RT info:eu-repo/semantics/conferenceObject T1 Collaborative agents for drilling optimisation tasks using an unsupervised connectionist model A1 Curiel Herrera, Leticia Elena A1 Herrero Cosío, Álvaro A1 Corchado, Emilio A1 Bravo Díez, Pedro Miguel K1 Informática K1 Computer science K1 Industria K1 Industry K1 Inteligencia artificial K1 Artificial intelligence AB The purpose of this study is the optimization of drilling tasks in theconstruction of big auto-carrier storage warehouses. This is carried out byapplying different Artificial Intelligence (AI) techniques: a cooperativeunsupervised connectionist model (focused on the detection of some optimaldrilling conditions) and software agents. These agents can collaborate to savedrilling time and waste by interchanging information about the conditions ofdrill bits and the kind of material to be drilled. PB Universidad de León. Servicio de Publicaciones YR 2005 FD 2005 LK http://hdl.handle.net/10259/9394 UL http://hdl.handle.net/10259/9394 LA eng NO Trabajo presentado en: 4th International Workshop on Practical Applications of Agents and Multiagent Systems (IWPAAMS), realizado el 20 y 21 de octubre de 2005, en León NO This research has been supported by the McyT project TIN2004-07033 and the project BU008B05 of the JCyL. DS Repositorio Institucional de la Universidad de Burgos RD 08-ene-2025