RT info:eu-repo/semantics/conferenceObject T1 Using Data Analytics & Machine Learning to Design Business Interruption Insurance Products for Rail Freight Operators A1 Cardona, John F. A1 Castaneda, Juliana A1 Martins, Leandro do C. A1 Gandouz, Mariem A1 Juan, Angel A. A1 Franco, Guillermo K1 Ferrocarriles K1 Railways K1 Ingeniería civil K1 Civil engineering K1 Transportes K1 Transportation AB This paper discusses a case study in which publicly available data of a rail freighttransportation firm has been gathered, cleansed, and analyzed in order to: (i) describe thedata using statistical indicators and graphs; (ii) identify patterns regarding several KeyPerformance Indicators; (iii) obtain forecasts on the future evolution of these indicators; and(iv) use the identified patterns and the generated forecasts to propose customized insuranceproducts that reflect the current and future freight transportation activity. The paperillustrates the different methodological steps required during the extraction and cleansing ofthe data --which required the development of Python scripts--, the use of time series analysisfor obtaining reliable forecasts, and the use of machine learning models for designingcustomized insurance coverage from the identified patterns and predicted values. PB Universidad de Burgos. Servicio de Publicaciones e Imagen Institucional SN 978-84-18465-12-3 YR 2021 FD 2021-07 LK http://hdl.handle.net/10259/6876 UL http://hdl.handle.net/10259/6876 LA eng NO Trabajo presentado en: R-Evolucionando el transporte, XIV Congreso de Ingeniería del Transporte (CIT 2021), realizado en modalidad online los días 6, 7 y 8 de julio de 2021, organizado por la Universidad de Burgos NO This study was collectively completed and supported by Guy Carpenter & Company, LLC, and the Universitat Oberta de Catalunya. DS Repositorio Institucional de la Universidad de Burgos RD 22-dic-2024