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*Graphical Abstract (for review)



A methodological approach to compute Pareto-optimal experimental designs 

 Pareto-optimal designs are a useful tool in Q&D (Quality by Design) 

A family of optimal designs is computed by jointly handling several quality criteria 

 Ad hoc experimental designs are computed for a given number of experiments, domain, 

and model 

Using genetic algorithms allows the search in both discrete and continuous spaces 

*Highlights (for review)



An algorithmic approach is presented that allows the computation of the Pareto-optimal 

front for any criteria that a user may define to qualify an experimental design, indented 

to solve a specific problem. Complementary to similar approaches to the problem, the 

methodology presented here is more general because the search of the design can be 

made in both continuous and discrete spaces and there is not theoretical limit to the 

number of criteria under consideration. So, the user may reduce the cost without loosing 

quality of the design. 
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Abstract 11 

Experimental designs for a given task should be selected on the base of the problem being 12 

solved and of some criteria that measure their quality. There are several such criteria because 13 

there are several aspects to be taken into account when making a choice. The most used 14 

criteria are probably the so-called alphabetical optimality criteria (for example, the A-, E-, 15 

and D-criteria related to the joint estimation of the coefficients, or the I- and G-criteria related 16 

to the prediction variance). Selecting a proper design to solve a problem implies finding a 17 

balance among these several criteria that measure the performance of the design in different 18 

aspects. Technically this is a problem of multi-criteria optimization, which can be tackled 19 

from different views.  20 

21 

The approach presented here addresses the problem in its real vector nature, so that ad-hoc 22 

experimental designs are generated with an algorithm based on evolutionary algorithms to 23 

find the Pareto-optimal front. There is not theoretical limit to the number of criteria that can 24 

be studied and, contrary to other approaches, no just one experimental design is computed but 25 

a set of experimental designs all of them with the property of being Pareto-optimal in the 26 

criteria needed by the user. Besides, the use of an evolutionary algorithm makes it possible to 27 

search in both continuous and discrete domains and avoids the need of having a set of 28 

candidate points, usual in exchange algorithms. 29 

30 

Keywords 31 

Experimental design, design optimality, multicriteria optimization, Pareto-optimal front, 32 

evolutionary algorithms. 33 

34 

35 

1. Introduction36 

37 

It is known that the quality of the information extracted from an experiment depends upon the 38 

experimental conditions more than upon the response obtained from the experiment itself. 39 

Experimental design or design of experiments (DOE) is a methodology intended to obtain the 40 

best possible information from experiments. The relevance of the DOE is well known, even 41 

the American FDA's (Food and  Drug Administration) Process Analytical Technology (PAT) 42 
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[1]  puts statistical DOE and response surface methodologies (RSM) in the first place among 43 

multivariate mathematical approaches which should be used for PAT benefit.  44 

 45 

There are several well known 'standard' experimental designs that are the best possible choice 46 

depending on the kind of problem to be solved and on the experimental domain under study. 47 

For example, factorial designs in cubic domains when the interest is mainly in the relevance 48 

of the factors, their possible interactions and how they affect the response; or central 49 

composite designs for spherical domains when the focus is prediction in the experimental 50 

domain, mainly for optimization.  51 

 52 

Nevertheless, sometimes the standard designs are not affordable. To take an obvious 53 

example, when increasing the number of factors, the number of experiments in a factorial 54 

design increases geometrically. In such cases, designs with less number of experiments are 55 

needed and criteria to select among them. The main idea when selecting a proper design for a 56 

given task is to reduce the experimental effort (and not less relevant, the economical cost) 57 

without loosing quality on the information extracted. 58 

 59 

Several criteria can be used to measure the quality of a design, each one representing 60 

different aspects of performance. For example, the D-criterion is related to the volume of the 61 

joint confidence region of the estimated coefficients. Very close to it, the A- and E-criteria 62 

relate to the 'sphericity' of the same region. The G- and I-criteria, on its part, focus on the 63 

variance of the predicted response in the experimental domain. Orthogonality, uniform 64 

variance, or protection against misspecification of model, are also of interest when 65 

establishing the quality of a design.  66 

 67 

Some of these criteria are complementary in some sense but other can be competing criteria 68 

that should be balanced to obtain a good design for a specific situation. The choice of the 69 

design can be made sequentially, by prioritizing the criteria and deciding accordingly (in such 70 

a case the D-criterion is usually considered the primary criterion; they are the D-optimal 71 

designs). However, sometimes it would be useful achieving a compromise among several 72 

criteria to adapt the design to the specific scientific context of each problem.  73 

 74 

This balance among several criteria can be accomplished either by weighting different criteria 75 

into a single objective function (e.g., a desirability function) which should be optimized, or 76 

computing the Pareto-optimal front defined by the competing criteria. The Pareto-optimal 77 

front contains the designs that are the best for a specific criterion while maintaining the others 78 

in their best allowable values, so that it permits identification of the trade-offs among criteria. 79 

Besides, the Pareto-optimal front gives a more complete picture of multi-objective problems 80 

than using weighting strategies [2]. 81 

 82 

The last approach is the one presented here, using an evolutionary algorithm to compute the 83 

Pareto-optimal front. In that way, for a specific problem, the study of the designs in the front 84 

allows wiser decisions among different possible designs (all of them with the property of 85 



being Pareto-optimal). It is also an answer to the increasing demand of specific experimental 86 

designs, for example, the manufacturing though Quality-by-Design principles requires a 87 

design space [3] as opposed to classical nominal operating ranges. Therefore, the need of ad 88 

hoc ('fit for purpose') experimental designs with increasing number of factors is rising 89 

rapidly.  90 

 91 

Lu et al. [4] report the estimation of the Pareto frontier for competing criteria in discrete 92 

spaces (vertices of hypercubes) although with a modification of an exchange algorithm. 93 

Genetic algorithms are used in [5] to construct D-optimal designs, and in [6,7] for 94 

supersaturated experimental designs. A- and D-optimal designs are computed in [8] with 95 

semi-definite programming. Park et al. [9] evaluate design performance in second order 96 

response surface problems and explore some trade-offs by using graphical methods. Also 97 

graphical methods are reported in [10] to asses sensitivity of response surface designs to 98 

model misspecification.  99 

 100 

Comparing to these approaches, specially [4], the use of a genetic algorithm makes it possible 101 

to perform the search of the experimental points (the design) in both discrete and continuous 102 

spaces, that is, it can be used for selecting optimal designs for first order models usual in 103 

screening designs (which is the most common situation) but also in the context of RSM when 104 

second order models are more usual and the interest is also in the prediction variance.  105 

 106 

 107 

2. Background 108 

 109 

2.1 Some quality criteria in experimental design 110 

 111 

The DOE methodology often involves the (least squares) fitting of a multilinear regression 112 

model of the form 113 

 114 

 0 1 1 2 2 1 1... p py x x x            (1) 115 

 116 

where y is the response (measured variable), xi (i = 1, 2, …, k, k   p – 1) are the experimental 117 

factors (or their combinations) written in coded form and  is a random variable which is 118 

supposed to follow a normal distribution with mean 0 and standard deviation  . It is usual to 119 

write the model in eq. (1) in matrix form as  120 

 121 

  Y Xβ ε  (2) 122 

 123 

where matrix X, called the model matrix, contains the information about the experiments to 124 

be done (the design) and the model to be fitted.  125 

 126 

The least squares estimator of  0 1 1, ,...,
t

p   β  is  127 



 128 

 
 

-1
t tb = X X X y

 (3) 129 

 130 

And the variance-covariance matrix of the estimates is  131 

 132 

 
    2Cov 

-1
tb X X

 (4) 133 

 134 

This is why matrix  
1

tX X  is called the ‘dispersion matrix’. Also these expressions (and 135 

other like eq. (5) and (7)) highlight the importance of the dispersion matrix. The methodology 136 

of the experimental design includes the construction of experimental matrices so that the 137 

dispersion matrix is well enough. In that sense, different measures can be used to characterize 138 

the estimation and prediction capability of a design. Detailed expressions and discussions can 139 

be consulted in [11, 12]. 140 

 141 

Focusing on the precision of the estimated coefficients, and provided that the error variance 142 

2
 in eq. (4) is constant, the elements of the main diagonal of the dispersion matrix determine 143 

the quality (in terms of precision) of the estimated coefficients, and the remaining elements of 144 

the matrix are the covariances between each pair of coefficients. The closer to zero the 145 

elements of this matrix, the more precise and less correlated the estimates are.  146 

 147 

Therefore, two different designs can be compared regarding their precision in the estimation 148 

of the individual coefficients bi. To avoid dependence on the size of the experimental domain, 149 

a standardized value for the precision of each coefficient is used, the so-called Variance 150 

Inflation Factors (VIFs), which all have a minimum value of 1. Therefore, the best allowable 151 

precision for a coefficient is achieved when its corresponding VIF is equal to one. 152 

 153 

When the estimates are jointly considered, the (1 – ) x 100 % joint confidence ellipsoid for 154 

the coefficients is determined by the set of vectors  such that  155 

 156 

     2

, ,
ˆ

t

p N pp F t
β -b X X β-b  (5) 157 

 158 

where p is the number of estimated coefficients, N the number of experiments in the design, 159 
2̂  is the variance of the residuals (estimate of 

2
) and F; p, N-p is the corresponding upper 160 

percentage point of an F distribution with p and N - p degrees of freedom.  161 

 162 

Again it is clear that the region in eq. (5) is defined by matrix t
X X  (the information matrix), 163 

so it only depends on the design and the model. When the estimates are jointly considered, 164 

the interest is on the ‘smallest’ joint confidence region. The D-criterion takes account of the 165 

behavior of the volume of this region. It is usually computed as  166 

 167 



 
p

D
N



tX X
 (6) 168 

 169 

where the vertical lines denote the determinant of the matrix. 170 

 171 

A design is said to be D-optimal when it achieves the maximum value of D in eq. (6), which 172 

means the minimum volume of the joint confidence region, so the most precise joint 173 

estimation of the coefficients.  174 

 175 

The A and E criteria are related to the shape of the confidence region (the more spherical the 176 

region, the less correlated the estimates). Some more details about these criteria, properties 177 

and some modifications can be consulted in [5, 13]. 178 

 179 

When predicting in a domain is of interest, the variance of the prediction should also be taken 180 

into account through the Prediction Variance. Precisely the variance of the response predicted 181 

for a given point x in the experimental domain, is given by  182 

 183 

       
1

2 2

( ) ( )
ˆVar t

m my d 


 tx x X X x x   (7) 184 

 185 

where x(m) is the point x expanded to model form, 2
 is the experimental variance, which acts 186 

as a constant in eq. (7), so the factor to be decreased is the one denoted by d(x), the variance 187 

function. Again, to compare designs with different size, N, the scaled prediction variance 188 

(SPV) is used, which is  N d x . Desirable designs are those with the smallest SPV over the 189 

design space [9, 11]. In that sense, the G-criterion measures the maximum of the variance 190 

function, dmax, over the experimental domain: 191 

 192 

   max maxG N d N d  x x  (8) 193 

 194 

A design is said to be G-optimal when it achieves the minimum value of G in eq. (8). The Q-195 

criterion (also known [9,14] as IV-, V- and I-criterion) uses the average value of  N d x  196 

obtained by integrating it over the domain, although Borkowski [15] advised about the 197 

different values under the name Average Prediction Variance. 198 

 199 

Standard experimental designs for screening or to study the effect of factors are optimal in 200 

one or more of these criteria. For example, it has been proven that two-level full factorial 201 

designs, or fractional factorial designs (of at least resolution III) with a first order model are 202 

D-, G- and I-optimal. They have VIF = 1 for all the coefficients, the dispersion matrix is a 203 

diagonal matrix (i.e, the design is orthogonal) with the same value along the diagonal, 1/N, 204 

which is the minimum possible. Therefore, the joint confidence region is perfectly spherical 205 

and with the minimum volume.  206 

 207 



The variance function is always the product of 1/N by a sum of squares (or products of 208 

squares) so that the maximum is always p/N taken at the vertices of the cube (thus always it is 209 

less than 1). Nevertheless, for second-order models, this is no longer true even for standard 210 

designs: central composite designs (CCD) and Box-Behnken designs (BBD) have small D- 211 

and G- values, but they are not D- or G-optimal [14]. 212 

 213 

Along this work we will focus on the D-criterion and the VIFs (related to the variance of the 214 

estimates, jointly or individually respectively), and the G-criterion that is related to the 215 

prediction variance.  216 

 217 

 218 

2.2 Evolutionary algorithms for computing the Pareto-optimal front 219 

 220 

Finding an experimental design that balances different competing criteria is a problem of 221 

multi-objective optimization. In the present paper, the problem is tackled by looking for the 222 

Pareto-optimal front in the competing criteria.  223 

 224 

To introduce the concept of Pareto-optimality in the case at hand, let 1 and 2 be two 225 

experimental designs, that is, two design matrices of dimension N x k (number of experiments 226 

by number of factors); and let F denote the vector function of criteria, i.e, for C  2 227 

criteria,         1 2  , ,...,i i i C iF F F   F  contains the values of the criteria for the 228 

corresponding design. Finally, without loss of generality, let us suppose that all the criteria 229 

should be minimized.  230 

 231 

Then, a solution (a design) 1 is said to dominate another design 2 if Fj (1)  Fj (2) for all 232 

the criteria (j = 1, …, C), and there is at least one criterion in which design 1 is strictly better, 233 

that is, there exist i such that Fi (1) < Fi (2). A solution is said to be non-dominated with 234 

respect to a set of solutions when there is no other that dominates it. Consequently, the non-235 

dominated solutions are those designs which are not worse than the rest in all the criteria and 236 

are at least the best in one of them. The set of the non-dominated solutions of the entire 237 

(criteria) space is the Pareto-optimal front so that, inside it, no design can improve one 238 

criterion without worsening another. In that way, the Pareto-optimal front provides a clear 239 

idea about the trade-off among criteria, that is, how much I should raise one of the criteria to 240 

get a decrease in another (and in how much). 241 

 242 

To compute the Pareto-optimal front for a given problem, an evolutionary algorithm is used. 243 

First, the problem should be fully defined in terms of the number of factors (k), domain, 244 

model to be fit (that determines the number of coefficients, p) and number of experiments (N, 245 

N  p) to do so, and also the criteria to be taken into account.  246 

 247 



Each individual in the population is an experimental design (N x k design matrix), codified 248 

according to the search space and such that 0.01tX X . Every design is evaluated in terms 249 

of the criteria, so that the fitness associated to each individual is a vector.  250 

 251 

For the implementation of the algorithm, the design matrices are unfolded and handled as 252 

vectors in the N x k space so that no distinction is made among different experiments. 253 

Precisely, P (population size) individuals are generated at random inside the search space all 254 

of them representing experimental designs such that |X
t
X|  0.01.  255 

 256 

In each generation, by uniform selection, pairs of individuals are selected and double point 257 

cross-over is applied with the crossing positions randomly chosen also with a uniform 258 

distribution. Then, off-springs are mutated with a given probability (selected by the user) so 259 

that new designs are generated and evaluated (provided that they have 0.01tX X ). The 260 

procedure is repeated until P new off-springs are generated.  261 

 262 

After that, the populations of parents and off-springs are merged together and 'sorted' 263 

according to levels of dominance. The non-dominated solutions (level 1) in the enlarged 264 

population are selected to survive for next generation, then the non-dominated solutions 265 

(level 2) that appear when removing those of level 1, and so on until enough individuals were 266 

selected to survive. It may happen than inside a level there are more individuals than needed 267 

to complete population. In that case, only the most dispersal inside the level are chosen, 268 

according to the crowding distance [2, 16]. 269 

 270 

The algorithm stops when the population has evolved for a predefined number of generations. 271 

 272 

 273 

3. Results and discussion 274 

 275 

The applicability and interpretability of the proposed approach is shown by its application to 276 

some specific situations. 277 

 278 

3.1 Study of factors (or screening designs) 279 

 280 

In [17] eighteen experiments were done to study the effect of six factors (k = 6) and the 281 

interaction between two of them. The goal was to determine sulfathiazole in milk (substance 282 

that has a maximum residue limit established by the European Union) by using molecular 283 

fluorescence spectroscopy. Before proposing an analytical procedure the effect on the 284 

recovery (%) of i) type of milk (UHT or pasteurized), ii) volume of TCA:milk (v/v), iii) 285 

centrifugation speed (rpm), iv) centrifugation temperature (ºC), v) derivatization time (min), 286 

and vi) volume of fluorescamine, were studied along with the possible interaction between 287 

the derivatization time and the volume of fluorescamine (it is possible that a greater volume 288 

of fluorescamine needs less reaction time and vice versa).  289 



 290 

The factors are at two levels so the domain is a discrete domain that contains the vertices of 291 

the hypercube (the 2
6
 = 64 experiments of the full factorial design). The model to be fitted is 292 

(p = 8): 293 

 294 

 0 1 1 2 2 3 3 4 4 5 5 6 6 56 5 6y x x x x x x x x                  (9) 295 

 296 

and the interest is on the estimation of the coefficients, so eight criteria were considered: the 297 

seven VIFs (that should be minimized) and the D-value (that should be maximized). 298 

 299 

Running the algorithm for 100 generations with 100 designs (with coordinates -1 or +1) and 300 

probability of mutation of 0.1, the whole final population constitutes the estimation of the 301 

Pareto-optimal front for these eight criteria.  302 

 303 

To study the resulting Pareto-optimal front (8-dimensional) a parallel coordinates plot has 304 

been used. The parallel coordinates plot [18] is a graphical visualization of points in 305 

multidimensional spaces (usually more than three) which has proven to be useful in multi-306 

response optimization [19]. It consists of as many parallel lines as coordinates of the point to 307 

be represented (8 in this case). The height in each line is the numerical value of the 308 

coordinate itself and all of them are joined together by broken lines.  309 

 310 

For the purposes here, the corresponding values of the criteria were range-scaled in order to 311 

improve the visualization, and this is why maximum and minimum values were written at the 312 

top and bottom, respectively, of each coordinate.  313 

 314 

Fig. 1 shows the resulting graph, i.e, the parallel coordinates plot of the scaled Pareto-optimal 315 

front which is linked to the 100 experimental designs in the final population. In fig. 1, the 316 

first coordinate is used for D (the larger the better) and the rest for the VIFs of the 317 

coefficients, in the same order as they appear in the model (recall that the best possible value 318 

for all of them is one).  319 

 320 

Here fig. 1 321 

 322 

The values of the determinant of the corresponding matrix (D in eq. (6)) range from 0.03 to 323 

0.68 in the front. The VIFs on their part range from 1 to some large values greater than 4 324 

(sometimes more than six) for at least one of the coefficients. Furthermore, the lines in the 325 

plot crossing each others, above all for the VIFs, indicate a conflicting behaviour among 326 

criteria. 327 

 328 

Anyway, the first visual impression is that there is more density of lines at the bottom of the 329 

figure (good values for the VIFs) although it is not clear that they are linked with the highest 330 

values of D. Nevertheless, it is true that the designs which achieve the worst values of at least 331 

one of the VIFs are linked to low values of D.  332 



 333 

To better see this effect and to show some of the possibilities of having the whole family of 334 

optimal designs and how to move inside it, let us suppose that values of VIF less than 3 are 335 

desired for all the coefficients. Consequently, the designs with at least one VIF greater than 3 336 

are discarded, and the re-scaled parallel coordinates plot of the remaining 64 designs is in fig. 337 

2, all of them with acceptable values, though different, for all the criteria.  338 

 339 

Here fig. 2 340 

 341 

To give an idea about the differences among the designs in fig. 2 from a practical point of 342 

view, the semi-length (radius) of the confidence intervals for the coefficients is computed 343 

with the designs in fig. 2. Although it is not really necessary to make comparisons, in the 344 

original paper [17] the standard deviation of the recovery was estimated to be ˆ 9.43%  . 345 

Using this value, the critical value (95% confidence) of the Student t and the elements of the 346 

main diagonal of the dispersion matrix of the corresponding design, the minimum expected 347 

radius for any coefficient is 5 in at least one of the designs, but the maximum can be 348 

(depending on the design chosen) 5.3 for b1, 9.0 for b2, 5.4 for b3, 9.4 for b4, 5.2 for b5, 5.7 for 349 

b6 or 5.7 for b56. That means that, in this case, the precision of the estimates of b2 and b4 may 350 

be very different, the same coefficient can be estimated plus or minus 5, or plus or minus 9. 351 

Again to put the numbers in context, the effect of the temperature (4
th

 factor) was estimated 352 

to be b4 = 5.11 so that its precision is really relevant to decide about the significance of the 353 

factor. 354 

 355 

Additionally, in fig. 2, the values of the criteria for the best design in each criterion have been 356 

marked by using thicker lines. The corresponding numerical values are written in table 1, i.e, 357 

only the values of the criteria for the eight 'best' design in the extremes of the Pareto-optimal 358 

front are written.  359 

 360 

Here table 1 361 

 362 

Fig. 1 and (more clearly) fig. 2 show that the D-optimal design (thicker blue line starting at 363 

the top of the first coordinate in fig. 2) has small values of VIF for all the coefficients 364 

although none of them is 1. They also show that there are designs with VIF = 1 (highlighted 365 

by continuous thicker lines in fig. 2) but not for all the coefficients simultaneously (in fact, 366 

for no more than one coefficient at a time, table 1). Again, it is clear that the criteria are 367 

competing criteria.  368 

 369 

The first design, number 1 in table 1, is the D-optimal one, with determinant equal to 0.68, 370 

value that coincides with the corresponding one in the D-optimal design used by the authors 371 

in [17] that was computed with an exchange algorithm as implemented in NemrodW [20]. It 372 

is worth noting that if the interest is only in the D-optimal design there is not advantage in 373 

using the procedure proposed here as against an exchange algorithm. What the multiobjective 374 



approach adds is the availability of some other designs that behave differently in the 375 

estimation of the individual coefficients.  376 

 377 

In that sense, the second design in table 1 achieves VIF = 1 for b1 at the cost of the volume of 378 

the joint confidence region (the D value decreases until 0.44) and the VIFs of the rest of 379 

coefficients that remain greater than 1.2 (except for b4) reaching 1.7 for b2. The best 380 

estimation for the latter coefficient is achieved in design 3, but this time a larger loss in D 381 

should be 'paid' and, overall, larger VIFs for the rest of the coefficients, although more 382 

similar (among them). Again, D decreases to achieve VIF(b3) = 1 in design 4 with the VIF of 383 

b4 raising to 1.94. To maintain b4 in its best allowable precision, design 5 in table 1, the VIF 384 

of b1 and b3 are around their worst values (inside table 1), and if, say, it is the interaction that 385 

needs to be the most precise, then some precision has to be lost above all in the estimation of 386 

b4, b3 and b2, with intermediate values for D.  387 

 388 

Table 1 and figures 1 and 2 only show values of the criteria. Each point in this criteria space 389 

indeed corresponds to an experimental design. As an example, table 2 shows the 390 

experimental designs whose values are in table 1. The levels (- and +) can be of course 391 

reversed without altering the characteristics of the design. However, care must be taken if 392 

only some factors are reversed because of the interactions chosen in the model.  393 

 394 

Here table 2 395 

 396 

Attention must be paid when looking at table 2 to find out the differences among designs, 397 

differences that appear clear in the Pareto-optimal front depicted in figures 1 and 2. In any 398 

case, these values are deeply related to the design matrix and the model, and thus the 399 

structure of the corresponding information matrix X
t
X. Just as an example, the information 400 

matrix of design 1 (the D-optimal design) is  401 

 402 

 

18 2 2 2 2 0 0 2

18 2 2 2 0 4 2

18 2 2 4 4 2

18 2 0 0 2

18 0 0 2

18 2 0

18 0

18

  
 

  
   
 

 
 
 
 
 
 
 
 

  (10) 403 

 404 

whereas for design 8 (the most precise estimation of the coefficient of the interaction 405 

considered in the model) is  406 

 407 



 

18 0 4 0 0 0 0 2

18 2 6 2 2 2 0

18 6 6 2 2 0

18 6 2 2 0

18 6 2 0

18 2 0

18 0

18

 
 

   
  
 
 
 
 
 
 
 
 
 

 (11) 408 

 409 

Only the upper triangular part of the matrices has been written because they are symmetric 410 

matrices. Anyway, matrices in eq. (10) and (11) are rather different (notice the last column in 411 

eq. (11) which is almost null), much more different than they can appear in their design 412 

matrices in table 2. 413 

 414 

Finally, returning to the discussion about the values of the criteria in the Pareto-optimal front, 415 

the results also suggest that the D value is not sensitive to changes in the VIFs, except that 416 

large values appear. Comparing to fig. 1, in fig. 2 the worst D-value is 0.09 instead of 0.03 417 

while the VIF values are varying in a narrower range, from 1 to almost 3 (the worst values for 418 

VIF are half of the ones in figure 1 and this hardly improves the worst values of D). This 419 

effect is even more noticeable when looking, for instance, to the values in the front for the 420 

design with VIF(b3) = 1 (design number 4 in table 1) and the one marked with a dashed line 421 

in fig. 2, they both have the same D-value and their VIFs are different, specially for b1, b6 and 422 

b56.  423 

 424 

Similar analyses can be made with the rest of solutions in fig. 2 where there are 64 different 425 

possibilities to choose among them with the advantage of knowing exactly the extent of the 426 

conflicts that appear, which allows wiser decisions. In any case, usual practitioners of 427 

experimental design would accept any of them for the study at hand, particularly any of the 428 

eight designs in table 1. 429 

 430 

3.2 Second-order models (response surface designs) 431 

 432 

In the aim of some computations about D-optimal designs made by M.J. Box and Draper as 433 

reported by Atkinson and Donev [11], second order models for two factors (k = 2) varying in 434 

the square [-1, 1] x [-1, 1] are to be fitted, by using 6, 7, 8 or 9 experimental points (N). The 435 

selection of a two-dimensional experimental domain is also deliberated to depict the designs.  436 

 437 

For all N, the model is defined in the following equation (12), it has p = 6 coefficients and the 438 

search space is continuous (any point inside the square).  439 

 440 

 2 2

0 1 1 2 2 11 1 22 2 12 1 2y x x x x x x               (12) 441 

 442 



In this case, concern focuses on the estimation of coefficients, and in the prediction variance. 443 

This is quantified by using two criteria, namely D- and G-criteria, equations (6) and (8) 444 

respectively. The value of D should be maximized, and the one of G should be minimized. 445 

 446 

Several trials show that the Pareto-optimal front is very well populated in all the cases, and 447 

always the design in the Pareto-optimal front with the largest D value, the estimation of the 448 

D-optimal design for each N, coincides (except for rotations and symmetries) with the 449 

corresponding D-optimal design referred to in [11].  450 

 451 

The results discussed in the following were obtained with 200 designs as population size, 0.1 452 

of probability of mutation, and evolving for 1000 generations. Although the variance function 453 

is a quartic polynomial in the factors x1 and x2 for any design with N points chosen in the 454 

square, the computation of dmax is not straightforward, so it is estimated as the largest value in 455 

a uniform grid in the square. 456 

 457 

This time there are two criteria so that the Pareto-optimal front can be plotted in the two-458 

dimensional criteria space. This is Fig. 3 that depicts all the estimated Pareto-optimal fronts. 459 

Except for N = 9 that there is no conflict between criteria (in that case, the Pareto-optimal 460 

front reduces to a single solution which is the best in the two criteria), the rest of the fronts 461 

show the conflict: the increase of D implies an increase in G and vice versa, if G needs to be 462 

decreased it is at the cost of D. Nevertheless, the trade-offs between criteria that can be 463 

obtained are different depending on N.  464 

 465 

Overall, the addition of experiments moves the fronts to the right (better D-values) and down 466 

(better G-values). In particular, doing 7 experiments, green asterisks in figure 3, instead of 6, 467 

blue crosses on the left of figure 3, clearly improves the D-criterion in all the designs but not 468 

so much the G-criterion; while adding another experiment, red pluses on the right of fig. 3, 469 

does not have such remarkable effect on D but the G values are clearly better in almost half 470 

of the designs with 8 experiments. Comparing the designs with 6 experiments to the designs 471 

with 8, both D and G are clearly improved. 472 

 473 

Here fig. 3 474 

 475 

Figure 3 can be misleading because of the definition of G in eq. (8). Most of the practitioners 476 

look directly for the value of dmax for evaluation of the prediction variance. None of the 477 

designs with N = 6 experiments reaches dmax < 1 and neither do the designs with N = 7. It is 478 

necessary to do at least N = 8 experiments to maintain the variance function below 1 in the 479 

whole domain and only for the designs whose G values in the Pareto-optimal front in fig. 3 480 

are below 8 in the ordinate axis. The Pareto-optimality (the non-dominance) implies that, for 481 

these cases, G values less than 8 can be obtained but for values of D no greater than 8.9 10
-3

. 482 

 483 

There are two factors, so the designs can be plotted in the two-dimensional experimental 484 

domain. Figure 4 shows all the experimental points whose Pareto-optimal front is in fig. 3; 485 



fig. 4a) is for the designs with N = 6, fig. 4b) for N = 7, fig. 4c) when N = 8, and finally fig. 486 

4d) contains a single design, the corresponding to N = 9, which is the standard central 487 

composite design in the cubic domain or the 3
2
 factorial design with levels -1, 0, 1. 488 

Additionally, the two extremes of each Pareto-optimal front (the best design according to the 489 

D criterion and the best design with the G-criterion) are marked with different symbols, 490 

squares for the D-optimal and circles for the G-optimal. Also, they have been detailed 491 

numerically in table 3. 492 

 493 

Here fig. 4 494 

 495 

Apart from the two mentioned designs, figure 4 does not allow the distinction among the 496 

different 'intermediate' designs but shows a systematic structure in the selection of points: 497 

covering the sides (specially the vertices), the centre and, when there are enough 498 

experiments, the 'principal axes' of the domain ending in the standard structure for N = 9. It 499 

is noteworthy that rotations of these designs are equally qualified but different rotations do 500 

not appear often in the population. This is probably because the individuals are obtained 501 

mostly by cross-over of existing designs and because the algorithm evolves searching for 502 

improved, dispersal, non-dominated values for the criteria. 503 

 504 

Here table 3 505 

 506 

Moreover, this is not so clear in figure 4 but for N = 6 the 200 designs contain the two 507 

vertices of the square corresponding to x1 = 1 (a single point is seen in fig. 4a) in these 508 

positions). Starting from the D-optimal design, the squares in fig. 4a), with coordinates in 509 

the first block of table 3, it contains three of the vertices of the domain, two points to the 510 

right (-0.57, 1) and bottom (-1, 0.26) of the fourth vertex and a near central point. As we 511 

change the design to obtain better values of G (and consequently worse values of D), that 512 

is, when moving in the fronts in fig. 3 from top to bottom, without considering the two 513 

vertices that are in all the designs, the other four points move themselves around, near the 514 

centre or following the corresponding side of the square, x2 = 1 with x1 moving from -0.56 515 

to -0.65 and x1 = -1 with x2 slightly varying around 0.26, being the most distinctive 516 

characteristic the point that moves horizontally away from the vertex (-1,-1) to (-0.78, -1).  517 

 518 

For N = 7, fig. 4b), all the designs contain the opposite vertices (1, -1) and (-1, 1). In fact, 519 

the D-optimal design and those 'near' it have the four vertices of the square, also a point 520 

near the centre and two points in the middle of two of the sides of the square, precisely 521 

(0.08, -1) and (1, -0.09) for the D-optimal design in the second block of table 3. Then, as D 522 

decreases, the central point moves up and left, the points in the middle of the sides move 523 

slightly around their positions and the two other opposite vertices move themselves along 524 

the side up and left to achieve (-1, -0.89) and (0.89, 1) in the G-optimal design. 525 

 526 

For N = 8, fig. 4c), all 200 designs contain the four vertices. The D-optimal design, third 527 

block in table 3, contains also three points in the middle of three of the sides of the square 528 



and an almost central point (nearer to the side without point in its middle, (0.22, 0)). When 529 

improving G, these four points move themselves to the middle of the upper and bottom 530 

side (x1 ≈ 0, with x2 = ±1) and (last block in table 3) from (-1, 0) to (-0.78, 0) and from 531 

(0.22,0) to (0.88, 0), i.e, around x1 = ±0.8 with x2 = 0.  532 

 533 

These arrangements find a no-conflicting situation when there are N = 9 points, fig. 4d), 534 

the four vertices, the centre and the four axial points in the sides of the square. 535 

 536 

 537 

4. Conclusions 538 

The proposed algorithmic approach makes it possible to address the computation of ad hoc 539 

experimental designs with the property of being optimal in one or several criteria stated by 540 

the user. 541 

 542 

For some well-known and usual properties in discrete spaces (e.g. D-, A-, or E-criteria), 543 

the approach here is an alternative to the usual exchange algorithms. Besides, it is also 544 

applicable when the search space is a continuous space, situation in which exchange 545 

algorithms are no longer valid. 546 

 547 
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Figure captions 

 

Figure 1. Scaled parallel coordinates plot of the Pareto-optimal front in the eight criteria 

 

Figure 2. Scaled parallel coordinates plot of the reduced Pareto-optimal front. The thicker 

lines mark the best values for at least one of the criteria. 

 

Figure 3. Pareto-optimal fronts in the criteria space for N = 6 (blue crosses, x), 7 (green 

asterisks, *), 8 (red pluses, +) and 9 (cyan star) 

 

Figure 4. Experimental points for the designs in the Pareto-optimal front for a) N = 6, b) N = 

7, c) N = 8, and d) N = 9. The D-optimal design is marked with squares and the G-optimal 

design with circles. 

 



Table 1. Values of the eight criteria for the experimental designs which are the best in each one. The best 

possible values are underlined.  

 

 

Number D VIF(b1) VIF(b2) VIF(b3) VIF(b4) VIF(b5) VIF(b6) VIF(b56) 

1 0.68 1.12 1.18 1.08 1.08 1.06 1.11 1.05 

2 0.44 1.00 1.70 1.57 1.09 1.21 1.22 1.25 

3 0.39 1.44 1.00 1.38 1.35 1.25 1.20 1.48 

4 0.29 1.39 1.27 1.00 1.94 1.10 1.69 1.44 

5 0.28 1.54 1.33 1.74 1.00 1.08 1.18 1.44 

6 0.30 1.38 1.13 1.77 1.50 1.00 1.43 1.28 

7 0.47 1.27 1.11 1.29 1.33 1.13 1.00 1.55 

8 0.38 1.18 1.54 1.71 1.71 1.18 1.09 1.00 

 

 

 

Table



Table 2. Experimental designs linked to the values in table 1 

 

 

 design 1 design 2 design 3 design 4 

# x1 x2 x3 x4 x5 x6 x1 x2 x3 x4 x5 x6 x1 x2 x3 x4 x5 x6 x1 x2 x3 x4 x5 x6 

1 - - - - - + - - - - - + - - - - - - - - - - + - 

2 - - - - + - - - - + - - - - - - + + - - - + - + 

3 - - - + + - - - + + - + - - + + - - - - - + + - 

4 - - + - + + - - + + + - - - + + + + - - + - - - 

5 - - + + + + - + - - - - - + - - - - - + - - - + 

6 - + - - - + - + - - - - - + - - + - - + - - + - 

7 - + - + + + - + + - + - - + - + + + - + + - - - 

8 - + + - - - - + + + + + - + + - + - - + + - + - 

9 - + + + - - - + + + + + + - - - - - - + + - + + 

10 - + + + - + + - - - + - + - - - + - - + + + - + 

11 + - - + - - + - - + + - + - - + - + + - + - + - 

12 + - - + + + + - - + + + + - + - - + + - + + - + 

13 + - + + - + + - + - + + + - + + + - + + - - - - 

14 + + - - - - + + - + - - + + - - - - + + - - - - 

15 + + - - + + + + + - - - + + - + - - + + - + + + 

16 + + - + - - + + + - - + + + + - - + + + - + + + 

17 + + + - + - + + + + - - + + + + - + + + + + + - 

18 + + + + + - + + + + - + + + + + + + + + + + + + 

 
 

design 5 

 

design 6 

 

design 7 

 

design 8 

# x1 x2 x3 x4 x5 x6 x1 x2 x3 x4 x5 x6 x1 x2 x3 x4 x5 x6 x1 x2 x3 x4 x5 x6 

1 - - - - - - - - - - - - - - - - + - - - - - - + 

2 - - - - + + - - - - + + - - - + - + - - + + - - 

3 - - - - + + - - - - + + - - + + + - - - + + + + 

4 - - - + - - - - + + + + - + - - - - - + - - - - 

5 - - - + - + - - + + + + - + - + - + - + - - - + 

6 - - - + + - - + - - - + - + - + + - - + + - + - 

7 - - + - - + - + - + - - - + + - + + - + + + - - 

8 - + - - - + - + - + + - - + + + - - - + + + + - 

9 - + + - - - - + + - + - - + + + - + - + + + + + 

10 + - - - - - + - - - + - + - - - - + + - - - - - 

11 + - + - - + + - + + - + + - + - - - + - - + + - 

12 + - + - + - + - + + - + + - + + - - + - - + + - 

13 + - + - + - + - + + + - + - + + + + + - - + + + 

14 + - + + - + + + - - + - + + - - - - + + - - - - 

15 + + - - - - + + - - + - + + - - + + + + - - + + 

16 + + + - - + + + + - - - + + - + + - + + + - - + 

17 + + + + - - + + + + + + + + + - + - + + + - + + 

18 + + + + + + + + + + + + + + + - + + + + + + - + 

 

 

 



Table 3. Experimental designs that correspond to the extremes of the Pareto-optimal front. 

 

 

  D-optimal G-optimal 

 # x1 x2 x1 x2 

N = 6 

1 -1 -1 -1 0.32 

2 -1 0.26 -0.78 -1 

3 -0.57 1 -0.65 1 

4 0.08 -0.17 0.21 0 

5 1 -1 1 -1 

6 1 1 1 1 

  x1 x2 x1 x2 

N = 7 

1 -1 -1.00 -1 -0.89 

2 -1 1 -1 1 

3 -0.09 0.06 -0.18 0.21 

4 0.08 -1 0.06 -1 

5 1 -1 0.89 1 

6 1 -0.09 1 -1 

7 1 1 1 -0.07 

  x1 x2 x1 x2 

N = 8 

1 -1 -1 -1 -1 

2 -1 0 -1 1 

3 -1 1 -0.78 0 

4 -0.09 -1 -0.07 -1 

5 -0.08 1 -0.06 1 

6 0.22 0 0.88 0 

7 1 -1 1 -1 

8 1 1 1 1 
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