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Abstract: A novel amperometric biosensor for the determination of Al(III) based on the 

inhibition of the enzyme acetylcholinesterase has been developed. The immobilization of 

the enzyme was performed on screen-printed carbon electrodes modified with gold 

nanoparticles. The oxidation signal of acetylthiocholine iodide enzyme substrate was 

affected by the presence of Al(III) ions leading to a decrease in the amperometric current. 

The developed system has a detection limit of 2.1 ± 0.1 μM for Al(III). The reproducibility 

of the method is 8.1% (n = 4). Main interferences include Mo(VI), W(VI) and Hg(II) ions. 

The developed method was successfully applied to the determination of Al(III) in spiked 

tap water . The analysis of a certified standard reference material was also carried out. Both 

results agree with the certified values considering the respective associated uncertainties. 

Keywords: acetylcholinesterase; biosensor; aluminum; acetylthiocholine iodide;  

screen-printed electrodes; gold nanoparticles 
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1. Introduction 

Aluminum determination at trace level is of great importance due to the possible human and 

environmental toxic effects of this element. In fact, it has been demonstrated that low levels of 

aluminum in human organism, are related with Alzheimer disease [1–3]. 

Traditionally, the determination of aluminum at low concentration levels in environmental  

and biological samples, has been carried out by means of electrothermal absorption spectrometry [4–6]  

and fluorescence spectroscopy [7]. However these methods have often failed in routine analysis. 

Electrochemical techniques, such as voltammetry, have been also employed using different kinds of 

electrodes, being the hanging mercury drop electrode (HMDE) the most often used one in the analysis 

of Al(III). The direct voltammetric determination of Al(III) with a HMDE is limited by the difficulty 

of reduction of Al(III) species and the concurrent reduction of hydrogen ions from aqueous acid 

solution at mercury electrodes. This difficulty is usually overcome by complexation of Al(III) with 

many different chelating agents, which electrochemical reduction takes place at lower potentials than 

free Al(III) ions and other electrochemical techniques [8–30]. Despite of the good results obtained with 

mercury electrodes, the use of HMDE is nowadays being reduced due to its environmental 

pollution problems. 

Screen-printed electrodes (SPEs) have demonstrated numerous advantages as transducers in 

electrochemical biosensors [31]. These advantages include ease of modification with different 

compounds such as nanoparticles (NPs) in order to create a more favorable electrode surface for 

interaction with enzymes. This kind of modification generally produces a more stable biosensor for the 

determination of different analytes [32,33]. Therefore, nowadays the use of NPs as surface electrode 

modificators is increasing showing these modified electrodes great electrocatalytic activity and 

therefore high analytical response [34]. Actually, screen-printed modified electrodes with enzymes and 

gold NPs (AuNPs) are foreseeing as selective and sensitive methods to analytical quantification of  

a broad variety of environmental contaminants [35]. 

The determination of aluminum has been also carried using an enzymatic biosensor based on the 

inhibitory effect of this element on the enzyme α-chymotrypsin [36]. In this way, the fact, that the 

acetylcholinesterase (AChE) enzyme is also usually inhibited by different compounds such as 

organophosphorate pesticides, metals and nonmetals [37–40] has led us to develop a new AChE based 

biosensor for the analysis of aluminum. 

In this work, screen-printed carbon electrodes (SPCEs) were modified with AuNPs (AuNPs/SPCEs). 

AChE was immobilized on the surface of the developed AuNPs/SPCEs. The chronoamperometric 

response of these AChE/AuNPS/SPCE biosensors towards acetylthiocholine (ATI) enzyme substrate 

was affected by the presence of Al(III) ions due to their inhibitor effect on the activity of the enzyme. 

To the best of our knowledge, there are no references about other biosensors using this enzyme for the 

determination of Al(III). 

2. Results and Discussion 

The AChE/AuNPS/SPCE biosensors developed in this work show a sensitive chronoamperometric 

response to the enzyme substrate, ATI. This signal is considerably affected by the presence of Al(III) 
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ions that produce a decrease in the recorded chronoamperometric response. This inhibition effect can 

be quantitatively related to the concentration of Al(III). 

The chronoamperometric response of the developed biosensors is affected by different experimental 

variables namely, operational chronoamperometric potential, pH and concentration of enzyme substrate 

(acetylthiocholine iodide). Therefore, an optimization procedure of these experimental parameters was 

carried out. 

The electrochemical response of acetylthiocholine iodide was evaluated first, through a surface response 

method using a    composite central experimental design. In this case, three parameters were studied in 

order to maximize the current registered, ∆I (I0-I), for a 1.4 μM aluminum solution: applied potential (from 

0.63 V to 0.97 V, vs. screen-printed Ag/AgCl electrode), pH of supporting electrolyte (from 6.96 to 8.64) 

and substrate concentration (from 0.038 mM to 0.44 mM). The experiments carried out in different 

experimental conditions led to establishment of the following optimum values: pH = 8.6; ATI = 0.44 mM; 

Eap = 0.76 V, but the calibration curves obtained under these conditions were too noisy. Those were 

improved with the conditions obtained from the second study where it was done a sequential optimization; 

choosing the conditions suggested by next figures and regarding also enzyme activity. 

First of all, the effect of applied potential in the chronoamperometric response of the developed 

biosensors was studied. The inhibitive signal of Al(III) on the disposable electrodes was analyzed 

using operational potentials from + 0.5 to + 0.9 V at pH 7.0, recommended for enzyme. A high quality 

amperometric signal at + 0.8 V was obtained, thus, this potential was taken as the best value for 

determination of aluminum. The influence of pH value was also studied. Chronoamperometric analysis 

in a pH range from 6 to 9 was performed obtaining a value of 7.8 as the optimum taking into account 

the best stability conditions for the enzymatic electrode. Finally, the influence of the concentration of 

acetylthiocholine iodide was also studied in the range from 0.12 mM up to 0.48 mM, a concentration 

of 0.24 mM was found to give the highest inhibition response of aluminum, upper concentrations were 

noisy. The results are showed in Figure 1. 

Figure 1. (a) Current response of ATI with potential, (b) Current response of ATI with pH,  

(c) Current response of ATI concentration. 
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Figure 1. Cont. 

 

Figure 2. Lineweaver Burk plot of AChE/AuNPs/SPCE biosensor in presence of 

aluminum and without aluminum. 
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Once the optimal conditions were obtained, the inhibitory effect of aluminum ions on the response 

of the AChE biosensors was investigated following the method of Lineweaver-Burk. The Km value 

(3.9 ± 0.3) × 10
−3

 M found in presence of aluminum is higher than the one obtained without aluminum 

(3.1 ± 0.3) × 10
−3

. Therefore, the presence of aluminum diminishes the enzyme substrate affinity. In 

Figure 2 it can be seen that the studied process resembles a non competitive inhibition. 

2.1. Calibration and Limit of Detection 

Figure 3 shows a typical chronoamperometric response obtained using AChE/AuNPs/SPCEs. 

Figure 3. Typical amperometric recording for an acethylthiocholine iodide concentration 

(1) 2.4 × 10
−4

 M and consecutive additions of aliquots of Al(III) solution into the cell to 

give an overall concentration of: (2) 3.6 × 10
−6

, (3) 7.0 × 10
−6

, (4) 1.0 × 10
−5

, (5) 1.3 × 10
−5

, 

(6) 1.6 × 10
−5

, (7) 1.9 × 10
−5

, (8) 2.2 × 10
−5

, (9) 2.5 × 10
−5

, (10) 2.8 × 10
−5

, (11) 3.0 × 10
−5

; 

Britton-Robinson pH 7.8; Eap, + 0.8 V vs. Ag/AgCl screen-printed electrode. 

 

As it can be seen in this figure, biosensor responds fast to aluminum concentration and a linear 

dependence between the decrease (ΔI) in the chronoamperometric response of ATI (I0) and the Al(III) 

concentration (I) was observed in the concentration range from 3.6 μM to 30 μM. The regression 

parameters obtained for the calibration curve showed in Figure 3 were ΔI = 0.0325 [Al(III)] + 3.0 × 10
−8

 

(R
2
 = 0.99). 

Several calibration curves were constructed under the optimum conditions in order to evaluate 

figures of merit, such as precision and limit of detection. The limit of detection under the optimum 

working conditions (2.1 ± 0.1) μM was calculated from the standard deviation of seven calibration 

curves (Sy/x) accordingly with the criteria 3Sy/x. 
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2.2. Precision 

This parameter was calculated in terms of reproducibility. Repeatibility was tried out using the 

same electrode surface. In this way, several successive calibrations for Al(III) were tested. The 

electrodes were conditioned for 5 min in a stirred Britton Robinson buffer solution, pH 7, between 

experiments. The relative standard deviation (RSD) obtained for the slopes of the first two curves was 

lower than 4%, but from the third measurement an increase in RSD was noticed. Likewise, the 

reproducibility of the amperometric signal was checked using the slopes of four regressions carried out 

with different electrode surfaces. The RSD value obtained was 8.1%. These results suggest that the 

fabrication procedure of the AChE/AuNPs/SPCEs biosensors is reliable and allows reproducible 

electroanalytical responses to be obtained with different electrodes constructed using the method 

described in this work. 

2.3. Accuracy 

The accuracy of the developed method was evaluated by means of the analysis of a standard 

reference material (SRM) High Purity Standards solution (Lot Number 1121015, (1000 ± 3) mg/L) 

using the standard addition method. The aluminum average concentration quantified by the developed 

procedure, (1022 ± 20) mg/L
 
(n = 4; α= 0.05), matches the certified value of the sample considering 

the associated uncertainty. The mean value percent recovery obtained was 102 ± 2. 

The performance of the method was also evaluated by means of the analysis of spiked tap water 

samples. These samples were prepared by the addition of different amounts of the above described 

standard reference material. Accordingly with the results obtained for this analysis the average value 

found, (1058 ± 63) mg/L (n = 4; α = 0.05), is in good agreement with the certified value of the SRM. 

The average value percent recovery was 106 ± 8. These results suggest that the developed method with 

acetylcholinesterase enzyme is accurate and reliable for aluminum determination in water. 

2.4. Interferences 

An interference study was performed comparing the percentage of inhibition, showed for the 

developed acetylcholinesterase-based biosensor in the presence of aluminum and others foreign ions. 

Three concentration levels were tested, namely 1 mM; 0.1 mM and 1 µM. As it can be seen in Figure 4 

the highest interference effect was found for Mo(VI), W(VI) and Hg(II). The interference of As(III) 

was performed by mixing 1000 µL of standard solution of As(V) 1.33 × 10
−2

 M with 1,000 µL of 

sodium thiosulfate 0.1 M and adding the necessary amount to reach level concentration tested. The 

mixture was left to react for 70 min at room and used immediately. Under the aluminum biosensor 

conditions although As(III) is an important interference is not the strongest, considering that the most 

stable specie in aqueous solutions is As (V). It is important to point out that calcium and magnesium 

showed a low interference at any level of concentration as it can be seen in Figure 4. Moreover, from 

Figure 5 it can be also deduced that when Al(III) is presented at low concentrations (1 µM), Hg (II), 

As (III) and Mo(VI) are interferences at the same low concentration level. 
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Figure 4. Inhibition percentage of inhibition current of ACh AuNPs/SPCE in presence of: 

Cu(II); As(V); As(III); Zn(II); Sn(II); Hg(II); Co(II); Cd(II); Pb(II); W(VI); Se(IV); V(V); 

Mo(VI); Ni(II);Ca(II); Mg(II); Fe(III); Cr(III); As(III) at three levels of concentration; [ATI] 

0.12 µM; Eap, + 0.8 V vs. Ag/AgCl screen printed electrode; Britton-Robinson pH 7.8. 

 

Figure 5. Inhibition percentage of inhibition current of ACh AuNPs/SPCE in presence 

of: Cu(II); As(V); As(III); Zn(II); Sn(II); Hg(II); Co(II); Cd(II); Pb(II); W(VI); Se(IV); 

V(V); Mo(VI); Ni(II);Ca(II); Mg(II); Fe(III); Cr(III); As(III) at 10
−6

 M; [ATI] 0.12 µM; 

Eap, + 0.8 V vs. Ag/AgCl screen printed electrode; Britton-Robinson pH 7.8. 

 

3. Reagents and Equipment 

3.1. Reagents 

Several inks were used in the fabrication of SPEs, namely Electrodag PF-407 A (carbon ink), 

Electrodag 6037 SS (silver/silver chloride ink) and Electrodag 452 SS (dielectric ink) supplied by 

Acheson Colloiden (Scheemda, The Netherlands). 

Hand-made SPEs were produced on a DEK 248 printing machine (DEK, Weymouth, UK) using 

polyester screens with appropriate stencil designs mounted at 45° to the printer stroke. 
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All solutions were prepared with purified water supplied by TKA Purification System, inverse 

osmosis, with a UV lamp irradiation system. 

AChE enzyme (200–1000 U/mg) and N-cyclohexyl-N-2-morpholinoethylcarbodiimide methyl  

p-toluene sulfonate were purchased from Sigma (Steinheim, Germany) and ATI was purchased from 

Fluka (Buchs, Switerzland). Bovine serum albumine (BSA) and hydrogen tetrachloroaurate (III) 

trihydrate (HAuCl4) were obtained from Sigma-Aldrich (Sigma-Aldrich, Steinheim, Germany). 

Stock standard solutions of Al, Fe, Cu, Sn, Zn, Co, Ni, Se Cr, Cd, Pb and Se were prepared from 

Titrisol solutions (Merck, Darmstad, Germany). Solutions of V, Mo, W and Mg were acquired from 

High Purity Standard (Charleston, SC, USA). Ca solution used was obtained from Inorganic Ventures 

Lakewood (Lakewood, NJ, USA). As and Hg solutions were prepared from Atomic Spectroscopy 

Standards solutions (Perkin-Elmer Co., Norwalk, CT, USA). 

Britton Robinson supporting electrolyte solutions were prepared as usual with boric, phosphoric and 

acetic acids (Merck). All pH values were obtained adjusting with a NaOH solution (Suprapur, Merck, 

Darmstadt, Germany). 

Al(III) solution used in the analysis of spiked water samples was purchased from High Purity 

Standard confirmed against standard reference material SRM 3101. 

3.2. Biosensor Manufacturing 

An electrochemical system Autolab PGSTAT Echochemie128 N with GPS software was used to 

record electrochemical measurements (Echochemie, Utrech, Netherlands). All necessary pH values 

were adjusted with a pHmeter (Mettler Toledo, Schwerzenbach, Suitzerland). 

3.3. Screen-Printed Electrodes Preparation 

The construction of the hand-made SPEs used in the determination of aluminum was based on 

printing successive layers of different inks onto a polyester strip substrate. Four different screens with 

appropriate stencils were used to transfer the required design following the printing procedure 

described in previous works [41]. A picture of dimensions of the SPE used is showed in Figure 6. 

Figure 6. Dimensions of the screen printed electrode system used. 
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3.4. Modification of Screen-Printed Carbon Electrodes With Gold Nanoparticles 

Metallic AuNPs deposits were obtained by direct electrochemical deposition on the screen-printed 

carbon electrode (SPCE) surface using a 0.1 mM solution of HAuCl4 in 0.5 M H2SO4. The deposition 

was performed by applying a potential of + 0.18 V during 15 s under stirring conditions [42]. 

3.5. Acetyilcholinesterase Enzyme Inmobilization on Gold Nanoparticles Modified Screen-Printed 

Carbon Electrode 

The enzyme was immobilized by covalent union using N-cyclohexyl-N’-2-morpholino-

ethylcarbodiimide methyl p-toluene sulfonate, on the surface of AuNPs/SPCEs [43]. A 0.07 M 

solution of N-cyclohexyl-N-2-morpholinoethylcarbodiimide methyl p-toluene sulfonate was prepared 

in Britton Robinson pH 7.0. Aliquots of this solution were placed in vials of 100 µL and stored frozen; 

one vial was thawed each time that it was necessary to immobilize the enzyme over the AuNPs/SPCE 

surface. To carry out the immobilization procedure 5 µL of the buffer solution with cyclohexyl-N-2- 

morpholinoethylcarbodiimide methyl p-toluene sulfonate were placed on the working electrode 

surface, and an activation period of 80 min was elapsed before the next step that consisted of addition 

of enzyme. 

An acetylcholinesterase solution was prepared by dissolving 300 mg of the enzyme in 1 mL of 

Britton Robinson pH 7.0 solution. Aliquots of this enzyme solution were placed in vials and stored 

frozen; one vial was thawed each time. Next, 5 µL of this enzyme solution were placed onto the 

working electrode surface and left to react at 30 °C for two hours. The electrode was finally stored at 4 °C. 

The modified electrode was washed with a pH 7 buffer solution, before using and between 

measurements. The modification of a SPCE with enzymes leads to an important change in the 

electrical double layer that produces a decrease in the rate of electron transfer [44–46], and the 

inhibitory effect is perfectly measurable with this type of biosensors. The performance of SPCE 

modified with AuNPs has been widely showed [47–49]. In fact, experiments carried out without gold 

nanoparticles lead to poor results as can be seen in Figure 7. 

Figure 7. Calibration curves realized with enzyme acetilcholinesterase and AuNps and 

without AuNps. 
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3.6. Chronoamperometric Determination of Aluminium 

The AChE/AuNPs/SPCE biosensor was placed in an electrochemical cell containing 5 mL of 

Britton Robinson pH 7.8 solution. An adequate potential was then applied and once a steady-state 

current was established, a defined amount of ATI was added to the cell. An oxidation current was 

observed due to the oxidation of the enzymatic reaction product. Once a steady-state current was set 

again, set volume of aluminum stock solution were consecutively added and a calibration curve was 

constructed. As it has been described above, the addition of aluminum solution resulted in a decrease 

of the chronoamperometric response. Aluminum inhibition effect was quantitatively evaluated by 

means of the difference between the ATI steady-state current in the absence of aluminum (I0) and the 

steady-state current in the presence of aluminum (I). The parameter ΔI (I0- I) was proportional to the 

amount of ion added. Enzyme electrodes were conditioned in Britton Robinson pH 7 buffer solution 

for 5 min between each calibration setting. 

4. Conclusions 

The development of a novel biosensor based on the inhibition of acetylcholinesterase using 

AuNPs/SPCEs allows amperometric determination of aluminum. The biosensor reproducibility and 

repeatability were studied obtaining values of RSD for the slopes of several calibrations and were 

lower than 8.1%. The method developed in this work presents several advantages, including lower 

detection limit, 2.1 µM, than other previous described ones [36]. 

The easy construction of the biosensors, low cost, disposability, ease-of-use and environmentally 

friendly features of this method makes it suitable for the analysis of aluminum in water. These 

characteristics represent clear advantages in comparison to usual analytical methods that allow 

aluminum determination such as stripping adsorption voltammetry using complexing agents and 

electrothermic absorption spectroscopy which result tedious and expensive in the routinely analysis of 

this element. 
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