Mostra i principali dati dell'item

dc.contributor.authorEgido Sierra, Javier del
dc.contributor.authorDíaz Díaz, Alejandro
dc.contributor.authorBergasa Pascual, Luis M.
dc.contributor.authorBarea Navarro, Rafael
dc.contributor.authorLópez Guillén, M. Elena
dc.date.accessioned2022-09-20T12:54:53Z
dc.date.available2022-09-20T12:54:53Z
dc.date.issued2021-07
dc.identifier.isbn978-84-18465-12-3
dc.identifier.urihttp://hdl.handle.net/10259/6961
dc.descriptionTrabajo presentado en: R-Evolucionando el transporte, XIV Congreso de Ingeniería del Transporte (CIT 2021), realizado en modalidad online los días 6, 7 y 8 de julio de 2021, organizado por la Universidad de Burgoses
dc.description.abstractThe introduction of Autonomous Vehicles (AVs) in a realistic urban environment is an ambitious objective. AV validation on real scenarios involving actual objects such as cars or pedestrians in a wide range of traffic cases would escalate the cost and could generate hazardous situations. Consequently, autonomous driving simulators are quickly evolving to cover the gap to achieve a fully autonomous driving architecture validation. Most used 3D simulators in self-driving cars field are V-REP (Rohmer, E., 2013) and Gazebo (KOENIG, N. and HOWARD, A., 2004), due to an easy integration with ROS (QUIGLEY, 2009) platform to increase the interoperability with other systems. Those simulators provide accurate motion information (more appropriate for easier scenes like robotic arms) but not a realistic appearance and not allowing real-time systems, not being able to recreate complex traffic scenes. CARLA (DOSOVITSKIY, A., 2017) opensource AV simulator is designed to be able to train and validate control and perception algorithms in complex traffic scenarios with hyper-realistic environments. CARLA simulator allows to easily modify on-board sensors such as cameras or LiDAR, weather conditions and also the traffic scene to perform specific traffic cases. In Summer 2019, CARLA launched its driving challenge to allow everyone to test their own control techniques under the same traffic scenarios, scoring its performance regarding traffic rules. In this paper, the Robesafe researching group approach will be explained, detailing vehicle motion control and object detection adapted from Smart Elderly Car (GÓMEZ-HUÉLAMO, C., 2019) that lead the group to reach the 4th place in Track 3 challenge, where HD Map, Waypoints and environmental sensors data (LiDAR, RGB cameras and GPS) were provided.en
dc.description.sponsorshipThis work has been funded in part from the Spanish MICINN/FEDER through the Techs4AgeCar project (RTI2018-099263-B-C21) and from the RoboCity2030-DIH-CM project (P2018/NMT- 4331), funded by Programas de actividades I+D (CAM) and cofunded by EU Structural Funds.en
dc.format.mimetypeapplication/pdf
dc.language.isoenges
dc.publisherUniversidad de Burgos. Servicio de Publicaciones e Imagen Institucionales
dc.relation.ispartofR-Evolucionando el transportees
dc.relation.urihttp://hdl.handle.net/10259/6490
dc.subjectVehículoses
dc.subjectVehiclesen
dc.subjectFormas de movilidades
dc.subjectMeans of mobilityen
dc.subjectVehículos autónomoses
dc.subjectAutonomous vehiclesen
dc.subject.otherIngeniería civiles
dc.subject.otherCivil engineeringen
dc.subject.otherTransporteses
dc.subject.otherTransportationen
dc.titleAutonomous vehicle control in CARLA Challengeen
dc.typeinfo:eu-repo/semantics/conferenceObjectes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.relation.publisherversionhttps://doi.org/10.36443/9788418465123es
dc.identifier.doi10.36443/10259/6961
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-099263-B-C21/ES/TECNOLOGIAS ROBUSTAS PARA UN CONCEPTO DE COCHE ELECTRICO AUTOMATIZADO PARA CONDUCTORES MAYORESes
dc.relation.projectIDinfo:eu-repo/grantAgreement/CAM//P2018%2FNMT-4331
dc.page.initial1991es
dc.page.final1998es
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Files in questo item

Thumbnail

Questo item appare nelle seguenti collezioni

Mostra i principali dati dell'item