by the S. uvarum species are significantly more 304 

concentrated in malic acid, glycerol, and succinic acid (Kruskal test, alpha < 0.05) than S. cerevisiae. 305 

These two species were also well discriminated in GR21 grape juice by three compounds: malic acid, 306 

succinic acid, and acetic acid which represent 64 %, 31 %, and 2 % of the discriminating inertia, 307 

respectively (Figure 4B). Beside this major species effect, significant differences of minor magnitudes 308 

were also observed within S. cerevisiae populations with a special emphasis for wine and flor 309 

populations that were always significantly different. In GR21 grape juice, the four populations were 310 

better separated than in the SB19 grape juice. Indeed, in GR21 each population was statistically different 311 

for malic acid content (Kruskal-Wallis  test, p-value < 0.05) while in SB19, only S. uvarum produced 312 

significantly more malic acid than the three other groups. This result could be linked to the initial 313 

characteristics of GR21 that contained a very low amount of malic acid. 314 

3.2.3. Contributions of genetic and environmental effect on the phenotypic variability of 315 

Saccharomyces strains316 

To deeply investigate factors influencing kinetic and metabolic traits, a nested analysis of variance 317 

was applied, aiming to estimate the impact of environment (grape juice) and genetic factors and their 318 

possible interactions. The genetic contribution effect was decomposed in population effect and strain 319 

within population effect as detailed by the linear model 1 (see methods). The contribution of each factor 320 

on 21 quantitative traits is summarized in Figure 5. The variability of ethanol, citric acid, malic acid, 321 

ethyl acetate, tartaric acid, and ethanal was mainly due to the grape juice effect. Indeed, ethanol and 322 

ethanal are directly linked to the initial sugars concentration that differs between red and white grape 323 

juices (SB19 = 202.4 g/L, GR21 = 240 g/L). Ethyl acetate is a carboxylate ester which is a secondary 324 

metabolite produced during alcoholic fermentation, derived from ethanol [59]. Even though its 325 

production can vary according to the strain, the very different ethanol content between the two wines 326 

led to significantly different amount of ethyl acetate. Tartaric acid is almost two times more concentrated 327 

in GR21 than SB19 (1.10 g/L vs 0.59 g/L) and the average amount of citric acid is about 4 times more 328 

important in SB19 than in GR21 (0.426 g/L vs 0.095 g/L respectively). Finally, malic acid varied greatly 329 

with the environment as the two grape juices were selected for their extreme acidities. 330 

To better estimate the genetic contribution on malic acid content, we used the variable MAC (Malic 331 

Acid Consumed) that represents the ratio of malic acid consumed expressed in percentage (Figure 6A). 332 

MAC variability was evenly influenced by G (33 % var), E (36 % var) and GxE interactions (22 % var). 333 

The MAC values of the two control strains AC1_191 [57] and FMGS_889 [21] highlighted their great 334 

impact on acidity management since they produced and consumed significantly more than any other S. 335 

cerevisiae strains of this study. Quantitatively, the differences of absolute malic acid concentrations 336 

between wines made by these extreme strains were 1.71 and 2.95 g/L for GR21 and SB19, respectively. 337 

Intuitively, the MAC is strongly correlated to the final pH (Figure 6B) since wine pH depends on the 338 
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concentration of grape juice organic acids and especially the amount of malic acid. The Figure 6C shows 339 

the correlation of MAC with other metabolites in both grape juices. Overall, malic producer strains such 340 

as S. uvarum and AC1_191 produced more succinic acid than other. 341 

For other metabolites (acetic acid, 2,3-butanediol, fructose, glycerol, pyruvic acid, succinic acid, 342 

and tyrosine) as well as kinetics parameters (V15_50, V50_80, T35 and T80), the genetic effect is greater 343 

ect in population and strain contribution 344 

indicated that within the same population, the metabolic variability of strains is generally stronger than 345 

the metabolic variability observed between groups (Figure 5). This is well illustrated by acetic acid 346 

variability that is more explained by the strain within populations (65 %) than by population effect itself 347 

(11 %). This can be explained for instance by some flor (CBS4079) and fruit (Y-2230, Y-6678) strains 348 

that overproduced acetic acid compared to other strains from their own populations (Figure S2). Finally, 349 

arginine was the unique metabolite that was neither impacted by grape juice or yeast strain, likely due 350 

to its low concentration level at the end of the fermentation. 351 

 352 

4. Discussion  353 

4.1. 1H NMR as an effective tool for analyzing wine microorganism metabolites. 354 

Alcoholic beverages are complex matrices composed of several hundred volatile and non-volatile 355 

molecules that participate to the overall quality of the product. Therefore, analytical chemistry efforts 356 

aiming to characterize such complex matrices must be done for understanding and quantifying the role 357 

of microorganisms that participate to their elaboration. From a methodological viewpoint, trade-offs 358 

exist between the number of biological samples to analyze, the number of compounds assayed, the 359 

volume of sample required for their quantification, and the cost of the analysis. Generally, most of the 360 

microbiology studies lay emphasis on the number of biological sample and conditions analyzed in order 361 

to better understand the complex interactions existing between microbiological diversity and 362 

environmental conditions. This wide phenotypic characterization requires a reduction of fermentation 363 

volumes that allows a more efficient parallelization of culture conditions [43]. However, this strategy 364 

generally reduced the number of metabolites investigated by reducing the available sample volume. 365 

Thus, it is necessary to use high throughput methods such as enzymatic assay [43] or HPLC analyses 366 

[28]. Enzymatic assays are cost effective and can be easily robotized, however they require a specific 367 

assay per compounds with a quite limited number of metabolite available. HPLC analyses are more 368 

expensive and require the use of specific methods for quantifying organic acid and sugars [60], or 369 

nitrogen compounds [61].  370 

NMR metabolomics is particularly amenable to detect compounds that are less tractable by liquid 371 

chromatography such as sugars, organic acids, alcohols polyols, and other highly polar compounds [33]. 372 

Those classes of compounds are well represented in wine reinforcing the interest of this technique. In 373 

this study, we used an analytical method able to quantify from a small volume (less than 100 µL) using 374 
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quantitative 1H-NMR spectroscopy. The advantages of NMR are the simplicity of sample preparation, 375 

measurement rapidity and the possibility to detect compounds belonging to different chemical families 376 

on one spectrum, in a single experiment. Previous studies were focused on the characterization of 377 

commercial wines and analysis of the cultivar, geographic origin, or vintage [45,46,64]. Our study 378 

focused on the characterization of wines fermented in the laboratory with different yeasts strains. The 379 

1H-NMR method allowed the identification and quantification of 15 wine soluble metabolites of 264 380 

biological samples requiring only 60 µL of wine for each experiment. This original approach allows 381 

studying the origin of many strains and their impact on various wine metabolites in different enological 382 

matrices.  383 

The NMR analytical method was cross assessed by comparing the quantifications obtained by 384 

enzymatic assays for three organic acids (malate, succinate, and acetate) and for glycerol. Data obtained 385 

were accurately correlated for these metabolites and both methods had low coefficients of variation. By 386 

applying correction factors experimentally determined. For all the four compounds assayed the 387 

correlation between methods was very satisfactory and the slope of the linear models close to 1 +/- 20 388 

%  (Figure S1). For other compounds the absolute quantification was not determined but the relative 389 

concentrations showed in the table 3 did not impair the relative comparison of the strains which is the 390 

scope of this study. The quantification of glycerol seems more problematic even if the coefficient of 391 

variation of repetition is quite low (5.5% in SB19 and 9.01% in GR21). As shown Figure S1, the 1H-392 

NMR method over-estimated glycerol content possiblyin comparison to enzymatic assays.  The relative 393 

discrepancy between the two methods could be due to the deconvolution of several factors relating to 394 

both methods. Concerning NMR, the double doublet at H = 3.55 ppm of 1H-NMR 395 

data. Indeed, this ) is in a very dense region of the spectrum. This region is very dense and dominated 396 

by ethanol signal at 3.65 ppm. An overlap might have led to uncertainty of measurement.   397 

In the present study, ethanol was quantified on all spectra as it is a compound of major interest in 398 

phenotypic analysis. However, the high intensity of the ethanol signal masks the signal of other 399 

compounds such as acids present in lower quantity ( -aminobutyric acid, galacturonic acid, glucuronic 400 

entify a 401 

higher number of compounds by suppressing the ethanol signal which is dominant after water using a 402 

selective pulse. Another solution would consist of introducing a lyophilization step to suppress the water 403 

and ethanol signals. This would improve the signal-to-noise ratio and better observe non-volatile 404 

compounds close to the signals of water and ethanol. These extra steps would increase the time of 405 

preparation and analysis but would allow the identification and accurate quantification of a higher 406 

number of other compounds. 407 

Interestingly, the method applied is also useful for quantifying compounds that are not easily 408 

quantified by classical analyses such as ethyl acetate and ethanal. Ethyl acetate can be of interest as it is 409 

the major ester in several distilled spirits such as whiskey, rum and cachaça [63,64]. Ethanal, is found 410 

in wines in various concentrations and can be formed by yeasts or be the indication of a contamination 411 
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by acetic acid bacteria, lactic acid bacteria or be the result of auto-oxidation of ethanol and phenolic 412 

compounds [65]. The monitoring of its concentration in wines during fermentation and aging could be 413 

useful as its presence in small concentration gives a pleasant fruity aroma but at high concentrations it 414 

gives a pungent irritating odor. Finally, 1H-NMR analytical method is also applicable to grape juices 415 

and ongoing fermentations. The present study focused on the analysis of wines, but samples taken earlier 416 

during alcoholic fermentation could allow the assay of nitrogen compounds which are more abundant 417 

in the earliest amino acids such as leucine, 418 

isoleucine, valine, threonine, arginine, proline, and choline were clearly observed (personal 419 

communication) in the 0.9  3.3 ppm region of the spectrum. Due to their low concentration and 420 

consumption by yeast, these compounds were not quantified in fermented wines, except for arginine 421 

which is initially present in high concentration in grape juices and is lately consumed by yeasts [58]. 422 

4.2.  Wine metabolome is partially impacted by the population origin of the 423 

fermenting strains. 424 

The metabolomic characterization of two grape juices fermented by a large panel of yeast strains 425 

was achieved. Those strains provided by microorganism collections are associated with acidic fermented 426 

matrices such as wine, cider, fruit juices, and sauerkraut. As confirmed by microsatellite analysis, the 427 

four groups of strains collected in different ecological or human associated niches are discriminated by 428 

population genetics tools. The three S. cerevisiae groups belong to distinct populations (flor, wine, and 429 

fruit) the last group being constituted by S. uvarum strains isolated in cider and wine environments. This 430 

last species has been reported to have acidifying properties and to produce large quantities of malic acid 431 

[42].  432 

In the context of this study, the impact of the yeast strain on wine metabolome was investigated in 433 

divergent matrices (one red and wine white grape juice) showing opposite level of malic acid content 434 

(0.52 g/L vs 5.31 g/L). Initially, the GR21 had a low content in malic acid compared to SB19 which 435 

enhanced the ability of some strains to produce more malic acid. As malic acid has a buffer effect, an 436 

addition of malic acid to the medium reinforced this buffer effect. On the contrary, in SB19 most strains 437 

consumed malic acid, limiting the buffer effect. The correlation between MAC and pH is strong in both 438 

grape juices (Figure 6B) as malic acid is the organic acid influencing the most the pH. Tartaric acid is 439 

also a strong influencer of the acidity, but it is not modulated by yeasts during alcoholic fermentation. 440 

Indeed, the figure 5 shows that this organic acid is only impacted by the grape juice and there is no 441 

significant effect of the strains or populations.  442 

The main insight of this study is that metabolome variations are partially structured by the origin of 443 

the strain. First, the phenotypic discrepancies between the two main species involved in the alcoholic 444 

fermentation (S. uvarum and S. cerevisiae) were confirmed. Previous studies reported that S. uvarum 445 

produced higher concentrations of malic acid [42,11], succinic acid [66,67] and glycerol [11,67] that S. 446 

cerevisiae. In addition, this species is characterized by weaker fermentation performances than S. 447 
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cerevisiae [11,67] and by the production of specific fermentative aromas [66,68]. Da Silva et al. (2015) 448 

reported that S. uvarum produced more acetic acid, but this finding was not supported in our study except 449 

for one strain (RC4-15) which produced 0.70 g/L of acetic acid in GR21 while the 4 other S. uvarum 450 

strains produced about 0.23 g/L in the same grape juice (figure S2). Using 1H-NMR-based 451 

metabolomics, fifteen non-volatile metabolites were quantified. The results obtained confirmed the 452 

differences reported for glycerol, malic acid, and succinic acid content (Figure 4). In addition, this 453 

species reveals to produce more 2,3-butanediol (in average 1.5 times more than S. cerevisiae strains). 454 

The amount of pyruvic acid was in average 2 times less important for S. uvarum than S. cerevisiae 455 

strains, and residual fructose was the indication of some stuck fermentations by S. uvarum (~10 g/L of 456 

fructose remaining). 457 

Second, wine and flor yeasts can be distinguished by handful of compounds, mostly belonging to 458 

organic acid family (cf. figure 4 and 5). This metabolic signature could be the consequence of a 459 

differential management of central carbon metabolism as previously proposed by [44]. This might be 460 

explained by the fact that flor yeasts are adapted to shift their metabolism to an oxidative metabolism 461 

when sugar and nitrogen are depleted [69]. In the context of a shift diauxic during the velum formation 462 

the aptitude to consume malic acid as a secondary carbon source may constitute a selective advantage. 463 

Moreover, a correlation was found between malic acid production and succinic acid production in GR21 464 

(no production occurred in SB19). This observation was previously reported by [70]. It is consistent 465 

with their metabolic relationships and raise the question of the metabolic pathways taken by produced 466 

and consumed malic acid. This correlation could explain a significative difference of succinic acid 467 

content between wine and flor yeasts as they already differ for malic acid consumption. 468 

Finally, the two control strains displayed extreme differences for malic acid content, demonstrating 469 

the efficiency of the selection they came from [21,70]. They frame the natural variability of all the other 470 

strains regarding the MAC values (Figure 6A). Only some strains of S. uvarum can produce as much 471 

malic acid as AC1_191. On the PCA (Figure 3), the strain AC1_191 is close to S. uvarum group in terms 472 

of acidity management. Indeed, this strain was selected for its ability to produce important amounts of 473 

malic acid and happens to also produce important amount of succinic acid. The extreme strain AC1_191 474 

appears to be a good strain to cope with low amounts of malic acid in musts in a context of climate 475 

change. It is able to produce malic and, secondarily, succinic acid which decrease the pH of the final 476 

wine [65]. Finally, it was able to complete the fermentation unlike some S. uvarum and produced low 477 

amounts of acetic acid (Figure S3) which makes it suitable for winemaking. this strain could be used for 478 

vinification itineraries aiming to conserve the freshness of white wines. The FMGS_889 is also a strain 479 

of enological interest for lowering the acidity of rich malic wines and shortening the malo-lactic 480 

fermentation of red wines [21]. The organoleptic consequences of the use of S. cerevisiae strains having 481 

an opposite organic acid metabolism has been demonstrated in a previous study [57] and was not tested 482 

in the present work due to the small volume of wine fermented. 483 

 484 



 

17 

 

Conclusion 485 

A reliable and easy to apply 1H-NMR analytical method was developed to quantify the major end 486 

point metabolites of the alcoholic fermentation of grape juices. This method required a small sample 487 

size (60 µL) a basic sample dilution and a short sample analysis (5 minutes). This efficient protocol was 488 

used for evaluating the metabolomic variability of 44 yeast strains becoming to the two major species 489 

of the Saccharomyces genus involved in wine fermentation. Metabolomic differences between strains 490 

belonging to different genetic groups were observed suggesting that the central metabolism of distinct 491 

populations is differently regulated. Interestingly, organic acids and glycerol metabolisms constitute 492 

strongly discriminating factors. The phenotypic diversity observed impacted the final pH value of wine 493 

and was strongly correlated to the ability of strains to consume or produce malic acid. 494 
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Figures 700 

All figures should be printed in color 701 

 702 

 703 

Figure 1:  distance) computed from the 704 
genotyping of 14 variable microsatellites, the colors red, green, and blue indicated the Flor, Fruit, and Wine origin, respectively. 705 
the two control strains are indicated by a black dot (b) Discriminant Analysis of Principal Components computed with 706 
microsatellite data. The three main populations are figured out by the same colors.  707 

 708 

 709 
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710

Figure 2: Annotated typical 1H-NMR spectrum of wine metabolites after water suppression (NOESYGPPR1Dnoesygppr1d). 711
Identified constituents are listed in Table 3.712

713
Figure 3: Principal Component Analysis (PCA) (A) The two first axis of the PCA performed for the 44 strains in the two grape 714
juices. Axes 1 and 2 explain 40.3 and 16.9 % of total variation respectively. Each point represents the average of three biological 715
replicates of a single strain. Each strain is colored according to its population. (B) Correlation circle indicating the corr elation 716
of the variables for axes 1 and 2.717

718

719



 

25 

 

 720 
Figure 4: Main compounds involved in populations separation. (A) Absolute concentrations (g/L) of malic acid, glycerol, and 721 
succinic acid, in SB19 for the 4 populations. (B) Absolute concentrations (g/L) of malic acid, succinic acid, and acetic acid in 722 
GR21 for the four yeast populations. A Kruskal test has been applied to the compounds in both media. Different letters indicate 723 
a significant difference between the populations (  < 0.05).  724 

 725 
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726 
Figure 5: Bar graphs indicating the part of variance explained by the different factors of the ANOVA. The letters E and G 727 
represent the environmental (grape juice) and the genetic factors, respectively. The nested ANOVA applied allows to evaluate 728 
the effect of the population and the effect of strain within each population (strain). GxE represents the interaction between  729 
genetic and environment and was decomposed in two nested factors grape juice: population and grape juice: strain in 730 
population. Gray tons indicate non significative effect of the factors. 731 

 732 
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 733 

 734 

Figure 6: (A) MAC values measured for all strains in the two grape juices (3 replicates per strain). Strains were colored 735 
according to their population. The dashed line represents the 0% which corresponds to no malic acid consumed or produced. 736 
Positive values correspond to a consumption of malic acid and negative values to a production. (B) Correlation of MAC and 737 
pH for the two grape juices. The red line represents the linear regression line, correlation coefficients and p-values are written 738 
on the graphs. The dots represent all the tested strains (3 replicates per strains). They are colored according to their genetic 739 
group. (C) Correlation matrix between MAC and all other metabolites in the two grape juices. The value displayed corresponds 740 
to the correlation coefficient. Red values correspond to a negative correlation while blue values correspond to a positive 741 
correlation, only significative correlations ( < 0.05) were indicated.  742 
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 750 
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Supplementary data754 

 755 
Figure S1: Correlation between enzymatic assay and NMR analysis for acetic acid, glycerol, malic acid, and succinic acid. 756 
The Spearman correlation coefficients are 0.89, 0.82, 0.93 and 0.52 for acetic acid, succinic acid, malic acid, and glycerol, 757 
respectively. The concentrations on both axes are expressed in g/L. There is an overestimation of the concentration of malic 758 
acid, succinic acid, and glycerol with the NMR method. 759 

 760 

 761 

 762 
Figure S2: Absolute concentration in acetic acid (g/L) at the end of the fermentation for all strains in both grape juices. The 763 

boxplots are colored according to their population. 764 
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Abstract 14 

This study aimed to explore the non-volatile metabolomic variability of a large panel of strains 15 

(44) belonging to the Saccharomyces cerevisiae and Saccharomyces uvarum species in the context of 16 

the wine alcoholic fermentation. For the S. cerevisiae strains flor, fruit and wine strains isolated from 17 

different anthropic niches were compared. This phenotypic survey was achieved with a special focus 18 

on acidity management by using natural grape juices showing opposite level of acidity. A 1H NMR 19 

based metabolomics approach was developed for quantifying fifteen wine metabolites that showed 20 

important quantitative variability within the strains. Thanks to the robustness of the assay and the low 21 

amount of sample required, this tool is relevant for the analysis of the metabolomic profile of 22 

numerous wines. The S. cerevisiae and S. uvarum species displayed significant differences for malic, 23 

succinic, and pyruvic acids, as well as for glycerol and 2,3-butanediol production. As expected, S. 24 

uvarum showed weaker fermentation fitness but interesting acidifying properties. The three groups of 25 

S. cerevisiae strains showed different metabolic profiles mostly related to their production and 26 

consumption of organic acids. More specifically, flor yeast consumed more malic acid and produced 27 

more acetic acid than the other S. cerevisiae strains which was never reported before. These features 28 

might be linked to the ability of flor yeasts to shift their metabolism during wine oxidation.  29 

 30 

 31 

Key words 32 

1H-NMR, fermenting yeast, wine metabolome, malic acid, flor and wine yeast strain. 33 

34 
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1. Introduction 35 

Metabolic activities of microorganisms strongly impact the chemical composition of fermented 36 

products and modify their nutritional and organoleptic properties [1,2]. Thus, the quantification of 37 

chemical compounds in fermented goods is a critical step to understand the role of microbes and to 38 

control their development. In this context, wine alcoholic fermentation has been particularly well 39 

investigated, and many wine compounds were identified using GC-MS, LC-MS and NMR [3 6]. As 40 

widely reviewed [7 9], the yeast metabolism impacts the chemical composition of resulting wines 41 

with direct enological consequences. Although they broadly share the same metabolic pathways, yeast 42 

species and strains show a high variability in their metabolites production. Thus, yeast species 43 

involved in grape juice fermentation are characterized by specific metabolic signatures for primary 44 

metabolites [10,11], fermentative esters [12 14], and off-flavor compounds [15]. In mixed cultures, 45 

metabolic profiling is also useful for characterizing microbial interactions [16 18] that may impact 46 

wine complexity [19]. At the intra specific level, analytical chemistry methods are also decisive for 47 

driving yeast selection aiming to better control ethanol content [20], wine acidity [10,21], volatile 48 

thiols content [22] or fermentative esters production [13].  49 

The natural genetic variability of the species Saccharomyces cerevisiae [23] constitutes an 50 

important source of metabolomic variability that has been deciphered for volatile [24,25] and non-51 

volatile compounds [26,27] by applying quantitative genetic. These studies required the use of 52 

analytical methods such as HPLC [28], enzymatic assays [26], targeted GC-MS [24] allowing the 53 

quantification, for large sample sizes of wine metabolites belonging to different chemical family. 54 

Alternatively, untargeted metabolomics approaches may be applied for quantifying hundreds of 55 

metabolic features able to discriminate the biochemical signature of few Saccharomyces cerevisiae 56 

strains during the alcoholic fermentation [29][5]. However, the exact identification of such 57 

discriminating compounds remains a chemical challenge [30]. 58 

In this context, the exploration of extracellular metabolomic variability of yeast strains during the 59 

alcoholic fermentation for different classes of compounds constitute a challenging task. A performing 60 

and versatile analytical technique to quantify yeast metabolites is the proton Nuclear Magnetic 61 

Resonance (1H NMR) spectroscopy [31,32]. The main 1H NMR spectroscopy assets are the simplicity 62 

of sample preparation and high reproducibility of the quantification. It is also possible to investigate a 63 

large range of metabolites belonging to different chemical families that are displayed on the same 64 

spectrum. This non-destructive technique also gives the opportunity to carry out several analyses on 65 

the same sample. NMR spectroscopy is quantitative since the signal intensity is directly proportional 66 

to the metabolite concentration and the number of nuclei in the molecule [33,34]. Despite its high 67 

potentiality to study fermented products, 1H NMR investigations are still scarce and face two major 68 

challenges [31]. First, the sensitivity of the technique is lower than mass spectrometry which explains 69 

that the latter is often preferred for non-targeted analyses. This issue can be addressed by applying a 70 
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high number of scans during the analysis, but this will extend the time required for the analysis. 71

Secondly, peak overlaps from multiple metabolites pose major challenges. 2D NMR or 72 

supplementation with pure compounds of interest can be carried out to address this issue [35]. 73 

In the present study, we explored the metabolomic variability of different wine yeasts with a 74 

special focus on the management of wine acidity by malic acid. Indeed, the level of this organic acid 75 

tends to drastically decrease in grape juices due to climate change with important enological 76 

consequences [36]. As previously reported by several authors, strains and species of the 77 

Saccharomyces genus may modulate malic acid concentrations of wines [37 43]. Recently, pools of 78 

alleles belonging to flor or wine yeast populations were partially linked to the metabolic variability of 79 

malic acid [44] suggesting a possible effect of the yeast ecological origin. In this context, we 80 

reevaluated the natural variability of several Saccharomyces strains presenting different level of malic 81 

acid production or consumption during wine fermentation. In order to have a wide overview of 82 

possible metabolic trade-off related to malic acid metabolism, we developed new protocols aiming to 83 

quantify extracellular yeast metabolites using 1H-NMR based metabolomics, adapting methods already 84 

used for describing wine composition [45, 46]. 85 

 86 

2. Materials and Methods 87 

2.1. Yeast strains used and culture methods 88 

The forty-four strains of S. cerevisiae and S. uvarum isolated in different enological niches are 89 

listed in Table 1. S. cerevisiae strains were propagated on YPD 2 % (1 % peptone, 1 % yeast extract, 2 90 

% glucose) at 30°C in both liquid and plate cultures (2 % agar). S. uvarum strains were propagated on 91 

YPD 6 % to avoid sporulation as described by [47]. Long term storage at -80°C was achieved by 92 

adding one volume of glycerol to YPD overnight cultures. 93 

  94 
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Table 1: Yeast strains used. 95 

Strain Species 
Ecological 

niche 
Substrate/origin Geographical area Collection Reference 

FMGS1_889 S. cerevisiae Control 
Extreme malic 
acid consuming 

strain 

Miscelaneous 
(Breeding) 

UMR Oenology 
(ISVV) 

[21] 

FMGS3_191 S. cerevisiae Control 
Extreme malic 
acid producing 

strain 

Miscelaneous 
(Breeding) 

UMR Oenology 
(ISVV) 

[70] 

14.280 (SV2) S. cerevisiae Flor Velum Dijon, France Prof. Hervé Alexandre [71] 

23.10 (S34V) S. cerevisiae Flor Velum Dijon, France Prof. Hervé Alexandre [71] 

34.220 (SV3) S. cerevisiae Flor Velum Dijon, France Prof. Hervé Alexandre [71] 

36.2J (S4V) S. cerevisiae Flor Velum Dijon, France Prof. Hervé Alexandre [71] 

8.1J (S6V) S. cerevisiae Flor Velum Dijon, France Prof. Hervé Alexandre [71] 

DBVPG4695 S. cerevisiae Flor Vino Santo 
Lungarotti winery, 

Italy 
1002 genomes [23] 

CBS4079 S. cerevisiae Flor Velum Spain 1002 genomes [23] 

CBS4092 S. cerevisiae Flor Velum Spain 1002 genomes [23] 

CBS4093a S. cerevisiae Flor Velum Spain 1002 genomes [23] 

Y-1301 S. cerevisiae Flor Wine Unknown NRRL collection 

YB-210 S. cerevisiae Fruit Spoiled banana Costa Rica NRRL collection 

Y-747 S. cerevisiae Fruit Cider Illinois, USA NRRL collection 

YB-1191 S. cerevisiae Fruit Citrus juice Louisiana, USA NRRL collection 

Y-6678 S. cerevisiae Fruit Olives Spain NRRL collection 

Y-2230 S. cerevisiae Fruit Fruit juice The Netherlands NRRL collection 

YB-360 S. cerevisiae Fruit Applesauce Unknown NRRL collection 

YB-2541 S. cerevisiae Fruit 
Benzolated cider 

at 18C 
Unknown NRRL collection 

 

Y-641 S. cerevisiae Fruit Cider Unknown NRRL collection 

Y-35 S. cerevisiae Fruit 
Fruit (Ilex 

aquifolium) 
Unknown NRRL collection 

 

Y-6275 S. cerevisiae Fruit 
Orange 

concentrate 
Unknown NRRL collection 

 

Y-129 S. cerevisiae Fruit Orange juice Unknown NRRL collection 

YB-4081 S. cerevisiae Fruit Ripe goyave Unknown NRRL collection 

YB-2573 S. cerevisiae Fruit Sauerkraut Unknown NRRL collection 

YB-369 S. cerevisiae Fruit Sauerkraut Unknown NRRL collection 

Y-964 S. cerevisiae Fruit Sour figs Unknown NRRL collection 

Y-767 S. cerevisiae Fruit 
Tomato product 

(B-117) 
Unknown NRRL collection 

 

RC4-15 S. cerevisiae Uvarum Wine Alsace, France 
UMR Oenology 

(ISVV) 
[49] 

BR6-2 S. uvarum Uvarum Cider 
Britany/Normandy, 

France 
UMR Oenology 

(ISVV) 
[49] 

CBS 377 S. uvarum Uvarum Fruit juice Germany 
UMR Oenology 

(ISVV) 
[49] 

P3 S. uvarum Uvarum Wine Sancerre, France 
UMR Oenology 

(ISVV) 
[49] 

CBS 425 S. uvarum Uvarum Cider Switzerland 
UMR Oenology 

(ISVV) 
[49] 

GN S. cerevisiae Wine 
meiotic spore 

clone from 
Zymaflore VL1 

Bordeaux, France 
UMR Oenology 

(ISVV) 
[43] 

C1-4 S. cerevisiae Wine Wine Cordoba, Spain 
UMR Oenology 

(ISVV) 
[40] 
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 96 

2.1.1. Grape Juices 97 

Two grape juices, Sauvignon blanc 2019 (SB19) and Grenache 2021 (GR21) were collected in 98 

Bordeaux and Montpellier areas, respectively and were stored at -20°C. The GR21 is a red grape juice  99 

representing warm climate matrix with a very low malic acid content. The SB19 is a white grape juice 100 

that was supplemented with L-malic acid in order to artificially increase its acidity. The final 101 

composition of these grape juices in fermenting sugar, malic acid content and pH is listed in Table 2. 102 

 103 

Table 2: Composition of the different grape juices used in the experiments.  104 

Composition SB19 a GR21 

L-malic acid (g/L) 5.31 0.52 

pH 3.20 3.52 

Fermentable sugars (g/L) 202.4 240.0 

Assimilable nitrogen (mg N/L) 124 106 

Total SO2 (mg/L) 53 32 

 105 
a The SB19 has been supplemented to increase its malic acid content and decrease the pH. Its original composition was a 106 

malic acid concentration at 3.73 g/L and a pH of 3.38. 107 

 108 

 109 

2.1.2. Alcoholic fermentation monitoring 110 

Small-volume alcoholic fermentations were implemented in screwed vials fermentations 111 

according to the general procedure described in [48]. Rapidly, 20 mL-screwed vials (Thermo Fisher 112 

Scientific, Bordeaux, France) were filled with 12 mL of grape juice and were tightly closed with screw 113 

cap-magnetic (Agilent Technologies, hdsp cap 18 mm PTFE/il 100 pk, Les Ulis, France) perforated 114 

C4-2 S. cerevisiae Wine Wine Cordoba, Spain 
UMR Oenology 

(ISVV)
[40] 

C9-10 S. cerevisiae Wine Wine Cordoba, Spain 
UMR Oenology 

(ISVV) 
[40] 

SB S. cerevisiae Wine 
meiotic spore 

clone from 
Actiflore BO213 

France 
UMR Oenology 

(ISVV) 
[43] 

F15msp S. cerevisiae Wine 
meiotic spore 

clone from 
Zymaflore F15 

France 
UMR Oenology 

(ISVV) 
[72] 

M10-7 S. cerevisiae Wine Wine Madrid, Spain 
UMR Oenology 

(ISVV) 
[40] 

M2-2 S. cerevisiae Wine Wine Madrid, Spain 
UMR Oenology 

(ISVV) 
[40] 

M2-9 S. cerevisiae Wine Wine Madrid, Spain 
UMR Oenology 

(ISVV) 
[40] 

M2msp S. cerevisiae Wine 

meiotic spore 
clone from 

Enoferm M2 
(Lallemand) 

Unknown 
UMR Oenology 

(ISVV) 
[72] 

BO213 S. cerevisiae Wine Wine starter France Laffort [26] 
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with hypodermic needles (G26-0.45 x 13 mm, Terumo, Shibuya, Tokyo, Japan) for allowing CO2115

release. Vessel was inoculated by 2.106 viable cell.mL-1 precultured in liquid media 50 % filtered 116 

must, 50 % sterile H2O for 24h. Cellular concentration and viability was estimated by flow cytometry 117 

using a CytoFlex (Beckman Coulter, Villepinte, France). Fermentation took place at 24°C in shaken 118 

vials by using an orbital shaker (SSL1, Stuart, Vernon Hills, IL, USA) at 175 rpm. Fermentation 119 

kinetics were estimated by monitoring manually (1-2 times per day) the weight loss caused by CO2 120 

release using a precision balance with automatic weight recording (LabX system, Mettler Toledo, 121 

Viroflay, France). The amount of CO2 released according to time was modeled by local polynomial 122 

regression fit [48]. This model allows the estimation of the time necessary to reach the maximum CO2 123 

produced, the lag phase, the speed between 15 % and 50 % of the fermentation (V15_50), the speed 124 

between 50 % and 80 % (V50_80), the time to reach 80 % of CO2 produced (T80) and the maximal 125 

theoretic CO2 produced (CO2max). Final pH was monitored using Five Easy Plus pH-meter (Mettler 126 

Toledo, Viroflay France) with a micro probe LE422 (Mettler Toledo, Viroflay France). 127 

2.2. Microsatellite genotyping 128 

The genomic DNA of the 39 S. cerevisiae strains was quickly extracted in 96-wells microplate 129 

format using a customized LiAc-SDS protocol [49]. Fourteen polymorphic microsatellite loci 130 

(SCAAT3, C3, C5, SCYOR267C, C8, C11, SCAAT2, YKL172, C9, C4, SCAAT5, SCAAT1, C6, 131 

SCAAT5, SCAAT1, C6, YPL009) were used for estimating the genetic relationships within those strains 132 

using PCR conditions previously described [50]. Two multiplex PCRs allowing genotyping of seven 133 

loci were carried out in a final volume of 12.5 µL containing 6.25 µL of Qiagen Multiplex PCR master 134 

mix and 1 µL of DNA template. 1.94 µL of each mix was added in the mixture using the 135 

concentrations indicated. Both reactions were run with the following program: initial denaturation at 136 

95°C for 5 min, followed by 35 cycles of 95°C for 30 s, 57°C for 2 min, 72°C for 1 min, and a final 137 

extension at 60°C for 30 min. The size of PCR products was analyzed by the MWG company 138 

(Ebersberg, Germany) using 0.2 µL of 600 LIZ (GeneScan) as a standard marker. Chromatograms 139 

were analyzed with the GeneMarker (V2.4.0, Demo) program.  140 

 141 

2.3.  Metabolites analysis by 1H NMR 142 

2.3.1. Wine samples preparation 143 

Samples were collected during the alcoholic fermentation. Sixty µL of centrifuged wine sample 144 

was diluted ten times in phosphate buffer prepared in D2O (pD 4.2, 0.1 M final). Sixty µL of solution 145 

of calcium formate (FCa) 1 mM and trimethylsilylpropanoic acid (TSP) 1.25 mM in D2O was added to 146 

the preparation. The FCa is used as an internal standard for calculating the concentration of 147 

metabolites and the TSP to set the spectrum at 0 ppm.  148 

 149 

2.3.2. NMR spectra acquisition 150 
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Spectra were recorded on a 600 MHz Avance III NMR spectrometer (Bruker, Wissembourg, 151

France) operating at 600.25 MHz, equipped with a TXI 5 mm probe with z gradient coils. The 152 

measurement was performed at 293 K using TopSpin 4.0.8 software (Bruker, Wissembourg, France). 153 

A 1D-NOESY pulse sequence (noesygppr1d) was used with low power presaturation at the water 154 

frequency during relaxation delay and mixing time and spoil gradient. Relevant parameters were: 155 

spectral size: 64k; number of scans: 64; spectral width: 18 ppm; acquisition time: 3.64 s; relaxation 156 

delay: recovery delay: 5 s; mixing time: 100 ms. The 90° pulse calibration was carried out for each 157 

sample automatically, and the shimming was set manually in gs mode for each spectrum in order to 158 

obtain the finest possible line width (lower than 1 Hz). The FIDs were multiplied by an exponential 159 

function corresponding to a 0.3 Hz line-broadening factor prior to the Fourier transformation. Manual 160 

phase followed by automatic baseline corrections were applied to the resulting spectrum, which was 161 

aligned to zero using the TSP signal.  162 

Wine metabolite identification was performed using databases, literature data [51], and addition of 163 

pure standards when faced with uncertainties. Additionally, some 2D experiments were used (TOCSY 164 

and HSQC) to insure the identification. The FCa signal at 8.28 ppm was used as internal standard for 165 

calculating the concentration of the identified compounds. Peak deconvolutions were performed by the 166 

global spectral deconvolution method (GSD) [52], using the simple mixture analysis (SMA) plugin of 167 

MestReNova 12.0 software (Mestrelab Research, Santiago de Compostela, Spain). Quantification was 168 

achieved according to the formula of Goldelmann et al. [62]. 169 

 170 

2.4. Statistical analyses 171 

All the statistical and graphical analyses were carried out using R software [53] and plots were 172 

generated using the base or ggplot2 packages. 173 

2.4.1. Phylogenic analysis 174 

The microsatellite dataset was manipulated using the adegenet package implemented in R and the 175 

poppr package 176 

[73]. The phylogram was built by Neighbor Joining (ape package) [74]. In order to evaluate a possible 177 

genetic structuration between fruit, wine and flor yeasts, a Discriminant Analysis of the seventh 178 

Principal Components was applied using the adegenet package omitting the two control strains 179 

(FMGS_889 and AC1_191). The pairwise Fst between populations was estimated using the genet.dist 180 

function. 181 

2.4.2. Multivariate analyses 182 

Spearman correlation tests between traits were computed using the corr function (psych package) 183 

corrected for multiple tests using the Benjamini-Hochberg method ( = 0.001). Results were displayed 184 

with the corrplot function (corrplot package). The multivariate phenotypic variability of yeast strains 185 

was visualized by a Principal Component Analysis (PCA) using the ade4 package. In order to 186 
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highlight the most discriminating variables of PCA, Discriminant Analysis of Principal Component 187

(DAPC) (adegenet package) was applied by selecting principal components allowing to capture up to 188 

60% of the cumulated inertia. 189 

2.4.3. Analysis of variance 190 

Analyses of Variance (ANOVA) were carried out using the car package. The phenotypic values 191 

measured in the grape juices SB19 and GR21 were analyzed using the linear model (LM1) in order to 192 

estimate the effect of the following factors: media, population, strain in population as well as the first 193 

order interaction of all the factors according to the formula (1). 194 

(1) yijk = mediai + populationj + strain(population)jk + inter2
ijk ijkl 195 

where y is value of all the variables for a media i (i=1,2) in which j (j=1,2,3,4) groups of yeast 196 

strains fermented. Each population is composed of k strains. The factor strain is nested in the factor 197 

population and k varies between 1:5 and 1:16 according to the number of strains per population. The 198 

term inter2
ijk represents the first order interaction of each factor and ijkl the residual. The analysis of 199 

variance of model LM1 allows the estimation of the primary effect of the media, population, and strain 200 

in population on several quantitative variables, as well as their primary interaction effect. The normal 201 

distribution of residues as well as the homoscedasticity of variances were tested by Shapiro test and 202 

Levene test (car package), respectively. When necessary, non-parametric comparison of samples were 203 

carried out using the Wilcoxon-Mann-Whitney or Kruskal test with corrected p values (Benjamini-204 

Hochberg method, = 0.05). 205 

 206 

3. Results 207 

3.1. Genetic characterization of a panel of Saccharomyces strains 208 

The forty-two strains used were classified according to their origin and were denominated 209 

flor  1). Flor and wine 210 

yeast populations (S. cerevisiae) share the same ecological niches but have been clearly separated by 211 

molecular phylogenetic studies [54,55]. As mentioned in the introduction, several genes related to 212 

central metabolism and proton homeostasis have been linked to the ability to consume, or not, malic 213 

acid during the alcoholic fermentation [44]. For most of them, alleles of the flor origin were related to 214 

a stronger consumption of malic acid suggesting a possible metabolic adaptation of this population to 215 

malic acid. However, phenotypic differences of malic acid consumption between flor and wine yeasts 216 

were never reported to our knowledge. To enlarge the genetic diversity of this metabolic survey, 217 

several S. cerevisiae strains (16) related to the fermentation of fruits (agrums, apple) and acidic 218 

substrates (sauerkraut or tomato juice) were included in the panel. Finally, five S. uvarum strains 219 

presenting different genetic origin [42] were integrated to this panel since this psychrophilic species of 220 

the Saccharomyces genus is a strong producer of malic acid [56]. In addition, two S. cerevisiae strains 221 

222 
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two strains have been recently selected for their extreme ability to consume or produce malic acid 223

[21,57] and have a mixed inheritance between flor and wine origin. 224 

between the 37 Saccharomyces cerevisiae strains used was computed by using 14 microsatellites 225 

markers as previously described [26]. The genetic distances range is between 0.11 and 0.96, indicating 226 

that all the strains are unique as illustrated by the genetic tree shown in Figure 1A with some 227 

confusions between flor and wine populations. A discriminant analysis of the ten first Principal 228 

Components (60 % of the cumulative variance) allows the separation of the three populations (Figure 229 

1B) with a probability of assignation of 0.90, 1.00 and 0.93 for flor, wine, and fruit populations 230 

respectively. The pairwise Fst between flor and wine strains was 0.169 indicating a clear separation 231 

between the two populations. The five strains of S. uvarum are also unique and represent the 232 

variability of holoarctic S. uvarum as reported in a former study [42].  233 

 234 

3.2. Assessment of wine metabolites variability of fermenting yeasts by targeted 1H-NMR 235 

analysis. 236 

3.2.1. 1H-NMR analysis of yeast 237 

A targeted 1H-NMR metabolomics approach was applied for quantifying metabolites of 238 

fermenting yeasts belonging to the Saccharomyces genus. The main wine metabolites produced and 239 

consumed by yeasts during the alcoholic fermentation were quantified from sixty microliters of wine 240 

stored at -80°C. Samples were simply thawed and diluted in an appropriate buffer before analysis as 241 

detailed in methods. The typical 1H-NMR spectrum after water suppression is presented in Figure 2. 242 

The signals at 0.00 ppm and 8.28 ppm correspond to TSP and FCa respectively; other signals 243 

correspond to wine constituents. The 1H-NMR spectra were dominated by ethanol, and glycerol, 244 

followed by organic acids. Even if different amino acids were observed in juice, due to their 245 

consumption by yeast [58], only tyrosine and arginine were quantified after the alcoholic fermentation. 246 

The Table 3 shows the chemical shifts and the coupling constants used for identification and 247 

quantification of 15 metabolites including six organic acids (acetic acid, citric acid, malic acid, pyruvic 248 

acid, succinic acid, and tartaric acid), three alcohols (ethanol, 2,3-butanediol, glycerol), two reducing 249 

sugars (fructose and glucose), one ester (ethyl acetate), one aldehyde (ethanal), and two amino acids 250 

(tyrosine and arginine). The concentration range and the average coefficient of variation (CV) of each 251 

metabolite measured in one red (GR21) and one white grape juice (SB19) is also indicated, as well as 252 

the average concentration in both grape juices.  253 

 254 

 255 

 256 



10 

 

Table 3: Typical chemical shifts and coupling constants used for compounds identification after fermentation. The signals 257 
chosen for quantification are in bold. Variation coefficients and average concentration are displayed for all compounds in 258 
both media. 259 

Compound 
Assignment) 

Average 
CV SB19 

Relative 
Average 

concentration 
SB19 (g/L) 

Average 
CV GR21 

Relative 
Average 

concentration 
GR21 (g/L) 

acetic acid 2.08 (s, CH3) 21.06 0.2786 20.27 0.3166 
arginine 1.68 (m, CH2) 8.67 0.0031 43.09 0.0074 

2,3-
butanediol 

1.13 (d, 6.2, 2CH3), 15.84 0.4027 17.77 0.5089 

citric acid 2.69 (d, 15.6, CH2), 7.49 0.4265 49.74 0.0953 

ethanal 
2.23 (d, 3.0, CH3),  
9.79 (q, 2.85, CH) 

60.44 0.0023 34.15 0.0141 

ethanol 1.17 (t, 7.2, CH3), 3.65 (q, CH2) 7.89 59.6569 4.82 104.2476 

ethyl acetate 
1.26 (t, 7.2, CH3), 2.03 (s, CH3), 

4.12 (q, CH2) 
8.48 0.7078 5.97 1.1418 

fructose 
3.97 (dd, 10.1, 3.5, CH), 4.01 (m, 

CH), 4.09 (dd, 12.8, 1.0, CH) 
37.38 1.3929 49.99 1.8364 

glucose 4.65 (d, 7.9, CH), 5.23 (d, 3.6, CH) 25.47 0.2182 32.71 0.1882 

glycerol 
3.55 (dd, 11.8 and 6.5, 2CH2),  

3.77 (m, CH) 
5.50 10.1624 9.01 9.0169 

malic acid 
2.59 (dd, 16.3 and 7.0, CH), 2.81 

(dd, 16.3 and 4.5, CH),  
4.36 (dd, CH) 

5.44 6.9769 12.28 1.2349 

pyruvic acid 2.38 (s, CH3) 18.14 0.0542 21.83 0.0341 
succinic 

acid 
2.58 (s, 2CH2) 10.81 1.8568 15.24 1.4810 

tartaric acid 4.39 (s, 2CH) 40.52 0.5950 15.31 1.1052 

tyrosine 
6.86 (m, 2CH),  
7.17 (m, 2CH) 

16.34 0.0470 15.05 0.0517 

 260 

In both grape juices, most compounds had a CV lower than 30 % and in the SB19, six compounds 261 

had a CV under 10 % which shows the good repeatability and reliability of the analysis. Some 262 

compounds (residual sugars, ethanal, arginine and tartaric acid) were not accurately quantified due to 263 

their low concentrations and their instability to sample concentration (see discussion).  264 

The relative concentrations presented in the table 3 allows the statistical comparisons between 265 

samples. For some key compounds (acetic acid, malic acid, succinic acid, and glycerol), we quantified 266 

their absolute concentrations by applying correcting factors calculated using the standard addition 267 

method and applied using the formula of Goldelman et al. [62] (table 4). This absolute quantification 268 

was compared to enzymatic assay methods commonly used in enology [43]. As expected, strong 269 

correlations between enzymatic and 1H-NMR quantifications were found for all the metabolites 270 

(Spearman correlation analysis). The average CV of both methods were similar in the two grape 271 

juices, demonstrating that 1H-NMR assay was also very reproducible for such metabolites (Figure S1 272 

panels A and B). For acetic acid, malic acid, and succinic acid, the high correlations coefficient (rho > 273 
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0.82) indicated a good level of agreement between the two methods. Glycerol concentrations were also 274

 = 0.52, p-value = 2.79x10-21). Linear 275 

regressions suggested that quantification by 1H-NMR of acetic acid and glycerol were slightly 276 

overestimated respect to enzymatic assays (slopes of 0.82 and 0.74, respectively). In contrast succinic 277 

acid concentration was slightly overestimated (slope of 1.22). However, both methods resulted in very 278 

similar quantifications and were in agreement with enological values expected.  279 

 280 

Table 4: Correction factors and absolute average concentration measured for acetic, malic, succinic acids and glycerol in red 281 
and white wines. 282 

Compound 

Correction factors  Absolute 
average 

concentration 
SB19 (g/L) 

Absolute 
average 

concentration 
GR21 (g/L) 

SB19 GR21 

acetic acid 0.94 1.17 0.26 0.37 
glycerol 0.63 0.64 6.40 5.77 

succinic acid 0.44 0.44 0.82 0.65 
malic acid 0.57 0.68 3.97 0.84 

 283 

3.2.2. Multivariate analysis of wine metabolites 284 

Fermentations were monitored daily by following weight loss, and six kinetic parameters (lag 285 

phase, V15_50, V50_80, T35, T80 and CO2max) were extracted as previously reported [48]. The 286 

fifteen end-point metabolites were quantified for a panel of 44 strains of different origins (Table 1) in 287 

two grape juices (SB19 an GR21) fermented in triplicate. A Principal Component Analysis (PCA) was 288 

applied to average values in order to capture the overall variability of the 15 wine metabolites 289 

quantified by 1H-NMR (Figure 3). The final concentrations of wine metabolites are mostly structured 290 

by the grape juice nature and are clearly separated by the first component (40.3 % of inertia). Indeed, 291 

the SB19 was enriched in malic acid and citric acid compared to the GR21. In contrast, GR21 292 

displayed a higher sugar content resulting in a higher production of ethanol, ethyl-acetate and ethanal. 293 

Beside this grape juice effect, S. uvarum and S. cerevisiae species are partially separated by the second 294 

component which captured 16.9 % of the total inertia. This axis is mostly correlated with glycerol and 295 

succinic acid content which are overproduced by S. uvarum strains. In addition, the presence of 296 

reducing sugars at the end of the alcoholic fermentation was detected for some S. uvarum and fruit 297 

strains which is also strongly related to the axis 2. In contrast, the quantification of the 15 metabolites 298 

did not allow a clear separation of the three S. cerevisiae populations in both matrices.  299 

In order to identify metabolic signatures able to better discriminate yeast populations, the two 300 

grape juice datasets were analyzed separately using a Discriminant Analysis of Principal Component 301 

(DAPC). In the SB19, malic acid is the most discriminating compound followed by glycerol and 302 

succinic acid. The cumulated variability explained by these three metabolites on main linear 303 

discriminant axis is 98.3 %. As shown in Figure 4A, wines fermented by the S. uvarum species are 304 
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significantly more concentrated in malic acid, glycerol, and succinic acid (Kruskal test, alpha < 0.05) 305

than S. cerevisiae. These two species were also well discriminated in GR21 grape juice by three 306 

compounds: malic acid, succinic acid, and acetic acid which represent 64 %, 31 %, and 2 % of the 307 

discriminating inertia, respectively (Figure 4B). Beside this major species effect, significant 308 

differences of minor magnitudes were also observed within S. cerevisiae populations with a special 309 

emphasis for wine and flor populations that were always significantly different. In GR21 grape juice, 310 

the four populations were better separated than in the SB19 grape juice. Indeed, in GR21 each 311 

population was statistically different for malic acid content (Kruskal- -value < 0.05) 312 

while in SB19, only S. uvarum produced significantly more malic acid than the three other groups. 313 

This result could be linked to the initial characteristics of GR21 that contained a very low amount of 314 

malic acid.  315 

3.2.3. Contributions of genetic and environmental effect on the phenotypic variability of 316 

Saccharomyces strains 317 

To deeply investigate factors influencing kinetic and metabolic traits, a nested analysis of variance 318 

was applied, aiming to estimate the impact of environment (grape juice) and genetic factors and their 319 

possible interactions. The genetic contribution effect was decomposed in population effect and strain 320 

within population effect as detailed by the linear model 1 (see methods). The contribution of each 321 

factor on 21 quantitative traits is summarized in Figure 5. The variability of ethanol, citric acid, malic 322 

acid, ethyl acetate, tartaric acid, and ethanal was mainly due to the grape juice effect. Indeed, ethanol 323 

and ethanal are directly linked to the initial sugars concentration that differs between red and white 324 

grape juices (SB19 = 202.4 g/L, GR21 = 240 g/L). Ethyl acetate is a carboxylate ester which is a 325 

secondary metabolite produced during alcoholic fermentation, derived from ethanol [59]. Even though 326 

its production can vary according to the strain, the very different ethanol content between the two 327 

wines led to significantly different amount of ethyl acetate. Tartaric acid is almost two times more 328 

concentrated in GR21 than SB19 (1.10 g/L vs 0.59 g/L) and the average amount of citric acid is about 329 

4 times more important in SB19 than in GR21 (0.426 g/L vs 0.095 g/L respectively). Finally, malic 330 

acid varied greatly with the environment as the two grape juices were selected for their extreme 331 

acidities.  332 

To better estimate the genetic contribution on malic acid content, we used the variable MAC 333 

(Malic Acid Consumed) that represents the ratio of malic acid consumed expressed in percentage 334 

(Figure 6A). MAC variability was evenly influenced by G (33 % var), E (36 % var) and GxE 335 

interactions (22 % var). The MAC values of the two control strains AC1_191 [57] and FMGS_889 336 

[21] highlighted their great impact on acidity management since they produced and consumed 337 

significantly more than any other S. cerevisiae strains of this study. Quantitatively, the differences of 338 

absolute malic acid concentrations between wines made by these extreme strains were 1.71 and 2.95 339 
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g/L for GR21 and SB19, respectively. Intuitively, the MAC is strongly correlated to the final pH 340

(Figure 6B) since wine pH depends on the concentration of grape juice organic acids and especially 341 

the amount of malic acid. The Figure 6C shows the correlation of MAC with other metabolites in both 342 

grape juices. Overall, malic producer strains such as S. uvarum and AC1_191 produced more succinic 343 

acid than other. 344 

For other metabolites (acetic acid, 2,3-butanediol, fructose, glycerol, pyruvic acid, succinic acid, 345 

and tyrosine) as well as kinetics parameters (V15_50, V50_80, T35 and T80), the genetic effect is 346 

fect in population and strain 347 

contribution indicated that within the same population, the metabolic variability of strains is generally 348 

stronger than the metabolic variability observed between groups (Figure 5). This is well illustrated by 349 

acetic acid variability that is more explained by the strain within populations (65 %) than by 350 

population effect itself (11 %). This can be explained for instance by some flor (CBS4079) and fruit 351 

(Y-2230, Y-6678) strains that overproduced acetic acid compared to other strains from their own 352 

populations (Figure S2). Finally, arginine was the unique metabolite that was neither impacted by 353 

grape juice or yeast strain, likely due to its low concentration level at the end of the fermentation. 354 

 355 

4. Discussion  356 

4.1. 1H NMR as an effective tool for analyzing wine microorganism metabolites. 357 

Alcoholic beverages are complex matrices composed of several hundred volatile and non-volatile 358 

molecules that participate to the overall quality of the product. Therefore, analytical chemistry efforts 359 

aiming to characterize such complex matrices must be done for understanding and quantifying the role 360 

of microorganisms that participate to their elaboration. From a methodological viewpoint, trade-offs 361 

exist between the number of biological samples to analyze, the number of compounds assayed, the 362 

volume of sample required for their quantification, and the cost of the analysis. Generally, most of the 363 

microbiology studies lay emphasis on the number of biological sample and conditions analyzed in 364 

order to better understand the complex interactions existing between microbiological diversity and 365 

environmental conditions. This wide phenotypic characterization requires a reduction of fermentation 366 

volumes that allows a more efficient parallelization of culture conditions [43]. However, this strategy 367 

generally reduced the number of metabolites investigated by reducing the available sample volume. 368 

Thus, it is necessary to use high throughput methods such as enzymatic assay [43] or HPLC analyses 369 

[28]. Enzymatic assays are cost effective and can be easily robotized, however they require a specific 370 

assay per compounds with a quite limited number of metabolite available. HPLC analyses are more 371 

expensive and require the use of specific methods for quantifying organic acid and sugars [60], or 372 

nitrogen compounds [61].  373 

NMR metabolomics is particularly amenable to detect compounds that are less tractable by liquid 374 

chromatography such as sugars, organic acids, alcohols polyols, and other highly polar compounds 375 
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[33]. Those classes of compounds are well represented in wine reinforcing the interest of this 376

technique. In this study, we used an analytical method able to quantify from a small volume (less than 377 

100 µL) using quantitative 1H-NMR spectroscopy. The advantages of NMR are the simplicity of 378 

sample preparation, measurement rapidity and the possibility to detect compounds belonging to 379 

different chemical families on one spectrum, in a single experiment. Previous studies were focused on 380 

the characterization of commercial wines and analysis of the cultivar, geographic origin, or vintage 381 

[45,46,64]. Our study focused on the characterization of wines fermented in the laboratory with 382 

different yeasts strains. The 1H-NMR method allowed the identification and quantification of 15 wine 383 

soluble metabolites of 264 biological samples requiring only 60 µL of wine for each experiment. This 384 

original approach allows studying the origin of many strains and their impact on various wine 385 

metabolites in different enological matrices.  386 

The NMR analytical method was cross assessed by comparing the quantifications obtained by 387 

enzymatic assays for three organic acids (malate, succinate, and acetate) and for glycerol. Data 388 

obtained were accurately correlated for these metabolites and both methods had low coefficients of 389 

variation. By applying correction factors experimentally determined. For all the four compounds 390 

assayed the correlation between methods was very satisfactory and the slope of the linear models close 391 

to 1 +/- 20 %  (Figure S1). For other compounds the absolute quantification was not determined but 392 

the relative concentrations showed in the table 3 did not impair the relative comparison of the strains 393 

which is the scope of this study. The quantification of glycerol seems more problematic even if the 394 

coefficient of variation of repetition is quite low (5.5% in SB19 and 9.01% in GR21). As shown 395 

Figure S1, the 1H-NMR method over-estimated glycerol content in comparison to enzymatic assays.  396 

The relative discrepancy between the two methods could be due to several factors relating to both 397 

H = 3.55 ppm) is in a very dense region of the 398 

spectrum. This region is dominated by ethanol signal at 3.65 ppm. An overlap might have led to 399 

uncertainty of measurement.   400 

In the present study, ethanol was quantified on all spectra as it is a compound of major interest in 401 

phenotypic analysis. However, the high intensity of the ethanol signal masks the signal of other 402 

-aminobutyric acid, galacturonic acid, glucuronic 403 

404 

higher number of compounds by suppressing the ethanol signal which is dominant after water using a 405 

selective pulse. Another solution would consist of introducing a lyophilization step to suppress the 406 

water and ethanol signals. This would improve the signal-to-noise ratio and better observe non-volatile 407 

compounds close to the signals of water and ethanol. These extra steps would increase the time of 408 

preparation and analysis but would allow the identification and accurate quantification of a higher 409 

number of other compounds. 410 

Interestingly, the method applied is also useful for quantifying compounds that are not easily 411 

quantified by classical analyses such as ethyl acetate and ethanal. Ethyl acetate can be of interest as it 412 
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is the major ester in several distilled spirits such as whiskey, rum and cachaça [63,64]. Ethanal, is 413

found in wines in various concentrations and can be formed by yeasts or be the indication of a 414 

contamination by acetic acid bacteria, lactic acid bacteria or be the result of auto-oxidation of ethanol 415 

and phenolic compounds [65]. The monitoring of its concentration in wines during fermentation and 416 

aging could be useful as its presence in small concentration gives a pleasant fruity aroma but at high 417 

concentrations it gives a pungent irritating odor. Finally, 1H-NMR analytical method is also applicable 418 

to grape juices and ongoing fermentations. The present study focused on the analysis of wines, but 419 

samples taken earlier during alcoholic fermentation could allow the assay of nitrogen compounds 420 

which are more abundant in the earliest amino 421 

acids such as leucine, isoleucine, valine, threonine, arginine, proline, and choline were clearly 422 

observed (personal communication) in the 0.9  3.3 ppm region of the spectrum. Due to their low 423 

concentration and consumption by yeast, these compounds were not quantified in fermented wines, 424 

except for arginine which is initially present in high concentration in grape juices and is lately 425 

consumed by yeasts [58]. 426 

4.2.  Wine metabolome is partially impacted by the population origin of the 427 

fermenting strains. 428 

The metabolomic characterization of two grape juices fermented by a large panel of yeast strains 429 

was achieved. Those strains provided by microorganism collections are associated with acidic 430 

fermented matrices such as wine, cider, fruit juices, and sauerkraut. As confirmed by microsatellite 431 

analysis, the four groups of strains collected in different ecological or human associated niches are 432 

discriminated by population genetics tools. The three S. cerevisiae groups belong to distinct 433 

populations (flor, wine, and fruit) the last group being constituted by S. uvarum strains isolated in cider 434 

and wine environments. This last species has been reported to have acidifying properties and to 435 

produce large quantities of malic acid [42].  436 

In the context of this study, the impact of the yeast strain on wine metabolome was investigated in 437 

divergent matrices (one red and wine white grape juice) showing opposite level of malic acid content 438 

(0.52 g/L vs 5.31 g/L). Initially, the GR21 had a low content in malic acid compared to SB19 which 439 

enhanced the ability of some strains to produce more malic acid. As malic acid has a buffer effect, an 440 

addition of malic acid to the medium reinforced this buffer effect. On the contrary, in SB19 most 441 

strains consumed malic acid, limiting the buffer effect. The correlation between MAC and pH is 442 

strong in both grape juices (Figure 6B) as malic acid is the organic acid influencing the most the pH. 443 

Tartaric acid is also a strong influencer of the acidity, but it is not modulated by yeasts during 444 

alcoholic fermentation. Indeed, the figure 5 shows that this organic acid is only impacted by the grape 445 

juice and there is no significant effect of the strains or populations.  446 

The main insight of this study is that metabolome variations are partially structured by the origin 447 

of the strain. First, the phenotypic discrepancies between the two main species involved in the 448 
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alcoholic fermentation (S. uvarum and S. cerevisiae) were confirmed. Previous studies reported that S. 449

uvarum produced higher concentrations of malic acid [42,11], succinic acid [66,67] and glycerol 450 

[11,67] that S. cerevisiae. In addition, this species is characterized by weaker fermentation 451 

performances than S. cerevisiae [11,67] and by the production of specific fermentative aromas [66,68]. 452 

Da Silva et al. (2015) reported that S. uvarum produced more acetic acid, but this finding was not 453 

supported in our study except for one strain (RC4-15) which produced 0.70 g/L of acetic acid in GR21 454 

while the 4 other S. uvarum strains produced about 0.23 g/L in the same grape juice (figure S2). Using 455 
1H-NMR-based metabolomics, fifteen non-volatile metabolites were quantified. The results obtained 456 

confirmed the differences reported for glycerol, malic acid, and succinic acid content (Figure 4). In 457 

addition, this species reveals to produce more 2,3-butanediol (in average 1.5 times more than S. 458 

cerevisiae strains). The amount of pyruvic acid was in average 2 times less important for S. uvarum 459 

than S. cerevisiae strains, and residual fructose was the indication of some stuck fermentations by S. 460 

uvarum (~10 g/L of fructose remaining). 461 

Second, wine and flor yeasts can be distinguished by handful of compounds, mostly belonging to 462 

organic acid family (cf. figure 4 and 5). This metabolic signature could be the consequence of a 463 

differential management of central carbon metabolism as previously proposed by [44]. This might be 464 

explained by the fact that flor yeasts are adapted to shift their metabolism to an oxidative metabolism 465 

when sugar and nitrogen are depleted [69]. In the context of a shift diauxic during the velum formation 466 

the aptitude to consume malic acid as a secondary carbon source may constitute a selective advantage. 467 

Moreover, a correlation was found between malic acid production and succinic acid production in 468 

GR21 (no production occurred in SB19). This observation was previously reported by [70]. It is 469 

consistent with their metabolic relationships and raise the question of the metabolic pathways taken by 470 

produced and consumed malic acid. This correlation could explain a significative difference of 471 

succinic acid content between wine and flor yeasts as they already differ for malic acid consumption. 472 

Finally, the two control strains displayed extreme differences for malic acid content, 473 

demonstrating the efficiency of the selection they came from [21,70]. They frame the natural 474 

variability of all the other strains regarding the MAC values (Figure 6A). Only some strains of S. 475 

uvarum can produce as much malic acid as AC1_191. On the PCA (Figure 3), the strain AC1_191 is 476 

close to S. uvarum group in terms of acidity management. Indeed, this strain was selected for its ability 477 

to produce important amounts of malic acid and happens to also produce important amount of succinic 478 

acid. The extreme strain AC1_191 appears to be a good strain to cope with low amounts of malic acid 479 

in musts in a context of climate change. It is able to produce malic and, secondarily, succinic acid 480 

which decrease the pH of the final wine [65]. Finally, it was able to complete the fermentation unlike 481 

some S. uvarum and produced low amounts of acetic acid (Figure S3) which makes it suitable for 482 

winemaking. this strain could be used for vinification itineraries aiming to conserve the freshness of 483 

white wines. The FMGS_889 is also a strain of enological interest for lowering the acidity of rich 484 

malic wines and shortening the malo-lactic fermentation of red wines [21]. The organoleptic 485 
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consequences of the use of S. cerevisiae strains having an opposite organic acid metabolism has been 486

demonstrated in a previous study [57] and was not tested in the present work due to the small volume 487 

of wine fermented. 488 

 489 

Conclusion 490 

A reliable and easy to apply 1H-NMR analytical method was developed to quantify the major end 491 

point metabolites of the alcoholic fermentation of grape juices. This method required a small sample 492 

size (60 µL) a basic sample dilution and a short sample analysis (5 minutes). This efficient protocol 493 

was used for evaluating the metabolomic variability of 44 yeast strains becoming to the two major 494 

species of the Saccharomyces genus involved in wine fermentation. Metabolomic differences between 495 

strains belonging to different genetic groups were observed suggesting that the central metabolism of 496 

distinct populations is differently regulated. Interestingly, organic acids and glycerol metabolisms 497 

constitute strongly discriminating factors. The phenotypic diversity observed impacted the final pH 498 

value of wine and was strongly correlated to the ability of strains to consume or produce malic acid. 499 
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708

709

Figure 1: distance) computed from the 710
genotyping of 14 variable microsatellites, the colors red, green, and blue indicated the Flor, Fruit, and Wine origin, 711
respectively. the two control strains are indicated by a black dot (b) Discriminant Analysis of Principal Components 712
computed with microsatellite data. The three main populations are figured out by the same colors. 713

714
Figure 2: Annotated typical 1H-NMR spectrum of wine metabolites after water suppression (noesygppr1d). Identified 715
constituents are listed in Table 3.716
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 717 
Figure 3: Principal Component Analysis (PCA) (A) The two first axis of the PCA performed for the 44 strains in the two 718 
grape juices. Axes 1 and 2 explain 40.3 and 16.9 % of total variation respectively. Each point represents the average of three 719 
biological replicates of a single strain. Each strain is colored according to its population. (B) Correlation circle indicating the 720 
correlation of the variables for axes 1 and 2. 721 

 722 

 723 

 724 
Figure 4: Main compounds involved in populations separation. (A) Absolute concentrations (g/L) of malic acid, glycerol, 725 
and succinic acid, in SB19 for the 4 populations. (B) Absolute concentrations (g/L) of malic acid, succinic acid, and acetic 726 
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acid in GR21 for the four yeast populations. A Kruskal test has been applied to the compounds in both media. Different 727 
 728 

 729 

730 
Figure 5: Bar graphs indicating the part of variance explained by the different factors of the ANOVA. The letters E and G 731 
represent the environmental (grape juice) and the genetic factors, respectively. The nested ANOVA applied allows to 732 
evaluate the effect of the population and the effect of strain within each population (strain). GxE represents the interaction 733 
between genetic and environment and was decomposed in two nested factors grape juice: population and grape juice: strain in 734 
population. Gray tons indicate non significative effect of the factors.  735 

 736 
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 737 

 738 

Figure 6: (A) MAC values measured for all strains in the two grape juices (3 replicates per strain). Strains were colored 739 
according to their population. The dashed line represents the 0% which corresponds to no malic acid consumed or produced. 740 
Positive values correspond to a consumption of malic acid and negative values to a production. (B) Correlation of MAC and 741 
pH for the two grape juices. The red line represents the linear regression line, correlation coefficients and p-values are written 742 
on the graphs. The dots represent all the tested strains (3 replicates per strains). They are colored according to their genetic 743 
group. (C) Correlation matrix between MAC and all other metabolites in the two grape juices. The value displayed 744 
corresponds to the correlation coefficient. Red values correspond to a negative correlation while blue values correspond to a 745 

 746 

 747 

 748 

 749 

 750 

 751 

 752 

 753 

 754 

 755 

 756 

 757 
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Supplementary data 758 

 759 
Figure S1: Correlation between enzymatic assay and NMR analysis for acetic acid, glycerol, malic acid, and succinic acid. 760 
The Spearman correlation coefficients are 0.89, 0.82, 0.93 and 0.52 for acetic acid, succinic acid, malic acid, and glycerol, 761 
respectively. The concentrations on both axes are expressed in g/L. There is an overestimation of the concentration of malic 762 
acid, succinic acid, and glycerol with the NMR method. 763 
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 765 

 766 
Figure S2: Absolute concentration in acetic acid (g/L) at the end of the fermentation for all strains in both grape juices. The 767 

boxplots are colored according to their population. 768 




