
Knowledge-Based Systems 107 (2016) 83–95 

Contents lists available at ScienceDirect 

Knowle dge-Base d Systems 

journal homepage: www.elsevier.com/locate/knosys 

Instance selection of linear complexity for big data 

Álvar Arnaiz-González, José-Francisco Díez-Pastor, Juan J. Rodríguez, César García-Osorio 

∗

University of Burgos, Spain 

a r t i c l e i n f o 

Article history: 

Received 18 December 2015 

Revised 3 April 2016 

Accepted 30 May 2016 

Available online 30 May 2016 

Keywords: 

Nearest neighbor 

Data reduction 

Instance selection 

Hashing 

Big data 

a b s t r a c t 

Over recent decades, database sizes have grown considerably. Larger sizes present new challenges, be- 

cause machine learning algorithms are not prepared to process such large volumes of information. In- 

stance selection methods can alleviate this problem when the size of the data set is medium to large. 

However, even these methods face similar problems with very large-to-massive data sets. 

In this paper, two new algorithms with linear complexity for instance selection purposes are presented. 

Both algorithms use locality-sensitive hashing to find similarities between instances. While the complexity 

of conventional methods (usually quadratic, O(n 2 ) , or log-linear, O(n log n ) ) means that they are unable 

to process large-sized data sets, the new proposal shows competitive results in terms of accuracy. Even 

more remarkably, it shortens execution time, as the proposal manages to reduce complexity and make 

it linear with respect to the data set size. The new proposal has been compared with some of the best 

known instance selection methods for testing and has also been evaluated on large data sets (up to a 

million instances). 

© 2016 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 
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. Introduction 

The k nearest neighbor classifier ( k NN) [11] , despite its age, is

till widely used in machine learning problems [9,17,20] . Its sim-

licity, straightforward implementation and good performance in

any domains means that it is still in use, despite of some of its

aws [37] . The k NN algorithm is included in the family of instance

ased learning, in particular within the lazy learners , as it does

ot build a classification model but just stores all the training set

8] . Its classification rule is simple: for each new instance, assign

he class according to the majority vote of its k nearest neighbors

n the training set, if k = 1 , the algorithm only takes the nearest

eighbor into account [45] . This feature means that it requires a

ot of memory and processing time in the classification phase [48] .

raditionally, two paths have been followed to speed up the pro-

ess: either accelerate the calculation of the closest neighbors [3,4] ,

r decrease training set size by strategically selecting only a small

ortion of instances or features [38] . 

Regarding the acceleration of algorithms, perhaps one of the

ost representative approaches is to approximate nearest neigh-

ors, a broadly researched technique in which the nearest neigh-

or search is done over a sub-sample of the whole data set [56] .
∗ Corresponding author.Fax: +34947258910. 
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n this field, many algorithms have been proposed for approximate

earest neighbor problems [3,4,30,34,39] . 

The focus of this paper is on the second path, the reduction of

ata set size. The reason is that this reduction is beneficial for most

ethods rather than only those based on nearest neighbors. Al-

hough we will only consider the reduction of instances (instance

election) in this paper, the reduction could also be applied to at-

ributes (feature selection), or even both at the same time [51] . The

roblem is that the fastest conventional instance selection algo-

ithms have a computational complexity of at least O(n log n ) and

thers are of even greater complexity. 

The need for rapid methods for instance selection is even more

elevant nowadays, given the growing sizes of data sets in all fields

f machine learning applications (such as medicine, marketing or

nance [43] ), and the fact that the most commonly used data min-

ng algorithms for any data mining task were developed when the

ommon databases contained at most a few thousands of records.

urrently, millions of records are the most common scenario. So,

ost data mining algorithms find many serious difficulties in their

pplication. Thus, a new term has emerged, “Big Data”, in reference

o those data sets that, by volume, variability and speed, make the

pplication of classical algorithms difficult [44] . With regard to in-

tance selection, the solutions that have appeared so far to deal

ith big data problems adopt the ‘divide and conquer’ approach

13,22] . The algorithms proposed in the present paper offer a dif-

erent approach, just a sequential but very quick and simple pro-

essing of each instance in the data set. 
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Table 1 

Summary of state-of-the-art instance selection methods used in the experimental 

setup (taxonomy from [21] ; computational complexity from [31] and authors’ pa- 

pers). 

Strategy Direction Algorithm Complexity Year Reference 

Condensation Incremental CNN O(n 3 ) 1968 [27] 

Incremental PSC O(n log n ) 2010 [46] 

Decremental RNN O(n 3 ) 1972 [25] 

Decremental MSS O(n 2 ) 2002 [6] 

Hybrid Decremental DROP1-5 O(n 3 ) 20 0 0 [60] 

Batch ICF O(n 2 ) 2002 [8] 

Batch HMN-EI O(n 2 ) 2008 [41] 

Batch LSBo O(n 2 ) 2015 [37] 

T  

F  

n  

l  

i

 

t  

t  

C  

i  

t  

t  

c  

t  

p  

t  

t  

s

 

m  

v  

t  

b  

s  

d

 

t  

A  

T

2

 

c  

n  

i  

e  

s  

b  

i  

a  

t  

d  

o  

[  

[  

t  

a  

c

 

o  

b  

i  
In particular, the major contribution of this paper is the use

of Locality-Sensitive Hashing (LSH) to design two new algorithms,

which offers two main advantages: 

• Linear complexity: the use of LSH means a dramatic reduction

in the execution time of the instance selection process. More-

over, these methods are able to deal with huge data sets due to

their linear complexity. 

• On-the-fly processing: one of the new methods is able to tackle

the instances in one step. It is not necessary for all instances fit

in memory: a characteristic that offers a remarkable advantage

in relation to big data. 

The paper is organized as follows: Section 2 presents the re-

duction techniques background, with special emphasis on the in-

stance selection methods used in the experimental validation;

Section 3 introduces the concept of locality-sensitive hashing , the

basis of the proposed methods which are presented in Section 4;

Section 5 presents and analyzes the results of the experiments and,

finally, Sections 6 and 7 set out the conclusions and future re-

search, respectively. 

2. Reduction techniques 

Available data sets are progressively becoming larger in size.

As a consequence, many systems have difficulties processing such

data sets to obtain exploitable knowledge [23] . The high execution

times and storage requirements of the current classification algo-

rithms make them unusable when dealing with these huge data

sets [28] . These problems can be decisive, if a lazy learning al-

gorithm such as the nearest neighbor rule is used, and can even

prevent results from being obtained. However, reducing the size of

the data set by selecting a representative subset has two main ad-

vantages: it reduces the memory required to store the data and it

accelerates the classification algorithms [19] . 

In the scientific literature, the term “reduction techniques”

includes [61] : prototype generation [32] ; prototype selection

[52] (when the classifier is based on kNN); and (for other classi-

fiers) instance selection [8] . While prototype generation replaces

the original instances with new artificial ones, instance selection

and prototype selection attempt to find a representative subset of

the initial training set that does not lessen the predictive power of

the algorithms trained with such a subset [45] . In the paper, pro-

totype generation is not addressed, however a complete review on

it can be found in [57] . 

2.1. Instance selection 

The aforementioned term “instance selection” brings together

different procedures and algorithms that target the selection of a

representative subset of the initial training set. There are numerous

instance selection methods for classification, a complete review of

which may be found in [21] . Instance selection has also been ap-

plied to both regression [2,33] and time series prediction [26,55] . 

According to the order in which instances are processed, in-

stance selection methods can be classified into five categories [21] .

If they begin with an empty set and they add instances to the se-

lected subset, by means of analyzing the instances in the train-

ing set, they are called incremental. The decremental methods, on

the contrary, start with the original training data set and they re-

move those instances that are considered superfluous or unnec-

essary. Batch methods are those in which no instance is removed

until all of them have been analyzed, instances are simply marked

from removal if the algorithm determines that they are not needed,

and at the end of the process only the unmarked instances are

kept. Mixed algorithms start with a preselected set of instances.
he process then decides either to add or to delete the instances.

inally, fixed methods are a sub-family of mixed ones, in which the

umber of additions and removals are the same. This approach al-

ows them to maintain a fixed number of instances (more frequent

n prototype generation). 

Considering the type of selection, three categories may be dis-

inguished. This criterion is mainly correlated with the points that

hey remove: either border points, central points, or otherwise.

ondensation techniques try to retain border points. Their underly-

ng idea is that internal points do not affect classification, because

he boundaries between classes are the keystone of the classifica-

ion process. Edition methods may be considered the opposite of

ondensation techniques, as their aim is to remove those instances

hat are not well-classified by their nearest neighbors. The edition

rocess achieves smoother boundaries as well as noise removal. In

he middle of those approaches are hybrid algorithms, which try

o maintain or even to increase the accuracy capability of the data

et, by removing both: internal and border points [21] . 

Evolutionary approaches for instance selection have shown re-

arkable results in both reduction and accuracy. A complete sur-

ey of them can be found in [16] . However, the main limitation of

hose methods is their computational complexity [36] . This draw-

ack is the reason why they are not taken into account in this

tudy, because the methods it proposes are oriented towards large

ata sets. 

In the remaining part of this section, we give further details of

he most representative methods used in the experimental setup.

 summary of the methods considered in the study can be seen in

able 1 . 

.1.1. Condensation 

The algorithm of Hart, Condensed Nearest Neighbor (CNN) [27] is

onsidered the first formal proposal of instance selection for the

earest neighbor rule. The concept of training set consistency is

mportant in this algorithm and is defined as follows: given a non

mpty set X ( X � = ∅ ), a subset S of X ( S ⊆X ) is consistent with re-

pect to X if, using the subset S as training set, the nearest neigh-

or rule can correctly classify all instances in X . Following this def-

nition of consistency, if we consider the set X as the training set,

 condensed subset should have the properties of being consis-

ent and, ideally, smaller than X . After CNN appeared, other con-

ensation methods emerged with the aim of decreasing the size

f the condensed data set, e.g.: Reduced Nearest Neighbor (RNN)

25] . One of the latest is the Prototype Selection by Clustering (PSC)

46] , which uses clustering to speed up the selection process. So,

he use of clustering gives a high efficiency to PSC, if compared

gainst state-of-the-art methods, and better accuracy than other

lustering-based methods such as CLU [40] . 

In [6] , the authors proposed a modification to the definition

f a selective subset [54] , for a better approximation to decision

orders. The selective subset can be thought of as similar to the

dea of the condensed algorithm of Hart, but applying a condi-
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1 The aim of conventional cryptographic hash functions is to avoid the collision 

of items in the same bucket. 
2 In any case, note that even a certain degradation of classifier performance 

would be acceptable, if the new algorithm achieved a substantial acceleration or 

reduction in storage [9] , it is often better to gain a quick approximation within a 

reasonable time than an optimal solution when it is too late to use it. 
ion stronger than the condition of consistency. The aim is to find

he selected instances in an easier way, which is less sensitive to

he random initialization of S and the order of exploration of X in

arts’ algorithm. The subset obtained in this way is called the se-

ective subset ( SS ). 

A subset S of the training set X is a selective subset ( SS ), if it

atisfies the following conditions: 

1. S is consistent (as in Harts’ algorithm). 

2. All instances in the original training set, X , are closer to a se-

lective neighbor (a member of S ) of the same class than to any

instance of a different class in X . 

Then, the authors present a greedy algorithm which attempts to

nd selective instances starting with those instances of the training

et that are close to the decision boundary of the nearest neighbor

lassifier. The algorithm presented is an efficient alternative to the

elective algorithm [54] and it is usually able to select better in-

tances (the ones closer to the boundaries). 

.1.2. Hybrid 

One problem that arises when condensation methods are used

s their noise sensitivity, while hybrid methods have specific mech-

nisms to make them more robust to noise [37] . 

The DROP (Decremental Reduction Optimization Procedure)

60] family of algorithms comprises some of the best instance se-

ection methods for classification [8,47,50] . The instance removal

riteria is based on two relations: associates and nearest neigh-

ors. The relation of associate is the inverse of nearest neighbors:

hose instances p that have q as one of their nearest neighbors are

alled associates of q . The set of nearest neighbors of one instance

s called the neighborhood of the instance. For all instances, its list

f associates is a list with all instances that have that particular

nstance in their neighborhood. 

Marchiori proposed a new graph-based representation of the

ata set called Hit Miss Networks (HMN) [41] . The graph has a

irected edge from each instance to its nearest neighbor on the

ifferent classes, with one edge per class. The information in the

raph was used to define three new hybrid algorithms: HMN-E,

MN-C and HMN-EI. A couple of years later, HMNs were used

o define a new information-theoretic instance scoring method to

efine a new instance selection method called Class Conditional

earest Neighbor (CCIS) [42] . According to [21] , HMN-EI is able to

chieve more accurate data sets than CCIS which is the reason why

MN-EI was used in experimental setup. 

The local-set (LS) concept, proposed for the very first time in

7] , is a powerful tool for some machine learning tasks, including

nstance selection. A local-set of an instance x contains all those

nstances which are closer to x than its nearest neighbor of differ-

nt class, its nearest enemy . The selection rule of the Iterative Case

iltering algorithm (ICF) [7] uses local sets to build two sets: cover-

ge and reachability . These two concepts are closely related to the

eighborhood and associate list used in DROP algorithms. The cov-

rage of an instance is its LS, that can be seen as a neighborhood of

he instance that, instead of considering a fixed number k of neigh-

or, includes all instances closer to the instance than its closest en-

my. The reachable set of an instance is its set of associates. The

overage set of an instance is its neighborhood. The deletion rule

s as follows: an instance is removed from the data set if its reach-

ble set (its set of associates) is bigger than its coverage (its ‘neigh-

orhood’). This rule means that the algorithm removes an instance

f other object exists that generalizes its information. To address

he problem of noisy data sets, both ICF and DROP3, begin with

 noise-filter stage. Recently, Leyva et al [37] presented three new

nstance selection methods based on LSs. Their hybrid approach,

hich offers a good balance between reduction and accuracy, is
alled Local Set Border Selector (LSBo) and it uses a heuristic crite-

ion: the instances in the boundaries between classes tend to have

reater LSs. As is usual in hybrid methods, LSBo starts with a noise

ltering algorithm which was presented in the same paper called

SSm. 

.2. Scaling up instance selection 

The main drawback of instance selection methods is their com-

lexity that is quadratic O(n 2 ) , where n is the number of instances

22] or, at best, log-linear O(n log n ) ; thus, the majority of them are

ot applicable in data sets with hundreds or even many thousands

f instances [15] . Table 1 summarizes the computational complex-

ty of the instance selection methods used in the experimental sec-

ion. 

One approach to deal with massive data sets, is to divide the

riginal problem into smaller subsets of instances; known as strat-

fication. The underlying idea of these methods is to split the orig-

nal data set into disjointed subsets, then an instance selection al-

orithm is applied to each subset [10,13,22,24] . This approach is

sed in [22] where a method was proposed that addressed the

plitting process, using Grand Tour [5] theory, to achieve linear

omplexity. 

The problem known as big data refers to the challenges and

ifficulties that arise when huge amounts of data are processed.

ne way to accelerate instance selection methods and to be able to

ope with massive data sets is adapt them to parallel environments

49] . To do so, the way that algorithms work has to be redesigned.

he MapReduce paradigm offers a robust framework with which to

rocess huge data sets over clusters of machines. Following up on

his idea, a new proposal was presented recently by Triguero et al.

58] . 

. Locality-sensitive hashing 

The locality-sensitive hashing ( LSH ) is an efficient method for

hecking similarity between elements. It makes a particular use

f hash functions that, unlike those used in other applications of

ashing, 1 seeks to allocate similar items to the same bucket with a

igh probability, and at the same time to greatly reduce the prob-

bility of assigning dissimilar items to the same bucket [35] . 

LSH use is common to increase the efficiency of nearest neigh-

ors calculation [3,21] . An indirect benefit of LSH for instance se-

ection algorithms is the speeding up of nearest neighbor calcula-

ion, required in most of these sorts of algorithms. However, the

omplexity of the algorithms remain unchanged, since the loop

esting and structures of the algorithms remain the same. It is only

he k NN step that is improved. 

What we propose in this paper is a novel use of LSH, not merely

s support for the calculation of nearest neighbors, but as an op-

ration that defines the nature of the new instances selection al-

orithm. Basically, the idea is to make the instance selection on

ach of the buckets that will be obtained by LSH when applied to

ll instances. This process permits the selection of instances using

 unique processing loop of the data set, thereby giving it linear

omplexity. So a reasonable question arises; when a classifier is

rained with a selected subset obtained by this approach, will its

rediction capabilities decrease? This article offers an experimen-

al response to this question 

2 But before giving the details of our
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Fig. 1. Expected behavior of the probabilities of a (d 1 , d 2 , p 1 , p 2 ) –sensitive function. 

The function will assign the same value to two instances with a probability greater 

than p 1 , if their distance is shorter than d 1 . The function will assign the same value 

to two instances with a probability lower than p 2 , if their distance is greater than 

d 2 . For distances between d 2 and d 1 , there is no restriction regarding that the values 

the function can assign to the instances. 
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Fig. 2. Two points ( A, B ) at distance d � w have a small chance of being hashed to 

the same bucket. 
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proposal, let us look at a brief introduction to the underlying the-

ory of LSH. 

3.1. Locality-sensitive functions 

In this section we follow [35] , to formally define the concept of

local sensitivity and the process of amplifying a locality-sensitive

family of functions. 

Given a set of objects S and a distance measure D ,

a family of hash functions H = { h : S → U} is said to be

(d 1 , d 2 , p 1 , p 2 ) –sensitive , if the following properties hold for all

functions of h in the family H: 

• For all x, y in S , if D ( x, y ) ≤ d 1 , then the probability that h (x ) =
h (y ) is at least p 1 . 

• For all x, y in S , if D ( x, y ) > d 2 , then the probability that h (x ) =
h (y ) is at most p 2 . 

In this definition, nothing refers to what happens when the dis-

tance of the objects is between d 1 and d 2 (see the representation

in Fig. 1 ). However, distances d 1 and d 2 can be as close as possi-

ble, but the cost will be that p 1 and p 2 are also closer. However,

as shown below, it is possible to combine families of hash func-

tions that separate the probabilities p 1 and p 2 without modifying

the distances d 1 and d 2 . 

Given a (d 1 , d 2 , p 1 , p 2 ) –sensitive family of hash functions H, it

is possible to obtain a new family H 

′ using the following amplifi-

cation operations 

AND-construction The functions h in H 

′ are obtained by com-

bining a fixed number r of functions { h 1 , h 2 , . . . , h r } in H.

Now, h (x ) = h (y ) , if and only if h i (x ) = h i (y ) for all i . If the

independence of functions in H can be guaranteed, the new

family of functions H 

′ will be (d 1 , d 2 , (p 1 ) 
r , (p 2 ) 

r ) –sensitive .

OR-construction The functions h in H 

′ are obtained by com-

bining a fixed number b of functions { h 1 , h 2 , . . . , h b } in H.

Now, h (x ) = h (y ) , if and only if h i (x ) = h i (y ) for any i . If the

independence of functions in H can be guaranteed, the new

family of functions H 

′ will be (d 1 , d 2 , 1 − (1 − p 1 ) 
b , 1 − (1 −

p 2 ) 
b ) –sensitive . 

The AND-construction decreases the probabilities and the OR-

construction increases them. However, if r and b are properly cho-

sen and with the chaining of constructions the probability p may
1 
e brought closer to 1, while the probability p 2 will stay reasonably

lose to 0. 

In the experimental setup, the hash functions in the base family

ere obtained using the following equation [12] . 

 �
 a ,b ( � x ) = 

⌊
�
 a · � x + b 

w 

⌋
(1)

here � a is a random vector (Gaussian distribution with mean 0

nd standard deviation 1), b is a random real value from the inter-

al [0, w ] and w is the width of each bucket in the hash table. 

This equation gives a ( w /2, 2 w , 1/2, 1/3)-sensitive family. The

eason for these numbers is as follows (suppose, for simplicity, a 2-

imensional Euclidean space), if the distance d between two points

s exactly w /2 (half the width of the buckets) the smallest probabil-

ty for the two points falling in the same segment would happen

or θ = 0 , and in this case the probability would be 0.5, since d

s exactly w /2. For angles greater than 0, this probability will be

ven higher; in fact, it will be 1 for θ = 90 . And for shorter dis-

ances than w /2, the probability will equally increase. So the lower

oundary for this probability is 1/2. If the distance d is exactly 2 w

twice the width of the bucket), the only chance for both points

o fall in the same bucket is that their distances, once projected

n the segment, are lower than w , what means that cos θ must be

ower than 0.5, since the projected distance is d cos θ and d is ex-

ctly 2 w . For θ in the interval 0 to 60, cos θ is greater than 0.5,

o the only chance of cos θ being lower than 0.5 is that θ is in

he interval [60, 90], and the chance of that happening is at most

/3. For distances greater than 2 w , the probabilities are even lower.

o the upper boundary of this probability is 1/3. This reasoning is

eflected in Fig. 2 . 

By using the ( w /2, 2 w , 1/2, 1/3)-sensitive family previously de-

cribed, we have computed the probabilities p 1 and p 2 for the

ND-OR construction with a number of functions from 1 to 10.

ig. 3 shows the probabilities p 1 (a) and p 2 (b) for the case of

he chaining of an OR-construction just after an AND-construction,

nd the difference between these two probabilities (c). The row

umber indicates the number of functions used in the AND-

onstruction, while the column number indicates the number of

unctions used in the OR-construction. 

. New instance selection algorithms based on hashing 

This section presents the algorithms proposed in this work:

 SH-IS-S and L SH-IS-F. The first completes the selection process in

 single pass, analyzing each instance consecutively. It processes
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Fig. 3. Probabilities p 1 and p 2 and the difference between them. The darker the color the higher the value. Each cell gives the value for the chaining of an OR-construction 

(number of combined basic functions on the x -axis) after an AND-construction (on the y -axis the number of combined functions). 
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nstances in one pass, so not all instances need to fit in memory.

he second performs two passes: in the initial one, it counts the

nstances in each bucket, in the second, it completes the instance

election with this information. The complexity of both algorithms

s linear, O(n ) (note that this is even true for the second algorithm,

.e. although two passes are performed). 

Both algorithms can be seen as incremental methods, due to

he fact that the selected data set is formed by successive additions

o the empty set. However, the second one conforms more closely

o batch processing because it analyzes the impact of the removal

n the whole data set. 

The main advantage of the presented methods is the drastic re-

uction in execution time. The experimental results show a signif-

cant difference when they are compared against state-of-the-art

nstance selection algorithms. 

Algorithm 1: LSH-IS-S – Instance selection algorithm by hash- 

ing in one pass processing. 

Input : A training set X = { (x 1 , y 1 ) , ..., (x n , y n ) } , set G of hash 

function families 

Output : The set of selected instances S ⊆ X 

1 S = ∅ 

2 foreach instance x ∈ X do 

3 foreach function family g ∈ G do 

4 u ← bucket assigned to x by family g 

5 if there is no other instance of the same class of x in u 

then 

6 Add x to S 

7 Add x to u 

8 return S 

.1. LSH-IS-S: one-pass processing 

As shown in Algorithm 1 , the inputs of the LSH-IS-S method

re: a set of instances to select and a set of families of hash func-

ions. The loop processes each instance x of X , using the function

amilies to determine the bucket u to which the instance belongs

 

3 If in the bucket u assigned to the instance there is no other in-

tance of the same class of x, x is selected and added to S and
3 The bucket identifier u given to an instance by a family g ∈ G can be thought 

f as the concatenation of all bucket identifiers given by the hash functions in g , 

ince the function families in G are obtained by using an AND-construction on base 

unctions obtained using Eq. 1 . The OR-construction is implemented in the foreach 

oop at line 3 of Algorithm 1 . 

 

t  

s  

r  

i  

i  
o the bucket u . The algorithm ends when all instances in X have

een processed. Note that each instance is processed only once,

hich grants an extremely fast performance at the expense of not

nalyzing the instances that are selected in each bucket in detail.

nstances are analyzed in sequence without needing information

n other instances. This process means that the method may be

sed in a single-pass process, without requiring the whole data set

o fit in the memory. 

.2. LSH-IS-F: a more informed selection 

The algorithm explained in the previous section is remarkably

ast and allows instances to be processed as they arrive, in one

ass. On the other hand, because of how it works, it is not using

ll information that may be relevant to decide which instances to

hoose. For example, the algorithm has no control over the number

f instances of each class that go to each bucket, because once an

nstance of a class is selected, it discards other instances of the

ame class that may come later. 

Algorithm 2: LSH-IS-F – Instance selection algorithm by hash- 

ing with two passes. 

Input : A training set X = { (x 1 , y 1 ) , ..., (x n , y n ) } , set G of hash 

function families 

Output : The set of selected instances S ⊆ X 

1 S = ∅ 

2 foreach instance x ∈ X do 

3 foreach function family g ∈ G do 

4 u ← bucket assigned to x by family g ; 

5 Add x to u ; 

6 foreach function family g ∈ G do 

7 foreach bucket u of g do 

8 foreach class y with some instance in u do 

9 I y ← all instances of class y in u ; 

10 if | I y | > 1 then 

11 Add to S one random instance of I y ; 

12 return S 

LSH-IS-F (see Algorithm 2 ) is an evolution of the LSH-IS-S. In

his method, one-pass processing is replaced by a more informed

election. The first loop is similar to LSH-IS-S but, instead of di-

ectly selecting instances, it first records the bucket to which each

nstance belongs. When there is only one instance of a class, the

nstance is rejected, otherwise, if two or more instances of the
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(a) Original (b) LSH-IS-S (c) LSH-IS-F

Fig. 4. Example to illustrate the behavior of both algorithms. (a) Initial instances, 

two buckets are identified by LSH and the line shows the boundary. (b) Instances 

selected by LSH-IS-S. (c) Instances selected by LSH-IS-F. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Number of Banana data set instances that the pro- 

posed algorithms retain by the number of AND 

functions. 

Algorithm Number of AND functions 

2 4 6 8 10 

LSH-IS-S 25 123 249 466 684 

LSH-IS-F 24 110 225 423 627 
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same class are present, one of them is randomly chosen. The idea

here is to give the algorithm some tolerance of the presence of

noise in the input data set. 

The execution time of this method is not much larger than in

the previous method, since the number of buckets is much lower

than the number of instances. Although, the differences in execu-

tion time increase with the increase in the number of OR func-

tions. 

4.3. Behavior of proposed methods 

The aim of this section is to try to shed some light on the be-

havior of the new algorithms proposed in the paper. As previously

stated, LSH-IS-S makes the selection of instances in one pass, se-

lecting one instance of each class in each bucket. On the other

hand, LSH-IS-F tries to avoid retaining noisy instances. The more

informed selection criterion of LSH-IS-F allows it to remove in-

stances that can be harmful for the classification. 

In Fig. 4 we show an example with nine instances: four of one

class (crosses) and five of the other (circles). The LSH algorithm

is using two buckets, the line represents the boundary between

them. LSH-IS-S selects one instance of each class in each bucket

(b), while LSH-IS-F does not select the instance of class cross be-

cause it is identified as noise. 

Fig. 5 illustrates the effect of the algorithms in the XOR data set

[42] formed by 400 instances, 200 per class. An outlier was added

and highlighted with a gray square. As indicated above, LSH-IS-S

retains the instance, while LSH-IS-F removes it. 

With the aim of illustrating the behavior of the proposed in-

stance selection methods when the number of hash functions in-

creases, we used the Banana data set. It has two numeric features

and two classes, the size of the data set is 5300 instances (see

Table 3 ). Fig. 6 (a) shows the original data set. Despite the fact that

two clusters can be easily identified, a high overlap exists between

the two classes in some regions [21] . Table 2 summarizes the num-

ber of instances selected by both algorithms when only one OR
(a) Original (b) LSH-I

Fig. 5. (a) Original XOR example, an outlier is highlighted in gray. (b) LSH-
unction is used and the number of AND functions changes. LSH-

S-F retains less instances, because those instances of one class iso-

ated in one bucket with instances of the other class are identfied

s noise and therefore deleted. 

Figs. 6 and 7 show the instances retained by both algorithms,

 SH-IS-S and L SH-IS-F respectively, when only one OR function is

sed and different numbers of AND functions: 2, 4, 6, 8 and 10.

he number of retained instances increases with the number of

unctions. This behavior is quite interesting, because it enables the

ser to choose whether more or fewer instances are retained, by

arying the number of functions that are used. 

. Experimental study 

This section presents the experimental study performed to

valuate the new proposed methods. We compared them against

even well-known state-of-the-art instance selection algorithms in

 study performed in Weka [62] . The instance selection methods

ncluded in the experiments were: CNN, ICF, MSS, DROP3, PSC,

MN-EI, LSBo and the two approaches based on hashing. The pa-

ameters selected for the algorithms were those recommended by

he authors: the number of nearest neighbors used on ICF and

ROP3 were set to k = 3 , the number of clusters for PSC was set

o 6 r (where r is the number of classes of the data set). Evolution-

ry algorithms were not included in the experiments, due to their

igh computational cost. 

For the experiments, we used 30 data sets from the Keel repos-

tory [1] that have at least 10 0 0 instances. Table 3 summarizes the

ata sets: name, number of features, number of instances and the

ccuracy given by two classifiers (using ten fold cross-validation):

he nearest neighbor classifier with k = 1 and the J48, a classifier

ree (the Weka implementation of C4.5 [53] ). The last five data sets

re huge (below dashed line), with more than 299, 0 0 0 instances,

he traditional instance selection methods are unable to address

hem. The only transformation carried out was the normalization

f all input features, to set their values at between 0 and 1. 

We used the nearest neighbor classifier (1NN), as most instance

election methods have been designed for that classifier ( k = 1 in
S-S (c) LSH-IS-F

IS-S selection maintains the outlier. (c) LSH-IS-F removes the outlier. 
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(a) Banana (Orig.) (b) LSH-IS-S: AND=2 (c) LSH-IS-S: AND=4

(d) LSH-IS-S: AND=6 (e) LSH-IS-S: AND=8 (f) LSH-IS-S: AND=10

Fig. 6. The number of instances selected by LSH-IS-S as the number of functions increases. 

(a) Banana (Orig.) (b) LSH-IS-F: AND=2 (c) LSH-IS-F: AND=4

(d) LSH-IS-F: AND=6 (e) LSH-IS-F: AND=8 (f) LSH-IS-F: AND=10

Fig. 7. The number of instances selected by LSH-IS-F as the number of functions increases. 
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Table 3 

Summary of data sets characteristics: name, number of features, number of instances and 

accuracy (1NN). Last five data sets, below dashed line, are huge problems. 

Data sets # attributes # instances Accuracy 

Continuous Nominal 1NN J48 

1 German 7 13 10 0 0 72 .90 71 .80 

2 Flare 0 11 1066 73 .26 73 .55 

3 Contraceptive 9 0 1473 42 .97 53 .22 

4 Yeast 8 0 1484 52 .22 56 .74 

5 Wine-quality-red 11 0 1599 64 .85 62 .04 

6 Car 0 6 1728 93 .52 92 .36 

7 Titanic 3 0 2201 79 .06 79 .06 

8 Segment 19 0 2310 97 .23 96 .62 

9 Splice 0 60 3190 74 .86 94 .17 

10 Chess 0 35 3196 72 .12 81 .85 

11 Abalone 7 1 4174 19 .84 20 .72 

12 Spam 0 57 4597 91 .04 92 .97 

13 Wine-quality-white 11 0 4898 65 .40 58 .23 

14 Banana 2 0 5300 87 .21 89 .04 

15 Phoneme 5 0 5404 90 .19 86 .42 

16 Page-blocks 10 0 5472 95 .91 97 .09 

17 Texture 40 0 5500 99 .04 93 .13 

18 Optdigits 63 0 5620 98 .61 90 .69 

19 Mushroom 0 22 5644 100 .00 100 .00 

20 Satimage 37 0 6435 90 .18 86 .28 

21 Marketing 13 0 6876 28 .74 31 .06 

22 Thyroid 21 0 7200 92 .35 99 .71 

23 Ring 20 0 7400 75 .11 90 .95 

24 Twonorm 20 0 7400 94 .81 85 .12 

25 Coil 20 0 0 85 0 9822 90 .62 93 .95 

26 Penbased 16 0 10,992 99 .39 96 .53 

27 Nursery 0 8 12,960 98 .13 97 .13 

28 Magic 10 0 19,020 80 .95 85 .01 

29 Letter 16 0 20,0 0 0 96 .04 87 .98 

30 KR vs. K 0 6 28,058 73 .05 56 .58 

31 Census 7 30 299,285 92 .70 95 .42 

32 KDDCup99 33 7 494,021 99 .95 99 .95 

33 CovType 54 0 581,012 94 .48 94 .64 

34 KDDCup991M 33 7 1,0 0 0,0 0 0 99 .98 99 .98 

35 Poker 5 5 1,025,010 50 .61 68 .25 
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k NN) [37,51] . Moreover, we used the J48 classifier tree, to evaluate

the extent to which the instances selected by the algorithms were

suitable for training other classifiers. 

As shown in Section 3 , there are ways of combining the

hash functions families that appear more promising than others

(see Fig. 3 ). However, it is unclear which of them will achieve

the best results in combination with the proposed algorithms.

Therefore, we conducted a study with 60 combinations: AND-

constructions, combining between 1 to 10 hash functions, and OR-

constructions, combining 1 to 6 functions, obtained by the previ-

ous AND-construction, avoiding constructions with too many func-

tions and, consequently, reducing the computational cost. 

The subsets selected by the algorithms were used to build a

classifier (1NN), the average rank [14] of which was performed

over the accuracy of all 60 combinations. Average ranks were cal-

culated as follows: the results of the experiments were sorted, one

for the best method, two for the second, and so on. In the case

of a tie, values of the ranks were added up and divided into the

number of methods that tied. When the ranking of each data set

was calculated, the average for each method was computed. Better

methods had rankings closer to one. The results of the rankings

are shown in Fig. 8 . Each cell represents the ranking value for a

specific combination of AND-OR-constructions, where the number

of functions in the OR-constructions is shown by the x -axis and

the number of functions in the AND-constructions is shown by the

y -axis number. The darker the cell the higher its ranking (lower
alues are better). The best configuration is different for each algo-

ithm: 

• LSH-IS-S: the best configuration is one that uses OR-

constructions of six functions obtained using an AND-

construction on ten functions of the base family (functions ob-

tained using Eq. 1 ). 

• LSH-IS-F: the best results were obtained using OR-constructions

of five functions obtained by combining by AND-construction

ten functions of the base family. 

Fig. 9 shows how the time execution increases, on average, for

he proposed algorithms: LSH-IS-S (gray) and LSH-IS-F (black). The

igher the number of AND functions, the bigger the gap between

 SH-IS-S and L SH-IS-F. This behavior is explained because LSH-IS-F

as one loop more than LSH-IS-S (see pseudocodes 1 and 2 ) that

s used to go through all the buckets counting the number of in-

tances of each class. The number of buckets searched increases

ith the number of hash functions. 

Ten fold cross-validation was applied to the instance selection

ethods under study. The performances were as follows: 

• accuracy achieved by 1NN and J48 classifiers trained with the

selected subset; 

• filtering time by instance selection; 

• reduction achieved by instance selection methods (size of the

selected subset). 
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(a) LSH-IS-S (b) LSH-IS-F

Fig. 8. Average rank over accuracy of the proposed methods for the different configurations of AND-OR constructions. The darker the cell, the higher the ranking (lower is 

better). Each cell represents an AND-OR-construction where the column is the number of functions in the OR-construction and the row is the number of functions in the 

AND-construction. 

Fig. 9. Average execution time of the proposed algorithms as the number of AND-functions increases. LSH-IS-S is represented in gray and LSH-IS-F in black with different 

lines and marks for the different numbers of OR-functions. 

Table 4 

Average ranks and Hochberg proce- 

dure over accuracy: 1NN. 

Algorithm Ranking p Hoch. 

HMN-EI 2 .92 

LSBo 3 .85 0 .1869 

LSH-IS-F 4 .45 0 .0602 

MSS 4 .58 0 .0553 

LSH-IS-S 4 .98 0 .0139 

DROP3 5 .03 0 .0138 

CNN 5 .17 0 .0088 

ICF 5 .75 0 .0 0 04 

PSC 8 .27 0 .0 0 0 0 
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Table 5 

Average ranks and Hochberg proce- 

dure over accuracy: J48. 

Algorithm Ranking p Hoch. 

LSH-IS-F 3 .63 

LSH-IS-S 3 .88 0 .7237 

HMN-EI 4 .10 0 .7237 

LSBo 4 .57 0 .5606 

MSS 5 .03 0 .1909 

CNN 5 .28 0 .0981 

ICF 5 .67 0 .0242 

DROP3 5 .90 0 .0094 

PSC 6 .93 0 .0 0 0 0 
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According to the accuracy of 1NN classifier (see Table 4 ), the

est four algorithms were HMN-EI followed by L SBo, L SH-IS-F and

SS. According to the Hochberg procedure [29] , differences be-

ween them were not significant at a 0.05 significance level. How-

ver, differences between LSBo and the other methods were signif-

cant. When J48 was used as the classifier (see Table 5 ), the best

ix algorithms were LSH-IS-F followed by LSH-IS-S, HMN-EI, LSBo,

SS and CNN; the differences between them were not significant

t 0.05. Furthermore, as can be seen, the least accurate model is

SC for both classifiers. 
Table 6 shows the average ranks over compression. DROP3 is

he best method at a 0.05 significance level. Furthermore, the av-

rage reduction rate for each method is also shown. The proposed

ethods are the most conservative, although, as previously stated,

 higher compression could have been achieved using fewer func-

ions in the LSH process. 

The third relevant feature of instance selection methods is the

ime required by the algorithms to calculate the selected subset.

able 7 shows the average rank over execution time of the in-

tance selection algorithms. The three fastest methods were LSH-
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Table 6 

Average ranks and Hochberg procedure over storage re- 

duction, and average reduction rate. 

Algorithm Ranking p Hoch. Reduction rate 

DROP3 1 .67 0 .896 

ICF 3 .10 0 .0427 0 .813 

LSBo 3 .70 0 .0081 0 .737 

PSC 4 .70 0 .0 0 01 0 .762 

CNN 5 .43 0 .0 0 0 0 0 .658 

MSS 6 .00 0 .0 0 0 0 0 .665 

HMN-EI 6 .10 0 .0 0 0 0 0 .577 

LSH-IS-F 6 .62 0 .0 0 0 0 0 .455 

LSH-IS-S 7 .68 0 .0 0 0 0 0 .405 

Table 7 

Average ranks and Hochberg proce- 

dure over filtering time. 

Algorithm Ranking p Hoch. 

LSH-IS-F 1 .53 

LSH-IS-S 1 .57 0 .9624 

PSC 3 .00 0 .0761 

MSS 4 .20 0 .0 0 05 

ICF 5 .33 0 .0 0 0 0 

LSBo 6 .73 0 .0 0 0 0 

HMN-EI 6 .70 0 .0 0 0 0 

DROP3 7 .67 0 .0 0 0 0 

CNN 8 .27 0 .0 0 0 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8 

Average ranks over accu- 

racy for huge problems. 

Algorithm Ranking 

LSH-IS-F 2 .0 

DIS.RNN 2 .2 

LSH-IS-S 2 .6 

DIS.DROP3 3 .6 

DIS.ICF 4 .6 

Table 9 

Average ranks over storage reduc- 

tion for huge problems. 

Algorithm Ranking 

DIS.RNN 1 .8 

DIS.DROP3 2 .4 

LSH-IS-F 3 .2 

DIS.ICF 3 .4 

LSH-IS-S 4 .2 
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4 We divided the original KDDCup 1999 data set into two sets with differ- 

ent number of instances: KDDCup99 has 10% of the original instances and KDD- 

Cup991M has a million. 
IS-F, LSH-IS-S and PSC, between them differences were not signif-

icant at a 0.05 significance level. The differences were significant

from MSS and the following methods; the slowest was CNN. It is

worth noting that PSC achieved, according to the significance tests,

a really competitive execution time. Nevertheless the shortcoming

of PSC was its poor accuracy, as it obtained the worst results of all

of the methods under analysis, as noted in Tables 4 and 5 . 

It might be surprising that LSH-IS-F was faster than LSH-IS-S,

because this contradicts Fig. 9 . The reason for this was the number

of functions used by the algorithms; as commented on at the be-

ginning of this section, LSH-IS-S was launched using six OR func-

tions, while LSH-IS-F was launched with only five. 

Fig. 10 shows the filtering time as a function of the number

of instances. The results obtained with the data sets of the ex-

periments were used to draw these figures. Since there were no

results available for all possible values of numbers of instances,

the available results were used to draw Bezier lines and to show

the general trend of the algorithms. Although other methods (CNN,

HMN-EI, LSBo, DROP3, MSS and ICF) have an execution time that

increases swiftly, our algorithms based on hashing are at the bot-

tom of the figures together with PSC. However, in the logarithmic

scale, the growth of PSC is visibly greater. 

As a summary of the experimentation with medium size data

sets, we can highlight that the proposed methods achieved com-

petitive results in terms of accuracy. Considering the reduction

rate, DROP3 achieved the maximum compression, while our meth-

ods were the worst in terms of compression. Finally, considering

execution time, the methods presented in the paper were able to

compute the selected subset much faster than the other algorithms

in the state of the art. Exceptionally, PSC worked surprisingly fast,

although slower than the speed of our proposals, and with the

shortcoming of the poor accuracy when its selected subsets were

used for training the classifiers. 

5.1. Huge problems 

Due to the fact that instance selection methods are not able to

face huge problems, the experimental study performed over Cen-
us, CovType, KDDCup99, KDDCup991M 

4 and Poker (see Table 3 ),

he algorithms proposed were tested against the Democratic In-

tance Selection (DIS) [22] . Although PSC showed a competitive re-

ults in terms of execution time, it was not included in the study

f huge problems, because of its poor accuracy. 

As in the previous experiments, ten fold cross-validation was

erformed on LSH-IS-S and LSH-IS-F in Weka. Testing error, using

-NN classifier, and storage reduction were reported and compared

gainst results published in [22] . Execution times were not com-

ared because different implementations and machines would not

ave allowed a fair comparison. 

The main conclusion of the experiments was that our methods

an face huge problems. Results of average ranks over the accuracy

re shown in Table 8 . The accuracy of the methods under study is

imilar to DIS, though the most accurate method is LSH-IS-F. As in

he medium size experiment, LSH-IS-F improved the accuracy with

egard to LSH-IS-S. On the other hand, the Table 9 shows the aver-

ge ranks over storage reduction. In terms of compression, the best

ethod was DIS.RNN, as proved in medium size data sets, while

he methods based on hashing were too conservative. However, the

umber of instances that they retain can be adjusted by the num-

er of functions used. The success of the proposed methods is even

ore remarkable when compared against scalable approaches. The

imple idea of using LSH overcomes the democratization methods

nd opens the way to their use in huge data sets and big data. 

. Conclusions 

The paper has introduced a novel approach to the use of fami-

ies of locality sensitive functions (LSH) for instance selection. Us-

ng this approach, two new algorithms of linear complexity have

een designed. In one approach, the data are processed in one

ass, which allows the algorithm to make the selection without

equiring that the whole data set to fit in memory. The other ap-

roach needs two passes: one processes each instance of the data

et, and the second processes the buckets of the families of hash

unctions. Their speed and low memory consumption mean that

hey are suitable for big data processing. 

The experiments have shown that the strength of our meth-

ds is the speed, which is achieved through a small decrease in

ccuracy and, more remarkably, the reduction rate. Although the
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(a) Linear scale

(b) Logarithmic scale

Fig. 10. Computational cost of tested methods, in linear (a) and logarithmic scale (b) on the y axis. In (a) the CNN was not plotted because its growth was so high that it 

was not possible to appreciate the differences between the other methods. The dots are the results on the available data sets, lines (denoted by “–b” in the legend) are the 

Bezier lines built with these dots to show the general trend of the algorithms. 
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est methods according to accuracy differ depending on the classi-

er that is used, the proposed methods offer a competitive perfor-

ance. Moreover, the reduction rate can be adjusted by increasing

r by decreasing the number of hash functions that are used. 

Furthermore, the proposed methods were evaluated on huge

roblems and compared against Democratic Instance Selection,

 linear complexity method. Experimental results on accuracy

howed how our methods outperformed DIS, even though our

ethods were conceptually much simpler. 
. Future work 

In their current version, the way the algorithms make the in-

tance selection is very simple and quite “naive”. The selected sub-

et could be improved using additional information about the in-

tances assigned to each bucket, and not just the count of instances

f each class. A future research line could be to store additional

nformation of the instances assigned to each bucket: for exam-

le, simple statistics such as the incremental average of instances
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in the bucket, or the percentage of instances of each class in the

bucket. This information might mean that the instance selection

process would be better informed, without excessively penalizing

run-time. Although prototype generation has not been analyzed in

the paper, the generation of a new instance, or group of them, for

each bucket is one of the future lines of research. This idea can

be developed using LSH-IS-F, seeking each of the buckets to build

or to create a new set of instances, by selecting the medoids or

centroids of the instances in the buckets. 

According to [63] , one of the most challenging problems in

data mining research is mining data streams in extremely large

databases. Accurate and fast processes able to work on stream are

required, without any assumption that information can be stored

in large databases and repeatedly accessed. One of the problems

that arises in those environments is called concept drift , which ap-

pears when changes in the context take place. In the management

of concept drift, three basic approaches can be distinguished: en-

semble learning, instance weighting and instance selection [59] .

A comparison of the proposed method in a streaming benchmark

would be made to test whether LSH-IS-S can beat the state-of-the-

art algorithms that are able to deal in streaming data [18] . 

Many more research approaches can be considered, but the

principal one for us is to adapt the new methods to a big data

environment. We are working on the adaptation of this idea to a

MapReduce framework, which offers a robust environment to face

up to the processing of huge data sets over clusters of machines

[58] . 
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