RT info:eu-repo/semantics/article T1 Semi-supervised diagnosis of wind-turbine gearbox misalignment and imbalance faults A1 Maestro Prieto, José Alberto A1 Ramírez Sanz, José Miguel A1 Bustillo Iglesias, Andrés A1 Rodríguez Diez, Juan José K1 Wind turbine K1 Powertrain failures K1 Bearing failures K1 Semi-supervised learning K1 Fault detection and diagnosis K1 Informática K1 Computer science K1 Bioinformática K1 Bioinformatics AB Both wear-induced bearing failure and misalignment of the powertrain between the rotor and the electrical generator are common failure modes in wind-turbine motors. In this study, Semi-Supervised Learning (SSL) is applied to a fault detection and diagnosis solution. Firstly, a dataset is generated containing both normal operating patterns and seven different failure classes of the two aforementioned failure modes that vary in intensity. Several datasets are then generated, maintaining different numbers of labeled instances and unlabeling the others, in order to evaluate the number of labeled instances needed for the desired accuracy level. Subsequently, different types of SSL algorithms and combinations of algorithms are trained and then evaluated with the test data. The results showed that an SSL approach could improve the accuracy of trained classifiers when a small number of labeled instances were used together with many unlabeled instances to train a Co-Training algorithm or combinations of such algorithms. When a few labeled instances (fewer than 10% or 327 instances, in this case) were used together with unlabeled instances, the SSL algorithms outperformed the result obtained with the Supervised Learning (SL) techniques used as a benchmark. When the number of labeled instances was sufficient, the SL algorithm (using only labeled instances) performed better than the SSL algorithms (accuracy levels of 87.04% vs. 86.45%, when labeling 10% of instances). A competitive accuracy of 97.73% was achieved with the SL algorithm processing a subset of 40% of the labeled instances. PB Springer SN 0924-669X YR 2024 FD 2024 LK http://hdl.handle.net/10259/9983 UL http://hdl.handle.net/10259/9983 LA eng NO Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. DS Repositorio Institucional de la Universidad de Burgos RD 03-mar-2025