RT info:eu-repo/semantics/article T1 Designing bilayered composite films by direct agar/chitosan and citric acid-crosslinked PVA/agar layer-by-layer casting for packaging applications A1 Diop, Cherif Ibrahima Khalil A1 Beltrán Calvo, Sagrario A1 Sanz Díez, Mª Teresa A1 García Tojal, Javier A1 Trigo López, Miriam K1 Double-layered films K1 Composite packaging K1 Agar/chitosan K1 Crosslinked PVA/Agar K1 Layer-by-layer casting K1 Ingeniería química K1 Chemical engineering K1 Biotecnología K1 Biotechnology K1 Alimentos K1 Food AB Packaging is a crucial tool for reducing food waste and enhancing product competitiveness. Fossil fuel-based plastics, mostly used for food packaging, account for nearly 40% of global plastic waste. To address this issue, this study developed a layer-by-layer casting technique to create novel bilayered plastic composites with distinct agar/chitosan and PVA/agar layers. Film's properties, such as thickness, plasticity, and tensile strength, were affected by adjusting the volume of the layers. The elongation at break was positively related to the presence of citric acid (up to 30 wt%) as a crosslinker. The chitosan-rich first layer provided better UV-light blocking potential and opacity, which were beneficial in the prevention of lipid oxidation. Increasing the second layer by 40–60% substantially reduced the light absorption, while the colors were proportional to the citric acid content. The FT-IR band at 1713 cm−1 indicated an increase in C=O ester groups with crosslinker content. The hydrophobicity of the films was enhanced by the chitosan-rich layer. XRD supported intramolecular and intermolecular hydrogen bonding, whereas the micrographs revealed tightly bound structure between layers. The results corroborated that the inclusion of agar in the formulations increased the stability of the film, making it ideal for various packaging applications. PB Elsevier SN 0268-005X YR 2023 FD 2023-11 LK http://hdl.handle.net/10259/9268 UL http://hdl.handle.net/10259/9268 LA eng NO This work was supported by the European Commission, Horizon 2020 program through the Marie-Curie Individual Fellowship (H2020-MSCA-IF-2019), with regards to the ALGWAS-BIOR project (Grant agreement number 898804). This work was also supported by European Union H2020-LC-SC3-2020-NZE-RES-CC, NMBP-16-2020-GA 953152 and DT-NMBP-04-2020 Projects and Ministerio deand Ministerio de Ciencia, Innovación y Universidades CTQ(QMC) RED 2018-102471-T MultiMetDrugs Network (Spain). DS Repositorio Institucional de la Universidad de Burgos RD 04-dic-2024