RT info:eu-repo/semantics/conferenceObject T1 Predicting on-time deliveries in trucking: A model based on the working conditions of drivers A1 Berrones-Sanz, Luis David K1 Logística K1 Logistics K1 Operaciones K1 Operations K1 Transporte de mercancías K1 Transportation of goods K1 Transportes K1 Transportation K1 Organización del trabajo K1 Methods engineering AB Over a period of two years, 26.3 thousand road freight shipments were recorded. Therecords include information about truckload companies, drivers, and the causes of noncomplianceand delays in deliveries. Logistic regression based in working conditions asindependent variables was used to predict non-compliance deliveries attributed to cargodrivers. Results show that vehicle type, medical coverage and social security, level ofstress, work dissatisfaction, and transit time were strongly associated with out-of-timedelaysin deliveries. The proposed model is a promising tool to improve the performanceof truckload companies and it may motivate to benefit working conditions of truckers. PB Universidad de Burgos. Servicio de Publicaciones e Imagen Institucional SN 978-84-18465-12-3 YR 2021 FD 2021-07 LK http://hdl.handle.net/10259/6904 UL http://hdl.handle.net/10259/6904 LA eng NO Trabajo presentado en: R-Evolucionando el transporte, XIV Congreso de Ingeniería del Transporte (CIT 2021), realizado en modalidad online los días 6, 7 y 8 de julio de 2021, organizado por la Universidad de Burgos DS Repositorio Institucional de la Universidad de Burgos RD 15-ene-2025