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Abstract 12 
 13 
An ‘ad-hoc’ experimental design to handle the robustness study for the simultaneous 14 
determination of dichlobenil and its main metabolite (2,6−dichlorobenzamide) in onions by 15 
Programmed Temperature Vaporizer-Gas Chromatography-Mass Spectrometry (PTV-GC-16 
MS) is performed. Eighteen experimental factors were considered; 7 related with the 17 
extraction and clean up step, 8 with the PTV injection step and 3 factors related with the 18 
derivatization step. Therefore, a high number of experiments must be carried out that cannot 19 
be conducted in one experimental session and, as a consequence, the experiments of the 20 
robustness study must be performed in several sessions or blocks. The procedure to obtain an 21 
experimental design suitable for this task works by simultaneously minimizing the joint 22 
confidence region for the coefficient estimates and the correlation among them and with the 23 
block. In this way, the effect of the factors is not aliased with the block avoiding possible 24 
misinterpretations of the effects of the experimental factors on the analytical responses. The 25 
developed experimental design is coupled to the PARAFAC2 method, which allows solving 26 
some specific problems in chromatography when working with complex matrix such as co-27 
elution of interferents (including silylation artifacts from the derivatization step) and small 28 
shifts in the retention time and, besides, the unequivocal identification of the target 29 
compounds according to document SANCO/12571/2013. 30 
 31 
Keywords: Robustness; ruggedness; ad-hoc blocked design; PARAFAC2; dichlobenil, PTV-32 
GC-MS. 33 
 34 
 35 
1. Introduction 36 
 37 
Checking robustness/ruggedness of an analytical method is a fundamental part of the method 38 
validation [1,2,3,4]. A worldwide adopted definition of robustness is that it is “a measure of 39 
its capacity to remain unaffected by small, but deliberate variations in method parameters 40 
and provides an indication of its reliability during normal usage” [5]. That is, this figure of 41 
merit refers to the effect on analytical results of small changes in the experimental conditions. 42 
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 43 
The robustness of the experimental response to the factors can be then checked by slightly 44 
varying them above and below their ‘nominal’ values and seeing the effect on the response.  45 
 46 
But analytical methods usually depend on several experimental factors; so many experiments 47 
are required to perform the robustness study, which might be an expensive and time 48 
consuming effort. This is especially relevant in procedures that include many steps 49 
(extraction, derivatization, chromatography, etc.) with experimental conditions involved so 50 
that a large number of factors has to be considered in the robustness testing.  51 
 52 
The experiments to study the influence of these small changes are usually evaluated more 53 
efficiently by means of experimental design approaches with the factors at two levels, mostly 54 
by using screening designs, either a saturated fractional factorial or a Plackett-Burman design 55 
[6,7,8,9,10]. 56 
 57 
In some studies the number of experiments needed is so large that they cannot be carried out 58 
under homogeneous conditions, that is, in a single sequence or with the same GC liner, the 59 
same operator, etc. For example, when analytes are determined in complex matrices by 60 
means of PTV-GC (Programmed Temperature Vaporizer-Gas Chromatography), the 61 
validation or routine sequences typically imply a set of matrix-matched standards and 62 
samples, so in particular liners must be exchanged frequently to avoid that the response of the 63 
target analytes drops and/or to eliminate cross-contamination between sample runs.  64 
 65 
Applications have been reported where liners are changed at a predetermined frequency (after 66 
1, 5, 10, 20 injections) [11,12,13,14], and even automated liner exchange devices have been 67 
developed for this purpose. Therefore, in many cases the liner has to be exchanged in the 68 
course of the robustness study and this must be taken into account, otherwise the effect of 69 
changing the liner, if any, would be misattributed to the other experimental factors under 70 
study.  71 
 72 
The case of the liner just exposed serves as an example of a general situation, confounding 73 
the so-called block effect (some factors difficult to control that remain under homogenous 74 
conditions in blocks of experiments but that may change from one block to another) with the 75 
effect of other controllable factors which are systematically and deliberately modified. 76 
 77 
This issue can be approached by using blocked experimental designs, where the effect of 78 
variability that could arise from block changes is minimized and detected if it exists [15]. In 79 
this way the effect of the different blocks (different liners, sequences, etc.) can be studied 80 
separately from the effects on the response of the small changes in the experimental 81 
conditions. Adding a dummy variable in the model has been proposed to do this for response 82 
surface designs [16]. This binary variable (block variable) accounts for possible changes in 83 
the response and is related to a bias between the responses obtained in the different blocks. 84 
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But changes in variance and covariance of the estimated model coefficients are expected 85 
when blocking a design, therefore lack of correlation between the estimate of the coefficients 86 
of the blocking variable and the other coefficient estimates is a desirable property [16,17]. 87 
Sánchez et al. [18] developed an approach for blocking response surface and factorial designs 88 
so that they simultaneously have the largest possible D-value (which measures the joint 89 
precision of the coefficient estimates) with the smallest correlation between block and other 90 
coefficient estimates of the model and showed, through several examples, the effect of not 91 
considering a priori all these criteria on the properties of different experimental designs. 92 
 93 
Screening saturated experimental designs are usual for robustness studies. In the present 94 
paper, the procedure of blocking in ref. [18] is extended for the first time to compute an ad-95 
hoc screening saturated design for the problem at hand. The experimental design obtained is 96 
applied to the simultaneous determination of the herbicide dichlobenil (DIC) and its main 97 
metabolite, 2,6−dichlorobenzamide (BAM), in onions by PTV-GC-MS. The herbicide 98 
dichlobenil, despite its possible toxicity, is still used and is remarkably persistent in soil and, 99 
thus, it is possibly accumulated in the foods cultivated in them, such as onions. The analytical 100 
procedure is explained in detail in Ref. [19], where it can be seen that it depends on several 101 
variables. 102 
 103 
In particular, eighteen experimental factors, related to the extraction/clean-up, derivatization 104 
and injection steps of the analytical procedure, are considered in this study. The liner of the 105 
PTV inlet is changed after each 15 injections in such a way that three different liners are used 106 
throughout the robustness study. Additionally to the experiments in the conditions stated for 107 
the experimental design, some more samples should be measured to evaluate recovery and 108 
also matrix-matched standards for calibration. Consequently, three experimental sessions 109 
(blocks) with different liner are needed.  110 
 111 
The computed design is coupled to a Parallel Factor Analysis 2 (PARAFAC2) [20,21], a 112 
multiway technique which has proved to be very useful in solving common problems in GC-113 
MS [22,23]. It is particularly helpful for determining compounds of interest in food 114 
commodities [19,24], for solving problems as small retention time shifts, severe interferences 115 
caused by unexpected derivatization artifacts or by co-eluents of the complex matrix which 116 
share m/z ratios with the target compounds. The second-order advantage of PARAFAC2 117 
allows the determination of the target analytes in samples where unknown interferents are 118 
present without the need of calibrate them. In fact, if a three-way method had not been used 119 
in this case for extracting the contribution of the analytes to the signal, neither the 120 
unequivocal identification of dichlobenil and BAM nor their quantification could have been 121 
performed according to regulations in [25].  122 
 123 
 124 
2. Theory 125 
 126 
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2.1 Construction of the experimental design 127 
 128 
Although the procedure is completely general, for the sake of clarity, it is explained here only 129 
for the robustness study at hand. As it has just mentioned, the experimental procedure under 130 
study depends (or may depend) upon 18 experimental factors [19]. An experimental design is 131 
set with the factors at two levels to perform the robustness study of the analytical procedure. 132 
In this situation, a standard design, such as a Plackett-Burman [6] design, requires 20 133 
experiments. In this work at most 15 experiments (15 injections of derivatized extracts of 134 
complex matrix) can be performed under homogeneous conditions of the GC-MS system; i.e. 135 
after 15 injections the GC system stops and the liner is changed. Consequently, the robustness 136 
study designed in this way cannot be performed in a single session. That means that, to 137 
consider the possible differences on the response due to external factors (and estimate its 138 
effect, if any), the design must be blocked.  139 
 140 
Additionally, 10 samples were planned for estimation of the variance of the method (two 141 
series of five replicates each in two different sessions), and 9 more matrix-matched standards 142 
needed for the subsequent quantification. Summing up all of them plus the, at least, 20 143 
experiments of the robustness study for the validation process, at least three sessions (so three 144 
blocks) would be necessary to perform all the experiments. Besides, it is necessary to take 145 
into account when planning the design that the number of intended experiments in each block 146 
is different: 6 experiments can be carried out in the first block (further to the 9 matrix-147 
matched standards), 10 experiments in the second one (plus 5 replicates to estimate variance) 148 
and up to 10 in the third one (plus the other 5 replicates).  149 
 150 
In terms of the model to be fitted to study the robustness of the response to (small) changes in 151 
the experimental factors, we have 18 factors at two levels and the block at three levels, and 152 
the goal is to decide if there is any significant effect on the response when moving the 153 
experimental factors from low to high levels. Consequently, using the high level as the 154 
reference level, we assume that the model that relates the response Y with the variation of 155 
factors and blocks is written as in Eq. (1), where letter A represents the low level of each 156 
experimental factor. 157 
 158 

0 1 1 2 2 3 3 4 4 5 5 6 6 7 7

8 8 9 9 10 10 11 11 12 12 13 13 14 14

15 15 16 16 17 17 18 18 1 1 2 2

A A A A A A A A A A A A A A

A A A A A A A A A A A A A A

A A A A A A A A b b

Y x x x x x x x
x x x x x x x
x x x x x x

b b b b b b b b
b b b b b b b
b b b b δ δ ε

= + + + + + + + +
+ + + + + + +
+ + + + + +

 (1) 159 

 160 
In Eq. (1), ε denotes the experimental variability, which is assumed to follow a normal 161 
distribution with the same variance σ2 in all the experiments, and zero mean.  162 
 163 
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Moreover, xiA (i = 1, …, 18) is an indicator variable, i.e. xiA = 1 if factor xi is at low level 164 
(level A) and 0 otherwise, so that coefficients βiA (i = 1, …, 18) measure the effects on the 165 
response when the i-th experimental factor changes from the reference level to level A.  166 
 167 
Regarding the blocking, it has been denoted differently in Eq. (1). Provided that the reference 168 
level is the high level (in this case, block 3) we use dummy-coding [15] so that, again, 1bx  169 

and 2bx  are binary variables: 1bx  is 1 only for the experiments in the first block, 2bx  = 1 only 170 

in block 2 and the coefficients δi (i = 1, 2) take account of the possible shifts in the response 171 
due to differences among experimental sessions not attributable to the factors. Also, it is seen 172 
in Eq. (1) that the effect of the blocks on the response, if any, is additive. 173 
 174 
After fitting the model to the experimental results, the significance of the experimental 175 
factors is decided with the corresponding coefficient estimate, so it seems clear that the 176 
coefficient estimates should be precise (small variance) and that correlation between the 177 
estimates of the coefficients related to blocks and of the remaining coefficients should be 178 
null, or at least, the closer to zero the better. This is so in order to guarantee that the 179 
interpretation of the effects of the experimental factors is independent of the block effect. 180 
Likewise, the uncorrelatedness among the coefficient estimates of βiA is also a desirable 181 
property. 182 
 183 
The key concept to bear in mind is that the precision of the estimated coefficients and the 184 
correlation between one another and with the blocking, apart from a constant factor, can be 185 
computed before doing the experiments.  186 
 187 
For the particular case here, the so-called model matrix X is the matrix made up by the 188 
experiments to be carried out and adding three columns: a column with 1 in all positions, 189 
related to the independent term in the model of Eq. (1), β0, and two columns for block, the 190 
dummy-coding we have already mentioned: (1, 0) for the experiments in block 1, (0, 1) for 191 
block 2 and (0, 0) for block 3.  192 
 193 
Notice that the model in Eq. (1) has 21 coefficients to be estimated so in the general case, at 194 
least 21 experiments are needed. Denoting the number of experiments in the design by N, the 195 
model matrix is N × 21 (N ≥ 21).  196 
 197 
The least squares estimator of the coefficients in Eq. (1) is given by (XtX)-1Xty and the 198 
variance-covariance matrix of the coefficient estimates is (XtX)-1σ2. Consequently, apart from 199 
the variance of the experimental error σ2, the precision and correlation of the estimates 200 
depend upon matrix (XtX)-1, which is known as the dispersion matrix and it is a symmetric 201 
matrix that is only determined by the planned design and the supposed model, Eq. (1) in this 202 
case. 203 
 204 
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Accordingly, in terms of precision of estimates and uncorrelatedness, the closer to zero the 205 
elements of the dispersion matrix the better. In particular, the main diagonal elements refer to 206 
the variance of the coefficient estimates and the off-diagonal terms refer to the covariance 207 
between one another. In practice, the variance of the coefficient estimates in the main 208 
diagonal of the dispersion matrix depends on the size of the experimental domain, so these 209 
values are usually scaled into the so-called Variance Inflation Factors (VIFs), so that we have 210 
a unique reference about the quality (in terms of precision) of the coefficient estimates: the 211 
best value for any VIF is one and the farther from that value, the worse the estimate. In any 212 
case, values above 4 indicate fully imprecise estimates. Details about this issue can be found, 213 
for example, in ref. [26]. 214 
 215 
As an illustration, without taking into account the blocking, a Plackett-Burman design with N 216 
= 20 experiments would be adequate, because the VIF of all coefficient estimates is one and 217 
it has the identity matrix I18 as correlation matrix among coefficient estimates (that means a 218 
square symmetric matrix of size 18 × 18 with ones in the main diagonal and zeros otherwise). 219 
In other words, all the coefficient estimates are uncorrelated to one another, the design is 220 
orthogonal. 221 
 222 
However, the blocking of the design changes its properties [18]. In the present case, at first, 223 
the need of blocking the design implies that we have to move to a design with more than 21 224 
experiments, for instance, the Plackett-Burman for N = 24, with 18 factors at two levels and 225 
the block at three levels. Table 1 contains the lower triangular part of the correlation matrix 226 
among coefficient estimates (it is always symmetric) for this design, d1 and d2 are the 227 
estimates for δ1 and δ2 and biA (i=1, …, 18) are the estimates for βiA in Eq. (1). It is seen that 228 
the only non-null element, in bold in Table 1, is corr(d1,d2) which is equal to 0.58. That 229 
means that, except for the block coefficient estimates, the design is orthogonal and, in 230 
particular, orthogonally blocked. Besides, the VIF of all biA is 1, which guarantees the best 231 
possible precision for each one, whereas VIF for di is 1.5, still quite good. 232 
 233 
Unfortunately, further to the need of doing 24 experiments instead of 21, the blocking is 234 
made in ‘regular’ blocks, as 6+12+6, i.e. 6 experiments are assigned to block 1, 12 to block 2 235 
and the remaining 6 to block 3. In order to emphasize again the fact that the blocking of the 236 
design is a feature that should be considered from the beginning (when planning the 237 
experiment), if this same orthogonal design is blocked differently to adapt to our needs 238 
(6+10+8), just by changing two experiments (randomly selected) from block 2 to block 3, the 239 
resulting design is not orthogonal anymore nor either orthogonally blocked, as can be seen in 240 
the upper part of Table 1 that contains the upper triangular part of the new correlation matrix 241 
among coefficient estimates. Several coefficient estimates (from b1A to b5A and from b11A to 242 
b15A) are still uncorrelated to one another and with di (block coefficient estimates), small 243 
values of 0.05 (in absolute value) appear scattered in the remaining coefficient estimates but 244 
the main difference is in the correlation between the coefficient estimates di and biA, some of 245 
which have increased up to 0.21 (in absolute value). 246 
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 247 
Besides, VIFs for some coefficient estimates, namely biA for i= 6, 8, 9, 10, 16 and 18, are 248 
now 1.05, VIF of d1 is 1.40 and VIF of d2 is 1.69. Although none of these values (correlation 249 
and VIFs) points to a strong correlation among coefficient estimates or a significant 250 
deterioration of the estimates themselves, they show the effect on the properties of the change 251 
of only two experiments. 252 
 253 
In any case, we are looking for a design with good enough properties, blocked according to 254 
our needs, and with less experiments, ideally N = 21, that is, a design adapted to the problem 255 
and not forcing the problem to adapt to a specific design.  256 
 257 
To look for such an ‘ad-hoc’ design, we use the algorithmic approach explained elsewhere 258 
[27], which is an evolutionary algorithm that evolves by searching experimental designs with 259 
optimal properties in several criteria defined by the user. 260 
 261 
For the present case, the population is made up by experimental designs with N experiments 262 
for 18 factors at two levels all of them blocked in three blocks with 6, 10 and N – 16 263 
experiments, and with good properties for fitting the model in Eq. (1). Specifically, the 264 
criteria to qualify the designs are related to both, the precision of the coefficient estimates and 265 
the correlation between one another, with special attention to the orthogonal (or near-266 
orthogonal) blocking. Precisely, they are measured as: 267 
 268 

i) The D-value that accounts for the joint precision of the coefficient estimates. It is 269 
defined for this case as  270 

  
( )

21

det
N

tX X  (2) 271 

In Eq. (2), det denotes the determinant of the matrix, X is the model matrix, and N is the 272 
number of experiments to estimate the 21 coefficients in the model in Eq. (1). The 273 
larger the D-value, the better the joint estimation, thus, during evolution, this number 274 
should be maximized. 275 

ii) The maximum correlation (in absolute value) between coefficient estimates, precisely 276 
between biA and bjA (i, j =1, …, 18, i ≠ j) and between biA and dj (j=1, 2, and i=1, …, 277 
18). During evolution, this number should be minimized. 278 

 279 
Due to the existence of more than one criterion, the optimum values (maximum or minimum) 280 
are not well or uniquely defined [28]. Therefore, the algorithm is a multi-objective 281 
evolutionary algorithm that evolves looking for ‘optimal’ solutions, in our case, preserving 282 
the so-called non-dominated solutions. For explanation, consider two solutions for a given 283 
problem, two different blocked experimental designs in the present case, B1 and B2, with N 284 
experiments in the vertices of an hypercube (18 dimensions), and qualified according to 285 
criteria i) and ii) as (c11, c12), (c21, c22) respectively. Design B1 is said to dominate design B2 if 286 
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B1 is not worse than B2 in the two objectives (i.e. c11 ≥ c21 and c12 ≤ c22) and at least it is 287 
strictly better in one of them (i.e. c11 > c21 or c12 < c22). Therefore, the non-dominated designs 288 
in a given set are those which are the best in at least one criterion. The Pareto-optimal front is 289 
the set of the non-dominated solutions for the entire search space. 290 
 291 
With these conflicting criteria, for estimating the Pareto-optimal experimental designs, we 292 
use a genetic algorithm. For the implementation of the algorithm, experimental designs are 293 
unfolded into a single vector, then blocked with the proper size for each block and then 294 
qualified according to the criteria defined in the previous paragraph. Also, it is worth 295 
mentioning that only experimental designs with associated tX X  matrix ‘regular’ enough are 296 
accepted in the population. This is quantified by using the condition number of the matrix, 297 
which is an indication of the accuracy of the results from matrix inversion when solving a 298 
system of linear equations. For details about the condition number, consult for example [29].  299 
 300 
In each generation, off-springs are generated by systematically selecting two designs in the 301 
population (at random), and then double-point crossover and mutation with a predefined 302 
probability. The resulting off-springs with bad condition number are directly discarded. 303 
Furthermore, after computing fitness for the off-springs (their evaluation values according to 304 
the mentioned criteria), those whose fitness equals any other design already in the population, 305 
are also discarded.  306 
 307 
When there are as many proper off-springs as individuals in the current population, the 308 
designs in the current population are merged together with the generated off-springs and the 309 
new enlarged population is sorted in levels of non-dominance and only the designs in the 310 
upper levels survive for the next generation (as many as needed to maintain population size 311 
along evolution). The main idea behind the procedure is that the non-dominance relation 312 
accounts for the designs which constitute the Pareto-optimal front of the actual population 313 
and, during evolution, it moves towards an estimate of the Pareto-optimal front of the whole 314 
set of designs. 315 
 316 
Consequently, if the criteria are conflicting criteria, which is usually the case, the 317 
experimental designs in the final population (some of them) are an estimate of the Pareto-318 
optimal front for the competing criteria, in such a way that moving among designs in the 319 
Pareto-optimal front improves one of the criteria by necessarily worsening another, but in the 320 
smallest possible amount. 321 
 322 
2.2 PARAFAC2 323 
 324 
Retention time shifts can occur in GC [21,30], but MS data rarely present alignment 325 
problems. Therefore, PARAFAC2 [20,21] is a valuable decomposition method for these 326 
signals. Precisely, if GC/MS data obtained for each compound of interest are arranged in a 327 
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three-way array or data tensor, X, PARAFAC2 decomposes the GC-MS data tensor into 328 
factors, according to the model: 329 
 330 

,k
T

kkk
T

kkk EBHDPEBDAX +=+= K , 1, k =  (3) 331 
 332 
where the matrix Xk is the k-th slab with dimension I × J (J ions monitored at I scans during 333 
the chromatographic elution of the analytes), Ak is the matrix of loadings of the 334 
chromatographic mode estimated for the k-th sample, Dk is a diagonal matrix that holds the k-335 
th row of the sample mode, B is the loading matrix of the spectral mode, Ek is the matrix of 336 
the residuals, Pk is an orthogonal matrix of the same size as Ak, and H is a small square 337 
matrix with dimension equal to the number of factors.  338 
 339 
Unlike PARAFAC [31], PARAFAC2 does not assume that Ak is the same for all k but the 340 
cross-product matrix Ak

TAk, which allows some deviation in the chromatographic mode and 341 
it can be shown that this constraint leads to the uniqueness of the model under mild 342 
conditions [32]. Therefore, the “second-order advantage” of the estimates is guaranteed, i.e. 343 
the analytical response of the compounds of interest is not masked by possible co-eluents. 344 
 345 
In a PARAFAC model, an index useful to check somehow the validity of the trilinearity 346 
assumption is the core consistency diagnostic (CORCONDIA) developed by Bro and Kiers 347 
[33]. Recently, an approach for calculating a model diagnostic similar to core consistency but 348 
for PARAFAC2 models has been developed [34]. 349 
 350 
 351 
3. Experimental  352 
 353 
3.1 Reagents 354 
 355 
Ethyl acetate (SupraSolv) was obtained from Merck (Darmstadt, Germany). Dichlobenil and 356 
BAM (PESTANAL grade), and sodium sulphate anhydrous (p.a.) were purchased from 357 
Sigma-Aldrich (Madrid, Spain). Internal standards, 3,5−dichlorobenzonitrile (97%) (ISDIC) 358 
and 2,4−dichlorobenzamide (98%) (ISBAM) were purchased from Aldrich (Steinheim, 359 
Germany), and BSTFA from Supelco (PA, USA). 2 mL DisQuE clean-up tubes containing 360 
150 mg anhydrous magnesium sulphate plus 50 mg PSA sorbent and 50 mg C18 were 361 
obtained from Waters (Milford, MA, USA). 362 
 363 
3.2 Instrumental 364 
 365 
All analyses were performed on an Agilent (Agilent Technologies, Wilmington, DE, USA) 366 
7890A gas chromatograph coupled to an Agilent 5975 Mass Selective Detector (MSD). The 367 
injection system consisted of a septumless head and a PTV inlet (CIS 6 from Gerstel, 368 
Mülheim an der Ruhr, Germany) equipped with empty multi-baffled deactivated quartz 369 
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liners. Injections were carried out using a MultiPurpose Sampler (MPS 2XL from Gerstel) 370 
with a 10 μL syringe. Chromatographic separations were carried out on an Agilent DB-5ms 371 
(30 m × 0.25 mm i.d., 0.25 μm film thickness) column. A Velp Scientifica RX3 Vortex 372 
shaker (Milan, Italy) was used. The control of the temperature in the derivatization step was 373 
performed using a water bath equipped with a Digiterm 200 immersion thermostat (JP 374 
Selecta S.A., Barcelona, Spain). Extracts were centrifuged on a Sigma 2-16K refrigerated 375 
centrifuge (Osterode, Germany). A miVac DUO centrifugal concentrator (Genevac Ltd., 376 
Ipswich, UK) operating at low pressure was used for faster evaporation. 377 
 378 
3.3 Experimental procedure 379 
 380 
Stock solutions of DIC, BAM, ISDIC and ISBAM were prepared in ethyl acetate and stored 381 
in a refrigerator at 4ºC. Two sets of seven standard solutions were prepared so that each one 382 
contains the appropriate concentration of each compound before derivatization (5, 10, 15, 20, 383 
25, 30 and 35 µg L-1 of the analytes and internal standards). 384 
 385 
Samples for the robustness study (containing 20 µg L-1 of DIC, BAM, ISDIC and ISBAM), 386 
replicates to estimate variance (containing 20 µg L-1 of the four compounds) and matrix-387 
matched standards (containing 10, 12.5, 15, 17.5, 20, 22.5, 25, 27.5 and 30 µg L-1 of DIC and 388 
BAM, and 20 µg L-1 of ISDIC and ISBAM) were prepared from onions purchased from a 389 
local food store. Each onion was cut with a knife, put into freezer overnight and blended 390 
while frozen until it reaches homogeneous texture. Next, 10 ± 0.1 g of the onion was 391 
transferred to a 50 mL centrifuge tube (tube 1) and appropriately fortified with the internal 392 
standards and the target compounds. Samples were extracted with 10 mL ethyl acetate in the 393 
presence of 10 g of sodium sulphate and followed by vortex mixing for 2 min (tmix1). The 394 
homogenate was centrifuged at 3000 rpm (scentr1) for 10 min (tcentr1) at 4ºC. A volume of 1.2 395 
mL of the extract was transferred into a DisQue clean-up (tube 2). The tube 2 was shaken for 396 
30 s (tmix2) and next centrifuged at 10000 rpm for 1 min (tcentr2) at 4ºC. 0.8 mL of the 397 
supernatant was transferred into a 10 mL glass tube and evaporated to dryness under vacuum 398 
in a centrifugal concentrator during 10 min (tevap) at 50ºC (Tevap). The residue was 399 
reconstituted with 0.8 mL of ethyl acetate before derivatization. 400 
 401 
80 µL of each solution (standard solutions and reconstituted extracts) was derivatized in a 2 402 
mL screw cap vial by addition of 56 µL of BSTFA (VBSTFA). The vial was capped, shaken 403 
vigorously and allowed to stand at 44.5 ºC (DTemp) for 42 min (DTime) by placing the mixture 404 
in a water bath. 405 
 406 
The derivatized solutions were injected into the GC-MS system; the PTV was operated in the 407 
solvent vent mode. Two microliter of each solution were injected at 50 µL s-1 (sinj). During 408 
injection, the inlet temperature was held at 40 ºC (TPTVinit) for 0.5 min (tPTVinit), while the 409 
column head pressure was fixed at 9 psi (Pinit) with a flow rate through the split vent of 100 410 
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mL min-1 (ventflow). At 0.3 min (venttime) the split valve was closed and next the temperature 411 
of the PTV was ramped at 10 ºC s-1 (rPTV) up to 280 ºC (TPTVend), which was held for 5 min. 412 
The split valve was re-opened 1 min after injection to purge the inlet at a vent flow of 60 mL 413 
min-1.  414 
 415 
The oven temperature was programmed as follows: the oven was maintained at 40ºC for 1 416 
min and ramped at 120 ºC min-1 up to 120 ºC, held for 1 min and next ramped at 8 ºC min-1 to 417 
200 ºC. A post-run step was performed for 4 min at 280 ºC. The transfer line temperature was 418 
set at 280 ºC, the ion source temperature at 230ºC, and the quadrupole at 150 ºC. The electron 419 
multiplier was set at 1424 V and the source vacuum at 10-5 torr. The solvent delay was fixed 420 
at 4.5 min. The mass spectrometer was operated in electron ionization mode at 70 eV. The 421 
acquisition was performed on selected ion monitoring (SIM) mode with two acquisition 422 
windows so that 5 ions (ion dwell time of 80 ms) were monitored for each compound: 100, 423 
136, 171, 173 and 175 for DIC and ISDIC; and 145, 173, 175, 246, and 248 for BAM and 424 
ISBAM. The flow rate of the carrier gas was maintained at 1.1 mL min-1. 425 
 426 
3.4 Software 427 
 428 
MSD ChemStation E.02.01.1177 (Agilent Technologies, Inc.) and Gerstel Maestro 1 (version 429 
1.3.20.41/3.5) were used for GC-MS data acquisition and processing. Pareto-optimal 430 
experimental designs were computed with proper programs written in MATLAB version 7.10 431 
(The MathWorks) and analyzed with NEMRODW [35]. PARAFAC2 models were 432 
performed with the PLS_Toolbox [36] for use with MATLAB. The calibration models were 433 
fitted and validated with STATGRAPHICS Centurion XVI [37]. 434 
 435 
 436 
4. Results and discussion 437 
 438 
4.1. Experimental design 439 
 440 
Starting with N = 21 experiments in the experimental design we look for, after some trials 441 
with different probability of mutation, the estimate of the Pareto-optimal front extracted from 442 
the final population with 100 individuals turned out to have 16 experimental designs, all of 443 
them blocked as 6+10+5. Their values in terms of the criteria being optimized are depicted in 444 
Fig. 1, on the horizontal axis the D-values (maximize) and the maximum of the absolute 445 
value of the correlation values is in the vertical axis (minimize).  446 
 447 
The conflicting behavior of the two objectives is apparent in Fig. 1: to obtain larger D-values 448 
(better joint estimation of the coefficients) at least the correlation between two of the 449 
coefficient estimates (including block coefficients) should be larger; or vice versa, for 450 
decreasing all the correlation values some lost in D might be assumed. Also, the fact that it is 451 
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an estimate of the Pareto-optimal front gives a quantitative idea of the expected loss and gain 452 
in all criteria, which in this case is difficult to interpret specially for the D-value. 453 
 454 
To have an idea about the differences seen in Fig. 1, we consider the two extremes of the 455 
Pareto-optimal front, namely the design with the least correlation values (the one with values 456 
at the bottom left corner of Fig. 1), let us denote it as D1, and the one with best D value (at the 457 
top right part in Fig. 1), D16. After computing the individual VIFs and correlation matrices of 458 
their coefficient estimates, Fig. 2 is the bar graph of the VIFs, light red bars for D1 and dark 459 
blue bars for D16.  460 
 461 
The VIFs for biA (i = 1, …, 18) in both designs are quite close to 1 with small differences 462 
between them, although it is stated again that the improvement of the overall precision via the 463 
D-criterion not necessarily implies that all individual VIFs are smaller (in general the dark 464 
blue bars are smaller but not in all the cases, above all for the VIFs of the coefficient 465 
estimates for the block effect). Regardless, the largest VIFs, also in both designs, are the ones 466 
related to d1 and d2 that, in any case, remain less than 2.  467 
 468 
About the other criterion, Table 2 contains the correlation matrices for both designs. The 469 
lower part for D1 and the upper part for D16. In both cases, the designs are not orthogonal and 470 
neither orthogonally blocked, because small (in absolute value) correlation coefficients 471 
appear along the matrices, but not larger than 0.17 for D1 and not larger than 0.22 for D16, 472 
0.21 if we only take into account the correlation between coefficient estimates to check the 473 
effect of the experimental factors, biA. 474 
 475 
The numbers underlined in Table 2 refer to the worst case when studying only the correlation 476 
among biA, those in italics correspond to the largest (always in absolute value) correlation 477 
between biA and dj (j = 1, 2, i = 1, …, 18,) related to the ‘orthogonal blocking’. These values, 478 
as well as VIFs of the coefficient estimates for the sixteen designs in the Pareto-optimal front 479 
are available in the supplementary material, Table S1. 480 
 481 
Besides, to study if it is really worthy to move until a design with 24 experiments (such as the 482 
one whose properties are in Table 1), we apply the evolutionary algorithm, with the same 483 
criteria, to look for user-blocked experimental designs with coefficient estimates precise 484 
enough, small absolute values of correlation, and with N = 22, 23 and 24 experiments, so that 485 
they are blocked as 6 + 10 + (N – 16).  486 
 487 
There were also sixteen Pareto-optimal designs for N = 22, none of them orthogonal nor 488 
orthogonally blocked; fifteen designs for  N = 23 and, in addition to the design in Table 1, 489 
there are twenty-five more designs in the Pareto-optimal front for N = 24 that achieve lower 490 
correlation coefficients at the cost of slightly decreasing the D-value.  491 
 492 
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Among the 73 computed designs, the worst VIF among coefficient estimates for the main 493 
factors is 1.3, which increases up to 2 when looking at the estimates for the blocking 494 
variables. Regarding the correlation, the maximum absolute value among coefficient 495 
estimates biA, ( ),iA jAcorr b b , is 0.22 for N = 21; 0.21 for N = 22; 0.25 for N = 23 and 0.19 for 496 

N = 24; whereas in relation to the orthogonal blocking, the maximum value for ( ),iA jcorr b d  497 

is 0.22, 0.22, 0.20, and 0.21 for N equal to 21, 22, 23, and 24, respectively. The detailed 498 
properties of all these designs are also in Table S1 of the supplementary material. 499 
 500 
Finally, the improvement of the criteria when increasing the number of experiments seemed 501 
not justify the increased experimental effort so the experimental design to perform the 502 
robustness study was chosen among the 16 designs with 21 experiments, precisely D1, the 503 
most orthogonally blocked design in this front (i.e. the least correlation between block and 504 
the coefficient estimates for the factors), which is the first design corresponding to 21 505 
experiments in Table S1 (first row) with correlation matrix between coefficient estimates in 506 
the lower triangular part of Table 2.  507 
 508 
4.2 Robustness study 509 
 510 
Before analyzing the robustness, it is necessary to guarantee that the responses (to be used in 511 
the design) correspond unequivocally to the analytes under study. The unequivocal 512 
identification of the compounds is performed according to Document SANCO/12571/2013 513 
[25], where tolerances for retention time and relative abundance for diagnostic ions are 514 
established for pesticide residues analysis in food. This regulation requires that at least three 515 
relative ion abundances must be within the tolerance intervals when working with a standard 516 
mass resolution detector (in the SIM mode) for determining compounds for which a 517 
maximum residue limit (MRL) has been established, which is the case of DIC (with MRL 518 
equal to 20 µg kg-1). In addition, the retention time must correspond to the one of a reference 519 
standard with a tolerance of ±0.2 min.  520 
 521 
With the aim of obtaining the tolerance intervals, a set of 7 reference standards was prepared. 522 
Then, a PARAFAC2 model was obtained for each compound and the tolerance intervals for 523 
relative abundances were calculated following the procedure described in ref. [19]. The 524 
tolerance intervals obtained for the relative abundances are shown in Table 3, fourth column.  525 
 526 
Next, the robustness study was performed according to the experimental plan in Table 4 to fit 527 
the model of Eq. (1). The levels considered for each experimental factor are shown in Table 528 
4. The factors were slightly varied taking into account a reasonable variability range and the 529 
possibility of changes of the devices used. In all cases the experimental variables were set 530 
above and below their ‘nominal’ values shown in Section 3.3, except the PTV initial 531 
temperature, TPTVinit, because the GC system only enables variations of ±1ºC; this last 532 
variable ranges from the nominal value (40ºC) to 41ºC since 2 ºC would be an excessively 533 
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large temperature interval. In the case of the block, two binary variables are used to codify 534 
the three blocks according to Eq. (1). 535 
 536 
Injections of derivatized extracts of onion fortified with 20 µg L-1 of both analytes and 537 
internal standards were carried out according to the experimental plan. Experiments were 538 
performed in random order within each block. In addition to the 21 experiments of the 539 
robustness study, 19 determinations were made so that, samples were distributed in blocks as 540 
follows:  541 
 542 

Block 1: 9 matrix-matched standards together with the 6 experiments corresponding to 543 
the first block in the design (run 1-6 of Table 4), that is, 15 injections of 544 
complex matrix performed with the same liner; 545 

Block 2: a first set of 5 replicates with the 10 experiments belonging to the second block 546 
of the design (run 7-16 in Table 4); 547 

Block 3: a second set with 5 additional replicates with the 5 remaining experiments of the 548 
design (run 17-21 of Table 4).  549 

 550 
In addition to the 40 samples detailed in the preceding paragraphs, another set of 7 standards 551 
prepared in ethyl acetate were also measured. This is so because the estimates of three-way 552 
models have proven [38] to be more precise when analyzing complex matrices if both, 553 
standards and fortified samples (matrix-matched standards), are included in the 554 
decomposition step.  555 
 556 
GC-MS data were arranged in a data tensor of dimension I × 5 × 47 for each compound. I 557 
refers to the number of scans acquired around the retention time of the corresponding 558 
chromatographic peak (I was 17, 21, 17 and 8 for DIC, BAM, ISDIC and ISBAM 559 
respectively), 5 are the number of diagnostic ions monitored for each compound and 47 is the 560 
number of analyzed samples. Next, the four data tensors were decomposed using the 561 
PARAFAC2 method by applying the ALS algorithm to each tensor with unimodality and 562 
non-negativity constrains in the chromatographic mode and non-negativity constraint in 563 
spectral and sample modes respectively. Models with different number of factors were built 564 
and explained variance, CORCONDIA index, degree of agreement of the loadings of the 565 
sample mode with the ones expected and the unequivocal identification of each compound 566 
according to regulations were compared for choosing the number of factors of the final 567 
models. 568 
 569 
Concerning the models for BAM and DIC two factors were necessary, while for ISBAM and 570 
ISDIC three factors were required. No outliers were found in the models built considering the 571 
Q residual and Hotelling’s T2 indices at the 99% confidence level. The models explained 572 
99.67, 99.49, 99.87 and 99.10% of variance and have CORCONDIA index of 100, 99.99, 573 
99.95 and 99.64 for BAM, DIC, ISBAM and ISDIC, respectively. The CORCONDIA index 574 
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is always greater than 99.6, concluding that the unequivocal identification of the analytes is 575 
guaranteed. 576 
 577 
The loadings obtained for the chromatographic, spectral and sample modes for BAM are 578 
shown in Fig. 3 (chromatographic mode is referred to loadings scaled by the last mode 579 
loadings). The loadings of the 2nd factor (green dashed lines and bars) of the chromatographic 580 
and spectral modes in Figs. 3a and 3b are coherent with BAM. It is confirmed that the 581 
retention time of the chromatographic profile obtained for each sample of the robustness 582 
study is within the tolerance interval estimated from the reference standards.  583 
 584 
Besides, the loadings of the spectral mode of this factor (green dashed bars) matched the 585 
spectrum obtained from the reference standards, i.e. the relative abundances are within the 586 
corresponding tolerance intervals; 5th and 6th columns in Table 3 show that there is just one 587 
ion with relative abundance outside the corresponding tolerance interval. In any case, at least 588 
three ions are inside the intervals so the requirements are fulfilled and the unequivocal 589 
identification is guaranteed in the terms of regulations. Therefore the 2nd factor of the model 590 
is unequivocally related to BAM, while the 1st factor (in blue continuous line in Fig. 3a, blue 591 
solid bars in Fig. 3b, and blue filled triangles in Fig. 3c) is related to an interferent that 592 
overlaps the chromatographic peak of BAM and, despite the fact that it has a different MS 593 
spectrum, shares some of the diagnostic ions of BAM. That is, the three-way technique is 594 
capable of successfully extracting the contribution of the target analyte to the signals. If a 595 
three-way method would not have been used, the unequivocal identification of BAM could 596 
not have been performed according to regulations because interferents greatly contributed to 597 
many of the five diagnostic ions acquired, i.e. the diagnostic ions (their relative abundances) 598 
might have been outside the tolerance intervals. 599 
 600 
As regards the sample mode, Fig. 3c, the loadings of the 2nd factor, green circles, calculated 601 
for the standards of BAM (both matrix-matched standards, samples 31 to 40, and standards in 602 
ethyl acetate, samples 41 to 47) are fairly close to the expected pattern, the higher the 603 
concentration the larger the loading. The loadings of the 1st factor, blue triangles, are only 604 
significant for those samples which imply injection of complex matrix in the 605 
chromatographic system, while for standards in ethyl acetate, last 7 samples in Fig. 3c, these 606 
loadings are almost null; clearly this factor is related to an interferent from the matrix. That 607 
is, the second-order advantage of the PARAFAC2 model has allowed the unequivocal 608 
identification of BAM in these samples where unknown interferents are present without the 609 
need to calibrate them too. 610 
 611 
The corresponding PARAFAC2 decomposition for ISBAM required three factors. Their 612 
corresponding loadings are shown in Figs. 3d-f. The 1st factor in this case, in blue, was 613 
unequivocally related to ISBAM taking into account the corresponding tolerance intervals for 614 
retention time and relative abundances despite the significant interference of co-eluents in 615 
both chromatographic (Fig. 3d) and spectral ways (the other two factors share ions with 616 
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ISBAM, Fig. 3e). The loadings of the sample profile of the 1st factor (blue triangles in Fig. 617 
3f) shows the expected pattern, the same as in Fig. 3c, whereas the loadings on the second 618 
factor (green circles) are related to some interferent from the matrix, because they are null in 619 
the standards (last seven samples). The third factor can be attributable to some derivatization 620 
artifact because its loadings are non-null in all the samples, standards included. 621 
 622 
These loadings were used to standardize the loadings obtained previously for BAM (Fig. 3c); 623 
the standardized loadings are shown in Fig. 4a. Dividing the loadings of BAM by the 624 
loadings of ISBAM corrects variations in injection and other factors of the system. When 625 
comparing Figs. 3c and 4a, it is noticeable that the high variability in the loadings of 626 
replicates in Fig. 3c has been significantly reduced as expected when standardization is 627 
performed. The standardized loadings in Fig. 4a (samples 1 to 21) are the responses used to 628 
fit the model in Eq. (1), in this case, for BAM, last column in Table 4. 629 
 630 
Similarly, from the analogous PARAFAC2 decompositions performed for DIC and ISDIC, 631 
standardized loadings were obtained for DIC (using the loadings of the sample mode of 632 
ISDIC for standardization). Previous to the standardization, again, the unequivocal 633 
identification was checked: table 3 shows that for DIC, all ion ratios are within the tolerance 634 
intervals, and for ISDIC one ion has 19.53% relative abundance that is outside but really 635 
close to the lower endpoint of the tolerance interval, 19.56%, but the remaining three are well 636 
inside the corresponding interval. 637 
 638 
Like for BAM, the first 21 standardized loadings shown in Fig. 4b are now the response of 639 
the design for the robustness study for DIC, 'penultimate column in Table 4. 640 
 641 
The standardized loadings were used to fit the model of Eq. (1) for BAM and DIC. The two 642 
models are significant at 5% significance level (p-values were 0.03 and 0.01 for BAM and 643 
DIC respectively; null hypothesis: the linear regression model is not significant). To compute 644 
these probabilities an external estimate of the residual variance has been used, the one 645 
obtained from the standardized loadings of the two independent sets of replicates, each of 646 
size 5, conducted in the third and second experimental sessions, number 22-31 in Fig. 4. To 647 
do it, a two-sided F-test is carried out to test the null hypothesis ‘the variances between both 648 
sets of replicates are equal’. Their associated p-values (0.35 for BAM and 0.47 for DIC) 649 
allow concluding that the variances are statistically equal and, thus, a pooled variance was 650 
obtained: 0.0066 and 0.1814 (with 8 degrees of freedom) for BAM and DIC, respectively. 651 
  652 
Fig. 5 graphically shows the coefficients estimated for model in Eq. (1) for all the factors and 653 
for the block. The significant coefficients (at 5% significance level) are those with light 654 
orange color in Fig. 5: the effect of changing the time of shaking tube 2 (x7 or tmix2), the time 655 
of centrifugation of tube 2 (x8 or tcentr2), the temperature and time of evaporation (x9 or Tevap 656 
and x10 or tevap, respectively)  are significant for BAM, and changes on the response due to the 657 
variations made in time of vortex mixing of tube 1 (x4 or tmix1), in speed of centrifugation (x6 658 



 17/24  

or scentr1), in time of centrifugation of tube 2 (x8 or tcentr2), in the initial temperature of the 659 
PTV (x11 or TPTVinit) and in the vent flow rate (x14 or ventflow) are significant for DIC.  660 
 661 
Therefore, the procedure is robust in both compounds for several of the factors studied (10 662 
out of 18). However, analyst must be very cautious with the remaining eight that should be 663 
carefully controlled, in particular, the time of centrifugation of tube 2 (x8) that affects both 664 
compounds. It is noticeable that if the decision is made at 1% significance level, then no 665 
factor is critical for BAM (except for the block) and only the effects of x8, x11 and x14 are non-666 
null for DIC, which is not surprising because DIC is more volatile than BAM, so small 667 
changes in TPTVinit and ventflow (x11 and x14 respectively) have a significant effect only for the 668 
first compound. 669 
 670 
The effect of the block is significant in both cases, i.e. changing the liner and performing the 671 
measures in a different session significantly affect the analytical responses of both 672 
compounds. Therefore, a misinterpretation of the effects of the experimental factors 673 
considered in the robustness study might be made if an appropriate blocked design had not 674 
been used. 675 
 676 
To persist in the idea about the need of properly choosing an experimental design and to see 677 
the effect on the estimated coefficients (and thus in the conclusions reached from them) of a 678 
poor selection of the experimental design, suppose that the theoretical -unknown- model is 679 
the one in fig. 5b written in full in eq. (4) below and, with the estimated variance, blocking 680 
and factors x4, x6, x8, x11 and x14 have a significant effect on the response, at 5% significance 681 
level. 682 
 683 
In this situation (which, to make easy the comparison, is the one obtained here although, in 684 
general, this is not known before doing the experiments), and for different experimental 685 
designs, responses are simulated emulating the ones that would be obtained after 686 
experimentation. 687 
 688 
In detail, for twenty times, the simulation consists of: 689 

1. Random selection of 21 experiments, out of the 24 from the Hadamard (Plackett-690 
Burman) design with properties in Table 1. 691 

2. Block the selected design as 6+10+5. To maintain the same conditions as the ones in 692 
the population evolution, designs with an ill-conditioned information matrix are 693 
directly discarded and no coefficient estimates are computed with them. However, in 694 
a general situation, unless explicitly computed, the user could not be aware of this 695 
fact, which would lead directly to almost any value (disproportionately large in 696 
general) for the coefficient estimates. 697 

3. For 1000 times, compute (simulate) experimental responses. To do it, the model is 698 
applied with the corresponding experimental conditions and some ‘random noise’ is 699 
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added by using a normal distribution with variance 0.1814 (the one estimated for 700 
DIC). 701 

4. For each of the 1000 sets of estimated coefficients, the significance of every 702 
individual one is decided at 95% confidence level, and the number of non-703 
significance decisions is counted.  704 

 705 
Table S2 in the supplementary material contains the resulting proportions of non-706 
significance, per design and coefficient. Additionally, the last two columns contain the 707 
corresponding minimum and maximum per coefficient. The same proportions are depicted in 708 
figure 6 for each coefficient, the first 18 for the biA, the last two for the blocks. 709 
  710 
Because of the way these values are computed, it is expected that 95% of the times the 711 
coefficient is non-significant, the right decision is made, whereas a proportion of 0.05 of 712 
rejection is expected for the truly significant coefficients, namely b4, b6, b8, b11, b14 and the 713 
coefficients of the blocks.  714 
 715 
Looking at fig. 6, it is clear that the true null coefficients (b1, b2, b3, b5, b7, b9, b10, b12, b13, 716 
and from b15 to b18) are declared non-significant approximately 95% of the times.  717 
However, when it comes to the non-null coefficients in the model, the decision clearly 718 
depends on the design used. For instance, b4 is erroneously concluded as non-significant 719 
between 22% and 93% of the times, depending on the design; b6 between 45% and 93% or, 720 
more importantly, the last two coefficients d1 and d2 (related to blocks), are erroneously 721 
considered non-significant more than 70% of the times. 722 
 723 
 724 
4.3 Recovery rate 725 
 726 
The recovery rate was calculated from the 10 replicates but taking into account that they were 727 
not measured all together, but 5 of them were measured with the experiments of the second 728 
block and the other 5 in the third block.  729 
 730 
The independence between the coefficients of the block and the other estimated coefficients 731 
of the model also guarantees that the model can be used independently for correcting the 732 
additive effect of the block on the standardized loadings of the replicates. In this way, the 733 
standardized loadings of the matrix-matched standards, measured in the first block, can be 734 
corrected and used to estimate the concentration of the ten replicates, once these replicates 735 
have been corrected too. 736 
 737 
As the reference level in the fit model was block 3, the samples measured in the other two 738 
blocks have to be corrected by using the corresponding coefficients. The procedure is based 739 
on the computed model according to Eq. (1). To illustrate the procedure, consider the model 740 
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for response Y1, that is, the standardized loadings of DIC, which, reordering the terms to 741 
highlight the estimates for the block, is: 742 

2

1 2 3 4 5 6 7

8 9 10 11 12 13 14

1 1

15 16 17 18

0.962 1.156
3.86 0.33 0.19 0.13 0.63 0.37 0.52 0.27
0.93 0.13 0.05 1.11 0.09 0.27 0.77
0.37 0.14 0.41 0.31

     
  

b

A A A A A A A

A A A A A A

A

b

A

A A A

x
x x x x x x x

x x x x x x x
x x

x

x

Y

x

= +
− + − ++

−
− − −

+ + −
− −

− − −
− −

 (4) 743 

 744 
As 1bx  is 1 only for the experiments in the first block, substituting in Eq. (4) for experiments 745 

in block 1, we have  746 

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 1

1

8

0.962 3.86 0.33 0.19 0.13 0.63 0.37 0.52 0.27
0.93 0.13 0.05 1.11 0.09 0.27 0.77
0.37 0.14 0.41 0.31

      
  

A A A A A A A

A A A A A A A

A A A A

x x x x x x x
x x x x x x x
x x

Y

x x

− = − + − + − − −
− + + − −

−
−

−
−

− −

(5) 747 

 748 
Whereas for block 2 is 1 20, 1b bx x= =  so the following holds 749 

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 1

1

8

1.156 3.86 0.33 0.19 0.13 0.63 0.37 0.52 0.27
0.93 0.13 0.05 1.11 0.09 0.27 0.77
0.37 0.14 0.41 0.31

      
  

A A A A A A A

A A A A A A A

A A A A

x x x x x x x
x x x x x x x
x x

Y

x x

− = − + − + − − −
− + + − −

−
−

−
−

− −

 (6) 750 

 751 
Finally, for block 3 is 1 20, 0b bx x= =  and thus 752 

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17

1

18

3.86 0.33 0.19 0.13 0.63 0.37 0.52 0.27
0.93 0.13 0.05 1.11 0.09 0.27 0.77
0.37 0.14 0.41 0.31

      
  

A A A A A A A

A A A A A A A

A A A A

x x x x x x x
x x x x x x
x

Y
x

x x x
−
= − + − + − − −

− + + − − −
− − −−

  (7) 753 

 754 
Consequently, it is clear that correcting samples measured in block 1 is simply subtract the 755 
corresponding coefficient d1 (0.962 for DIC as in Eq. (5)) to the standardized loadings, while 756 
d2 (1.156 in Eq.(6)) should be subtracted for correcting samples of block 2. Similarly, the 757 
coefficients are d1 = 0.077 and d2 = 0.272 for BAM (Fig. 5). 758 
 759 
Table 5 shows the standardized loadings of the replicates and their corresponding corrections. 760 
To compute the concentration, two calibration models were fit by means of least squares (LS) 761 
regression with the corrected standardized loadings of the matrix-matched standards for both 762 
analytes of interest. By comparing the LS and MAD (minimize absolute deviations) 763 
regression lines, two outliers were detected for DIC (standards containing 17.5 and 25 µg L-1) 764 
and three for BAM (standards with 15, 20 and 30 µg L-1). After removing those points, the 765 
resulting calibration models were Y = −1.800 + 0.170 x (with correlation coefficient, ρ, equal 766 
to  0.990, and standard error of estimation, sy/x, equal to  0.196) for DIC and Y= −0.312 + 767 
0.079 x (ρ    =  0.995, sy/x =   0.062) for BAM.  768 
 769 
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These calibration lines were used to calculate the concentration of BAM and DIC of the 770 
replicates, all of them with a nominal concentration of 20 µg L-1. The values found are also 771 
shown in Table 5, as well as the recovery rates reached with the analytical procedure (column 772 
6). Mean recovery rates and the semi-length of their 95% confidence intervals are also 773 
computed for each compound and group of replicates (column 7). Notice that this 774 
quantification is possible because of the proposed procedure. 775 
 776 
 777 
5. Conclusions 778 
 779 
With present analytical instrumentation, there is a large number of factors that can affect the 780 
analytical response. Consequently, when doing a robustness study a high number of 781 
experiments must be conducted, in such a way that the experimentation cannot be carried out 782 
under homogeneous experimental conditions (same session, liner, etc.). In that case, if the 783 
fact that the experiments are performed in different blocks is significant (that is, if the effect 784 
of the block is statistically significant) and it is not taken into account in the study, the effects 785 
of the experimental factor considered will be misattributed leading to wrong conclusions. 786 
 787 
Using the methodology proposed in this work, an ‘ad-hoc’ experimental design which 788 
simultaneously minimizes the volume of the joint confidence region for the coefficient 789 
estimates and the correlation between one another (including the block), aliased factors with 790 
the block and possible misinterpretations of effects are avoided. This methodology also gives 791 
a tool for correcting different signals measured in the same experimental sessions or blocks, 792 
which provides the possibility of having additional samples to estimate figures of merit of the 793 
analytical procedure, such as recovery rate in this work, in the same experimental study. 794 
 795 
The validity of the data to implement the proposed procedure relies on the unequivocal 796 
identification of each compound, which is possible due to the use of PARAFAC2 as 797 
decomposition method, because of the second order advantage.  798 
 799 
Extraction vortex mixing time, clean-up centrifugation time and speed, initial PTV 800 
temperature, temperature and time of evaporation, and solvent vent flow were the critical 801 
factors found in the robustness study performed for the determination of BAM and DIC in 802 
onions by PTV-GC-MS. 803 
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Table 1 Correlation matrices among coefficient estimates for a Plackett-Burman with N = 24 experiments, 18 factors, 3 blocks. The lower 
triangular part corresponds to the blocking as 6+12+6; the upper triangular part is for the design blocked as 6+10+8. 

 

Coeff. b1A b2A b3A b4A b5A b6A b7A b8A b9A b10A b11A b12A b13A b14A b15A b16A b17A b18A d1 d2 
b1A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
b2A 0.00  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
b3A 0.00 0.00  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
b4A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
b5A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
b6A 0.00 0.00 0.00 0.00 0.00 0.00 -0.05 0.05 -0.05 0.00 0.00 0.00 0.00 0.00 -0.05 0.00 0.05 0.12 0.21
b7A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
b8A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.05 0.05 0.00 0.00 0.00 0.00 0.00 0.05 0.00 -0.05 -0.12 -0.21
b9A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.05 0.00 0.00 0.00 0.00 0.00 -0.05 0.00 0.05 0.12 0.21
b10A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 -0.05 -0.12 -0.21
b11A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
b12A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
b13A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
b14A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
b15A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
b16A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.05 -0.12 -0.21
b17A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
b18A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.21
d1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.54
d2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.58

 



Table 2 Correlation matrices among coefficient estimates for the experimental designs with N = 21 experiments in the extremes of the Pareto-
optimal front. The lower triangular part corresponds to the design with least correlation among coefficient estimates; the upper triangular 
part is for the design with the best D-value. Bold underlined numbers refer to the worst case when studying only the correlation among 
biA; those in bold italics correspond to the largest correlation between biA and dj (j = 1, 2, i = 1, …, 18,) related to the ‘orthogonal 
blocking’. 

 

Coeff. b1A b2A b3A b4A b5A b6A b7A b8A b9A b10A b11A b12A b13A b14A b15A b16A b17A b18A d1 d2 
b1A -0.06 -0.04 0.05 -0.02 0.14 -0.09 -0.01 0.09 -0.14 0.00 0.07 -0.01 0.00 0.16 0.05 -0.08 -0.06 0.10 0.19 
b2A 0.03  0.15 0.04 0.16 -0.06 -0.05 -0.03 0.06 0.05 0.00 0.05 0.14 0.06 -0.01 -0.11 -0.03 -0.05 0.04 0.02 
b3A -0.14 -0.05  0.07 -0.06 0.15 0.09 -0.03 0.05 0.07 0.21 0.05 0.21 0.08 0.14 0.08 0.17 -0.08 -0.05 -0.06 
b4A 0.02 0.08 0.08  0.03 0.04 -0.14 0.02 -0.05 -0.05 0.05 -0.03 0.09 0.00 0.07 -0.04 0.06 0.03 -0.17 -0.05 
b5A -0.14 -0.02 -0.07 -0.11 -0.08 -0.05 0.18 0.08 0.07 -0.04 0.08 -0.01 0.02 0.01 0.05 -0.08 -0.01 0.10 0.20 
b6A 0.03 -0.01 0.05 -0.03 -0.13 -0.08 -0.06 0.07 0.01 0.19 0.10 0.02 0.07 -0.02 0.04 0.00 -0.07 0.10 0.01 
b7A 0.16 0.06 0.02 0.15 0.00 0.15 0.11 0.02 0.06 -0.06 -0.14 -0.07 -0.13 -0.02 0.06 -0.04 -0.02 -0.07 -0.07 
b8A 0.00 -0.09 -0.09 -0.07 0.12 0.05 -0.12 0.10 0.07 0.11 0.06 0.00 0.01 0.17 0.11 -0.08 0.14 0.11 0.22 
b9A 0.10 0.08 0.01 0.11 0.16 0.10 0.01 -0.10 -0.05 0.08 0.17 0.09 -0.06 0.08 -0.02 -0.17 0.02 0.14 0.17 
b10A 0.07 -0.05 -0.06 0.02 -0.15 0.06 -0.12 -0.01 0.08 -0.10 -0.04 0.06 0.14 0.07 0.14 0.04 0.05 0.02 0.04 
b11A 0.11 -0.13 0.08 0.14 -0.16 -0.06 -0.02 -0.17 -0.02 0.04  0.12 0.16 0.06 0.01 0.06 0.15 -0.06 0.18 0.08 
b12A 0.07 -0.08 0.13 0.01 -0.11 0.11 0.01 0.15 0.06 0.01 0.02 0.07 -0.04 -0.09 0.13 0.03 0.04 0.12 0.13 
b13A -0.03 0.04 0.02 -0.04 0.07 -0.09 -0.02 -0.01 -0.05 -0.17 0.11 -0.14 0.07 0.19 0.05 -0.01 -0.07 -0.01 0.11 
b14A 0.06 -0.01 -0.08 0.05 0.14 0.01 0.03 0.17 0.07 0.00 -0.02 -0.03 0.04 0.04 -0.03 0.08 0.04 -0.05 -0.13 
b15A 0.15 0.09 0.01 0.15 0.02 -0.06 0.17 -0.16 0.01 0.03 0.02 -0.17 0.13 0.08 0.08 -0.06 -0.05 0.07 0.21 
b16A 0.16 -0.13 -0.15 -0.11 0.04 0.15 0.15 0.10 -0.05 -0.14 -0.04 0.07 0.11 -0.08 -0.02 0.07 0.06 -0.03 0.06 
b17A 0.05 -0.02 -0.15 -0.04 0.07 0.00 -0.03 0.06 0.12 0.08 0.11 0.03 -0.03 0.06 0.11 0.14 -0.04 -0.10 -0.14 
b18A 0.04 0.17 -0.05 0.06 0.00 -0.15 -0.10 -0.02 0.06 -0.07 -0.14 0.08 0.06 0.11 0.03 -0.03 -0.14 -0.08 -0.07 
d1 -0.04 0.11 -0.02 0.00 -0.03 -0.08 0.02 -0.13 0.17 0.02 0.07 0.02 0.17 -0.07 -0.04 -0.09 -0.08 0.10 0.63 
d2 -0.05 0.13 -0.14 0.11 0.03 -0.09 0.11 -0.05 0.08 0.05 -0.03 -0.11 0.07 0.03 -0.02 -0.10 -0.09 0.11 0.60  

 



Table 3 Diagnostic ions (the base peak is in bold), relative abundances and tolerance intervals estimated from the reference standards and relative 
abundances calculated from the loadings of the spectral mode of the PARAFAC2 models built for DIC, BAM, ISDIC and ISBAM. 

 

Compound Ion 
 Reference standards  Loadings of PARAFAC2 models 

 Relative abundance 
(%) 

Tolerance interval 
(%)  Relative abundance 

(%) 
Verified 

compliance 
 100  22.80 (19.38, 26.22)  24.98 yes 
 136  19.22 (15.38, 23.07)  18.93 yes 

DIC 171  100.00 -  - - 
 173  64.01 (57.61, 70.41)  62.06 yes 
 175  10.15 (8.12, 12.18)  10.91 yes 
 136  9.99 (4.99, 14.98)  5.65 yes 
 173  24.68 (20.97, 28.38)  17.05 no 

BAM 175  13.37 (10.69, 16.04)  11.03 yes 
 246  100.00 -  - - 
 248  68.50 (61.65, 75.35)  69.54 yes 
 100  23.01 (19.56, 26.46)  19.53 no 
 136  19.64 (15.71, 23.57)  21.35 yes 

ISDIC 171  100.00 -  - - 
 173  63.10 (56.79, 69.41)  63.45 yes 
 175  9.98 (4.99, 14.97)  9.72 yes 
 136  9.46 (7.57, 11.35)  5.96 no 
 173  13.98 (11.19, 16.78)  15.12 yes 

ISBAM 175  7.00 (3.50, 10.50)  9.93 yes 
 246  100.00 -  - - 
 248  66.77 (60.10, 73.45)  70.12 yes 



Table 4 Experimental plan for the robustness study. Factors: x1 (DTemp), x2 (DTime), x3 (VBSTFA), x4 (tmix1), x5 (tcentr1), x6 (scentr1), x7 (tmix2), x8 (tcentr2), 
x9 (Tevap), x10 (tevap), x11 (TPTVinit), x12 (tPTVinit), x13 (Pinit), x14 (ventflow), x15 (venttime), x16 (rPTV), x17 (TPTVend), x18 (sinj); xb1 and xb2 are the 
block variables. The responses are in the last two columns that contain the standardized loadings of the corresponding compound.   

 

Run 
 Derivatization  Extraction Injection Block Responses 
 DTemp DTime VBSTFA  tmix1 tcentr1 scentr1 tmix2 tcentr2 Tevap tevap TPTVinit tPTVinit Pinit ventflow venttime rPTV TPTVend sinj xb1 xb2 BAM DIC 
 ºC min L  min min rpm s min ºC min ºC min psi mL min-1 min ºC s-1 ºC L s-1     

1  44.4 42.1 54  1.9 9.9 2900 33 0.9 49 9.9 41 0.51 8.95 102 0.305 10.2 279 48 1 0 1.12 2.09 
2  44.4 41.9 54  1.9 10.1 3100 27 0.9 49 10.1 41 0.51 9.05 98 0.295 9.8 281 52 1 0 1.24 2.57 
3  44.6 42.1 58  2.1 10.1 2900 27 0.9 51 10.1 40 0.51 8.95 102 0.295 10.2 281 48 1 0 1.08 3.26 
4  44.4 41.9 58  2.1 9.9 3100 33 1.1 51 9.9 40 0.51 9.05 98 0.305 9.8 281 52 1 0 1.19 4.56 
5  44.6 41.9 58  1.9 9.9 3100 27 1.1 51 10.1 41 0.49 9.05 102 0.305 10.2 279 48 1 0 1.22 4.19 
6  44.6 42.1 54  1.9 9.9 2900 33 1.1 51 10.1 40 0.49 9.05 98 0.295 9.8 279 52 1 0 1.11 3.75 
7  44.6 41.9 54  2.1 9.9 2900 33 1.1 49 10.1 40 0.51 9.05 98 0.295 10.2 281 48 0 1 1.37 3.70 
8  44.6 42.1 58  1.9 10.1 2900 33 1.1 49 10.1 41 0.51 9.05 102 0.305 9.8 281 52 0 1 1.33 4.85 
9  44.4 41.9 54  1.9 9.9 2900 27 1.1 51 9.9 40 0.49 8.95 102 0.305 10.2 281 52 0 1 1.43 5.01 

10  44.6 41.9 54  1.9 10.1 3100 33 0.9 51 9.9 40 0.51 9.05 102 0.295 9.8 279 48 0 1 1.35 4.70 
11  44.4 42.1 54  2.1 9.9 3100 33 0.9 51 10.1 41 0.49 9.05 102 0.295 10.2 281 52 0 1 1.16 2.79 
12  44.4 42.1 58  1.9 9.9 2900 27 0.9 51 10.1 40 0.51 9.05 98 0.305 10.2 279 48 0 1 1.43 2.83 
13  44.4 41.9 54  2.1 10.1 2900 33 1.1 51 10.1 41 0.49 8.95 98 0.305 9.8 279 48 0 1 1.14 2.23 
14  44.4 42.1 58  1.9 9.9 3100 33 1.1 49 10.1 40 0.49 8.95 102 0.295 9.8 281 48 0 1 1.45 4.74 
15  44.6 41.9 54  2.1 9.9 3100 27 0.9 49 10.1 40 0.51 8.95 102 0.305 9.8 279 52 0 1 1.20 3.67 
16  44.6 42.1 58  2.1 10.1 3100 27 1.1 49 9.9 41 0.49 8.95 98 0.295 10.2 279 52 0 1 1.64 2.76 
17  44.6 42.1 54  1.9 9.9 3100 27 1.1 51 9.9 41 0.51 8.95 98 0.305 9.8 281 48 0 0 1.11 2.28 
18  44.4 41.9 58  1.9 9.9 2900 33 1.1 51 10.1 41 0.51 8.95 102 0.295 10.2 279 52 0 0 1.04 2.40 
19  44.4 42.1 54  2.1 10.1 3100 27 1.1 49 10.1 40 0.51 9.05 102 0.305 10.2 279 48 0 0 1.34 3.40 
20  44.6 41.9 58  1.9 10.1 3100 33 0.9 49 10.1 40 0.49 8.95 98 0.305 10.2 281 52 0 0 1.10 3.60 
21  44.6 41.9 58  2.1 9.9 2900 27 0.9 49 9.9 40 0.49 9.05 102 0.295 9.8 281 48 0 0 1.06 2.07 



Table 5 Standardized and corrected (by subtracting the block effect) loadings of the sample mode of the PARAFAC2 models and calculated 
concentration for replicates. Mean recovery rates and the semi-length of their 95% confidence intervals. 

 

Compound Replicate Standardized 
loading 

Corrected 
standardized 

loading 

Calculated 
concentration 

(g L-1) 

Recovery rate 
(%) 

Mean recovery 
(%) 

BAM 

1 (block 3) 1.1647 1.1647 18.62 93.09 

91.47  4.66 
2 (block 3) 1.2132 1.2132 19.23 96.15 
3 (block 3) 1.1323 1.1323 18.21 91.05 
4 (block 3) 1.1348 1.1348 18.24 91.20 
5 (block 3) 1.0500 1.0500 17.17 85.86 
1 (block 2) 1.3448 1.0726 17.46 87.29 

80.43  7.70 
2 (block 2) 1.2834 1.0112 16.68 83.41 
3 (block 2) 1.2786 1.0064 16.62 83.11 
4 (block 2) 1.1758 0.9036 15.33 76.63 
5 (block 2) 1.0975 0.8253 14.34 71.70 

DIC 

1 (block 3) 2.1339 2.1339 23.13 115.64 

129.45  12.31 
2 (block 3) 2.6132 2.6132 25.95 129.73 
3 (block 3) 2.4971 2.4971 25.26 126.32 
4 (block 3) 3.0632 3.0632 28.59 142.96 
5 (block 3) 2.7103 2.7103 26.52 132.58 
1 (block 2) 3.5565 2.4009 24.70 123.49 

117.15  18.21 
2 (block 2) 3.8640 2.7084 26.51 132.53 
3 (block 2) 3.6345 2.4789 25.16 125.78 
4 (block 2) 2.6567 1.5011 19.41 97.04 
5 (block 2) 2.9919 1.8364 21.38 106.90 
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FIGURE CAPTIONS 
 
 
Fig. 1 Pareto-optimal front of the criteria being optimized for looking for a blocked design 

with 21 experiments for the robustness study. 
 
Fig. 2 Bar chart of the VIFs of the coefficient estimates of model in Eq. (1). Light red bars 

are for the design with the least correlation values; dark blue bars are for the design 
with the largest D-value in the Pareto-optimal front. 

 
Fig. 3 Loadings of the chromatographic (a and d), spectral (b and e), and sample (c and f) 

modes of the PARAFAC2 models built for BAM (a, b and c) and ISBAM (d, e and 
f). Chromatographic loadings are scaled loadings. First factor is in blue continuous 
line (blue solid bars in the spectral mode and blue triangles in the sample mode), 
second factor is in green dashed line (green dashed bars in the spectral mode and 
green circles in the sample mode), and third factor is in red dotted line (red pointed 
bars in the spectral mode and red squares in the sample mode). 

 
Fig. 4 Standardized loadings of the sample mode for BAM (a) and DIC (b). 
 
Fig. 5 Graphical analysis of the effects of the studied experimental factors on the 

responses. Light orange bars are for significant coefficients (5% significant level); 
dark blue bars are for the non-significant ones.  

 
Fig. 6 Proportion of times that the corresponding coefficient (abscissa axis) is declared 

non-significant at 5% significance level. Twenty blocked designs randomly 
extracted from a three block Plackett-Burman design with 24 experiments. 
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Table S1 Properties of the designs in the corresponding Pareto-optimal fronts (increasing order of D): N, number of experiments in the design; 
maximum of the absolute value of the correlation coefficients among ‘main’ coefficients,  ,iA jAcorr b b , and with block,  ,iA jcorr b d ; 
VIFs of the corresponding coefficient estimates. 

 

N 
 Maximum values of  VIF 
  ,iA jAcorr b b  ,iA jcorr b d   b1A b2A b3A b4A b5A b6A b7A b8A b9A b10A b11A b12A b13A b14A b15A b16A b17A b18A d1 d2 

21  0.17 0.17  1.19 1.12 1.16 1.16 1.22 1.16 1.23 1.22 1.20 1.14 1.20 1.18 1.18 1.12 1.20 1.24 1.16 1.18 1.81 1.79 
21  0.18 0.17  1.26 1.09 1.17 1.21 1.15 1.08 1.17 1.24 1.13 1.21 1.18 1.22 1.21 1.14 1.15 1.26 1.16 1.14 1.81 1.92 
21  0.18 0.17  1.19 1.20 1.15 1.16 1.21 1.12 1.13 1.18 1.13 1.10 1.30 1.19 1.19 1.13 1.16 1.13 1.18 1.16 1.90 1.79 
21  0.17 0.18  1.17 1.13 1.17 1.15 1.13 1.14 1.26 1.20 1.19 1.11 1.17 1.17 1.18 1.10 1.20 1.25 1.16 1.20 1.81 1.82 
21  0.17 0.18  1.28 1.09 1.16 1.18 1.16 1.08 1.16 1.20 1.15 1.20 1.18 1.12 1.19 1.12 1.16 1.26 1.16 1.11 1.82 1.93 
21  0.18 0.18  1.22 1.12 1.16 1.16 1.20 1.20 1.20 1.12 1.19 1.14 1.16 1.16 1.14 1.19 1.11 1.15 1.09 1.20 1.92 1.83 
21  0.18 0.18  1.23 1.14 1.23 1.11 1.14 1.16 1.12 1.18 1.15 1.13 1.23 1.19 1.23 1.19 1.13 1.15 1.13 1.17 1.81 1.86 
21  0.18 0.18  1.15 1.13 1.18 1.12 1.11 1.15 1.18 1.13 1.15 1.13 1.21 1.13 1.17 1.16 1.18 1.12 1.16 1.17 1.93 1.85 
21  0.18 0.18  1.16 1.14 1.15 1.13 1.13 1.12 1.14 1.13 1.19 1.12 1.23 1.20 1.14 1.18 1.16 1.15 1.21 1.13 1.83 1.91 
21  0.19 0.17  1.12 1.16 1.23 1.12 1.11 1.13 1.12 1.19 1.14 1.14 1.25 1.24 1.16 1.13 1.19 1.12 1.13 1.11 1.82 1.84 
21  0.19 0.18  1.14 1.17 1.17 1.13 1.11 1.12 1.14 1.13 1.17 1.14 1.22 1.20 1.12 1.16 1.18 1.12 1.20 1.12 1.80 1.91 
21  0.19 0.18  1.16 1.13 1.23 1.08 1.11 1.16 1.13 1.20 1.19 1.16 1.20 1.13 1.23 1.14 1.17 1.13 1.17 1.07 1.78 1.88 
21  0.19 0.18  1.16 1.24 1.20 1.14 1.09 1.17 1.15 1.10 1.21 1.10 1.18 1.18 1.19 1.19 1.18 1.11 1.13 1.09 1.82 1.96 
21  0.20 0.18  1.14 1.11 1.26 1.07 1.12 1.16 1.15 1.17 1.16 1.18 1.15 1.16 1.21 1.14 1.16 1.15 1.17 1.10 1.79 1.92 
21  0.22 0.21  1.14 1.10 1.24 1.11 1.13 1.13 1.15 1.16 1.12 1.14 1.23 1.14 1.17 1.11 1.21 1.11 1.14 1.09 1.84 1.92 
21  0.21 0.22  1.14 1.12 1.24 1.10 1.14 1.13 1.14 1.20 1.12 1.12 1.23 1.14 1.17 1.11 1.20 1.11 1.13 1.07 1.85 2.00 
22  0.16 0.16  1.17 1.21 1.22 1.14 1.17 1.16 1.15 1.19 1.13 1.17 1.13 1.12 1.14 1.16 1.21 1.13 1.19 1.15 1.58 1.54 
22  0.16 0.16  1.16 1.21 1.22 1.14 1.17 1.15 1.14 1.17 1.13 1.17 1.13 1.05 1.14 1.15 1.24 1.13 1.18 1.14 1.60 1.54 
22  0.16 0.16  1.05 1.20 1.20 1.12 1.15 1.13 1.14 1.14 1.11 1.17 1.13 1.09 1.12 1.16 1.25 1.16 1.13 1.18 1.69 1.56 
22  0.17 0.16  1.05 1.16 1.15 1.12 1.16 1.19 1.14 1.06 1.11 1.14 1.21 1.11 1.13 1.17 1.17 1.13 1.14 1.13 1.55 1.55 
22  0.17 0.15  1.08 1.14 1.08 1.15 1.19 1.17 1.14 1.11 1.08 1.12 1.18 1.08 1.15 1.19 1.12 1.14 1.11 1.16 1.60 1.60 



22  0.18 0.17  1.10 1.17 1.11 1.12 1.13 1.17 1.14 1.19 1.09 1.13 1.18 1.12 1.10 1.17 1.15 1.15 1.11 1.14 1.60 1.54 
22  0.18 0.15  1.11 1.19 1.09 1.08 1.14 1.17 1.10 1.07 1.09 1.20 1.18 1.14 1.11 1.16 1.16 1.11 1.10 1.16 1.64 1.55 
22  0.18 0.15  1.07 1.13 1.06 1.09 1.19 1.15 1.12 1.08 1.10 1.14 1.20 1.09 1.10 1.18 1.15 1.14 1.12 1.14 1.59 1.56 
22  0.18 0.13  1.08 1.14 1.07 1.12 1.18 1.17 1.14 1.10 1.09 1.13 1.19 1.09 1.10 1.17 1.13 1.15 1.11 1.15 1.57 1.57 
22  0.18 0.17  1.09 1.17 1.10 1.16 1.17 1.16 1.13 1.09 1.08 1.12 1.17 1.11 1.12 1.13 1.16 1.15 1.09 1.17 1.60 1.56 
22  0.18 0.15  1.07 1.16 1.08 1.09 1.16 1.18 1.11 1.06 1.09 1.14 1.19 1.12 1.09 1.16 1.16 1.13 1.10 1.15 1.61 1.55 
22  0.19 0.17  1.08 1.17 1.08 1.12 1.15 1.18 1.13 1.08 1.08 1.13 1.17 1.12 1.09 1.15 1.14 1.15 1.10 1.16 1.60 1.55 
22  0.20 0.19  1.10 1.13 1.08 1.06 1.12 1.10 1.16 1.09 1.06 1.11 1.16 1.10 1.07 1.15 1.15 1.14 1.07 1.14 1.64 1.56 
22  0.21 0.18  1.10 1.15 1.09 1.08 1.15 1.18 1.13 1.07 1.07 1.12 1.14 1.09 1.08 1.14 1.14 1.12 1.09 1.17 1.68 1.56 
22  0.20 0.21  1.10 1.14 1.09 1.08 1.15 1.18 1.13 1.07 1.08 1.12 1.13 1.09 1.08 1.10 1.14 1.12 1.08 1.17 1.66 1.62 
22  0.21 0.22  1.09 1.13 1.08 1.09 1.13 1.19 1.14 1.06 1.09 1.13 1.12 1.08 1.09 1.11 1.14 1.09 1.10 1.14 1.66 1.61 
23  0.15 0.16  1.14 1.16 1.15 1.11 1.20 1.15 1.10 1.11 1.12 1.13 1.14 1.10 1.20 1.14 1.15 1.16 1.14 1.09 1.55 1.49 
23  0.16 0.16  1.15 1.16 1.11 1.10 1.22 1.13 1.14 1.04 1.13 1.12 1.13 1.09 1.20 1.14 1.12 1.17 1.13 1.07 1.52 1.51 
23  0.16 0.16  1.14 1.18 1.13 1.07 1.20 1.13 1.11 1.05 1.13 1.13 1.14 1.08 1.18 1.12 1.15 1.11 1.16 1.11 1.56 1.55 
23  0.16 0.16  1.17 1.14 1.13 1.10 1.20 1.10 1.11 1.05 1.11 1.13 1.14 1.08 1.20 1.12 1.13 1.15 1.16 1.09 1.53 1.52 
23  0.16 0.16  1.18 1.13 1.12 1.15 1.15 1.09 1.12 1.09 1.12 1.15 1.11 1.07 1.22 1.15 1.11 1.12 1.14 1.14 1.46 1.52 
23  0.16 0.16  1.10 1.07 1.13 1.12 1.10 1.11 1.17 1.08 1.13 1.10 1.15 1.07 1.15 1.11 1.15 1.08 1.16 1.10 1.53 1.56 
23  0.17 0.16  1.11 1.07 1.13 1.12 1.09 1.12 1.18 1.11 1.10 1.11 1.15 1.07 1.17 1.10 1.13 1.10 1.14 1.08 1.53 1.53 
23  0.18 0.19  1.15 1.07 1.11 1.11 1.11 1.11 1.13 1.12 1.10 1.08 1.13 1.05 1.18 1.12 1.16 1.16 1.15 1.10 1.54 1.53 
23  0.18 0.19  1.13 1.07 1.13 1.12 1.10 1.11 1.13 1.11 1.11 1.09 1.14 1.07 1.18 1.12 1.13 1.14 1.12 1.10 1.54 1.54 
23  0.17 0.20  1.10 1.10 1.15 1.12 1.08 1.15 1.13 1.08 1.08 1.10 1.06 1.10 1.17 1.11 1.14 1.13 1.14 1.08 1.60 1.60 
23  0.20 0.17  1.10 1.08 1.11 1.12 1.09 1.10 1.16 1.11 1.13 1.11 1.13 1.09 1.17 1.10 1.11 1.12 1.17 1.06 1.54 1.54 
23  0.21 0.18  1.15 1.06 1.12 1.16 1.10 1.14 1.10 1.08 1.11 1.13 1.16 1.09 1.11 1.14 1.16 1.10 1.12 1.08 1.51 1.54 
23  0.23 0.17  1.10 1.09 1.12 1.09 1.13 1.08 1.14 1.07 1.16 1.10 1.13 1.10 1.15 1.10 1.11 1.10 1.16 1.08 1.53 1.56 
23  0.23 0.19  1.15 1.04 1.12 1.15 1.11 1.12 1.11 1.12 1.11 1.08 1.13 1.07 1.16 1.11 1.14 1.16 1.14 1.09 1.54 1.56 
23  0.25 0.19  1.14 1.05 1.13 1.13 1.16 1.12 1.09 1.12 1.11 1.09 1.14 1.07 1.14 1.09 1.15 1.14 1.13 1.09 1.54 1.56 
24  0.15 0.15  1.10 1.10 1.07 1.07 1.08 1.18 1.08 1.07 1.13 1.16 1.14 1.14 1.19 1.08 1.20 1.09 1.08 1.12 1.50 1.40 
24  0.16 0.15  1.10 1.07 1.06 1.08 1.07 1.18 1.08 1.07 1.12 1.15 1.14 1.15 1.17 1.09 1.19 1.08 1.08 1.11 1.48 1.40 
24  0.16 0.14  1.08 1.07 1.07 1.07 1.08 1.20 1.07 1.07 1.13 1.17 1.15 1.14 1.17 1.08 1.17 1.07 1.07 1.11 1.47 1.39 



24  0.17 0.16  1.07 1.07 1.09 1.07 1.09 1.18 1.06 1.09 1.14 1.19 1.14 1.15 1.16 1.07 1.19 1.07 1.10 1.08 1.45 1.41 
24  0.17 0.15  1.08 1.08 1.09 1.06 1.09 1.21 1.06 1.09 1.14 1.18 1.16 1.13 1.17 1.08 1.18 1.07 1.07 1.11 1.44 1.39 
24  0.18 0.17  1.07 1.22 1.06 1.07 1.08 1.06 1.09 1.20 1.20 1.08 1.07 1.18 1.04 1.06 1.13 1.05 1.14 1.21 1.37 1.48 
24  0.18 0.17  1.06 1.10 1.06 1.18 1.21 1.05 1.09 1.13 1.06 1.05 1.06 1.13 1.10 1.05 1.17 1.06 1.13 1.10 1.38 1.54 
24  0.18 0.18  1.17 1.17 1.06 1.06 1.09 1.04 1.09 1.16 1.06 1.05 1.04 1.10 1.06 1.05 1.21 1.05 1.13 1.14 1.37 1.52 
24  0.18 0.18  1.05 1.09 1.05 1.05 1.18 1.04 1.09 1.15 1.05 1.05 1.05 1.14 1.10 1.05 1.14 1.04 1.15 1.08 1.38 1.53 
24  0.18 0.18  1.04 1.18 1.03 1.05 1.07 1.04 1.08 1.15 1.03 1.05 1.04 1.15 1.03 1.05 1.15 1.04 1.16 1.09 1.37 1.53 
24  0.19 0.19  1.03 1.20 1.03 1.03 1.08 1.05 1.15 1.19 1.03 1.05 1.03 1.08 1.03 1.03 1.20 1.05 1.07 1.08 1.39 1.57 
24  0.19 0.19  1.03 1.08 1.03 1.03 1.17 1.03 1.16 1.19 1.03 1.03 1.03 1.18 1.03 1.03 1.07 1.03 1.07 1.08 1.38 1.57 
24  0.18 0.19  1.03 1.07 1.03 1.03 1.07 1.03 1.07 1.15 1.03 1.04 1.03 1.15 1.03 1.03 1.16 1.03 1.15 1.07 1.38 1.58 
24  0.14 0.20  1.04 1.15 1.04 1.04 1.08 1.04 1.15 1.13 1.04 1.04 1.04 1.08 1.04 1.04 1.15 1.04 1.08 1.07 1.39 1.59 
24  0.12 0.20  1.03 1.13 1.03 1.03 1.12 1.03 1.13 1.08 1.03 1.03 1.03 1.08 1.03 1.03 1.08 1.03 1.07 1.13 1.38 1.59 
24  0.11 0.21  1.03 1.12 1.03 1.03 1.12 1.03 1.12 1.12 1.03 1.03 1.03 1.08 1.03 1.03 1.07 1.03 1.08 1.07 1.39 1.60 
24  0.18 0.21  1.02 1.07 1.03 1.03 1.07 1.02 1.07 1.14 1.03 1.02 1.02 1.17 1.03 1.03 1.07 1.02 1.18 1.07 1.40 1.65 
24  0.18 0.21  1.02 1.07 1.03 1.03 1.14 1.02 1.07 1.07 1.03 1.02 1.02 1.17 1.03 1.03 1.07 1.02 1.18 1.07 1.40 1.65 
24  0.18 0.21  1.03 1.07 1.02 1.02 1.14 1.03 1.07 1.07 1.02 1.03 1.03 1.17 1.02 1.02 1.07 1.03 1.18 1.07 1.40 1.65 
24  0.14 0.21  1.02 1.07 1.02 1.02 1.17 1.02 1.07 1.07 1.03 1.03 1.02 1.15 1.02 1.02 1.07 1.02 1.14 1.07 1.39 1.64 
24  0.13 0.21  1.03 1.15 1.03 1.03 1.07 1.03 1.08 1.14 1.03 1.03 1.03 1.07 1.03 1.03 1.15 1.03 1.07 1.06 1.41 1.66 
24  0.13 0.21  1.03 1.15 1.03 1.03 1.07 1.03 1.15 1.14 1.03 1.03 1.03 1.07 1.03 1.03 1.08 1.03 1.07 1.06 1.41 1.66 
24  0.13 0.21  1.03 1.07 1.03 1.03 1.15 1.03 1.15 1.14 1.03 1.03 1.03 1.07 1.03 1.03 1.07 1.03 1.07 1.06 1.41 1.66 
24  0.11 0.21  1.02 1.07 1.02 1.02 1.07 1.02 1.13 1.13 1.02 1.02 1.02 1.13 1.02 1.02 1.07 1.02 1.07 1.07 1.40 1.66 
24  0.14 0.21  1.01 1.06 1.01 1.01 1.16 1.01 1.06 1.06 1.02 1.02 1.01 1.16 1.01 1.01 1.06 1.01 1.06 1.06 1.40 1.71 
24  0.05 0.21  1.00 1.05 1.00 1.00 1.05 1.00 1.05 1.05 1.00 1.00 1.00 1.05 1.00 1.00 1.05 1.00 1.05 1.05 1.45 1.88 
 
 
 
  



Table S2. Proportion of times the corresponding coefficient estimate (in rows) was non-significant at 5% significance level. Results of applying 
the design in columns: Twenty designs randomly blocked from a Plackett-Burman design. The last two columns contain minimum 
(Min) and maximum (Max) values per coefficient, respectively. Shaded rows correspond to the non-null coefficients in the model 

 
Designs/ 
Coeff. 

estimates 
Dis1 Dis2 Dis3 Dis4 Dis5 Dis6 Dis7 Dis8 Dis9 Dis10 Dis11 Dis12 Dis13 Dis14 Dis15 Dis16 Dis17 Dis18 Dis19 Dis20 Min Max 

b1A 0.96 0.96 0.95 0.94 0.96 0.96 0.95 0.95 0.94 0.94 0.94 0.95 0.96 0.96 0.93 0.94 0.96 0.95 0.95 0.95 0.93 0.96 
b2A 0.95 0.95 0.95 0.96 0.95 0.96 0.96 0.94 0.95 0.95 0.94 0.94 0.95 0.95 0.95 0.94 0.96 0.95 0.95 0.96 0.94 0.96 
b3A 0.96 0.94 0.95 0.95 0.95 0.95 0.95 0.94 0.95 0.95 0.94 0.94 0.95 0.96 0.94 0.96 0.94 0.96 0.94 0.95 0.94 0.96 
b4A 0.37 0.57 0.26 0.45 0.31 0.37 0.30 0.41 0.59 0.84 0.61 0.88 0.69 0.90 0.28 0.56 0.22 0.63 0.93 0.89 0.22 0.93 
b5A 0.96 0.95 0.94 0.96 0.96 0.95 0.95 0.95 0.95 0.94 0.95 0.95 0.96 0.95 0.96 0.94 0.95 0.95 0.95 0.95 0.94 0.96 
b6A 0.71 0.85 0.83 0.85 0.69 0.68 0.81 0.53 0.45 0.83 0.58 0.45 0.84 0.82 0.72 0.92 0.77 0.56 0.93 0.91 0.45 0.93 
b7A 0.95 0.94 0.96 0.95 0.95 0.96 0.95 0.95 0.96 0.95 0.95 0.96 0.96 0.95 0.94 0.94 0.95 0.95 0.95 0.95 0.94 0.96 
b8A 0.03 0.70 0.18 0.72 0.66 0.08 0.12 0.19 0.18 0.54 0.13 0.23 0.52 0.38 0.01 0.04 0.29 0.05 0.93 0.55 0.01 0.93 
b9A 0.96 0.95 0.95 0.95 0.95 0.96 0.94 0.95 0.95 0.95 0.94 0.94 0.95 0.96 0.95 0.96 0.96 0.95 0.95 0.95 0.94 0.96 
b10A 0.96 0.94 0.96 0.95 0.94 0.95 0.96 0.96 0.96 0.94 0.96 0.94 0.95 0.95 0.94 0.94 0.95 0.95 0.96 0.94 0.94 0.96 
b11A 0.48 0.37 0.44 0.40 0.00 0.49 0.07 0.07 0.48 0.11 0.03 0.38 0.08 0.38 0.01 0.00 0.01 0.19 0.12 0.68 0 0.68 
b12A 0.96 0.96 0.94 0.95 0.94 0.96 0.95 0.95 0.95 0.94 0.95 0.94 0.96 0.95 0.95 0.96 0.95 0.95 0.95 0.96 0.94 0.96 
b13A 0.95 0.95 0.95 0.95 0.94 0.96 0.95 0.96 0.96 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.96 0.96 0.96 0.95 0.94 0.96 
b14A 0.39 0.81 0.12 0.42 0.26 0.23 0.48 0.08 0.64 0.40 0.40 0.74 0.13 0.12 0.86 0.55 0.64 0.41 0.93 0.68 0.08 0.93 
b15A 0.96 0.95 0.96 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.96 0.96 0.95 0.96 0.96 0.95 0.96 
b16A 0.95 0.95 0.94 0.94 0.95 0.95 0.96 0.96 0.96 0.95 0.95 0.96 0.95 0.96 0.94 0.96 0.95 0.96 0.95 0.96 0.94 0.96 
b17A 0.96 0.95 0.95 0.95 0.95 0.95 0.95 0.96 0.95 0.94 0.94 0.95 0.95 0.96 0.95 0.96 0.95 0.95 0.95 0.95 0.94 0.96 
b18A 0.95 0.94 0.95 0.95 0.96 0.96 0.95 0.96 0.94 0.96 0.95 0.95 0.96 0.96 0.95 0.96 0.96 0.96 0.95 0.96 0.94 0.96 
d1 0.91 0.92 0.84 0.92 0.89 0.78 0.92 0.79 0.87 0.85 0.82 0.91 0.92 0.89 0.74 0.91 0.91 0.74 0.95 0.93 0.74 0.95 
d2 0.88 0.94 0.88 0.82 0.33 0.76 0.88 0.72 0.79 0.88 0.74 0.73 0.90 0.73 0.93 0.92 0.93 0.75 0.94 0.88 0.33 0.94 
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