

Ρ	This manuscript was accepted by Renewable Sustainable Energy. Click here to see the version of record. Retrieval of monthly average hourly values of direct and diffuse solar irradiance from
shing	measurements of global radiation in Spain
3	4
4	A. Pérez-Burgos ^{a,b,*} , M. Díez-Mediavilla ^b C. Alonso-Tristán ^b , M.I. Dieste-Velasco ^b
5	
6	^a Dpto Física Aplicada, Facultad de Ciencias, Universidad de Valladolid, Spain
7	^b Research Group SWIFT (Solar and Wind Feasibility Technologies), Escuela Politécnica Superior
8	(E.P.S), Universidad de Burgos, Spain
9	
10	
11	*Corresponding author: Ana Pérez-Burgos Dpto Física Aplicada, Facultad de Ciencias,
12	Universidad de Valladolid, Spain,
13	Email: anapb@uva.es.
14	Phone: +34 983 423749
15	
16	
17	
18	Abstract
19	An exhaustive evaluation of the performance of decomposition models to estimate direct and
20	diffuse components from the global horizontal solar irradiance has been carried out in this work.
21	The main objective of the work has been to compare the models performance for two different time
22	basis, hourly and monthly average hourly basis. An extensive database of horizontal solar
23	irradiance from nine locations in Spain was used for the study. The data span through January 1980
24	to December 2012 of hourly solar irradiance for the nine locations, thus, indicates cumulative year
25	sum of 132 years. This study first investigated the decomposition of the hourly horizontal
26	irradiance into hourly direct and diffuse component using six decomposition models widely
27	referenced in the bibliography. On the hourly decomposition investigation, it was observed that
28	there are no significant differences between the six models for each specific location. Nevertheless,
29	the performance of each of the models was strongly dependent on cloudiness conditions and the
30	solar altitude at the location which is associated to the climatic condition of each site. Further
31	investigations using the six decomposition models were conducted to estimate monthly average
32	hourly values of direct and diffuse components of the solar irradiance with proper assessment of the
33	different models performance at the various locations. Based on the results of the investigations
34	which present no significant differences on the performance of the different models, an extremely

This manuscript was accepted by Renewable Sustainable Energy. Click here to see the version of record. simple algorithm was developed to estimate monthly average hourly values of direct and diffuse solar irradiance which reduces the statistical errors in all locations investigated.

38

Keywords: Solar resource, direct and diffuse solar irradiance, modeling, monthly average hourly
 values.

41

42 **1. Introduction**

43

The search for simple, economic and alternative energy solutions which are environmental friendly in meeting small scale energy demand is an emerging need in developed countries [1]. Solar energy plays a crucial role in providing renewable alternative energy for small scale energy demand. Determining the solar radiation components -global, diffuse and direct- or some combination that are applicable to a solar energy conversion system is the first step in evaluating design criteria and performance of solar systems [2].

50

A very important factor in the assessment of solar energy resources is the availability of high 51 quality solar global, direct and diffuse irradiance data [3,4]; the use of a specific solar component 52 will depend on the energy application involved [2,5-7], direct and diffuse irradiance are required for 53 weather files used in building energy simulations as well as photovoltaic and solar thermal 54 calculations while systems with concentrating optics rely on direct normal irradiance (DNI) 55 availability. The best database would be the long-term collected data at the site of the proposed 56 solar system although it is a difficult task; in the case of DNI, for example, pyrheliometers, installed 57 on devices that track the sun, have a high investment cost and require an intensive labor of 58 monitoring while instrumentation normally used for collection of global horizontal irradiance 59 (GHI) data can be an order of magnitude less expensive and not as labor intensive [8]. This leads to 60 global solar irradiance is more commonly measured at radiometric stations than its components and 61 thus the need for effective models to estimate these ones; the higher or lower complexity of models, 62 accuracy and easy accessibility to input data has been analyzed in several works [9-11]. 63 64

In a broad sense, models which are able to break down the data into its component parts are called decomposition or separation models. Due to measurements are limited in many radiometric stations in the world, decomposition models are useful tools to obtain new data. For example, in places were global solar irradiance is measured on a daily basis, decomposition models have been used to obtain hourly values from the daily ones [12]. In places where only global solar irradiance is This manuscript was accepted by Renewable Sustainable Energy. Click here to see the version of record. measured, decomposition models have been used to separate the global one into its components direct and diffuse [10, 13-16]. The global radiation decomposition models to direct and diffuse radiations generally use correlations integrating the diffuse fraction K_d, direct radiation

- transmittance K_b and clearness index K_T . The present work deals with this type of models.
- 74

72

Publishing

Due to separation models are empirically derived from site-specific measurements, an extensive 75 calibration and performance analysis in different zones is necessary in order to improve their 76 accuracy. Separation models studies have been reported by several authors in the literature: 77 Bertrand et al. [13] evaluate the performance of decomposition models to estimate direct irradiance 78 in Brussels using measurements of GHI as input. Torres et al. [17] compared decomposition 79 models, analyzing the relationship K_d-K_T. Boland et al. [14] show that the decomposition BRL 80 (Boland-Ridley-Lauret) model is well equipped not only to estimate the diffuse solar irradiance but 81 also to estimate the direct one through the chain global-diffuse-DNI. Bortolini et al.[18] analyze 82 three polynomial functions K_d-K_T of ascending degree to estimate the daily diffuse fraction. Yousif 83 et al. [19] determine coefficients of linear correlations K_d-K_T for two locations far from each other 84 and establish that a correlation between K_T and K_d usually exists for any particular place; when a 85 correlation is established for a specific place, then future or past missing data of either direct or 86 diffuse radiation may be estimated in that site. Gueymard and Ruiz-Arias [10], following a 87 thorough literature search, have found 140 separation models since the pioneering, which is an 88 indication of the importance of this topic and of its vitality since the 1960s. According to them, this 89 type of radiation model is ubiquitous to produce solar resource data used in essentially all solar 90 applications. 91

92

The error values reported for separation methods depend on the time step basis of data and on the 93 estimated, diffuse or direct, component. Copper et al. [5] estimate both components for four 94 Australian locations and made a comparative study of four separation models on an hourly basis for 95 a minimum of six years for each location; they conclude that RMSE vary between 40 and 65% for 96 the diffuse irradiance and 19-35% for the direct irradiance for the several model-location 97 combinations. Yang et al. [20] show the performance of five decomposition models to estimate the 98 99 diffuse irradiance for Singapore over a period of one year and report errors which varies from 31.76% to 34.94%. Perez-Burgos et al. [21] analyze the performance of six decomposition models 100 101 to estimate direct irradiance in Madrid by considering only very clear sky data for the time period 102 1980-2004 on an hourly basis; they report error values lower than those for all sky conditions so that the best performance, among the studied models, is obtained for Louche model [22] with 103 104 RMSE= 7.54%.

This manuscript was accepted by Renewable Sustainable Energy. Click here to see the version of record.

So far, most of the works done with decomposition models are on an hourly basis. In this work, the behavior of decomposition models to estimate monthly average hourly (MAH) values is evaluated. 107 108 MAH values are used to visualize a typical average behavior of solar radiation in a specific site; 109 thus, a typical daylight availability in a specific site is usually reported by a chart showing MAH values of solar illuminance [23]; computer tools as *SkvCalc software* provides a chart of MAH 110 values of daylight illumination for a given skylighting design and a particular climate with the aim 111 to help designers quickly determine the skylight strategy for energy savings [24]. In the literature, it 112 was found that some recent papers deal with the solar resource availability based on MAH values in 113 the case of solar illuminance [25, 26], solar direct irradiance [27] and solar ultraviolet radiation 114 115 [28]. 116 The objective of the paper is to evaluate quantitatively the reliability of decomposition models to

The objective of the paper is to evaluate quantitatively the reliability of decomposition models to estimate direct and diffuse solar radiation on two time-bases: hourly and monthly average hourly

basis. With the aim to obtain a conclusive assessment, a broad solar irradiance data from 9 locations

in Spain representing different climatic conditions were employed and decomposed using six

121 widely referenced decomposition models. The study also proposed a mathematical algorithm for

the estimation of direct and diffuse solar irradiance MAH values.

123

124 2. Climatic conditions and experimental data

125

The experimental data used in this work, supplied by the Spanish National Meteorological Agency (AEMET), consists of hourly horizontal global, diffuse and direct normal irradiance measurements. Data from 5:00 h to 20:00 h were available for each day, time expressed in True Solar Time (TST). The study presents results for nine locations in Spain representing a variety of climatic conditions; the data set used in this study in the 9 locations makes a cumulative total of about 132 years data.

Series provided by AEMET are high quality; nevertheless, some few spurious data have been 132 removed by applying further quality data control described in Li and Lam [29] resulting in 407017 133 134 valid data. Table I shows information about the nine locations, time period and number of used data 135 (N). In this table, the *Köppen Climate Classification* has been used to characterize their climatic conditions. Five different sub-climates have been considered in the analysis: Cfb (temperate 136 137 oceanic climate), for Santander and Oviedo locations; Csb (warm summer mediterranean climate), for Leon, Valladolid and Salamanca locations; Bsk (cold semi-arid climate), for Lleida location; 138 139 Csa (hot summer mediterranean climate), for Madrid and Caceres locations and Bsh (hot semi-arid

This manuscript was accepted by Renewable Sustainable Energy. Click here to see the version of record. *climate*), for Murcia location. This classification system, although created almost 100 years ago, continues to be one of the most widely used for climate studies in the world. The classification in Publishing 142 distinct types of climate is based on average monthly values for precipitation and air temperature. Santander and Oviedo located in the north coast of Spain have abundant precipitations, 1129 143 mm/year and 960 mm/year, respectively, while Murcia in the East Coast has the minimum rainfall 144 rate, 297 mm/year. Considering location temperatures, Leon is the coldest location with a monthly 145 average temperature varying from 3.2° to 19.8° at different periods of the year while Murcia is the 146 hottest location with ambient temperature range from 10.6° to 27.6° 147

- 148
- 149 **Table I:** Geographical characteristics, (latitude, longitude and altitude over the sea level), climate,

<i>time period and number of data used (</i>	(N) for nine locations in Spain.
--	----------------------------------

Location	Lat. (°)	Long. (°)	Alt. (m)	Climate*	Time Period	N
Santander	43.49	-3.80	52	Cfb	17/06/1999-31/12/2012	35700
Oviedo	43.35	-5.87	336	Cfb	28/06/1999-31/12/2012	32127
Leon	42.59	-5.65	916	Csb	25/08/2006-31/12/2012	20918
Valladolid	41.64	-4.75	735	Csb	01/08/1999-31/12/2012	39871
Salamanca	40.96	-5.50	790	Csb	01/07/2001-31/12/2012	32857
Lleida	41.63	-0.6	192	BSk	05/10/2006-31/12/2012	18366
Madrid	40.45	-3.72	664	Csa	01/01/1980-31/12/2012	107443
Caceres	39.47	-6.34	394	Csa	12/10/1999-31/12/2012	35204
Murcia	38.00	-1.17	61	BSh	01/05/1988-31/12/2012	84531

151 *Köppen Climate Classification

152

153 **3. Description of models**

154

This work deals with decomposition models which calculate solar direct and diffuse irradiance 155 from known data of global irradiance. In some decomposition models, the diffuse component is 156 157 first evaluated; then the direct component is obtained by the difference between the global and 158 diffuse solar radiations. These algorithms, usually called diffuse fraction models, estimate the 159 diffuse fraction K_d (diffuse to global irradiance ratio) from the clearness index K_T (global irradiance to the corresponding extraterrestrial value ratio) so that the following chain is applied: Global Rad -160 K_T - K_d - Diffuse Rad – Direct Rad. Alternatively, other decomposition models rather use K_T to 161 162 evaluate the transmittance of beam radiation, K_b (direct to extraterrestrial irradiance ratio) instead

This manuscript was accepted by Renewable Sustainable Energy. Click here to see the version of record. of K_d. Here, the chain for the calculation is: *Global Rad* - K_T - K_b - *Direct Rad* - *Diffuse Rad* [10,

Publishing 14] 165 K_T , K_d and K_b are calculated by: 166 $K_T = \frac{G_h}{I_0 \sin \alpha}$ 167 (1) $K_d = \frac{D_h}{G_h}$ 168 (2) $K_b = \frac{B_h}{I_0 \sin \alpha}$ 169 (3)170 where G_h , D_h and B_h are the global, diffuse and direct irradiance on a horizontal surface and α is 171 the solar altitude angle. KT, the fraction of the extraterrestrial irradiance that reaches the earth 172 surface is an indicative of the clearness of the atmosphere, Kd express the diffuse portion of the 173 global irradiance and Kb is the fraction of the extraterrestrial irradiance that reaches straight to the 174 earth. Io is the extraterrestrial irradiance calculated by 175 176 $I_0 = I_{SC}E_0$ 177 178 I_{SC} is the solar constant and E_{θ} , the correction factor for the sun-earth distance calculated from the 179 180 day angle Γ by [30]: 181 $E_0 = 1.00011 + 0.034221\cos(\Gamma) + 0.001280\sin(\Gamma) + 0.000719\cos(2\Gamma) + 0.000077\sin(2\Gamma)$ 182 (5)183 184 Once obtained one of the components, the other is obviously obtained by subtracting from the 185 global one as: 186 187 $= D_h + B_h$ (6) 188 189 It is not the aim of this work to make a full revision of existing models but select some well-known 190 representative algorithms; evaluate their performances at different locations such that general 191 192 conclusions can be applied to others with the same typology [18]. 193 Six models, widely referenced in literature, have been selected; the algorithms, described below (a-194

195 f), have been proposed by Reindl et al. [31] (models Reindl1 and Reindl2), Erbs et al. [32],

Maxwell [30], Lopez et al. [33] and Louche et al. [22]. The typology of the models [20] show that

This manuscript was accepted by Renewable Sustainable Energy. Click here to see the version of record. Erbs, Reindl1 and Louche used univariate approaches where K_T is the only input. Reindl2, Maxwell and Lopez employed bivariate approaches which involves two inputs, K_T and α . On the other hand, Publishme Erbs, Reindl1 and Reindl2 calculate the diffuse fraction Kd while Maxwell, Lopez and Louche 199 200 calculate the solar direct transmittance Kb.. 201 a) Reindl1 Model 202 $K_d = 1.020 - 0.248K_T$ $K_T \le 0.30$ 203 $K_d = 1.450 - 1.670 K_T \qquad 0.30 < K_T < 0.78$ 204 $K_d = 0.147$ $K_T \ge 0.78$ 205 206 b) Erbs Model 207 $K_d = 1.0 - 0.09 K_T$ 208 $K_T \le 0.22$ $K_d = 0.9511 - 0.1604K_T + 4.388K_T^2 - 16.638K_T^3 + 12.336K_T^4$ $0.22 < K_T \le 0.8$ (8) 209 $K_T > 0.8$ $K_d = 0.165$ 210 211 c) Reindl2 Model 212 $K_d = 1.020 - 0.254K_T + 0.0123 \sin \alpha$ 213 $K_T \leq 0.30$ $K_d = 1.400 - 1.749K_T + 0.177 \sin \alpha$ $0.30 < K_T < 0.78$ (9) 214 $K_d = 0.486K_T - 0.182 \, sin\alpha$ $K_T \ge 0.78$ 215 216 d) Maxwell Model 217 $K_b = K_{nc} - (A + B \exp(mC))$ (10)218 Where 219 $K_{nc} = 0.866 - 0.122 \, m + 0.0121 \, m^2 - 0.000653 \, m^3 + 0.000014 \, m^4 \quad (11)$ 220 221 m is the relative optical mass obtained by [30]: 222 223 $= {\binom{p}{p_0}}(\cos\theta + 0.15 * (93.885 - \theta)^{-1.253})^{-1}$ 224 (12)225 The correction pressure factor is given by: 226 $\frac{p}{p_0} = \exp(\frac{-z}{8435.2})$ (13)221 228 229 z is the altitude over the sea level

	This manuscript was accepted by Renewable Sustainable Energy. Click here to see the version of record.
	A, B, C are coefficients given by:
Publishing	For $K_T \le 0.6$:
233	$A = 0.512 - 11.56 K_T + 2.286 K_T^2 - 2.222 K_T^3$
234	$B = 0.370 + 0.962 K_T \tag{14}$
235	$C = -0.280 + 0.932 K_T - 2.048 K_T^2$
236	for $K_T > 0.6$:
237	$A = -5.743 + 21.77 K_T - 27.49 K_T^2 + 11.56 K_T^3$
238	$B = 41.40 - 118.5 K_T + 66.05 K_T^2 + 31.90 K_T^3 $ (15)
239	$C = -47.01 + 184.2 K_T - 222.0 K_T^2 + 73.81 K_T^3$
240	
241	e) Lopez Model
242	$K_b = (0.928 - 0.909 \cos\theta) K_T^2 \qquad \qquad K_T \le 0.325 \qquad (16)$
243	$K_b = 0.069 - 0.475 K_T + 1.733 K_T^2 - 0.096 \cos\theta \qquad K_T > 0.325$
244	$\theta = \pi/2 - \alpha$ is the solar zenith angle.
245	
246	f) Louche Model
247	$K_b = 0.002 - 0.059K_T + 0.994K_T^2 - 5.205K_T^3 + 15.307K_T^4 - 10.626K_T^5 $ (17)
248	
249	
250	4. Analysis of models performance to estimate hourly values
251	
252	Models described in section 3 have been applied to data from nine locations, presented in Table I,
253	to estimate direct and diffuse solar irradiance firstly on an hourly basis. To evaluate the models
254	performance, estimated, E_i , and measured, M_i , values have been compared by means of two
255	classical statistical indicators, the root mean square error (<i>RMSE</i>) and the mean bias error (<i>MBE</i>)
256	whose absolute (W/m^2) and relative $(\%)$ values are defined by eqs. (18) and (19) respectively [34]:
257	$RMSE = \boxed{\frac{1}{N_{i}}\sum_{i=1}^{N} (E_{i} - M_{i})^{2}} \qquad RMSE(\%) = \frac{100}{\langle M_{i} \rangle}RMSE \qquad (18)$
259 260	$MBE = \frac{1}{N} \sum_{i=1}^{N} (E_i - M_i) \qquad MBE(\%) = \frac{100}{\langle M_i \rangle} MBE \qquad (19)$
261	

AIP Publishing

This manuscript was accepted by Renewable Sustainable Energy. Click here to see the version of record. where $\langle M_i \rangle$ is the mean value of the measured values sample for each particular hour in each day of the month and N is the number of data points.

- In Section 4.1, the models performance is analyzed by considering the whole data available for
- each location (overall performance) while in Sections 4.2 and 4.3 a more detailed analysis is made by considering different ranges of K_T and α .
- 267
- 268 4.1 Overall performance
- 269
- 270 The performance analysis results are shown in the graphs of the Figure 1; each graph shows the
- relative RMSE (%) for the direct B_h and diffuse D_h solar irradiances for each model. Locations are
- 272 indicated by letters: S (Santander), O (Oviedo), LE (León), VA (Valladolid), LL (Lleida), SA
- 273 (Salamanca), M (Madrid), CC (Cáceres) and MU (Murcia).

Figure 1. RMSE values for the direct B_h and diffuse D_h solar irradiances obtained from six models and nine locations in Spain

277

Results from Figure 1 show that the relative RMSE is higher for the diffuse component than for the
direct one and that, for a specific component and location, there are no significant differences

among models; concerning B_h, Santander and Oviedo, with abundant number of cloudy days,

28	This manuscript was accepted by Renewable Sustainable Energy. Click here to see the version of record. present the worst performance while Lleida is in the opposite case. The highest errors are obtained
slasing	for Santander and Louche (RMSE=33.7%, MBE=17.7%) and the lowest for Lleida and Erbs
283	(RMSE=16.0%, MBE=0.2%). Based on the climate, the highest performance is for <i>Bsk</i> (16-18%)
284	followed by Csa (17.7-18.4%), Bsh (17.7-22%), Csb (19.4-27.8%) and Cfb (25.8%-33.7%).
285	Concerning Dh, RMSE exceeds 30% in all cases, the highest errors correspond to Caceres and
286	Reindl2 (RMSE=47.0%, MBE=21.6%) and the lowest to Murcia and Lopez
287	(RMSE=32.0%,MBE=-3.7%). RMSE and MBE errors for all combinations model-location are
288	reported in Appendix A for the direct (Table A.I) and the diffuse (Table A.II) irradiances.
289	
290	The results obtained in the Figure 1 are consistent with the results of previous studies in the
291	literature, which mostly use hourly data. In the next subsections, an analysis of models performance
292	by sorting data in different ranges of K_T and α is carried out.
293	
294	4.2 Performance of models for different ranges of K_T
295	
296	Performance of models for different clearness index KT ranges, that is, for different cloudiness
297	conditions is analyzed here. It have been considered those $K_{\rm T}$ ranges established by authors in their
298	original formulation (eqs. 7-17); three KT ranges have been taken for Erbs, Reindl1 and Reindl2
299	models and two ranges of K_T for Maxwell and Lopez models; Louche model does not differentiate
300	among ranges of K _T , however, performance in the same two ranges as Lopez model has been
301	studied. Results obtained show that, in the case of the direct component Bh, all models present high
302	values of RMSE for cloudy skies (low K _T) which decrease significantly for clear skies (high K _T). In
303	the case of the diffuse component D _h , the behavior is the opposite; Figure 2 shows RMSE values
304	for the Erbs model, taken as an example, for the nine studied locations and for three ranges of K_T
305	given in eq. (8) where K1, K2 and K3 correspond to cloudy, intermediate and clear skies,
306	respectively.
0	

308

Figure 2. . RMSE values for a) direct and b) diffuse solar irradiances obtained from the Erbs
model for nine locations and three K_T-ranges

319

RMSE values shown in the Figure 2 are relative errors (in %) respect to the mean solar irradiance for each Kr interval (eq. 18). Absolute errors are similar for both components, for example, for Erbs model and Madrid, in the case of B_h , the absolute errors for the ranges K₁, K₂ and K₃ are 10.2, 54.3, 79.2 W/m², respectively while the corresponding errors for D_h are 11.4, 51.4, 77.4 W/m²; the high differences found in the relative errors are due to the different magnitude that present the direct and the diffuse radiation depending on the cloudiness condition. The analysis reported for Erbs model can be applied to the rest of models.

In the case of models with two K_T ranges the behavior is similar; Figure 3 shows the results for the Lopez model as an example; K_1 and K_2 correspond to cloudy and clear skies respectively; high RMSE values, more than 100%, are obtained for B_h in the case of cloudy skies as said above due mainly to the low magnitude of B_h for this type of sky; Lower errors of 29.6% and 16.2% for AIP Publishing

This manuscript was accepted by Renewable Sustainable Energy. Click here to see the version of record. Santander and Lleida, respectively, are obtained for clear skies. For D_h, the behavior is the opposite as already commented for Figure 2. RMSE and MBE values for all combinations model-location are reported in Appendix B (Table B.I)

326 327

Figure 3. RMSE values for direct and diffuse irradiances for nine locations and two K_T ranges
 corresponding to the Lopez model

331

328

332 4.3 Performance of models for different ranges of solar altitude

333

The models performance for different intervals of the solar altitude angle, α , is analyzed in this section. Four ranges for α have been taken: $\alpha < 20^{\circ}$, 20° - 40° , 40° - 60° and $\alpha > 60^{\circ}$. While for the diffuse component D_h, RMSE values are similar for all models and all α -ranges, errors depend significantly on α in the case of the direct component B_h: RMSE decrease when α increases for all models. Table II shows the RMSE values for both components, all models for Murcia as an example. The rest of locations present similar results.

- 340
- Table II. RMSE values obtained from the six studied models, four solar altitude angle ranges and
 for the direct B_h and diffuse D_h solar irradiancies (Murcia)

C			E	B h		D_h						
	α (°)	<20	20-40	40-60	>60	<20	20-40	40-60	>60			
0	Reindl1	33.5	18.8	15.8	14.1	38.8	33.9	29	29.5			
X	Erbs	34.4	17.9	16.5	15.3	40	31	29.6	32.1			
~	Reindl2	30.3	18.1	15.3	13.1	33	32.2	31.1	32.4			
	Maxwell	35.3	20.4	15.3	13.4	31.9	31.3	28.5	34.2			
	Lopez	31.6	19.5	16.5	13.9	31.6	31.6	29.5	29			

	This manu	uscript was	s accepted	by Renew	wable Sustain	able Ene	rgy. Click	here to see	the version	of record.
Louc	che	31.3	19.1	19.4	18.5	34.7	30.4	33.9	38.5	

- 344
- Figure 4 shows another example, RMSE values for Oviedo and Louche model. It can be seen that
- errors for D_h present a small variation from 33.9% to 37.2% while for B_h, the variation is from
- 347 42.1% for $\alpha < 20^{\circ}$ to 24.1% for $\alpha > 60^{\circ}$. RMSE and MBE errors for all combinations model-
- ³⁴⁸ location are reported in Appendix B (Tables B.II and B.III).

- 349
- Figure 4. RMSE values for the direct and diffuse irradiances obtained from Louche model for
 Oviedo.
- 352

Conclusions from the analysis carried out in section 4 are that decomposition models estimating 353 direct and diffuse horizontal solar irradiance on an hourly basis have a performance which depends 354 on the sky condition and on the solar altitude angles. Figure 1 gives the overall performance, that is, 355 by considering all type of data, results that are usually reported in the literature. More realistic are 356 the Figures in subsections 4.2 and 4.3 which provide numerical values of errors that allow to decide 357 358 in each particular situation where such models can be used and establish the corresponding errors 359 that should be assumed. Finally, no discernible improvement can be appreciated between models that calculate K_d or K_b neither between univariate or bivariate models. 360

361

363

362 5. Performance of models to estimate Monthly Average Hourly values

In our previous analysis, it has been shown that, on an hourly basis, decomposition models do not offer an adequate accuracy to represent the behavior of the solar radiation components for all solar altitudes and cloudiness conditions. By other side, it is assumed that the use of several type of averaged values will improve performance. Averaged radiation values representing the climate of a

This manuscript was accepted by Renewable Sustainable Energy. Click here to see the version of record. specific geographical area can be useful in applications as managing the efficient use of a solar energy installation [35-37] or carrying out climatic studies [38]. It will be shown that decomposition models can be applied in such cases to provide climatic values of direct and diffuse 370 371 solar irradiance in locations where only the global one is measured. In this analysis, specifically, monthly average hourly (MAH) values have been chosen; the database was arranged so that all data 372 available for a single month and a single hour, irrespective of the year, were utilized to determine a 373 monthly mean hourly value [26, 39]. It will be assumed that the long-term average irradiation 374 calculated from experimental data is not significantly different from the true climatological value 375 376 [11].

377

378 The annual evolution of MAH values for global, direct and diffuse measured irradiances is

represented in Figure 5a for Madrid taken as an example while in Figure 5b the direct component

380 B_h is shown for five out of nine locations. Values from sunrise to sunset are represented. The other

components and locations present a similar behavior; a smooth evolution can be observed from

both Figures in which irradiance values, elaborated from experimental data, include all sky types.

Figure 5. a) Annual evolution of the monthly average hourly values of global G_h, diffuse D_h and
direct B_h irradiances for Madrid obtained from measurements, b) Annual evolution of the monthly
mean hourly direct irradiance B_h for five locations in Spain obtained from measurements.

A performance analysis similar to that carried out in section 4 for hourly values is done in the 390 present section for a different time basis consisting in using MAH data; thus, an analysis of errors 391 RMSE and MBE obtained for six models and nine locations has been also carried out. Figure 6 392 shows a comparison between RMSE values obtained from MAH and hourly (H) values for all 393 locations and both components Bh and Dh for Erbs model taken as an example. From this figure, the 394 395 decrease of the errors when considering MAH values is significant for both components which support the idea that the use of MAH values is a time basis better than hourly values for the 396 application of decomposition models; Figure 6 shows that for B_h, RMSE for MAH values vary 397 398 between 6.4% and 16.3% corresponding to Lleida and Oviedo respectively; for D_h the variation is 17.3% and 23.3% for the same locations. 399

Figure 6. RMSE values for hourly (H) and monthly average hourly (MAH) values for a) the direct
B_h and b) diffuse D_h solar irradiances for all locations and for Erbs model

404

405 **6.** Proposal of a K_d-K_T algorithm to estimate Monthly Average Hourly values

406

Having into account the utility of decomposition models to estimate MAH values, a new algorithm 407 is proposed in this section, which summarizes the main analyzed relationships $K_d = f(K_T, \alpha)$ with the 408 aim to be applied to a wide area in Spain. A preliminary study on the relationship between B_h and 409 410 KT can be found in Perez-Burgos et al. [40]. Data described in Table I have been used in this study divided in two data samples; five locations, Oviedo, Lleida, Madrid, Caceres and Murcia have been 411 412 used to develop the algorithm and the other four, Santander, Leon, Valladolid and Salamanca have been used for validation. MAH values of global, direct and diffuse solar irradiances have been 413 calculated for the whole data set and for each location. The averaged values of global irradiance 414 have been used to calculate averaged values of the clearness index K_T by using the eq. (1). By 415

This manuscript was accepted by Renewable Sustainable Energy. Click here to see the version of record. considering the main relationships found in the models studied in the section 3, a regression analysis over the experimental data has been carried out. The following expression has been obtained with a correlation coefficient R=0.94.

419 420 $K_d = 0.703 + 0.427K_t - 1.781K_t^2 + 0.178 \sin \alpha$ (20) 421 422 where K_d and K_T are the monthly average hourly values of the diffuse fraction and clearness index 423 respectively and α is the solar altitude angle for the 15th day of each month. 424 425 **6.1 Validation of the proposed algorithm**

426

The estimated values of K_d by eq. (20) have been used to estimate MAH values of the diffuse and direct irradiances following the steps described in section 3. Estimated and experimental values are compared in Figure 7. This figure shows that the proposed algorithm fits in a high precision to the experimental data for the direct irradiance and to a lesser extent for the diffuse one.

432 433

437

Figure 7. Comparison between monthly average hourly values, experimental and estimated by
Equation (20), for a) the direct B_h and b) the diffuse D_h solar irradiances. Line 1:1 is represented in
both graphs.

In Figure 8, the annual evolution of the estimated and experimental MAH values for the direct solarirradiance is shown for each one of the four validation locations.

442

Figure 8. Annual evolution of the monthly average hourly values of direct irradiance for the four
locations used in the validation process. Curves obtained from measured and estimated values are
compared.

Estimated and experimental curves fit very well in general. During the winter months, the 447 predicted results were characterized of overestimation when compared to the measured data with 448 difference less than 10%; The best performance of the model is obtained for summer time where 449 predictions should be more useful due to the high level of available solar radiation. The maximum 450 values of direct radiation, obtained in July at noon, are 517.4, 582.5, 642.7 and 638.5 W/m² for 451 452 Santander, Leon, Valladolid and Salamanca respectively; these values are predicted by the model with relative differences of 1.7, -0.2, 0.9 and -0.5 %; these low differences indicate the good 453 454 accuracy of the model.

This manuscript was accepted by Renewable Sustainable Energy. Click here to see the version of record. Figure 9 shows a comparison between RMSE values obtained from the Reindl2 model and the proposed algorithm to evaluate the differences in performance between both of them; RMSE is Publishing reduced by 3% and 12% for B_h and D_h respectively. Table III shows numerical values of RMSE and 458 459 MBE obtained with the proposed algorithm for the four locations used for validation; for D_h, RMSE varies from 10.4 to 18.9% and MBE is below 16%. For Bh, percentage errors are considerably 460 lower so that RMSE varies from 5.0 to 6.2% and MBE is below 1.6%. These low errors indicates 461 that the algorithm given by eq.(20) improves the performance over the analyzed models and 462 presents a high accuracy, mainly, to reconstruct climatic monthly average hourly values of the 463 464 direct irradiance in Spain.

Figure 9. Comparison between RMSE values obtained by the proposed algorithm (eq. 20) and the *Reindl2 model for the direct and diffuse irradiances and for the four locations used in the validation process.*

470

466

465

471 *Table III. RMSE(%)* and *MBE(%)* obtained for the four locations used to validate the proposed

472 algorithm.

-					
	Y	S	LE	VA	SA
	RMSE B _h	5.0	5.0	5.0	6.2
	$MBE \; B_h$	-1.6	0.2	0.2	-0.6
	RMSE D _h	10.4	11.7	18.9	15.7
	MBE D _h	-7.1	4.3	-15.9	-10.8
		1			

474

47

475 **7. CONCLUSIONS**

This manuscript was accepted by Renewable Sustainable Energy. Click here to see the version of record.

Determining the solar radiation components, direct and diffuse, is essential in design and performance studies of several solar energy applications. Radiation modeling is an important factor Publishing in the evaluation of solar energy resources in radiometric stations where no experimental data are 479 480 available. This paper deals with the performance assessment of solar radiation decomposition models, which estimates the direct and diffuse solar radiation from the global one. High quality, 481 long-term data of global, direct and diffuse solar irradiance provided by the National 482 Meteorological Agency (AEMET) from nine locations in Spain have been managed in this work. 483 An in-depth analysis has been carried out with the aim to evaluate the performance of six well-484 known decomposition models, firstly, on hourly basis and, subsequently, on monthly average 485 hourly basis. The analysis based on hourly data show that the model performance depends 486 significantly on the clearness index K_T and the solar altitude angle α . In the case of the direct 487 irradiance, B_h, the lowest relative errors are obtained for clear days (high K_T) and high solar altitude 488 angles. For the diffuse component D_h, the behavior is the opposite with respect to K_T while a has no 489 influence on the performance. By other hand, for a specific location, no remarkable differences 490 have been appreciated among models. 491

- 492 The same models have been used to estimate monthly average hourly (MAH) values so that results
- show an increase of the performance with respect to that obtained for hourly values; this result has
- been valued positively in spite of the loss of time-resolution over the hourly data due to MAH data
- are very useful in many solar applications.
- Finally, a decomposition algorithm has been proposed by the expression (20) to estimate MAH
- values of direct and diffuse solar irradiances with a correlation coefficient of R=0.94. The proposed
- algorithm improves the estimations of the analyzed models; the interest of such estimations is to
 reconstruct climatic monthly average hourly values of direct and diffuse solar irradiance in
- 500 locations where only global one is available.
- 501
- 502

503 ACKNOWLEDGEMENTS

504

This work was supported by grants from both the Spanish Government (ENE2014-54601R) and the
Regional Government of Castile and Leon (BU358A12-2). The authors wish to thank the National
Meteorological Agency in Spain (AEMET) for supplying the data used in this work.

- 508 509
- 305
- 510
- 511

This manuscript was accepted by Renewable Sustainable Energy. Click here to see the version of record. Appendix A. Overall models performance: Tables

514 **Table A.I.** Values of RMSE and MBE (absolute value in W/m^2 and percentage) obtained from the

515 comparison between estimated and measured data of direct solar irradiance, *B*_h, on hourly basis for

- *six models and nine locations.*
- 517

	D	REIN	IDL1	ER	BS	REIN	NDL2	MAXWELL 🗸		LOPEZ		LOU	CHE
	Bh	RMSE	MBE	RMSE	MBE	RMSE	MBE	RMSE	MBE	RMSE	MBE	RMSE	MBE
c	W/m ²	68.4	24.2	68.9	24.6	61.4	13.7	66.1	30.7	74.8	38.2	80.2	42.3
3	(%)	28.7	10.2	28.9	10.3	25.8	5.8	27.8	12.9	31.4	16	33.7	17.7
0	W/m ²	63	3.3	63.1	3.5	62.3	-5.1	65.1	6.9	66.2	16.5	68.2	20.3
0	(%)	27	1.4	27	1.5	26.7	-2.2	27.9	3	28.3	7.1	29.2	8.7
IE	W/m ²	59.8	14.9	61.1	14.6	59.3	1.6	60.2	18.7	69.5	33.9	71.1	34.8
	(%)	19.5	4.9	20	4.8	19.4	0.5	19.7	6.1	22.7	11.1	23.2	11.4
VA	W/m ²	67.6	8.3	68.5	10	68.3	-2.5	72	9.3	71.8	23.5	75.7	29.4
VA	(%)	22.1	2.7	22.4	3.3	22.3	-0.8	23.5	3	23.5	7.7	24.7	9.6
S A	W/m ²	77.8	10.3	79.1	10.8	78.4	-1.8	80.2	10.7	82.2	26.5	85.6	30.7
SA	(%)	25.3	3.3	25.7	3.5	25.5	-0.6	26	3.5	26.7	8.6	27.8	10
TT	W/m ²	52	-4.6	50.8	0.5	55.1	-12.3	57	6.5	52.7	9.3	55.4	18.6
	(%)	16.4	-1.5	16	0.2	17.4	-3.9	18	2.1	16.7	2.9	17.5	5.9
м	W/m ²	55.6	-15.3	54.3	-12	60	-24.5	61.5	-13.9	53.4	-1.2	54.9	6.2
IVI	(%)	17.7	-4.9	17.3	-3.8	19.1	-7.8	19.6	-4.4	17	-0.4	17.4	2
CC	W/m ²	59	-6.5	59.1	-4.1	62.8	-17.6	61	1.5	59.8	9	62.5	15.9
	(%)	17.3	-1.9	17.4	-1.2	18.5	-5.2	17.9	0.4	17.6	2.6	18.4	4.7
MIT	W/m ²	57.2	5	59	9.9	54.6	-4.9	57.2	13.3	58.4	18.2	68	28.5
MU	(%)	18.5	1.6	19.1	3.2	17.7	-1.6	18.5	4.3	18.9	5.9	22	9.2

518

Table A.II. Values of RMSE and MBE (absolute value in W/m^2 and percentage) obtained from the comparison between estimated and measured data of diffuse solar irradiance, D_h , on hourly basis for six models and nine locations.

522

di.

-			REIN	DL1	ER	BS	REIN	DL2	MAXV	VELL	LOP	ΡEZ	LOU	CHE
		J n	RMSE	MBE	RMSE	MBE	RMSE	MBE	RMSE	MBE	RMSE	MBE	RMSE	MBE
-	6	W/m2	58.6	-8.3	58.6	-8.7	56.1	2.1	55.4	-14.9	62	-22.3	66.2	-26.4
	3	(%)	34	-4.8	34	-5.1	32.6	1.2	32.2	-8.6	36	-13	38.5	-15.4
	0	W/m2	59.1	0.3	59.4	0	58.9	8.6	60.4	-3.4	61.3	-13	63.7	-16.8
6		(%)	35	0.2	35.2	0	34.8	5.1	35.8	-2	36.3	-7.7	37.7	-9.9
	TE	W/m2	54.8	0.4	56.5	0.6	61.7	13.6	55.1	-3.5	58.6	-18.7	60.7	-19.5
		(%)	38.8	0.3	40.1	0.4	43.8	9.6	39.1	-2.5	41.6	-13.3	43.1	-13.9
	V۸	W/m2	57.3	13	56.9	11.2	63.9	23.8	63.1	12	56	-2.2	57.2	-8.2
-	٧A	(%)	40.9	9.2	40.6	8	45.6	17	45.1	8.5	40	-1.6	40.8	-5.8
	S A	W/m2	60.8	6.7	61.7	6.1	67.8	18.7	67	6.2	61.5	-9.6	63.5	-13.8
_	SA	(%)	42	4.6	42.6	4.2	46.8	12.9	46.3	4.3	42.5	-6.6	43.8	-9.5
_	LL	W/m2	52.5	11.2	50.4	6.1	56.4	18.9	54.8	0.1	50.9	-2.7	52.7	-12

AIP

		This man	uscript	was acce	pted by	Renewa	ble Susta	ainable E	Energy. C	Click her	e to see	the versi	on of ree	cord.
		(%)	36.9	7.9	35.5	4.3	39.7	13.3	38.5	0	35.8	-1.9	37.1	-8.4
5	м	W/m2	52.9	21.3	51.5	18	59	30.5	60.5	19.9	49.1	7.2	49.8	-0.3
5	IVI	(%)	39.1	15.7	38	13.3	43.5	22.5	44.6	14.7	36.2	5.3	36.7	-0.2
	CC	W/m2	53.7	17.4	53.4	14.9	62.1	28.4	56.3	9.3	50.7	1.9	52.1	-5
	CC	(%)	40.7	13.2	40.4	11.3	47	21.6	42.7	7.1	38.5	1.4	39.5	-3.8
	MIT	W/m2	51	7.4	51.4	2.6	52.4	17.4	51.1	-0.9	49.4	-5.7	56.6	-16
	WU	(%)	33.1	4.8	33.3	1.7	34	11.3	33.2	-0.6	32	-3.7	36.7	-10.4

523

- 524 525
- 526
- 527

Appendix B. Model performance for different ranges of K_T and α : Tables

Table B.I. Values of RMSE and MBE (in percentage) obtained from the comparison between estimated and measured data of direct, B_h, and diffuse, D_h, solar irradiances on hourly basis for six models and nine locations by considering different clearness index ranges.

				DIRE	ECT Bh				DIFU	SSE D _h			
		RI	MSE (%)	M	BE (%)]	RMSE (9	%)	r	MBE (%)
		K_1	K2	K ₃	Ki	K ₂	K3	K_1	K_2	K3	K ₁	K ₂	K3
	REINDL1	139.9	28.6	21.1	-53.2	9.8	17.8	10.2	33.6	52.7	5.5	-4.4	-34.8
	ERBS	148.4	29	19.2	-69.9	10.1	15.3	10.9	33.7	48.4	6.5	-4.8	-26.8
S	REINDL2	241.9	26.2	_11	-164.6	6.2	-0.8	16.8	32.3	46	12.2	0.6	24.9
3	MAXWELL	73.1	19.5		30.1	10.2	-	22.2	43.1	-	-5	-13.3	-
	LOPEZ	174.3	29.6		89.7	15.7	-	11.7	37.1	-	-3.8	-13.8	-
	LOUCHE	154.7	31.8	1.	39.1	17.7	-	10.9	39.6	-	-0.3	-16.8	-
	REINDL1	175.6	26.6	23.1	-80.9	1.1	16.9	27.1	34.4	61	13	0.5	-40.6
	ERBS	179.8	26.7	21.5	-87.7	1.3	14.4	27.8	34.7	56.8	14.1	0.2	-33.3
0	REINDL2	221.6	26.6	15.5	-131.4	-2	-0.5	34.4	34.6	46.2	21	4.8	10.7
0	MAXWELL	63.2	19	-	-0.7	3.8	-	26.3	48.5	-	1.7	-7.6	-
	LOPEZ	163.7	26.5		-8.8	7.2	-	22	37.2	-	1.9	-8.8	-
	LOUCHE	154.1	27.3	-	-27	9.1	-	20.8	38.8	-	4.4	-11.5	-
	REINDL1	135.5	20.5	12.4	-59.3	4.7	5.8	10.3	37.7	58.4	5.1	0.2	0.4
	ERBS	145.3	21.1	11.6	-74.6	5	3.5	11.1	38.9	60.5	6.3	-0.3	12.7
IE	REINDL2	242.9	20.1	12.9	-164.9	1.9	-7.4	18.5	39.9	92.3	12.9	5.9	72.9
LE	MAXWELL	57.5	15.6	-	10.3	5.7	-	24.8	49.6	-	-1.3	-3.4	-
	LOPEZ	149.4	22	-	51.4	11	-	12.6	42.8	-	-3.3	-13.9	-
	LOUCHE	128.7	22.6	-	16.8	11.3	-	11.2	44.3	-	-0.4	-14.7	-
	REINDL1	163.6	22.4	13.9	-58.5	2.6	5.3	14	40.5	59.2	7.2	9.4	4.2
- 0	ERBS	170.3	22.7	13.4	-73.6	3.3	3.1	14.6	40.2	62.3	8.2	7.8	16.9
VA	REINDL2	243.8	22.6	14.4	-153.1	-0.5	-7	20	44.3	94.2	13.9	15.8	75.1
VA	MAXWELL	57.5	18.7	-	8.1	2.5	-	27.3	58.9	-	2.7	13.8	-
	LOPEZ	151.3	22.8	-	46.6	7.6	-	13.9	41	-	-2	-1.6	-
	LOUCHE	134.2	24	-	9.8	9.6	-	12.8	41.9	-	1.4	-6.3	-
	REINDL1	144.7	26	15	-71	3.3	3.8	15	41.2	68.8	8	4.4	10.9
7~	ERBS	149.9	26.5	14.8	-81.7	3.7	1.6	15.6	41.7	73.3	9.1	3.6	24.5
SA	REINDL2	201.8	26	16.8	-140.3	0.2	-8.6	21.5	44.5	110.2	15.2	10.8	87.9
S A	MAXWELL	68.4	20.4	-	6	3.2	0	29.8	59.5	-	2	6.3	-
Ŧ	LOPEZ	139.4	25.9	-	28.1	8.6	-	13.7	43.5	-	-2.2	-6.9	-
	LOUCHE	135.1	27	-	-5.5	10	-	13.3	44.9	-	1.3	-10.2	-
	REINDL1	110.9	16.3	23	-51.4	-1.6	17.6	7	36.7	61.3	4.3	8.2	-38.9
LL	ERBS	116.4	15.9	21.3	-69.5	0	15.1	7.5	35.3	57.2	5.4	4.5	-31.4
	REINDL2	215.5	17.4	14.3	-166	-3.9	0.8	13.6	39.6	48	11.2	13.3	12

		This manusc	rint was a	accented	l by Rei	newable Si	ıstainab	le Energ	v. Clic	k here to	see the v	version o	of record]
		MAXWELL	49.1	14.4	-	16.4	0.6	-	23.5	47.7	-	-5.9	4.3	-
/		LOPEZ	160.4	16.2	-	63.5	2.8	-	12.9	36.5	-	-4	-1.8	-
Publishing		LOUCHE	145.7	17.1	-	25	5.8	-	12.2	37.8	-	-1	-8.8	-
-		REINDL1	147.4	17.7	11.5	-56.5	-5.1	3	10.5	38.9	57.8	5.3	16.1	-6.2
		ERBS	155.6	17.3	11.4	-72	-3.9	0.8	11.2	37.8	58.7	6.3	13.4	5.2
	м	REINDL2	253.8	19	14.4	-174.4	-7.7	-9.6	17.7	42.9	81.8	12.9	22.1	60.4
	IVI	MAXWELL	45.7	15.2	-	-4.8	-4.4	-	28.8	56	-	7.6	20.8	-
		LOPEZ	136.9	16.4	-	25.2	-0.5	-	14.2	37.3	-	-0.5	5.7	-
		LOUCHE	122.9	16.8	-	-4.5	2	-	13.1	37.9	-	2.5	-0.4	-
		REINDL1	138.6	17.7	10.2	-63.5	-2.2	2.5	11.3	40.3	60	5.8	13.2	14.4
		ERBS	146.4	17.7	10.1	-76.9	-1.3	0.3	12.1	39.9	65.9	6.9	11	28.4
	CC	REINDL2	227.7	18.6	13.4	-158.3	-4.9	-9.3	19.2	45.2	107.4	13.5	20.1	91
	CC	MAXWELL	51.4	14.3	-	3.6	0.1	-	27.4	52.9	-	2.2	10.7	-
		LOPEZ	131.2	17.1	-	26.6	2.6	-	12.9	39.5	-	-1.4	1.6	-
_		LOUCHE	125.1	17.9	-	5.8	4.7	-	12.3	40.5		0.6	-4	-
		REINDL1	154.3	18.5	14.4	-66.9	1.5	7.8	15.2	32.9	55.3	7.7	5	-19.2
		ERBS	160.4	19.1	13.4	-78.9	3.2	5.5	15.9	33.1	53.3	8.7	1.7	-9.3
	MIT	REINDL2	230.9	17.6	13	-151.8	-1.5	-5.4	22.1	33.6	63.3	15.2	11	38.1
	WIU	MAXWELL	47.9	14.4	-	10.9	3.5	(- `	24.4	38.4	-	-0.8	-0.4	-
		LOPEZ	143.2	18.4	-	36.3	5.8	-	14.6	32.5	-	-1.9	-3.8	-
		LOUCHE	127.2	21.4	-	1.2	9.2		13.5	37.3	-	1.6	-10.9	-
532								2						

...

533

Table B.II. Values of RMSE and MBE (in percentage) obtained from the comparison between
estimated and measured data of direct solar irradiance, B_h, on hourly basis for six models and nine
locations by considering different solar altitude angle ranges.

£1

				N	DIR	ECT B _h				
	α(º)		RMS	E (%)		MBE (%)				
		<20	20-40	40-60	>60	<20	20-40	40-60	>60	
	REINDL1	40.4	27.7	24	23.9	0	7.7	12.1	13.3	
	ERBS	41.5	27.4	24.2	24.4	-2.9	8.4	12.5	13.2	
c	REINDL2	41.1	26.2	21.3	20.5	8.9	7.2	5.3	3.4	
3	MAXWELL	51.9	32.6	22	18.2	29.8	19.1	10.2	3	
	LOPEZ	48.8	34.5	25.5	23.2	23.2	18.4	14.7	12.7	
	LOUCHE	42.7	31.3	28.6	28.5	7.1	15.8	19.7	20.3	
	REINDL1	41.7	26.8	22.7	21.8	-6.9	-0.8	4.3	3	
	ERBS	43	26.2	22.9	22.2	-9.4	-0.2	4.6	2.7	
0	REINDL2	40.3	25.9	22.2	22.7	1.3	-0.2	-2.4	-7.1	
0	MAXWELL	46.2	28.2	22.1	23.9	19.5	9.5	-0.3	-10.5	
	LOPEZ	45.7	29	23.6	22.1	14.7	8.7	6.5	1.8	
C	LOUCHE	42.1	27.6	25.4	24.1	-0.2	6.9	11.6	9.6	
- (6	REINDL1	27.9	19.2	16.6	15.6	-5.2	4.3	6.8	6	
	ERBS	27.9	19.1	17.1	16.3	-4.6	5.3	6.1	4.8	
	REINDL2	26.9	19.1	16.4	15.7	3.3	3.9	-1.1	-3.7	
LE .	MAXWELL	32.3	22	15.2	14.6	19.2	12.5	3.1	-5.1	
	LOPEZ	31	23.6	19.3	16.8	11.7	12.8	10.8	8.2	
	LOUCHE	28	22.1	20.2	19	2.4	11.6	12.8	11.6	
	REINDL1	37.6	25.3	19.1	14	-7.8	2.9	4.3	2.7	
	ERBS	38.6	25.1	19.3	14.7	-9.1	4.4	4.9	2.4	
V	REINDL2	35.8	25.3	18.9	15.2	0.6	3.8	-1.6	-5.8	
٧A	MAXWELL	41.3	28	18.5	16.6	19.3	12.8	0.3	-9.2	
	LOPEZ	39.9	27.9	20.2	14.2	10.9	11.4	7	3.3	
	LOUCHE	37.8	27.3	21.7	16.4	-1.1	10.8	11.1	8.5	
SA	REINDL1	40.8	27.2	21.9	17.5	-6	2.9	5	3.7	

	This manuscript was accepted by Renewable Sustainable Energy. Click here to see the version of record.								
	ERBS	41.5	27.2	22.2	18.2	-7	4	5.1	3.1
	REINDL2	39.1	27.2	21.9	18.2	1.8	3.3	-1.5	-5.1
	MAXWELL	44.1	29.6	21.2	18.6	18.3	11.8	1	-7.9
	LOPEZ	45.2	29.9	22.9	17.6	12.6	11.4	8	4.7
	LOUCHE	41	29.1	24.3	19.9	0.7	10.4	11.5	9.5
	REINDL1	30	17.9	13.5	11.7	-11	-1.7	-0.3	-0.4
	ERBS	30.2	16.8	13.2	11.9	-12.5	0.6	1.6	0.7
	REINDL2	26.9	17.3	14.2	14.2	-2.4	-0.2	-4.8	-8
LL	MAXWELL	32.7	19.8	12.8	15.2	18.7	11	-1.1	-10
	LOPEZ	29	18.9	13.5	11.5	7	6.2	1.9	-0.9
	LOUCHE	27.8	18.3	14.7	13	-4.7 🗸	6.4	7.1	6.1
	REINDL1	36	20.5	14.3	11.3	-19.4	-7.8	-2.3	-0.8
	ERBS	37.1	18.9	13.9	11.9	-21.6	-6.1	-0.8	-0.3
54	REINDL2	31.1	19.5	16	14.5	-11.5	-6.9	-7.3	-8.8
IVI	MAXWELL	28.3	17.7	15.4	18	6.7	1.9	-6.2	-13.6
	LOPEZ	29.8	19	14.2	11.3	-2	-0.1	0	-0.9
	LOUCHE	32.8	18.1	14.6	12.7 🔍	-13.9	-0.4	4.7	5.4
	REINDL1	33.9	18.8	14.9	11.8	-14.6	-4	0.5	0.6
	ERBS	33.9	17.6	15.1	12.5	-15.3	-2	1.2	0.2
	REINDL2	29.8	18.1	16.1	14.3	-6.9	-2.9	-5.1	-7.5
CC	MAXWELL	30.2	18.4	14.7	4.4	11.8	6.7	-1	-8.5
	LOPEZ	30.9	19	15.4	11.9	1.6	3.5	3.1	1.1
	LOUCHE	31.2	18.1	16.4	13.5	-8.3	3.5	7	6.2
	REINDL1	33.5	18.8	15.8	14.1	-12.2	-2.2	4.1	5.9
	ERBS	34.4	17.9	16.5	15.3	-15.2	-0.1	6.2	7.3
MIL	REINDL2	30.3	18.1	15.3	13.1	-3.6	-1.1	-1	-2.4
WIU	MAXWELL	35.3	20.4	15.3	13.4	17.9	10.2	3.2	-4.4
	LOPEZ	31.6	19.5	16.5	13.9	7	5.6	6.4	5.2
	LOUCHE	31.3	19.1	19.4	18.5	-6.5	5.8	12	13.1

- Table B.III. Values of RMSE and MBE (in percentage) obtained from the comparison between
 estimated and measured data of diffuse solar irradiance, D_h, on hourly basis for six models and nine
- *locations by considering different solar altitude angle ranges.*

-					DIFI	JSSE D _b			
	$\alpha(^{\circ})$		RMS	E (%)	DIT		MBE	E (%)	
		<20	20-40	40-60	>60	<20	20-40	40-60	>60
-	REINDL1	33	30.6	30.8	34.4	9.5	-0.6	-9.2	-13.8
	ERBS	34.2	29.6	30.9	35.4	11.9	-1.4	-9.8	-13.6
	REINDL2	31.3	29.1	29.8	32.7	2	0.1	1.4	3.1
	MAXWELL	35.8	33.2	27.9	28.3	-15.6	-14.7	-6.2	3.9
	LOPEZ	34.4	36.2	32	32.9	-10	-13.8	-13.2	-12.6
Q	LOUCHE	32.6	32.2	35.8	40.6	3.5	-10.6	-20.9	-25.7
	REINDL1	37.4	33.7	31	33	11.9	3.6	-4.6	-5.2
	ERBS	38.6	32.8	31.4	34	14.2	2.8	-5	-4.7
	REINDL2	34.9	32.6	31	34.4	4.3	2.8	5.3	11
	⁰ MAXWELL	38.3	34.7	30.3	36	-12.6	-10.2	2.2	16.4
	LOPEZ	37.9	35.7	32.1	33.3	-8.1	-9.1	-7.9	-3.3
_	LOUCHE	36.4	33.9	34.7	37.2	5.7	-6.6	-15.3	-15.9
_	REINDL1	42.5	34.6	36	38.2	21.8	1.6	-5.9	-5
	LE ERBS	41.1	33.6	37.9	41.4	21	-0.3	-4.5	-1.7
	REINDL2	36	36.3	42	46.3	9.4	2.4	12.8	21.1

	This manuscript was accepted by Renewable Sustainable Energy. Click here to see the version of record.								
	MAXWELL	37	36.1	33.8	42.2	-13.7	-14.7	2.9	24.8
	LOPEZ	37.5	39	39.4	37.8	-2.8	-15.2	-15.5	-11.1
	LOUCHE	37.4	36.2	41.7	43.8	10.8	-12.8	-20.3	-20.1
	REINDL1	49.2	38.9	37.1	38.8	27.7	10.4	4.5	4.7
	ERBS	49.7	36.5	36.9	41.3	29.4	7.7	2.9	5.5
V/A	REINDL2	42.6	38.4	42.4	50.8	17.1	8.9	18.8	31.1
٧A	MAXWELL	38.6	36.3	38.9	57	-6.5	-7.3	14.1	41.8
	LOPEZ	41.2	37.8	37.1	38.2	4.1	-4.8	-2.1	2.7
	LOUCHE	44.4	36.3	38.2	41.3	19.3	-3.8	-12	-13.7
	REINDL1	45.3	39.9	38.7	40.6	20.2	4.5	0.7	2.3
	ERBS	45.7	39	39.6	43.3	21.4	2.6	0.4	4.3
5 4	REINDL2	41.4	40.2	44.3	51.7	10.4	3.8	16.3	29.1
SA	MAXWELL	42.2	40.7	40.1	55.5	-10) -11	10.3	38
	LOPEZ	42.8	41.6	39.3	39.5	-2.9	-10.4	-6.4	-0.7
	LOUCHE	42.4	40.1	41.6	43.9	11.8	-8.6	-14.8	-15.2
	REINDL1	42	33.9	34.2	35.9	23.8	8.2	3.9	3.9
	ERBS	42.2	30.6	33	36.6 <	25.6	3.9	-0.8	0.4
тт	REINDL2	35.1	32.3	37.3	45.2	13.1	5.4	15.4	27.1
LL	MAXWELL	34.6	33.3	32	47.7	-13.1	-15.8	6	33.4
	LOPEZ	34.7	33.2	33.5	35.3	1.4	-6.7	-1.4	5.5
	LOUCHE	37.1	31.6	35.5	38.5	15.9	-7.1	-14.6	-16.3
	REINDL1	50.8	40.2	34.1	32.5	34.2	20.1	9.6	6.2
	ERBS	52.6	36.8	33.1	34.3	37.2	16.5	5.9	4.8
м	REINDL2	42.5	38.2	40.3	45	23.5	18.1	22.7	30.7
IVI	MAXWELL	33.5	32.8	39.1	56.9	-1.2	0.2	19.9	45.5
	LOPEZ	37.9	35.4	33.3	32.6	10.6	4.4	3.7	6.6
	LOUCHE	45.2	33.7	33.4	35	26.8	4.9	-8.5	-12.7
	REINDL1	52.2	40	36.3	36.3	32.9	15.8	7.1	7
	ERBS	52	36.4	36.7	39.4	33.9	11.4	5.2	8.2
CC	REINDL2	43.6	38.7	44.2	51.2	21.1	13.5	22.8	34.8
cc	MAXWELL	36.5	35.1	36.7	51.5	-7.6	-8.4	11.3	38
	LOPEZ	41.2	37	35.6	35.5	8.1	-1.1	-0.4	5.3
	LOUCHE	45.5	34.9	37.1	38.3	23.3	-1.2	-11.1	-12.2
	REINDL1	38.8	33.9	29	29.5	21.3	12	-0.8	-6.8
	ERBS	40	31	29.6	32.1	24.5	8.1	-5.2	-10.2
MU	REINDL2	33	32.2	31.1	32.4	12.1	10.1	10.3	14.4
WIU	MAXWELL	31.9	31.3	28.5	34.2	-11.1	-10.9	1.2	19.4
	LOPEZ	31.6	31.6	29.5	29	0.6	-2.3	-5.7	-5.1
	LOUCHE	34.7	30.4	33.9	38.5	15.2	-2.8	-17.7	-24.8

This manuscript was accepted by Renewable Sustainable Energy. Click here to see the version of record. REFERENCES

SHINE	
549	1 Communication from the European Parliament, the Council, the European Economic and Social
550	Committee and the Committee of the Regions: Energy Roadmap 2050. (COM/2011/0885 final).
551	
552	2 Stoffel, T., Renné, D., Myers, D., Wilcox, S., Sengupta, M., George, R., Turchi., C., 2010.
553	Concentrating solar power. Best Practices Handbook for the Collection and Use of Solar Resource
554	Data. Technical Report NREL/TP-550-47465.
555	
556	3 El Ouderni, A.R., Maatallah, T., El Alimi, S., Ben Nassrallah, S., 2013 Experimental assessment
557	of the solar energy potential in the gulf of Tunis, Tunisia. Renewable and Sustainable Energy
558	Reviews 20, 155–168
559	
560	4 Zawilska, E.M., Brooks, J., 2011. An assessment of the solar resource for Durban, South Africa.
561	Renewable Energy 36, 3433-3438.
562	
563	5 Copper, J.K., Sproul, A.B., 2012. Comparative study of mathematical models in estimating solar
564	irradiance for Australia. Renewable Energy 43, 130-139.
565	
566	6 Khahro, S.F., Tabbassum, K., Talpur, S., Alvi, M.B., Xiaozhong Liao, Lei Dong, 2015.
567	Evaluation of solar energy resources by establishing empirical models for diffuse solar radiation on
568	tilted surface and analysis for optimum tilt angle for a prospective location in southern region of
569	Sindh, Pakistan. Electrical Power and Energy Systems 64, 1073–1080.
570	
571	7 Pérez-Higueras, P.J., Rodrigo, P., Fernández, E.F., Almonacid, F. Hontoria. L., 2012. A
572	simplified method for estimating direct normal solar irradiation from global horizontal irradiation
573	useful for CPV applications. Renewable and Sustainable Energy Reviews 16, 5529-34.
574	C >
575	8 Vick, B.D., Myers, D.R., Boyson, W. E., 2012. Using direct normal irradiance models and utility
576	electrical loading to assess benefit of a concentrating solar power plant. Solar Energy 86, 3519-
577 578	3530.
579	9 Badescu, V., Gueymard, C.A., Cheval, S. Oprea, C. Baciu, M., Dumitrescu, A., Iacobescu, F.,
580	Milos, I., Rada, C., 2013. Accuracy analysis for fifty-four clear-sky solar radiation models using
581	routine hourly global irradiance measurements in Romania. Renewable Energy 55, 85-103.

	This manuscript was accepted by Renewable Sustainable Energy. Click here to see the version of record.
Publishing	10 Gueymard, C.A., Ruiz-Arias, J.A., 2016. Extensive worldwide validation and climate sensitivity
584	analysis of direct irradiance predictions from 1-min global irradiance. Solar Energy 128, 1–30.
585	
586	11 Gueymard, C.A., Wilcox, S.M., 2011. Assessment of spatial and temporal variability in the US
587	solar resource from radiometric measurements and predictions from models using ground-based or
588	satellite data. Solar Energy 85, 1068–1084.
589	
590	12 Yao, W., Li, Z., Xiu, T., Lu, Y., Li, X., 2015. New decomposition models to estimate hourly
591	global solar radiation from the daily value. Solar Energy 120, 87–99.
592	
593	13 Bertrand, C., Vanderveken, G., Journee, M., 2015. Evaluation of decomposition models of
594	various complexity to estimate the direct solar irradiance over Belgium. Renewable Energy 74,
595	618-626.
596	
597	14 Boland, J., Huang, J., Ridley, B., 2013. Decomposing global solar radiation into its direct and
598	diffuse components. Renewable and Sustamable Energy Reviews 28, 749–756.
599	
600	15 Dervishi, S., Mahdavi, A., 2012. Computing diffuse fraction of global horizontal solar radiation:
601	A model comparison. Solar Energy 86, 1796-802.
602	16 Li H. Ru X. Long 7. Theo. L. Ma. W. 2012. Calculating the diffuse solar radiation in
603	regions without solar radiation measurements. Energy 44, 611, 615
605	regions without solar radiation measurements. Energy 44, 011-015
606	17 Torres JL De Blas M García A de Francisco A 2010 Comparative study of various
607	models in estimating hourly diffuse solar irradiance. Renewable Energy 35,1325-32.
608	
609	18 Bortolini, M., Gamberi, M., Graziani, A., Manzini, R., Mora, C., 2013. Multi-location model for
610	the estimation of the horizontal daily diffuse fraction of solar radiation in Europe, Energy
611	Conversion and Management 67, 208-216.
612	
613	19 Yousif, C., Oña Quecedo, G., Bilbao Santos, J., 2013. Comparison of solar radiation in
614	Marsaxlokk, Malta and Valladolid, Spain. Renewable Energy 49, 203-206.
615	

	This manuscript was accepted by Renewable Sustainable Energy. Click here to see the version of record.
	20 Yang, D., Dong, Z., Nobre, A., Khoo, Y.S., Irutitijaroen, P.J., Walsh, W.M., 2013. Evaluation of
Publishing	transposition and decomposition models for converting global solar irradiance from tilted surface to
618	horizontal in tropical regions. Solar Energy 97, 369–387
619	
620	21 Pérez-Burgos, A., Díez-Mediavilla, M., Alonso-Tristán, C., Rodríguez-Amigo, M.C., 2017.
621	Analysis of solar direct irradiance models under clear-skies: Evaluation of the improvements for
622	locally adapted models. Journal of Renewable and Sustainable Energy, 9(2) 023703.
623	
624	22 Louche, A., Notton, G., Poggi, P., Simonnot, G., 1991. Correlations for direct normal and global
625	horizontal irradiation on a French Mediterranean site. Solar Energy 46, 261-266.
626	
627	23 SLL Lighting Handbook, 2009. The Society of Light and Lighting publications (CIBSE).
628	
629	24 SkyCalc Users Guide, 2014. https://Energydesignresources.com
630	
631	25 Janjai, S., Pattarapanitchai, S., Prathumsit, J., Buntoung, S., Wattan, R., Masiri. I., 2014. A
632	method for mapping monthly average hourly diffuse illuminance from satellite data in Thailand,
633	Solar Energy 102, 162–172.
634	
635	26 Oteiza, P., Pérez-Burgos, A., 2012. Diffuse illuminance availability on horizontal and vertical
636	surfaces at Madrid, Spain. Energy Conversion and Management 64, 313-319
637	
638	27 Pérez-Burgos, A., Román, R., Bilbao, J., de Miguel, A., Oteiza, P., 2015. Reconstruction of
639	long-term direct solar irradiance data series using a model based on the Cloud Modification Factor,
640	Renewable Energy 77, 115–124
641	
642	28 Choosri, P., Janjai, S., Nunez, M., Buntoung, S., Chanalert W., 2017. Development of a method
643	for mapping monthly average hourly diffuse erythemal ultraviolet radiation, Journal of
644	Atmospheric and Solar-Terrestrial Physics 161, 19–27.
645	
646	29 Li, D.H., Lam, J.C., Lau, C.C.S., 2002. A new approach for predicting vertical global solar
647	irradiance. Renewable energy 25, 591-606.
648	
649	30 Maxwell, A.L., 1987. A quasi-physical model for converting hourly global horizontal to direct
650	normal insolation. Report SERI/TR-215-3087, Solar Energy Research Institute. Golden, CO. USA.

	This manuscript was accepted by Renewable Sustainable Energy. Click here to see the version of record.
	31 Reindl D.T. Beckman W.A. Duffie, I.A. 1990 Diffuse fraction correlations Solar Energy 45
FUDIISI411g	1-7
654	1 /.
655	32 Erbs D.G. Klein S.A. Duffie I.A. 1982 Estimation of the diffuse radiation fraction for
656	bourly daily and monthly-average global radiation. Solar Energy 28, 202-302
650	nourly, daily and monting-average global radiation. Solar Energy 28, 275-302.
659	23 Lánez G. Pubio M.A. Batlles F.I. 2000 Estimation of house direct normal from measured
658	sis Lopez, G., Rubio, M.A., Battles, F.J., 2000. Estimation of houry direct normal from measured
659	giobai solai infadiance in Spain. Kenewable Energy 21,175-80.
660	24 L face C and Comment C A 2007 Class day of the first officer dataminstic
661	34 Lopez, G. and Gueymard, C. A., 2007. Clear-sky solar luminous efficacy determination using
662	artificial neural networks. Solar Energy 81, 929–939.
663	
664	35 Bachour, D., Perez-Astudillo, D., 2014. Ground measurements of Global Horizontal Irradiation
665	in Doha, Qatar. Renewable Energy /1, 32-36.
666	
667	36 El Chaar, L., Lamont, L.A., 2010. Global solar radiation: Multiple on-site assessments in Abu
668	Dhabi, UAE. Renewable Energy 35, 1596–1601
669	
670	37 Jamil, B. and Akhtar, N.,2017. Empirical models for estimation of diffuse solar radiation based
671	on measured data for humid-subtropical climatic region of India. Journal of Renewable and
672	Sustainable Energy 9, 033702.
673	38 Kambezidis, H.D., Kaskaoutis, D.G., Kharol, S. K., Moorthy, K.K., Satheesh, S.K.,
674	Kalapureddy, M.C.R., Badarinath, K.V.S., Sharma, A. R., Wild, M., 2012. Multi-decadal variation
675	of the net downward shortwave radiation over south Asia: The solar dimming effect. Atmospheric
676	Environment 50, 360-372.
677	
678	39 Evseev, E.G., Kudish, A.I., 2015. Analysis of solar irradiation measurements at Beer Sheva,
679	Israel from 1985 through 2013. Energy Conversion and Management 97, 307-314.
680	

682 irradiance in Spain. Energy Procedia 57, 1010-1076

