Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contact Us
  • Send Feedback
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of RIUBUCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Compartir

    View Item 
    •   RIUBU Home
    • E-Prints
    • Departamentos
    • Departamento de Ingeniería Electromecánica
    • Untitled
    • Untitled
    • View Item
    •   RIUBU Home
    • E-Prints
    • Departamentos
    • Departamento de Ingeniería Electromecánica
    • Untitled
    • Untitled
    • View Item

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/7408

    Título
    Combining reinforcement learning and conventional control to improve automatic guided vehicles tracking of complex trajectories
    Autor
    Sierra Garcia, Jesús EnriqueUBU authority Orcid
    Santos, Matilde
    Publicado en
    Expert Systems. 2022, e13076
    Editorial
    Wiley
    Fecha de publicación
    2022-06
    ISSN
    0266-4720
    DOI
    10.1111/exsy.13076
    Abstract
    With the rapid growth of logistics transportation in the framework of Industry 4.0, automated guided vehicle (AGV) technologies have developed speedily. These systems present two coupled control problems: the control of the longitudinal velocity, essential to ensure the application requirements such as throughput and tag time, and the trajectory tracking control, necessary to ensure the proper accuracy in loading and unloading manoeuvres. When the paths are very short or have abrupt changes, the kinematic constraints play a restrictive role, and the tracking control becomes more challenging. In this case, advanced control strategies such as those based on intelligent techniques, including machine learning (ML) can be useful. Hence, in this work, we present an intelligent hybrid control scheme that combines reinforcement learning-based control (RLC) with conventional PI regulators to face both control problems simultaneously. On the one hand, PIs are used to control the speed of each wheel. On the other hand, the input reference of these regulators is calculated by the RLC in order to reduce the guiding error of the path tracking and to maintain the longitudinal speed. The latter is compared with a PID path following controller. The PID regulators have been tuned by genetic algorithms. The RLC allows the vehicle to learn how to improve the trajectory tracking in an adaptive way and thus, the AGV can face disturbances or unknown physical system parameters that may change due to friction and degradation of AGV mechanical components. Extensive simulation experiments of the proposed intelligent control strategy on a hybrid tricycle and differential AGV model, that considers the kinematics and the dynamics of the vehicle, prove the efficiency of the approach when following different demanding trajectories. The performance of the RL tracking controller in comparison with the optimized PID gives errors around 70% smaller, and the average maximum error is also 48% lower.
    Palabras clave
    Automated guided vehicle (AGV)
    Intelligent control
    Machine learning (ML)
    Path following
    PDI
    Reinforcement learning (RL)
    Materia
    Ingeniería eléctrica
    Electric engineering
    URI
    http://hdl.handle.net/10259/7408
    Versión del editor
    https://doi.org/10.1111/exsy.13076
    Collections
    • Untitled
    Atribución-NoComercial 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Atribución-NoComercial 4.0 Internacional
    Files in this item
    Nombre:
    Sierra-es_2022.pdf
    Tamaño:
    5.788Mb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Show full item record