RT info:eu-repo/semantics/article T1 Gaining deep knowledge of Android malware families through dimensionality reduction techniques A1 Vega Vega, Rafael Alejandro A1 Quintián, Héctor A1 Calvo-Rolle, José Luis A1 Herrero Cosío, Álvaro A1 Corchado, Emilio K1 Android malware K1 Malware families K1 Dimensionality reduction K1 Artificial neural networks K1 Informática K1 Computer science AB This research proposes the analysis and subsequent characterisation of Android malware families by means of lowdimensional visualisations using dimensional reduction techniques. The well-known Malgenome data set, coming fromthe Android Malware Genome Project, has been thoroughly analysed through the following six dimensionality reductiontechniques: Principal Component Analysis, Maximum Likelihood Hebbian Learning, Cooperative Maximum LikelihoodHebbian Learning, Curvilinear Component Analysis, Isomap and Self Organizing Map. Results obtained enable a clear visualanalysis of the structure of this high-dimensionality data set, letting us gain deep knowledge about the nature of such Androidmalware families. Interesting conclusions are obtained from the real-life data set under analysis. PB Oxford University Press SN 1367-0751 YR 2019 FD 2019-04 LK http://hdl.handle.net/10259/7252 UL http://hdl.handle.net/10259/7252 LA eng DS Repositorio Institucional de la Universidad de Burgos RD 07-ene-2025