
Theoretical Economics 14 (2019), 1347–1385 1555-7561/20191347

Best experienced payoff dynamics and cooperation in the
centipede game
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We study population game dynamics under which each revising agent tests each
of his strategies a fixed number of times, with each play of each strategy being
against a newly drawn opponent, and chooses the strategy whose total payoff was
highest. In the centipede game, these best experienced payoff dynamics lead to co-
operative play. When strategies are tested once, play at the almost globally stable
state is concentrated on the last few nodes of the game, with the proportions of
agents playing each strategy being largely independent of the length of the game.
Testing strategies many times leads to cyclical play.
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1. Introduction

The discrepancy between the conclusions of backward induction reasoning and ob-
served behavior in certain canonical extensive form games is a basic puzzle of game the-
ory. The centipede game (Rosenthal (1981)), the finitely repeated prisoner’s dilemma,
and related examples can be viewed as models of relationships in which each partic-
ipant has repeated opportunities to take costly actions that benefit his partner and in
which there is a commonly known date at which the interaction will end. Experimen-
tal and anecdotal evidence suggests that cooperative behavior may persist until close to
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the exogenous terminal date (McKelvey and Palfrey (1992)). But the logic of backward
induction leads to the conclusion that there will be no cooperation at all.

Work on epistemic foundations provides room for wariness about unflinching ap-
peals to backward induction. To support this prediction, one must assume that there is
always common belief that all players will act as payoff maximizers at all points in the
future, even when many rounds of previous choices argue against such beliefs.1 Thus,
the simplicity of backward induction belies the strength of the assumptions needed to
justify it, and this strength may help explain why backward induction does not yield
descriptively accurate predictions in some classes of games.2

This paper studies a dynamic model of behavior in games that maintains the as-
sumption that agents respond optimally to the information they possess. But rather
than imposing strong assumptions about agents’ knowledge of opponents’ intentions,
we suppose instead that agents’ information comes from direct but incomplete experi-
ence with playing the strategies available to them. As with the earlier work of Osborne
and Rubinstein (1998) and Sethi (2000), our model is best viewed not as one that incor-
porates irrational choices, but rather as one of rational choice under particular restric-
tions on what agents know.

Following the standard approach of evolutionary game theory, we suppose that two
populations of agents are recurrently randomly matched to play a two-player game. This
framework accords with some experimental protocols, and can be understood more
broadly as a model of the formation of social norms (Young (1998)). At random times,
each agent receives opportunities to switch strategies. At these moments the agent plays
each of his strategies against κ opponents drawn at random from the opposing pop-
ulation, with each play of each strategy being against a newly drawn opponent. He
then switches to the strategy that achieved the highest total payoff, breaking ties in fa-
vor of the lowest-numbered strategy. Standard results imply that when the populations
are large, the agents’ aggregate behavior evolves in an essentially deterministic fash-
ion, obeying a differential equation that describes the expected motion of the stochastic
process described above (Benaïm and Weibull (2003)). We study the properties of this
differential equation when agents play the centipede game.

Our model builds on earlier work on games played by “procedurally rational play-
ers.” If we replace our tie-breaking rule with uniform tie-breaking, then the rest points
of the process (with κ = k) would correspond to the S(k) equilibria of Osborne and Ru-
binstein (1998). The corresponding dynamics were studied by Sethi (2000). These and
other dynamics are instances of the broader family of best experienced payoff dynamics
(BEP dynamics for short; Sandholm et al. (2019)), which allow for variation in how ties
are resolved and in the selection of sets of candidate strategies considered by revising
agents. The results we present here are robust to many different model specifications
within the family of BEP dynamics.

1For formal analyses, see Binmore (1987), Reny (1992), Stalnaker (1996), Ben-Porath (1997), Halpern
(2001), and Perea (2014).

2As an alternative, one could apply Nash equilibrium, which also predicts noncooperative behavior in
the games mentioned above, but doing so replaces assumptions about future rationality with the assump-
tion of equilibrium knowledge, which may not be particularly more appealing; see Dekel and Gul (1997).
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Our analysis of best experienced payoff dynamics in the centipede game uses tech-
niques from dynamical systems theory. What is more novel is our reliance on algorithms
from computational algebra and perturbation bounds from linear algebra, which allow
us to solve exactly for the rest points of our differential equations and to perform rig-
orous stability analyses in centipede games with up to six decision nodes. We comple-
ment this approach with numerical analyses of cases in which analytical results cannot
be obtained.

Our initial results focus on dynamics under which each tested strategy is tested ex-
actly once (κ = 1), so that agents’ choices depend only on ordinal properties of pay-
offs. In centipede games, under the BEP dynamics studied here, the backward induction
state—the state at which all agents in both populations stop at their first opportunity—
is a rest point. However, we prove that this rest point is always repelling : the appearance
of agents in either population who cooperate to any degree is self-reinforcing and even-
tually causes the backward induction solution to break down completely.

We next obtain strong lower bounds on the total weight placed on cooperative strate-
gies at any other rest points of the BEP dynamic. At any such rest point, the probability
that play during a random match leads to one of the last five terminal nodes is above
0�96, and the probability that play leads to one of the last seven terminal nodes is vir-
tually 1. We then use tools from computational algebra to perform an exact analysis
of games with up to six decision nodes, and we perform numerical analyses of longer
games. In all cases, we find that besides the unstable backward induction state, the
dynamics have exactly one other rest point.3 The form of this rest point is essentially
independent of the length of the game. The rest point has virtually all players choosing
to continue until the last few nodes of the game. Moreover, this rest point is dynamically
stable, attracting solutions from all initial conditions other than the backward induction
state. Thus if agents make choices based on experienced payoffs, testing each strategy
once and choosing the one that performed best, then play converges to a stable rest
point that exhibits high levels of cooperation.

To explain why, we first observe that cooperative strategies are most disadvantaged
when they are most rare—specifically, in the vicinity of the backward induction state.
Near this state, the most cooperative agents would obtain higher expected payoffs by
stopping earlier. However, when an agent considers switching strategies, he tests each
of his strategies against new, independently drawn opponents. He may thus test a co-
operative strategy against a cooperative opponent, and test less cooperative strategies
against less cooperative opponents, in which case his best experienced payoff will come
from the cooperative strategy. Our analysis confirms that this possibility indeed leads to
instability.4 After this initial entry, the high payoffs generated by cooperative strategies

3While traditional equilibrium notions in economics require stasis of choice, interior rest points of pop-
ulation dynamics represent situations in which individuals’ choices fluctuate even as the expected change
in aggregate behavior is null; see Section 2.2.

4Specifically, linearizing any given specification of the dynamics at the backward induction state identi-
fies a single eigenvector with a positive eigenvalue (Appendix A). This eigenvector describes the mixture of
strategies in the two populations whose entry is self-reinforcing and identifies the direction toward which
all other disturbances of the backward induction state are drawn. Direct examination of the dynamics
provides a straightforward explanation of why the given mixture of entrants is successful (Example 2).
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when matched against one another spurs their continued growth. This growth is only
abated when virtually all agents are choosing among the most cooperative strategies.

Our final results consider the effects of the number of trials κ of each strategy dur-
ing testing on predictions of play. It seems clear that if the number of trials is made
sufficiently large, so that the agents’ information about opponents’ behavior is quite ac-
curate, then the population’s behavior should come to resemble a Nash equilibrium.
Indeed, when agents possess exact information, so that aggregate behavior evolves ac-
cording to the best response dynamic (Gilboa and Matsui (1991), Hofbauer (1995)), the
results of Xu (2016) imply that every solution trajectory converges to the set of Nash
equilibria, all of which entail stopping at the initial node.

Our analysis shows, however, that stable cooperative behavior can persist even for
substantial numbers of trials. To start, we prove that the backward induction state is un-
stable as long as the number of trials κ is less than the length of the game. For a larger
number of trials, the backward induction state becomes locally stable, but numerical ev-
idence suggests that its basin of attraction is very small. Examining centipede games of
length d = 4 in detail, we find that a unique, attracting interior rest point with substan-
tial cooperation persists for moderate numbers of trials. With many trials, numerical
analysis suggests the attractor is always a single cycle that includes significant amounts
of cooperation for numbers of trials as large as 200. We discuss in Section 4 how the ro-
bustness of cooperation to fairly large numbers of trials can be explained using simple
central limit theorem arguments.

Our main technical contribution lies in the use of methods from computational al-
gebra and perturbation theorems from linear algebra to prove results about the proper-
ties of our dynamics. The starting point for this analysis—one that suggests a broader
scope for our approach—is that decision procedures based on sampling from a popula-
tion are described by multivariate polynomials with rational coefficients. In particular,
BEP dynamics are described by systems of such equations, so finding their rest points
amounts to finding the zeros of these polynomial systems. To accomplish this, we com-
pute a Gröbner basis for the set of polynomials that defines each instance of our dynam-
ics; this new set of polynomials has the same zeros as the original set, but its zeros can
be computed by finding the roots of a single (possibly high-degree) univariate polyno-
mial.5 Exact representations of these roots, known as algebraic numbers, can then be
obtained by factoring the polynomial into irreducible components and then using al-
gorithms based on classical results to isolate each component’s real roots.6 With these
exact solutions in hand, we can rigorously assess the rest points’ local stability through
a linearization analysis. So as to obviate certain intractable exact calculations, this anal-
ysis takes advantage of both an eigenvalue perturbation theorem and a bound on the
condition number of a matrix that does not require the computation of its inverse.

The code used to obtain the exact and numerical results is available as a Mathemat-
ica notebook posted on GitHub and on the authors’ websites. The Supplemental Mate-
rial provides background and details about both the exact and the numerical analyses,
and reports certain numerical results in full detail.

5See Buchberger (1965) and Cox et al. (2015). For applications of Gröbner bases in economics, see Kubler
et al. (2014).

6See von zur Gathen and Gerhard (2013), McNamee (2007), and Akritas (2010).
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Related literature

Previous work relating backward induction and deterministic evolutionary dynamics
has focused on the replicator dynamic of Taylor and Jonker (1978) and the best response
dynamic of Gilboa and Matsui (1991) and Hofbauer (1995). Cressman and Schlag (1998)
(see also Cressman (1996, 2003)) show that in generic perfect information games, every
interior solution trajectory of the replicator dynamic converges to a Nash equilibrium.
Likewise, Xu (2016) (see also Cressman (2003)) shows that in such games, every solution
trajectory of the best response dynamic converges to a component of Nash equilibria.
In both cases, the Nash equilibria approached need not be subgame perfect and the
Nash equilibrium components generally are not locally stable. Focusing on the cen-
tipede game with three decision nodes, Ponti (2000) shows numerically that perturbed
versions of the replicator dynamic exhibit cyclical behavior, with trajectories approach-
ing and then moving away from the Nash component. In contrast, we show that for
small and moderate numbers of tests, best experienced payoff dynamics lead to a stable
distribution of cooperative strategies far from the Nash component.

Osborne and Rubinstein’s (1998) notion of S(k) equilibrium corresponds to the rest
points of the BEP dynamic under which agents test all strategies, subject each to k tri-
als, and break ties via uniform randomization.7 While most of their analysis focuses
on simultaneous move games, they show that in centipede games, the probability with
which player 1 stops immediately in any S(1) equilibrium must vanish as the length of
the game grows large. As we soon observe (Observation 1), this conclusion may fail if
uniform tie-breaking is not assumed, with the backward induction state being an equi-
librium. Nevertheless, more detailed analyses below show that this equilibrium state is
unstable under BEP dynamics.

Building on Osborne and Rubinstein (1998), Sethi (2000) introduces BEP dynamics
under which all strategies are tested and ties are broken uniformly.8 He shows that both
dominant strategy equilibria and strict equilibria can be unstable under these dynamics,
while dominated strategies can be played in stable equilibria. The latter fact is a basic
component of our analysis of cooperative behavior. Berkemer (2008) considers the local
stability of the unique rationalizable strategy profile in the traveler’s dilemma of Basu
(1994) under Sethi’s (2000) dynamics, obtaining a sufficient condition for the instability
of the rationalizable state. He shows numerically that the stable S(1) equilibrium be-
comes independent of the number of strategies in the game and he provides evidence
from agent-based simulations that larger numbers of trials during testing can lead to
cyclical behavior.9

Earlier efforts to explain cooperative behavior in centipede and related games have
followed a different approach, applying equilibrium analyses to augmented versions of
the game. The best known example of this approach is the work of Kreps et al. (1982).

7For extensions of S(k) equilibrium to more complex testing procedures, see Rustichini (2003).
8Cárdenas et al. (2015) and Mantilla et al. (2019) use these dynamics to explain stable non-Nash behavior

in public goods games.
9For complementary models of dynamics based on a single sample, see Sandholm (2001), Kosfeld et al.

(2002), Droste et al. (2003), and Oyama et al. (2015).
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These authors modify the finitely repeated prisoner’s dilemma by assuming that one
player attaches some probability to his opponent having a fixed preference for cooper-
ative play. They show that in all sequential equilibria of long enough versions of the
resulting Bayesian game, both players act cooperatively for a large number of initial
rounds.10 To justify this approach, one must assume that the augmentation of the origi-
nal game is commonly understood by the players, that the players act in accordance with
a rather complicated equilibrium construction, and that the equilibrium knowledge
assumptions required to justify sequential equilibrium apply. In contrast, our model
makes no changes to the original game other than placing it in a population setting, and
it is built upon the assumption that agents’ choices are optimal given their experiences
during play.

2. Best experienced payoff dynamics in the centipede game

2.1 Normal form games and population games

A two-player normal form game G= {(S1� S2)� (A�B)} is defined by pairs of strategy sets
Sp = {1� � � � � sp} and payoff matrices A�B ∈Rsp×sq , p�q ∈ {1�2}, p �= q. Entries Aij and Bij

represent the two players’ payoffs when strategy profile (i� j) ∈ S1 × S2 is played. When
considering extensive form games, our analysis focuses on the reduced normal form,
whose strategies specify an agent’s “plan of action” for the game, but not his choices at
decision nodes that are ruled out by his own previous choices.

In our population model, members of two unit-mass populations are matched to
play a two-player game. A population state for population 1 is an element of X = {x ∈
Rs1

+ : ∑
i∈S1 xi = 1}, where xi is the fraction of population 1 players choosing strategy i.

Likewise Y = {y ∈ Rs2
+ : ∑

i∈S2 yi = 1} is the set of population states for population 2.
Thus, x and y are formally equivalent to mixed strategies for players 1 and 2, and ele-
ments of the set �=X ×Y are formally equivalent to mixed strategy profiles. In a slight
abuse of terminology, we also refer to elements of � as population states.

2.2 Revision protocols and evolutionary dynamics

To define evolutionary game dynamics, we follow the standard approach of specify-
ing microfoundations in terms of revision protocols.11 We suppose that at all times t ∈
[0�∞), each agent has a strategy he uses when matched to play game G. The empirical
distributions of these strategies are described by the population state ξ(t) = (x(t)� y(t)).

10McKelvey and Palfrey (1992) show that this analysis extends to the centipede game. A different aug-
mentation is considered by Jehiel (2005), who assumes that agents bundle decision nodes from contiguous
stages into analogy classes and view the choices at all nodes in a class interchangeably. Alternatively, fol-
lowing Radner (1980), one can consider versions of centipede in which the stakes of each move are small
and analyze these games using ε equilibrium; see Friedman and Oprea (2012) for a discussion. But as Bin-
more (1998) observes, the existence of a non-Nash ε equilibrium depends on the relative sizes of the stakes
and of ε, and the backward induction solution always persists as a Nash equilibrium and, hence, as an ε

equilibrium.
11See Björnerstedt and Weibull (1996), Weibull (1995), Sandholm (2010a,b, 2015), and Izquierdo et al.

(2018).
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Agents occasionally receive opportunities to switch strategies according to indepen-
dent rate 1 Poisson processes. An agent who receives an opportunity considers switch-
ing to a new strategy, making his decision by applying a revision protocol. Formally,
a revision protocol for population 1 is described by a map (A�y) �→ σ1(A�y) ∈ Xs1

that
assigns own payoff matrices and opposing population states to matrices of conditional
switch probabilities, where σ1

ij(A�y) is the probability that an agent playing strategy

i ∈ S1 who receives a revision opportunity switches to strategy j ∈ S1. Likewise, a re-
vision protocol for population 2 is described by a map (B�x) �→ σ2(B�x) ∈ Ys2

with an
analogous interpretation.12

It is well known that if the population sizes are large, the Markov process implicitly
defined by the above procedure is well approximated by solutions to a differential equa-
tion defined by the expected motion of the process (Benaïm and Weibull (2003)). Here
this differential equation takes the form

ẋi =
∑
j∈S1

xjσ
1
ji(A�y)− xi for all i ∈ S1�

ẏi =
∑
j∈S2

yjσ
2
ji(B�x)− yi for all i ∈ S2�

(1)

Equation (1) is easy to interpret. Since revision opportunities are assigned to agents
randomly, there is an outflow from each strategy i proportional to its current level of
use. To generate inflow to i, an agent playing some strategy j must receive a revision
opportunity, and applying his revision protocol must lead him to play strategy i.

Outside of monomorphic (i.e., pure) cases, the rest points of the dynamic (1) should
not be understood as equilibria in the traditional game-theoretic sense. Rather, they
represent situations in which agents perpetually switch among strategies, but with the
expected change in the use of each strategy equaling zero.13 At states that are locally sta-
ble under the dynamic (1), fluctuations in any direction are generally undone by the ac-
tion of (1) itself. Contrariwise, fluctuations away from unstable equilibria are reinforced,
so we should not expect such states to be observed.

2.3 Best experienced payoff protocols and dynamics

We now introduce the class of revision protocols and dynamics that we study in this pa-
per. A best experienced payoff protocol is defined by a triple (τ�κ�β) consisting of a test
set rule τ, a number of trials κ, and a tie-breaking rule β. The triple (τ�κ�β) defines a
revision protocol in the following way. When an agent currently using strategy i ∈ Sp

receives an opportunity to switch strategies, he draws a set of strategies Rp ⊆ Sp to test
according to the distribution τp on the collection of subsets of Sp with at least two el-
ements. He then plays each strategy in Rp in κ random matches against members of

12When σ1
ij and σ2

ij are independent of the current strategy i, as is true for the dynamic (3) we focus on
here, it is equivalent to interpret the process as one in which agents play a fixed strategy until leaving the
population, when they are replaced by new agents whose strategies are determined by applying σ1 and σ2.

13Thus in the finite-population version of the model, variations in the use of each strategy would be
observed. For a formal analysis, see Sandholm (2003).



1354 Sandholm, Izquierdo, and Izquierdo Theoretical Economics 14 (2019)

the opposing population. He thus engages in #Rp × κ random matches in total, facing
distinct sets of opponents when testing different strategies. The agent then selects the
strategy in Rp that earned him the highest total payoff, breaking ties according to rule β.
The triple (τ�κ�β) thus defines a revision protocol σp for each population p. Inserting
these revision protocols into (1) defines a best experienced payoff dynamic.

Our analysis here focuses on the test-set rule test-all, τall, under which a revising
agent tests all of his strategies, and on the tie-breaking rule min-if-tie, βmin, which
chooses the lowest-numbered optimal strategy. We refer to the resulting dynamics (1)
as BEP(τall�κ�βmin) dynamics.

BEP dynamics based on other specifications of test-set and tie-breaking rules are
studied in a companion paper (Sandholm et al. (2019)); they are also discussed briefly
in Section 3.4. Importantly, if we retain τall, but replace βmin with uniform tie-breaking,
then the rest points of the dynamic (1) are the S(k) equilibria of Osborne and Rubinstein
(1998) (with k= κ), and the dynamic itself is the one studied by Sethi (2000). In extensive
form games like centipede, different strategies often earn the same payoffs, so the choice
of tie-breaking rule matters. Because of our convention for numbering strategies in the
centipede game (see below), the min-if-tie rule will be the one that is least conducive to
cooperative play.

Choice probabilities under best experienced payoff dynamics depend only on the
payoffs strategies earn during testing; they do not require agents to track the choices
made by their opponents. This property makes the dynamics appealing as a simple
model of play for extensive form games. Typically, a single play of an extensive form
game does not reveal the strategy chosen by one’s opponent, but only the portion of that
strategy required to determine the path of play. Consequently, it is not straightforward
to specify how agents should use their experience of play to assess opponents’ choices of
strategies. Because they focus on the performances of own strategies, best experienced
payoff dynamics avoid such ambiguities.

2.4 The centipede game

Centipede (Rosenthal (1981)) is a two-player extensive form game with d ≥ 2 decision
nodes (Figure 1). Each node presents two actions: stop and continue. The nodes are
arranged linearly, with the first one assigned to player 1 and subsequent nodes assigned
in an alternating fashion. A player who stops ends the game. A player who continues
suffers a cost of 1 but benefits his opponent 3, and sends the game to the next decision
node if one exists.

Figure 1. The centipede game of length d = 8.
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In a centipede game of length d, players 1 and 2 have d1 = 	d+1
2 
 and d2 = 	d

2 
 deci-
sion nodes, respectively. Thus player p has sp = dp +1 strategies, where strategy i < sp is
the plan to continue at his first i− 1 decision nodes and to stop at his ith decision node,
and strategy sp is the plan to continue at all dp of his decision nodes. Of course, the
portion of a player’s plan that is actually carried out depends on the plan of his oppo-
nent. The payoff matrices (A�B) of centipede’s reduced normal form can be expressed
concisely as

(Aij�Bij)=
{
(2i− 2�2i− 2) if i ≤ j

(2j − 3�2j + 1) if j < i�
(2)

It will sometimes be convenient to number strategies starting from the end of the
game. To do so, we write [k] ≡ sp − k for k ∈ {0� � � � � dp}, so that [0] denotes continuing
at all nodes, and [k] with k ≥ 1 denotes stopping at player p’s kth-to-last node.

We noted above that best experienced payoff dynamics with κ = 1 depend only on
ordinal properties of payoffs. In this case, what matters in (2) is that a player is better
off continuing at a given decision node if and only if his opponent will continue at the
subsequent decision node. If the cost of continuing is 1, this property holds as long as
the benefit obtained when one’s opponent continues exceeds 2. This ordering of payoffs
also holds for typical specifications in which total payoffs grow exponentially over time.
When there are multiple trials of each tested strategy (κ = 1), then cardinal properties
of payoffs matter; in this case, Rosenthal’s (1981) specification (2) keeps the potential
benefits from continuing relatively modest.

The backward induction solution to centipede has both players stop at each of their
decision nodes. We thus call the population state ξ† = (x†� y†) ∈ � with x†

1 = y†
1 = 1 the

(reduced) backward induction state. It is well known that all Nash equilibria of centipede
have player 1 stop at his initial node. This makes player 2 indifferent among all of her
strategies, so Nash equilibrium requires that she choose a mixed strategy that makes
stopping immediately optimal for player 1.

Of course, these predictions require assumptions about what the players know. In
the traditional justification of Nash equilibrium, players are assumed to anticipate op-
ponents’ play correctly. Likewise, traditional justifications of the backward induction so-
lution require agents to maintain common belief in rational future play, even if behavior
contradicting this belief has been observed in the past.

2.5 Best experienced payoff dynamics for the centipede game

We can now introduce the explicit formula for the BEP(τall�1�βmin) dynamic in the cen-
tipede game:14

ẋi =
(

s2∑
k=i

yk

)(
i∑

m=1

ym

)s1−i

+
i−1∑
k=2

yk

(
k−1∑
�=1

y�

)i−k( k∑
m=1

ym

)s1−i

− xi (3a)

14We follow the convention that a sum whose lower limit exceeds its upper limit evaluates to 0.
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ẏj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
s1∑

k=2

xk

)
(x1 + x2)

s2−1 + (x1)
s2 − y1 if j = 1

(
s1∑

k=j+1

xk

)( j+1∑
m=1

xm

)s2−j

+
j∑

k=2

xk

(
k−1∑
�=1

x�

)j−k+1( k∑
m=1

xm

)s2−j

− yj otherwise�

(3b)

Under test-all with min-if-tie, the choice made by a revising agent does not depend
on his original strategy. The first two terms of (3a) describe the two types of matchings
that lead a revising agent in the role of player 1 to choose strategy i. First, it could be that
when the agent tests i, his opponent plays i or higher (so that the agent is the one to stop
the game), and that when the agent tests higher strategies, his opponents play strategies
i or lower. In this case, only strategy i yields the agent his highest payoff. Second, it
could be that when the agent tests i, his opponent plays strategy k < i; when he tests
strategies between k and i − 1, his opponents play strategies less than k; and when he
tests strategies above i, his opponents play strategies less than or equal to k. In this case,
strategy i is the lowest strategy that achieves the optimal payoff, and so it is chosen by
the revising agent under the min-if-tie rule. Similar logic and accounting for the fact that
player 2’s jth node is followed by player 1’s (j + 1)st node lead to (3b).

We conclude this section with a simple observation about the backward induction
solution of centipede under best experienced payoff dynamics.

Observation 1. Under the BEP(τall�κ�βmin) dynamic, the backward induction state ξ†

is a rest point.

Osborne and Rubinstein (1998) show that if all strategies are tested once and ties
are broken uniformly, then in a long centipede game, stationarity requires that play is
almost never stopped at the initial node. Observation 1 shows that this conclusion de-
pends on the assumption that ties are broken uniformly. If instead ties are broken in fa-
vor of the lowest-numbered strategy (or, alternatively, an agent’s current strategy), then
the backward induction state is a rest point. Even so, the analyses to follow will explain
why the backward induction state is not a compelling prediction of play even under
these tie-breaking rules.

3. Analysis of dynamics with one trial of each strategy

In this section, we analyze the BEP(τall�1�βmin) dynamic in centipede. Since tie-
breaking rule βmin selects the optimal strategy that stops soonest, it is the tie-breaking
rule that is most favorable toward backward induction. Before proceeding, we review
some standard definitions and results from dynamical systems theory, and follow this
with a simple example.

Consider a C1 differential equation ξ̇ = V (ξ) defined on � whose forward solutions
{x(t)}t≥0 do not leave �. State ξ∗ is a rest point if V (ξ∗) = 0, so that the unique solution
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starting from ξ∗ is stationary. Rest point ξ∗ is Lyapunov stable if for every neighborhood
O ⊂ � of ξ∗, there exists a neighborhood O′ ⊂ � of ξ∗ such that every forward solution
that starts in O′ is contained in O. If ξ∗ is not Lyapunov stable, it is unstable, and it
is repelling if there is a neighborhood O ⊂ � of ξ∗ such that solutions from all initial
conditions in O \ {ξ∗} leave O.

Rest point ξ∗ is attracting if there is a neighborhood O ⊂ � of ξ∗ such that all so-
lutions that start in O converge to ξ∗. A state that is Lyapunov stable and attracting is
asymptotically stable. In this case, the maximal (relatively) open set of states from which
solutions converge to ξ∗ is called the basin of ξ∗. If the basin of ξ∗ contains int(�), we call
ξ∗ almost globally asymptotically stable; if it is � itself, we call ξ∗ globally asymptotically
stable.

The C1 function L : O → R+ is a strict Lyapunov function for rest point ξ∗ ∈ O if
L−1(0) = {ξ∗} and if its time derivative L̇(ξ) ≡ ∇L(ξ)′V (ξ) is negative on O \ {ξ∗}. Stan-
dard results imply that if such a function exists, then ξ∗ is asymptotically stable.15 If L is
a strict Lyapunov function for ξ∗ with domain O = � \ {ξ†} and ξ† is repelling, then ξ∗ is
almost globally asymptotically stable; if the domain is �, then ξ∗ is globally asymptoti-
cally stable.

Example 1. As a preliminary, we consider BEP(τ�1�βmin) dynamics for the centipede
game of length 2. Since each player has two strategies, all test-set rules τ have revising
agents test both of them. Focusing on the fractions of agents choosing to continue, we
can express the dynamics as

ẋ2 = y2 − x2

ẏ2 = x2x1 − y2�
(4)

By way of interpretation, a revising agent in population 1 chooses to continue if his op-
ponent when he tests continue also continues. A revising agent in population 2 chooses
to continue if her opponent continues when she tests continue, and her opponent stops
when she tests stop.16

Writing 1 −x2 for x1 in (4) and then solving for the zeros, we find that the unique rest
point of (4) is the backward induction state: x†

2 = y†
2 = 0. Moreover, defining the function

L : [0�1]2 → R+ by L(x2� y2)= 1
2((x2)

2 + (y2)
2), we see that L−1(0) = {ξ†} and that

L̇(x2� y2)= x2ẋ2 + y2ẏ2 = x2y2 − (x2)
2 + y2x2 − y2(x2)

2 − (y2)
2 = −(x2 − y2)

2 − y2(x2)
2�

which is nonpositive on [0�1]2 and equals zero only at the backward induction state.
Since L is a strict Lyapunov function for ξ† on �, state ξ† is globally asymptotically sta-
ble. ♦

In light of this example, our analyses to come will focus on centipede games of
lengths d ≥ 3.

15See, e.g., Sandholm (2010b, Appendix 7.B).
16Compare the discussion after (3) and Example 2 below.
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3.1 Analytical results

As we know from Observation 1, the backward induction state ξ† of the centipede game
is a rest point of the BEP(τall�1�βmin) dynamic. Our first result shows that this rest point
is always repelling.

Proposition 1. In centipede games of lengths d ≥ 3, the backward induction state ξ† is
repelling under the BEP(τall�1�βmin) dynamic.

The proof of Proposition 1, which is presented in Appendix A, is based on a some-
what nonstandard linearization argument. While we are directly concerned with the
behavior of the BEP dynamics on the state space �, it is useful to view (1) as defining
dynamics throughout the affine hull aff(�) = {(x� y) ∈ Rs1+s2 : ∑

i∈S1 xi = ∑
j∈S2 yj = 1},

which is then invariant under (1). Vectors of motion through aff(�) are elements of the
tangent space T� = {(z1� z2) ∈ Rs1+s2 : ∑

i∈S1 z1
i = ∑

j∈S2 z2
j = 0}. Note that T� is a sub-

space of Rs1+s2
and that aff(�) is obtained from T� via translation: aff(�) = T�+ ξ†.

A standard linearization argument is enough to prove that ξ† is unstable. Let the vec-
tor field V : aff(�) → T� be defined by the right-hand side of (1). To start the proof, we
obtain an expression for the derivative matrix DV (ξ†) that holds for any game length d.
We then derive formulas for the d linearly independent eigenvectors of DV (ξ†) in the
subspace T� and for their corresponding eigenvalues. We find that d − 1 of the eigen-
values are negative and one is positive. The existence of the latter implies that ξ† is
unstable.

To prove that ξ† is repelling, we show that the hyperplane through ξ† defined by the
span of the set of d− 1 eigenvectors with negative eigenvalues supports the convex state
space � at state ξ†. Results from dynamical systems theory—specifically, the Hartman–
Grobman and stable manifold theorems (Perko (2013, Sections 2.7 and 2.8))—then im-
ply that in some neighborhood O ⊂ aff(�) of ξ†, the set of initial conditions from which
solutions converge to ξ† is disjoint from � \ {ξ†}, and that solutions from the remaining
initial conditions eventually move away from ξ†.

The following example provides intuition for the instability of the backward induc-
tion state; the logic is similar in longer games and for other specifications of BEP dynam-
ics.

Example 2. In a centipede game of length d = 4, writing out display (3) shows that the
BEP(τall�1�βmin) dynamic is described by

ẋ1 = (y1)
2 − x1� ẏ1 = (x2 + x3)(x1 + x2)

2 + (x1)
3 − y1

ẋ2 = (y2 + y3)(y1 + y2)− x2� ẏ2 = x3 + x2x1(x1 + x2)− y2 (5)

ẋ3 = y3 + y2y1 − x3� ẏ3 = x2(x1)
2 + x3(x1 + x2)− y3�

The linearization of this system at (x†� y†) has the positive eigenvalue 1 corresponding
to eigenvector (z1� z2) = ((−2�1�1)� (−2�1�1)) (this is (14) with m ≡ d1 = 2 and n ≡ d2 =
2). Thus at state (x� y) = ((1 − 2ε�ε�ε)� (1 − 2ε�ε�ε)) with ε > 0 small, we have (ẋ� ẏ) ≈
((−2ε�ε�ε)� (−2ε�ε�ε)).
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To understand why the addition of agents in both populations playing the coopera-
tive strategies 2 and 3 is self-reinforcing, we build on the discussion following (3). Con-
sider, for instance, component y3, which represents the fraction of agents in population
2 who continue at both decision nodes. The last expression in (5) says that a revising
population 2 agent switches to strategy 3 if (i) when testing strategy 3 she meets an op-
ponent playing strategy 2, and when testing strategies 1 and 2 she meets opponents
playing strategy 1, or (ii) when testing strategy 3 she meets an opponent playing strat-
egy 3, and when testing strategy 2 she meets an opponent playing strategy 1 or 2. These
events have total probability ε(1 − ε) + ε(1 − 2ε)2 ≈ 2ε. Since there are y3 = ε agents
currently playing strategy 3, outflow from this strategy occurs at rate ε. Combining the
inflow and outflow terms shows that ẏ3 ≈ 2ε − ε = ε. Analogous arguments explain the
changes in the values of the other components of the state. ♦

It may seem surprising that the play of a weakly dominated strategy—continuing by
the last mover at the last decision node—is positively reinforced at an interior popula-
tion state. This is possible because revising agents test each of their strategies against
newly drawn opponents: as just described, a revising population 2 agent will choose to
continue at both of her decision nodes if her opponent’s strategy when she tests strat-
egy 3 is more cooperative than her opponents’ strategies when she tests her own less
cooperative strategies.

Since the backward induction state is unstable, we next try to determine where in
the state space the dynamics may converge. As a start, we prove that except at the rest
point ξ†, motion from states on the boundary of the state space proceeds immediately
into the interior of the state space.

Proposition 2. In centipede games of all lengths d ≥ 3, solutions to the BEP(τall�1�βmin)

dynamic from every initial condition ξ ∈ bd(�) \ {ξ†} immediately enter int(�).

The proof of Proposition 2, which is presented in Appendix B, starts with a simple
differential inequality (Lemma 1) that lets us obtain explicit positive lower bounds on
the use of any initially unused strategy i at times t ∈ (0�T ]. The bounds are given in
terms of the probabilities of test results that lead i to be chosen, and, thus, backing up
one step, in terms of the usage levels of the opponents’ strategies occurring in those
tests (16). With this preliminary result in hand, we prove inward motion from ξ �= ξ†

by constructing a sequence that contains all unused strategies, and whose kth strategy
could be chosen by a revising agent after a test result that includes only strategies that
were initially in use or that appeared earlier in the sequence.

Together, Propositions 1 and 2 imply that in centipede games of length d ≥ 3, the
BEP(τall�1�βmin) dynamic has an interior rest point. Our next result places strong
bounds on the weights on the most cooperative strategies in any such rest point. For any
population state ξ = (x� y) and for k ∈ {0� � � � � d1}, let x̄[k] = x[0] + · · · + x[k] be the mass
of population 1 agents who stop at their kth-to-last decision node or later. Likewise, for
� ∈ {0� � � � � d2}, let ȳ[�] = y[0] + · · · + y[�].
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Proposition 3. Let ξ = (x� y) be a rest point of the BEP(τall�1�βmin) dynamic in cen-
tipede other than the backward induction state ξ†.

(i) If d is even, so that player 2 moves last, then ȳ[2] > 0�9657, x̄[2] > 1 − 10−4, and
ȳ[3] > 1 − 10−16.

(ii) If d is odd, so that player 1 moves last, then x̄[2] > 0�9657, ȳ[2] > 1 − 10−4, and x̄[3] >
1 − 10−16.

The proposition implies that the probability that play in a random match leads to the
last five terminal nodes, namely ȳ[2]x̄[2], is at least 0�9656, and play is virtually guaranteed
to reach the last eight terminal nodes.

Proof of Proposition 3. We consider the case in which d is even. We start by intro-
ducing three inequalities that a rest point (x� y) must satisfy:

1 − x̄[k] ≤ (1 − ȳ[k])k+1 (6)

1 − ȳ[k+1] ≤ (1 − x̄[k])k+2 (7)

x̄[k] ≥ (
1 − (1 − ȳ[k+1])k+1)(1 − ȳ[k+1])� (8)

A necessary condition for a population 1 agent to choose a strategy outside of {[k]� � � � �
[0]} is that when testing strategies in this set, he is never matched with a population 2
agent playing a strategy in {[k]� � � � � [0]}. This fact gives us inequality (6). Likewise, for
a population 2 agent not to choose a strategy in {[k + 1]� � � � � [0]}, it is necessary that
when testing strategies in this set, she is never matched with a population 1 opponent
playing a strategy in {[k]� � � � � [0]}; this gives us inequality (7). Finally, inequality (8) fol-
lows from the observation that for a revising population 1 agent to choose a strategy in
{[k]� � � � � [0]}, it is enough that both (i) when playing at least one such strategy, her match
opponent chooses a strategy in {[k + 1]� � � � � [0]}, and (ii) when playing strategy [k + 1],
her opponent does not choose a strategy in {[k + 1]� � � � � [0]}. Inequality (8) can also be
written as

1 − x̄[k] ≤ (1 − ȳ[k+1])k+2 + ȳ[k+1]� (9)

Substituting inequality (9) into inequality (7) and rearranging yields

(
(1 − ȳ[k+1])k+2 + ȳ[k+1]

)k+2 + ȳ[k+1] − 1 ≥ 0� (10)

When k= 0, the left-hand side of (10) is a polynomial whose real roots are 0 and r, with r

close to but greater than .4301, and that is negative on (0� r) and positive on (r�∞). (This
r is the lone real root of the polynomial z3 −2z2 +3z−1.) Thus, any rest point (x� y) with
ȳ[1] �= 0 satisfies ȳ[1] ≥ r > 0�4301. By Proposition 2, this requirement holds for every rest
point besides ξ†.
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Now, applying (6) and (7) sequentially yields the inequalities

x̄[1] ≥ 1 − (1 − ȳ[1])2 ≥ 1 − (1 − r)2 > 0�6752

ȳ[2] ≥ 1 − (1 − x̄[1])3 ≥ 1 − (1 − r)6 > 0�9657

x̄[2] ≥ 1 − (1 − ȳ[2])3 ≥ 1 − (1 − r)18 > 1 − 10−4

ȳ[3] ≥ 1 − (1 − x̄[2])4 ≥ 1 − (1 − r)72 > 1 − 10−16�

(11)

Part of the intuition behind the proof of Proposition 3 is straightforward. Consider an
interior rest point ξ = (x� y) of the BEP(τall�1�βmin) dynamic when d is even. Inequality
(6) says that if 1 − ȳ[k] is small (i.e., if few population 2 players stop before [k]), then
1 − x̄[k] is even smaller (i.e., few population 1 players stop before [k]), since some test
of a more cooperative strategy will very likely lead to a high payoff. Likewise, by (7), if
1 − x̄[k] is small, then 1 − ȳ[k+1] is smaller still. These inequalities imply that any lower
bound on ȳ[k] will quickly propagate into much stronger lower bounds on x̄[k], ȳ[k+1],
x̄[k+1], and so on (see (11)). Initiating this chain of reasoning requires a less obvious
step: we combine inequality (7) with a weak bound (9) on 1 − x̄[k] that depends on ȳ[k+1]
alone. This combination gives us the initial inequality ȳ[1] ≥ 0�4301, which in turn leads
to the strong bounds stated in the proposition.

3.2 Results based on exact computations

Proposition 3 places strong lower bounds on the degree of cooperation arising at any
rest point other than the unstable backward induction state. To gain a more precise un-
derstanding of the form and stability of such rest points, we turn to exact computations.
Because the dynamic (3) is a system of polynomials with rational coefficients, its zeros
can in principle be found by computing a Gröbner basis for the system. The Gröbner
basis is a new system of equations that has the same zeros as the original system, but
can be solved by backward substitution. Once the Gröbner basis has been obtained,
polynomial factoring and root finding algorithms can be used to identify its zeros and,
hence, the zeros of the original system. Applying these techniques, which are described
in detail in Appendix C, leads to part (i) of the following result.

Proposition 4. In centipede games of lengths 3 ≤ d ≤ 6, the following statements hold:

(i) The BEP(τall�1�βmin) dynamic has exactly two rest points: ξ†, and ξ∗ = ξ∗(d) ∈
int(�).

(ii) The rest point ξ∗ is asymptotically stable.

Exact solutions can only be obtained for games of length at most 6 because of the
computational demands of computing the Gröbner bases. Two indications of these de-
mands are that when d = 6, the leading (univariate) polynomial from the Gröbner basis
is of degree 221 and a coefficient of one of the polynomials in the basis has 13,278 digits.

Table 1 reports the approximate values of the interior rest points ξ∗ = ξ∗(d), referring
to strategies using the last-to-first notation [k] introduced in Section 2.4. Evidently, the
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Population p Population q

[3] [2] [1] [0] [3] [2] [1] [0]

d = 3 0�618034 0�381966 0�381966 0�381966 0�236068
d = 4 0�113625 0�501712 0�384663 0�337084 0�419741 0�243175
d = 5 0�113493 0�501849 0�384658 0�001462 0�335672 0�419706 0�243160
d = 6 3�12 × 10−9 0�113493 0�501849 0�384658 0�001462 0�335672 0�419706 0�243160

Note: The p denotes the owner of the penultimate decision node; the q denotes the owner of the last decision node.

Table 1. “Exact” interior rest points ξ∗ = ξ∗(d) of the BEP(τall�1�βmin) dynamic.

d = 3 −1 ± 0�3820 −1
d = 4 −1�1411 ± 0�3277i −0�8589 ± 0�3277i
d = 5 −1�1355 ± 0�3284i −0�8645 ± 0�3284i −1
d = 6 −1�1355 ± 0�3284i −0�8645 ± 0�3284i −1 ± 9�74 × 10−5i

Table 2. Eigenvalues of the derivative matrices DV (ξ∗) of the BEP(τall�1�βmin) dynamic.

masses on each strategy are nearly identical for games of lengths 4, 5, and 6, with nearly
all of the weight in both populations being placed on continuing to the end, stopping at
the last node, or stopping at the penultimate node.

In principle, it is possible to prove the local stability of the rest points ξ∗ = ξ∗(d) us-
ing linearization. But since the components of ξ∗ are algebraic numbers, computing the
eigenvalues of DV (ξ∗) requires finding the exact roots of a polynomial with algebraic
coefficients, a computationally intensive problem. Fortunately, we can prove local sta-
bility without doing so. Instead, we compute the eigenvalues of the matrix DV (ξ), where
ξ is a rational point that is very close to ξ∗, showing that these eigenvalues all have nega-
tive real part. Proposition 6 in Appendix D establishes an upper bound on the distances
between the eigenvalues of DV (ξ) and DV (ξ∗). Importantly, this bound can be evalu-
ated without having to compute the roots of a polynomial with algebraic coefficients or
to invert a matrix with algebraic components, as both of these operations quickly be-
come computationally infeasible. Combining these steps allows us to conclude that the
eigenvalues of DV (ξ∗) also have negative real part. For a detailed presentation of this
argument, see Appendix D.

The approximate eigenvalues of DV (ξ∗) are reported in Table 2. Note that the eigen-
values for games of length 5 and 6 are nearly identical, with the replacement of an eigen-
value of −1 by a pair of complex eigenvalues that are very close to −1.

3.3 Numerical results

Because exact methods allow us to determine only the rest points of the BEP(τall�1�
βmin) dynamic in centipede games of lengths d ≤ 6, we use numerical methods to study
games of lengths 7–20. We know from Proposition 3 that at any rest point besides the
backward induction state ξ†, the weight on strategies that stop before either player’s
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Figure 2. The stable rest point ξ∗ = ξ∗(d) of centipede under the BEP(τall�1�βmin) dynamic
for game lengths d = 3� � � � �10 and d = 20. Stacked bars, from the bottom to the top, represent
weights on strategy [0] (continue at all decision nodes), [1] (stop at the last node), [2] (stop at the
second-to-last node), etc. The dashed line separates exact (d ≤ 6) and numerical (d ≥ 7) results.

third-to-last node is very small. This suggests that the presence of earlier nodes should
have little bearing on how the game is played.

Our numerical analysis suggests that for game lengths 7 ≤ d ≤ 20, there are exactly
two rest points: the backward induction state ξ† and an interior rest point ξ∗ = ξ∗(d).
As Figure 2 illustrates, the form of the interior rest point follows the pattern from Ta-
ble 1: regardless of the length of the game, nearly all of the mass is placed on each pop-
ulation’s three most cooperative strategies, and the weights on these strategies are es-
sentially independent of the length of the game. Precise numerical estimates of these
rest points are provided in Appendix III available in a supplementary file on the journal
website, http://econtheory.org/supp3565/supplement.pdf, as are numerical estimates
of the eigenvalues of the derivative matrices DV (ξ∗). The latter are essentially identical
to those presented in Table 2 for d = 6, with the addition of an eigenvalue of ≈ −1 for
each additional decision node.

These numerical results suggest that the conclusions about rest points established
analytically for games of lengths d ≤ 6 continue to hold for longer games: there are al-
ways exactly two rest points: the backward induction state ξ† and a stable interior rest
point ξ∗ whose form barely varies with the length of the game.

The facts that the vertex ξ† is repelling, the interior rest point ξ∗ = ξ∗(d) is attracting,
and these are the only two rest points give us a strong reason to suspect that state ξ∗

attracts all solutions of the BEP(τall�1�βmin) dynamic other than the stationary solution
at ξ†.17 To argue that ξ∗ is almost globally stable, we introduce the candidate Lyapunov

17For there to be other solutions that did not converge to ξ∗ without the dynamics having another rest
point, the flow of the dynamics would need to have very special topological properties. For instance, in a
two-dimensional setting, this could occur if ξ∗ were contained in a pair of concentric closed orbits, where
the inner orbit is repelling and the outer orbit is attracting.

http://econtheory.org/supp3565/supplement.pdf
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function

L(x� y)=
s1∑
i=2

(
xi − x∗

i

)2 +
s2∑
j=2

(
yj − y∗

j

)2
�

In words, L(x� y) is the squared Euclidean distance of (x� y) from (x∗� y∗) if the points in
the state space � are represented in Rd by omitting the first components of x and y.

The Gröbner basis techniques used in Section 3.2 are not suitable for establishing
that L is a Lyapunov function. For the centipede game of length d = 3, we are able to ver-
ify that L is a Lyapunov function using an algorithm from real algebraic geometry called
cylindrical algebraic decomposition (Collins (1975)). However, exact implementations of
this algorithm fail to terminate in longer games.

We therefore verify numerically that L is a Lyapunov function. For games of lengths
4–20, we chose one billion (109) points from the state space � uniformly at random, and
evaluated a floating-point approximation of L̇ at each point. In all instances, the approx-
imate version of L̇ evaluated to a negative number. This numerical procedure covers the
state space fairly thoroughly for the game lengths we consider,18 and so provides strong
numerical evidence that the interior rest point ξ∗ is an almost global attractor.

3.4 Other specifications of the dynamics

To test the robustness of the preceding results, we repeat the analyses for other speci-
fications of BEP(τ�1�β) dynamics. In addition to the test-all rule τall, we also studied a
test-set rule under which the revising agent considers only his current strategy and one
other strategy (τtwo), as well as a rule under which the revising agent considers only his
current strategy and one adjacent strategy (τadj). The qualitative behavior under these
test-set rules is similar to that under τall. The differences worth mentioning are that
stable play is concentrated on a larger number of strategies (e.g., nine strategies in to-
tal have mass of at least 0�01 under BEP(τtwo�1�βmin)) and that the rate of decay of the
weights on strategies that stop earlier is not as severe as under τall. The intuition here
is simple. Under test-all, a revising agent will try out all of his most cooperative strate-
gies, providing many opportunities for some such strategy to perform best; if instead
only two strategies are tested at a time, the selective pressure against less cooperative
strategies is weaker.

In addition, we also considered alternative tie-breaking rules: stick/min-if-tie, which
chooses the agent’s current strategy if it is optimal and chooses the lowest-numbered
strategy otherwise, and uniform-if-tie, which randomizes uniformly among the optimal
strategies (as in Osborne and Rubinstein (1998) and Sethi (2000)). As we noted in Sec-
tion 2.5, uniform tie-breaking implies that the backward induction state ξ† is not a rest
point, rendering a stability analysis of this rest point unnecessary. In other respects,
alternate choices of tie-breaking rules have little qualititative impact on behavior.

18By a standard combinatoric formula, the number of states in a grid in � = X × Y with mesh 1
m is(m+s1−1

m

)(m+s2−1
m

)
. Applying this formula shows for a game of length 10 that 109 is between the numbers of

states in grids in � of meshes 1
17 (since

(22
17

)2 = 693,479,556) and 1
18 (since

(23
18

)2 = 1,132,255,201). For a game
of length 15, the comparable meshes are 1

10 and 1
11 , and for length 20 are 1

7 and 1
8 .
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In summary, the results presented in previous sections are highly robust to alterna-
tive specifications of the dynamics.

4. Larger numbers of trials

The analysis thus far has focused on cases in which agents test each strategy in their test
sets exactly once. We now examine aggregate behavior when each strategy is subject to
larger numbers of trials κ, focusing on BEP(τall�κ�βmin) dynamics.

4.1 Instability and stability of the backward induction state

Proposition 1 shows that the backward induction state ξ† is a repellor under the
BEP(τall�κ�βmin) dynamic with κ = 1. The following proposition shows that ξ† remains
unstable as long as the number of trials κ is less than the length of the game d and then
becomes stable for larger numbers of trials. The statement is complicated slightly by the
dependence of the crossover point on whether d is even or odd.

Proposition 5. Under the BEP(τall�κ�βmin) dynamic in the centipede game of length
d, the backward induction state ξ† is unstable if κ ≤ 2	d

2 
 and is asymptotically stable
otherwise.

Like those of the earlier stability analyses, the proof of Proposition 5, which is pre-
sented in Appendix E, is based on linearization. The key observation is that lineariza-
tions of BEP dynamics around pure rest points are driven by match results in which
exactly one out of all κsp match partners plays a strategy different from the equilibrium
strategy. We show that if κ ≤ d − 1 (for d even) or κ ≤ d (for d odd), there is enough
sensitivity to perturbations of the state to ensure the existence of an unstable manifold
through ξ†; however, unlike in the κ = 1 case, ξ† need not be a repellor. Conversely,
if these inequalities are violated, strategy 1 ∈ S1 earns the highest total payoff after any
matching with exactly one discrepant opponent. This insensitivity of population 1’s be-
havior to small changes in population 2’s behavior ensures local stability.

So as to assess the practical relevance of the stability of the backward induction state
for larger numbers of trials, we use numerical analysis to estimate the basin of attraction
of ξ† and to determine the position of the interior saddle point of the dynamics, which
lies on the manifold separating the basin of ξ† from the basin of the main attractor. We
focus for tractability on games of length d = 4 and numbers of trials κ ≤ 100. Details of
these analyses are presented in Appendices IV and V in the Supplemental Material.

We have two main findings from this numerical analysis. First, the basin of attraction
is always minuscule, with volumes always smaller than 0�01% of the total volume of the
state space �. Second, ξ† is almost completely nonrobust to changes in behavior in
population 1. Evidence for this lies in the position of the saddle points, which have
more than 99�8% of population 1 agents choosing strategy 1, indicating that changes
in the behavior of 0�2% of population 1 agents are enough to disrupt the stability of ξ†.
Thus, the exact stability analysis of the backward induction state for larger numbers of
trials is undercut by a thorough numerical analysis of the dynamics in the vicinity of that
state.
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4.2 Persistence of the stable interior rest point

When agents test their strategies thoroughly, the distributions of opponents’ choices
they face when testing each strategy will come to resemble the current distribution of
play in the opposing population. Since agents choose the strategy whose total payoff
during testing was highest, this suggests that the rest points of the resulting dynamics
should approximate Nash equilibria. Indeed, when agents possess exact information,
so that play adjusts according to the exact best response dynamic (Gilboa and Matsui
(1991), Hofbauer (1995)), the results of Xu (2016) imply that every solution trajectory
converges to the set of Nash equilibria; in centipede, all Nash equilibria entail all popu-
lation 1 agents stopping immediately.

While the intuition suggested above is correct for large enough numbers of trials, it
is nevertheless the case that stable cooperative behavior can persist when the number of
trials of each strategy is substantial. To illustrate this, we consider play in the centipede
game of length d = 4 under the BEP(τall�κ�βmin) dynamic. Figures 3 and 4 present the
stable rest points of this dynamic for numbers of trials κ up to 50, which we computed
using numerical methods. While increasing the number of trials shifts mass toward un-
cooperative strategies, it is clear from the figures that this shifting takes place gradually:
even with rather thorough testing, significant levels of cooperation are still maintained.
We note as well that the fraction of population 2 agents who play the weakly dominated
strategy [0] (always continue) becomes fixed between 7% and 6�5% once κ≥ 15, even as
the fraction of population 1 agents who play strategy [0] remains far from 0 (specifically,
between 28% and 18%).

While surprising at first glance, these facts can be explained by considering both
the expectations and the dispersions in the payoffs obtained through repeated trials of
each strategy. As an illustration, consider the stable rest point when κ= 32, namely ξ∗ =
(x∗� y∗)≈ ((0�2140�0�5738�0�2122), (0�6333�0�3010�0�0657)). Let �j be a random variable
that represents the payoff obtained by a population 2 agent who plays strategy j in a
single random match at this state. By (2) (or Figure 1), the expected payoffs to this agent’s
three strategies are

E(�1) = (0�3�3) · x∗ = 2�3580�

E(�2) = (0�2�5) · x∗ = 2�2086�

E(�3) = (0�2�4) · x∗ = 1�9964�

From this we anticipate that the strategy weights in population 2 satisfy y∗
1 > y∗

2 > y∗
3 .

To explain why these weights take the values they do, we also need to know how
dispersed are the payoffs from testing each strategy. We thus compute the variances of
the single-test payoffs �j :

Var(�1)= 1�5138�

Var(�2)= 2�7223�

Var(�3)= 1�7048�
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Figure 3. The stable interior rest point of the BEP(τall�κ�βmin) dynamic in the centipede game
of length d = 4, κ = 1� � � � �50. Stacked bars, from the bottom to the top, represent weights on
strategies [0], [1], and [2].

Using these calculations and the central limit theorem, we find that the difference be-
tween the average payoffs from 32 tests of strategy 3 and 32 tests of strategy 2 is approx-
imately normally distributed with mean E(�3) − E(�2) = −0�2122 and standard devi-
ation

√
(Var(�3)+ Var(�2))/32 ≈ 0�3720. The latter statistic is commensurate with the

former. Thus the weakly dominated strategy 3 yields a higher total payoff than the dom-
inating strategy 2 with approximate probability P(Z ≥ 0�57) ≈ 0�28 and so is not a rare
event. Likewise, evaluating the appropriate multivariate normal integrals shows that the
probabilities of strategies 1, 2, and 3 yielding the highest total payoff are approximately
0�61, 0�32, and 0�07, figures which accord fairly well with the components of y∗.

As the number of trials κ becomes larger, greater averaging reduces the variation in
each strategy’s payoffs per trial. At the same time, increasing κ increases the weight x∗

1
on stopping immediately at the expense of population 1’s other two strategies, hence re-
ducing the differences in the expected payoffs of population 2’s strategies. This explains
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Figure 4. The stable interior rest point in centipede of length d = 4 under BEP(τall�κ�βmin)

dynamics for κ = 1� � � � �34 trials of each tested strategy. Lighter shading corresponds to larger
numbers of trials. Dashed lines represent boundaries of best response regions.

why the strategy weights in population 2 do not vary very much as κ increases and why
the weight on the weakly dominated strategy hardly varies at all.

4.3 Convergence to cycles

Figure 3 does not record rest points for certain numbers of trials above 34. For these val-
ues of κ, the population state does not converge to a rest point. Instead, our numerical
analyses indicate that for all κ with empty entries in Figure 3 and all κ between 51 and
100, the BEP(τall�κ�βmin) dynamic converges to a periodic orbit. Figure 5 presents the
cycles under the BEP(τall�κ�βmin) dynamics for κ = 50, 100, and 200. In all three cases,
we observe substantial levels of cooperative play in population 1 over the course of the
cycle, with the fraction of the population choosing to continue at the initial node varying
between 0�50 and 0�83 for κ = 50, between 0�28 and 0�70 for κ = 100, and between 0�16
and 0�45 for κ = 200. These examples illustrate that cooperative behavior can persist
even when agents have substantial amounts of information about opponents’ play.

From a methodological point of view, the existence of attracting limit cycles under
BEP dynamics suggests that solution concepts like S(k) equilibrium and logit equilib-
rium that are motivated as steady states of dynamic disequilibrium processes should be
applied with some caution. Existence results for such solution concepts can generally be
proved by appeals to suitable fixed point theorems. But the fact that static solutions exist
need not imply that any are stable, and it may happen that no static solution provides a
good prediction of the behavior of the underlying dynamic process.

5. Conclusion

In this paper, we introduce a class of game dynamics built on natural assumptions about
the information agents obtain when revising, and we show that these dynamics lead to
cooperative behavior in the centipede game. One key feature of the agents’ revision pro-
cess is that conditional on the current population state, the experienced payoffs to each
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Figure 5. Stable cycles in centipede of length d = 4 under BEP(τall�κ�βmin) dynamics for
κ = 50, 100, and 200. Lighter shading represents faster motion. The small circles represent the
unstable interior rest points. For κ = 50 and 100, shapes synchronize positions along the cycle.

strategy are independent of one another. This allows cooperative strategies with sub-
optimal expected payoffs to be played with nonnegligible probabilities, even when the
testing of each strategy involves substantial numbers of trials. The use of any such strat-
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egy increases the expected payoffs of other cooperative strategies, creating a virtuous
circle that sustains cooperative play.

Appendix A: Proof of Proposition 1

A.1 Generalities

Letting s = s1 + s2, we denote the tangent space of the state space � = X × Y by T� =
TX × TY = {(z1� z2)′ ∈Rs : ∑

i∈S1 z1
i = 0 and

∑
j∈S2 z2

j = 0} and we denote the affine hull

of � by aff(�) = T�+ ξ†. Writing our dynamics as

ξ̇ = V (ξ)� (D)

we have V : aff(�) → T�, and so DV (ξ)z ∈ T� for all ξ ∈ � and z ∈ T�. We can thus
view DV (ξ) as a linear map from T� to itself, and the behavior of the dynamics in the
neighborhood of a rest point is determined by the eigenvalues and eigenvectors of this
linear map. The latter are obtained by computing the eigenvalues and eigenvectors of
the product matrix �DV (ξ)�, where V : Rs → Rs is the natural extension of V to Rs,
and � is the orthogonal projection of Rs onto T�, i.e., the block diagonal matrix with
diagonal blocks I − 1

s1 11′ ∈ Rs1×s1
and I − 1

s2 11′ ∈ Rs2×s2
, where 1 = (1� � � � �1)′. Since V

maps � into T�, the projection is only needed when there are eigenspaces of DV (ξ)

that intersect both the set T� and its complement.
We prove that the backward induction state ξ† is a repellor using the following argu-

ment. Computing the eigenvalues and eigenvectors of DV (ξ†) as described above, we
find that ξ† is a hyperbolic rest point, meaning that all of the eigenvalues have a nonzero
real part.

The linearization of the dynamic (D) at rest point ξ† is the linear differential equation

ż =DV
(
ξ†)z (L)

on T�. The stable subspace Es ⊆ T� of (L) is the span of the real and imaginary parts of
the eigenvectors and generalized eigenvectors of DV (ξ†) corresponding to eigenvalues
with a negative real part. The unstable subspace Eu ⊆ T� of (L) is defined analogously.
The basic theory of linear differential equations implies that solutions to (L) on Es con-
verge to the origin at an exponential rate, that solutions to (L) on Eu diverge from the
origin at an exponential rate, and that the remaining solutions approach Eu and then
diverge from the origin at an exponential rate.

Let As =Es +ξ† and Au = Eu+ξ† denote the affine spaces that are parallel to Es and
Eu and that pass through ξ†. In Appendix A.2, we prove that under the BEP(τall�1�βmin)

dynamic, the dimensions of Es and Eu are d − 1 and 1, and that As is a supporting
hyperplane to � at ξ†.

Combining these facts with fundamental results from dynamical systems theory lets
us complete the proof that ξ† is a repellor. By the Hartman–Grobman theorem (Perko
(2013, Section 2.8)), there is a homeomorphism h between a neighborhood of ξ† in
aff(�) and a neighborhood of 0 in T� that maps solutions of (D) to solutions of (L). By
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the stable manifold theorem (Perko (2013, Section 2.7)), there is an invariant stable man-
ifold Ms ⊂ aff(�) of dimension dim(Es) = d−1 that is tangent to As at ξ† such that solu-
tions to (D) in Ms converge to ξ† at an exponential rate. Combining these results shows
that there is a neighborhood O ⊂ aff(�) of ξ† with these properties: O ∩ � ∩ Ms = {ξ†};
the initial conditions in O from which solutions converge exponentially quickly to ξ† are
those in O ∩Ms; and solutions from initial conditions in (O ∩�) \ {ξ†} eventually move
away from ξ†. Thus the properties stated in the previous paragraph imply that state ξ†

is a repellor of the dynamic (D) on �.

A.2 Computation of eigenvalues and eigenvectors

Starting from formula (3) and using the notations m ≡ d1 = s1 − 1 and n ≡ d2 = s2 − 1, it
is easy to verify that under the BEP(τall�1�βmin) dynamic,

DV
(
ξ†) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 · · · 0 m+ 1 1 · · · 1

0 −1
� � �

��� 0 1 · · · 1
���

� � �
� � � 0

���
���

� � �
���

0 · · · 0 −1 0 1 · · · 1

n+ 1 1 · · · 1 −1 0 · · · 0

0 1 · · · 1 0 −1
� � �

���
���

���
� � �

���
���

� � �
� � � 0

0 1 · · · 1 0 · · · 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

Write δi ∈Rs and εj ∈Rs for the standard basis vectors corresponding to strategies i ∈ S1

and j ∈ S2, respectively. For d ≥ 3, the eigenvalues of DV (ξ†) with respect to T� and the
bases for their eigenspaces are

−1�
{
δ2 − δi : i ∈ {3� � � � �m+ 1}} ∪ {

ε2 − εj : j ∈ {3� � � � � n+ 1}} (12)

−1 − √
mn�

{
(
√
mn�−√

n/m� � � � �−√
n/m| − n�1� � � � �1)′

}
(13)

−1 + √
mn�

{
(−√

mn�
√
n/m� � � � �

√
n/m | − n�1� � � � �1)′

}
� (14)

The eigenvectors in (12) and (13) span the stable subspace Es of the linear equation (L).
The normal vector to Es is

z⊥ =
(

− n+ 1
m+ 1

√
m

n
�

n+ 1
(m+ 1)

√
mn

� � � � �
n+ 1

(m+ 1)
√
mn

∣∣∣∣ −1�
1
n
� � � � �

1
n

)′
�

This vector satisfies

(
z⊥)′(

δi − δ1) = n+ 1√
mn

> 0 for i ∈ S1 \ {1}
(
z⊥)′(

εj − ε1) = n+ 1
n

> 0 for j ∈ S2 \ {1}�
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The collection of vectors {δi−δ1 : i ∈ S1}∪{εj−ε1 : j ∈ S2} describes the motions along all
edges of the convex set � emanating from state ξ†. Thus, the fact that their inner prod-
ucts with z⊥ are all positive implies that the translation of Es to ξ† is a hyperplane that
supports � at ξ†. Since the remaining eigenvalue, from (14), is positive, the arguments
from the start of the section allow us to conclude that ξ† is a repellor.

Appendix B: Proof of Proposition 2

The following differential inequality allows us to obtain simple lower bounds on the use
of initially unused strategies. In all cases in which we apply the lemma, v(0) = 0.

Lemma 1. Let v : [0�T ] →R+ satisfy v̇(t) ≥ a(t)− v(t) for some a : [0�T ] → R+. Then

v(t)≥ e−t

(
v(0)+

∫ t

0
esa(s)ds

)
for all t ∈ [0�T ]� (15)

Proof. Clearly v(t) = v(0) + ∫ t
0 v̇(s)ds ≥ v(0) + ∫ t

0 (a(s) − v(s))ds. The final expression
is the time t value of the solution to the differential equation v̇(s) + v(s) = a(s) with
initial condition v(0). Using the integrating factor es to solve this equation yields the
right-hand side of (15).

For the analysis to come, it will be convenient to work with the set S = S1 ∪ S2 of
all strategies from both populations and to drop population superscripts from notation
related to the state; for instance, writing ξi rather than ξ

p
i .

We use Lemma 1 to prove inward motion from the boundary under BEP dynamics
in the following way. Write ξ̇i = ri(ξ)− ξi, where ri(ξ) is the polynomial appearing in the
formula (1) for the BEP(τ�1�β) dynamic. Let {ξ(t)}t≥0 be the solution to the dynamic
with initial condition ξ(0). Let S0 = supp(ξ(0)) and Q = min{ξh(0) : h ∈ S0}, and, finally,
let S1 = {i ∈ S \ S0 : ri(ξ(0)) > 0} and R= 1

2 min{rk(ξ(0)) : rk(ξ(0)) > 0}.
By the continuity of (1), there is a neighborhood O ⊂ � of ξ(0) such that every χ ∈ O

satisfies χh > Q for all h ∈ S0 and χ̇i ≥ R for all i ∈ S1, and since (1) is smooth, there is a
time T > 0 such that ξ(t) ∈O for all t ∈ [0�T ]. Thus, applying Lemma 1 shows that

ξi(t) ≥R
(
1 − e−t

)
for all t ∈ [0�T ] and i ∈ S1�

Now let S2 be the set of j /∈ S0 ∪ S1 for which there is a term of polynomial rj whose
factors all correspond to elements of S0 or S1. If this term has a factors in S0, b factors in
S1, and coefficient c, then the foregoing claims and Lemma 1 imply that

ξj(t) ≥ cQae−t
∫ t

0
es

(
R
(
1 − e−s

))b
ds for all t ∈ [0�T ]� (16)

Proceeding sequentially, we can obtain positive lower bounds on the use of any strat-
egy for times t ∈ (0�T ] by considering as-yet-unconsidered strategies k whose polyno-
mials rk have a term whose factors all correspond to strategies for which lower bounds
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have already been obtained. Below, we prove that solutions to the BEP(τall�1�βmin) dy-
namic from states ξ(0) �= ξ† immediately enter int(�) by showing that the strategies in
S \ S0 can be considered in a sequence that satisfies the property just stated.

To proceed, we use the notations i[1] and i[2] to denote the ith strategies of players 1
and 2. We also introduce the linear order ≺ on S defined by 1[1] ≺ 1[2] ≺ 2[1] ≺ 2[2] ≺ 3[1] ≺
� � � , which arranges the strategies according to how early they stop play in centipede.

Proof of Proposition 2. Fix an initial condition ξ(0) �= ξ†. We can sequentially add
all strategies in S \ S0 in accordance with the property above as follows:

(i) We add the strategies {i ∈ S \S0 : i ≺ maxS0} in decreasing order. At the point that
i has been added, i’s successor h has already been added, and strategy i is the unique
best response when the revising agent tests all strategies against opponents playing h.
Let SI denote the set of strategies added during this stage. The assumption that ξ(0) �= ξ†

implies that S0 ∪ SI contains 1[1], 1[2], and 2[1].
(ii) We add the strategies j ∈ S2 \ (S0 ∪ SI). We can do so because j is the unique best

response when it is tested against 2[1] and all other strategies are tested against 1[1].
(iii) We add the strategies k ∈ S1 \ (S0 ∪ SI). We can do so because k is the unique

best response when it is tested against 2[2] and other strategies are tested against 1[2].

Appendix C: Exact solutions of systems of polynomial equations

In this section, we describe the algebraic tools that we use to compute the exact rest
points of BEP dynamics in centipede games (Proposition 4(i)).

C.1 Gröbner bases

Let Q[z1� � � � � zn] (Q[z] for short) denote the collection (more formally, the ring ) of poly-
nomials in the variables z1� � � � � zn with rational coefficients. Let F = {f1� � � � � fm} ⊂ Q[z]
be a set of such polynomials. Let Z be a subset of Rn and consider the problem of finding
the set of points z∗ ∈Z that are zeros of all polynomials in F .

To do so, it is convenient first to consider finding all zeros in Cn of the polynomials
in F . In this case, the set of interest,

V(f1� � � � � fm) = {
z∗ ∈Cn : fj

(
z∗) = 0 for all 1 ≤ j ≤m

}
� (17)

is called the variety (or algebraic set) generated by f1� � � � � fm. To characterize (17), it is
useful to introduce the ideal generated by f1� � � � � fm:

〈f1� � � � � fm〉 =
{ m∑
j=1

hjfj : hj ∈C[z] for all 1 ≤ j ≤m
}
� (18)

Thus, the ideal (18) is the set of linear combinations of the polynomials f1� � � � � fm, where
the coefficients on each are themselves polynomials in C[z]. It is easy to verify that any
other collection of polynomials in C[z] whose linear combinations generate the ideal
(18)—that is, any other basis for the ideal—also generates the variety (17).
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For our purposes, the most useful basis for the ideal (18) is the reduced lex-order
Gröbner basis, which we denote by G ⊂ Q[z]. This basis, which contains no superfluous
polynomials and is uniquely determined by its ideal and the ordering of the variables,
has this convenient property: it consists of polynomials in zn only, polynomials in zn
and zn−1 only, polynomials in zn, zn−1, and zn−2 only, and so forth. Thus, if the variety
(17) has cardinality |V| < ∞, then it can be computed sequentially by solving univariate
polynomials and substituting backward.19

In many cases, including all that arise in this paper, the basis G is of the simple form

G = {
gn(zn)� zn−1 − gn−1(zn)� � � � � z1 − g1(zn)

}
(19)

for some univariate polynomials gn� � � � � g1, where gn has degree deg(gn) = |V| and where
deg(gk) < |V| for k < n.20 In such cases, one computes the variety (17) by finding the |V|
complex roots of gn and then substituting each into the other n−1 polynomials to obtain
the |V| elements of (17).21

C.2 Algebraic numbers

The first step in finding the zeros of the polynomials in G ⊂ Q[z] is to find the roots of
the univariate polynomial gn. There are well known limits to what can be accomplished
here: Abel’s theorem states that there is no solution in radicals to general univariate
polynomial equations of degree 5 or higher. Nevertheless, tools from computational
algebra allow us to represent such solutions exactly.

Let Q̄ ⊂ C denote the set of algebraic numbers: the complex numbers that are roots
of nonzero polynomials with rational coefficients. The set Q̄ is a subfield of C, and this
fact and the definition of algebraic numbers are summarized by saying that Q̄ is the
algebraic closure of Q.22

Every univariate polynomial g ∈Q[x] can be factored as a product of irreducible poly-
nomials in Q[x], which cannot themselves be further factored into products of noncon-
stant elements of Q[x].23 If an irreducible polynomial h ∈ Q[x] is of degree k, it has k

distinct roots a1� � � � � ak ∈ Q̄. The multiple of h whose leading term has coefficient 1 is

19The notion of Gröbner bases and the basic algorithm for computing them are due to Buchberger
(1965). Cox et al. (2015) provide an excellent current account of Gröbner basis algorithms as well as a thor-
ough introduction to the ideas summarized above.

20According to the shape lemma, a sufficient condition for the reduced lex-order basis to be of form (19)
is that each point in (17) has a distinct zn component and that (18) be a radical ideal, meaning that if it
includes some integer power of a polynomial, then it includes the polynomial itself. See Becker et al. (1994)
and Kubler et al. (2014).

21Although we are only interested in elements of the variety (17) that lie in the state space �, the solution
methods described above work only if (17) has a finite number of solutions in Cn.

22Like C, Q̄ is algebraically closed, in that every univariate polynomial with coefficients in Q̄ has a root in
Q̄. It follows from this and the existence of lex-order Gröbner bases that when the variety (17) has a finite
number of elements, the components of its elements are algebraic numbers.

23“Typical” polynomials in Q[x] are irreducible: for instance, the quadratic ax2 +bx+ c with a�b� c ∈ Q is

reducible only if
√
b2 − 4ac ∈Q. By Gauss’s lemma, polynomial factorization in Q[x] is effectively equivalent

to polynomial factorization in Z[x]. For an excellent presentation of polynomial factorization algorithms,
see von zur Gathen and Gerhard (2013, Chapters 14–16).
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called the minimal polynomial of these roots. One often works instead with the multi-
ple of h that is primitive in Z[x], meaning that its coefficients are integers with greatest
common divisor 1.

Each algebraic number is uniquely identified by its minimal polynomial h and a la-
bel that distinguishes the roots of h from one another. For instance, one can label each
root aj ∈ Q̄ with a numerical approximation that is sufficiently accurate to distinguish aj
from the other roots. In computer algebra systems, the algebraic numbers with minimal
polynomial h are represented by pairs consisting of h and an integer in {1� � � � �k} that
ranks the roots of h with respect to some ordering; for instance, the lowest integers are
commonly assigned to the real roots of h in increasing order. Just as the symbol

√
2 is a

label for the positive solution to x2 − 2 = 0, the approach above provides labels for every
algebraic number.24

If the Gröbner basis G is of form (19), then we need only look for the roots of the
irreducible factors h of the polynomial gn, which are the possible values of xn ∈ Q̄; then
substitution into the univariate polynomials gn−1� � � � � g1 determines the corresponding
values of the other variables. The fact that these latter values are generated from a fixed
algebraic number allows us to work in subfields of Q̄ in which arithmetic operations
are easy to perform. If the minimal polynomial h of α ∈ Q̄ has degree deg(h), then for
any polynomial f , one can find a polynomial f ∗ of degree deg(f ∗) < deg(h) such that
f (α) = f ∗(α). It follows that the values of gn−1(α)� � � � � g1(α) are all elements of

Q(α)=
{deg(h)−1∑

k=0

akα
k : a0� � � � � adeg(h)−1 ∈Q

}
⊂ Q̄�

called the field extension of Q generated by α. Straightforward arguments show that the
representation of elements of Q(α) by sequences of coefficients (a0� � � � � ad) makes addi-
tion and multiplication in Q(α) simple to perform. For further details on algebraic num-
bers and field extensions, we refer the reader to Dummit and Foote (2004, Chapter 13)
and Cohen (1993, Chapter 4).

C.3 Examples

To illustrate the techniques above, we use them to compute the rest points of the
BEP(τtwo�1�βmin) dynamic in the centipede games with d = 3 and d = 4 decision nodes.
Since x ∈X and y ∈ Y , we need not explicitly write the laws of motion for the final com-
ponents of x and y, as those components can be deduced from others and the simplex
constraints.25

24There are exact methods based on classic theorems of Sturm and Vincent for isolating the real roots of
a polynomial with rational coefficients; see McNamee (2007, Chapters 2 and 3) and Akritas (2010).

25The Gröbner basis algorithm sometimes runs faster if all components are retained and the left-hand

sides of the constraints
∑s1

i=1 xi − 1 = 0 and
∑s2

j=1 yj − 1 = 0 are included in the initial set of polynomials.
Our Mathematica notebook includes both implementations.
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Example 3. The BEP(τtwo�1�βmin) dynamic in centipede of length d = 3 is

ẋ1 = 1
2
(
y1(x1 + x2)+ y1(x1 + x3)

) − x1

ẋ2 = 1
2
(
y2(x1 + x2)+ (

y2 + (y1)
2)(x2 + x3)

) − x2 (20)

ẏ1 = (
(x2 + x3)(x1 + x2)+ (x1)

2)(y1 + y2)− y1�

To find the rest points of this system, we substitute x3 = 1 −x1 −x2 and y2 = 1 − y1 in the
right-hand sides of (20) to obtain a system of three equations and three unknowns. We
then compute a Gröbner basis of form (19) for the right-hand sides of (20):{

3(y1)
4 − 8(y1)

3 + 13(y1)
2 − 12y1 + 4�4x2 + 3(y1)

3 − 5(y1)
2 + 6y1 − 4�

8x1 − 3(y1)
3 + 2(y1)

2 − 9y1 + 2
}
� (21)

The initial quartic in (21) has roots 1, 2
3 , and (1 ±√

7i)/2. Of course, only the first two
roots could be components of states in �. Substituting y1 = 1 in the remaining polyno-
mials in (21) and equating them to 0 yields x1 = 1 and x2 = 0, which with the simplex
constraints gives us the backward induction state ξ†. Substituting y1 = 2

3 instead yields
the interior state ξ∗ = (x∗� y∗)= (( 1

2 �
1
3 �

1
6)� (

2
3 �

1
3)). This is the complete set of rest points

of the dynamic (20). ♦

Example 4. The BEP(τtwo�1�βmin) dynamic in centipede of length d = 4 is

ẋ1 = 1
2
(
y1(x1 + x2)+ y1(x1 + x3)

) − x1

ẋ2 = 1
2
(
(y2 + y3)(x1 + x2)+ (

y2 + y1(y1 + y3)
)
(x2 + x3)

) − x2

ẏ1 = 1
2
(
(x2 + x3)(x1 + x2)+ (x1)

2)((y1 + y2)+ (y1 + y3)
) − y1

ẏ2 = 1
2
(
(x2 + x3)(x1 + x3)(y1 + y2)+ (

x1 + x2(x2 + x3)+ (x3)
2)(y2 + y3)

) − y2�

We can again compute a Gröbner basis of form (19). Its univariate polynomial is

4096(y2)
8 − 28,608(y2)

7 + 79,812(y2)
6 − 64,332(y2)

5 + 39,744(y2)
4

− 9180(y2)
3 + 648(y2)

2 − 243y2� (22)

This polynomial has root 0, which again generates the backward induction state ξ†.
Dividing (22) by y2 yields an irreducible seventh degree polynomial. Using the al-
gorithms mentioned above, one can show that this polynomial has one real root,
which we designate by y∗

2 = Root[4096α7 − 28,608α6 + 79,812α5 − 64,332α4 + 39,744α3 −
9180α2 + 648α − 243�1] ≈ 0�3607, and six complex roots. Substituting y∗

2 into the
remaining polynomials from the Gröbner basis and using the simplex constraints,
we obtain an exact expression for the interior rest point ξ∗, whose components are
elements of the field extension Q(y∗

2 ); their approximate values are ξ∗ = (x∗� y∗) ≈
((0�2575�0�4358�0�3068)� (0�4095�0�3607�0�2298)). ♦
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Appendix D: Proof of Proposition 4(ii)

The interior rest point ξ∗ of the dynamic ẋ = V (x) is locally stable if all eigenvalues of
the derivative matrix DV (ξ∗) have negative real part. Since each entry of the deriva-
tive matrix DV (ξ∗) is a polynomial with many terms that is evaluated at a state whose
components are algebraic numbers, it is not feasible to compute its eigenvalues exactly.
We circumvent this problem by computing the eigenvalues of the derivative matrix at a
nearby rational state ξ and making use of a bound on the distances between the eigen-
values of the two matrices. This bound is established in Proposition 6.

As in Appendix A, let s = s1 + s2 = d + 2, let ξ̇ = V (ξ), V : aff(�) → T� denote an
instance of the BEP dynamics, and let V : Rs → Rs denote the natural extension of V to
Rs . Observe that if DV (ξ) is diagonalizable, then so is DV (ξ), and all eigenvalues of the
latter are eigenvalues of the former. To state the proposition, we write S = S1 ∪ S2 and
omit population superscripts to define

�= max
i∈S

max
k∈S

∑
j∈S

∂2Vi

∂ξj∂ξk
(1� � � � �1|1� � � � �1)� (23)

Proposition 6. Suppose that DV (ξ) is (complex) diagonalizable with DV (ξ) = Q ×
diag(λ)Q−1, and let λ∗ be an eigenvalue of DV (ξ∗). Then there is an eigenvalue λi of
DV (ξ) such that

∣∣λ∗ − λi
∣∣< 2�

ss/2−1

tr
(
Q∗Q

)s/2∣∣det(Q)
∣∣ ∑

k∈S

∣∣ξk − ξ∗
k

∣∣� (24)

The eigenvalue perturbation theorem (26) that begins the proof of the proposition
bounds the distances between the eigenvalues of DV (ξ∗) and DV (ξ), but neither term
on its right-hand side is feasible to compute. The second paragraph of the proof provides
a bound on the condition number κ∞(Q) that does not require the computation of the
inverse of the (algebraic-valued) eigenvector matrix Q. The third paragraph provides a
bound on the norm of DV (ξ) − DV (ξ∗), which is needed because numerically evalu-
ating of the entries of DV (ξ∗) with guaranteed precision is computationally infeasible.
Two further devices that we employ to improve the bound and speed its computation
are described after the proof of the proposition.

Proof of Proposition 6. For M ∈Rs×s , let

|||M|||∞ = max
1≤i≤s

s∑
j=1

|Mij| (25)

denote the maximum row sum norm of M . Let κ∞(Q)= |||Q|||∞|||Q−1|||∞ be the condition
number of Q with respect to norm (25). The following eigenvalue perturbation theorem
(Horn and Johnson (2013, Observation 6.3.1)) follows from the Geršgorin disk theorem
and the submultiplicativity of matrix norms:∣∣λ∗ − λi

∣∣ ≤ κ∞(Q)
∣∣∣∣∣∣DV (ξ)−DV

(
ξ∗)∣∣∣∣∣∣∞� (26)
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To bound κ∞(Q), let |||M|||2 denote the spectral norm of M (i.e., the largest singular
value of M) and let κ2(Q) = |||Q|||2|||Q−1|||2 be the condition number of Q with respect to
this norm. Since the maximum row sum and spectral norms differ by a factor of at most√
s (Horn and Johnson (2013, Problem 5.6.P23)), it follows that

κ∞(Q) ≤ sκ2(Q)� (27)

Also, Guggenheimer et al. (1995) (see also Merikoski et al. (1997)) show that

κ2(Q) <
2∣∣det(Q)

∣∣
(

tr
(
Q∗Q

)
s

)s/2
� (28)

To bound the final expression in (26), note that by construction, each component of
the BEP dynamics ẋ = V (x) is the difference between a sum of monomials in the com-
ponents of ξ with positive coefficients and a linear term. Thus, the second derivatives of
Vi(ξ) are sums of monomials with positive coefficients. Since every component of every
state ξ ∈� is at most 1, we therefore have

max
ξ∈�

∣∣∣∣ ∂2Vi

∂ξj∂ξk
(ξ)

∣∣∣∣ ≤ ∂2Vi

∂ξj∂ξk
(1� � � � �1|1� � � � �1)� (29)

Thus, the fundamental theorem of calculus, (29), and (23) imply that

∣∣∣∣∣∣DV (ξ)−DV
(
ξ∗)∣∣∣∣∣∣∞ ≤ max

i∈S
∑
j∈S

∑
k∈S

∂2Vi

∂ξj∂ξk
(1� � � � �1|1� � � � �1)× ∣∣ξk − ξ∗

k

∣∣
≤ �

∑
k∈S

∣∣ξk − ξ∗
k

∣∣� (30)

Combining inequalities (26), (27), (28), and (30) yields inequality (24).

When applying Proposition 6, one can choose Q to be any matrix of eigenvectors
of DV (ξ). Guggenheimer et al. (1995) suggest that choosing the eigenvectors to have
Euclidean norm 1 (which if done exactly makes the expression in parentheses in (28)
equal 1) leads to the lowest bounds. We apply this normalization in the final step of our
analysis.

To use this bound to establish the stability of the interior rest point ξ∗, we choose
a rational point ξ close to ξ∗, compute the eigenvalues of the derivative matrix DV (ξ),
and evaluate the bound from Proposition 6. The eigenvalues of DV (ξ) all have negative
real part as long as ξ is reasonably close to ξ∗.

If ξ is close enough to ξ∗ that the bound is smaller than the magnitude of the real
part of any eigenvalue of DV (ξ), we can conclude that the eigenvalues of DV (ξ∗) all
have negative real part and, hence, that ξ∗ is asymptotically stable.

Selecting state ξ involves a trade-off: choosing ξ closer to ξ∗ reduces the bound,
but doing so also leads the components of ξ to have larger numerators and denomina-
tors, which slows the computation of the bound significantly. In all cases, we are able
to choose ξ satisfactorily and to conclude that ξ∗ is asymptotically stable. For further
details about how the computations are implemented, see the Supplemental Material.
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Appendix E: Proof of Proposition 5

Letting K = {1� � � � �κ}, we can write the population 1 equations of the BEP(τall�κ�βmin)

dynamic as

ẋi =
∑

r : S1×K→S2

( ∏
�∈S1�λ∈K

yr�λ

)
1
[
i = min

(
argmaxk∈S1 π1

k(r)
)] − xi�

where π1
k(r)=

κ∑
m=1

Akrkm� (31)

The result function (��λ) �→ r�λ specifies the strategy in S2 played by an agent’s match
partner during the λth test of strategy � for all � ∈ S1 and λ ∈K. The second piece of (31)
specifies the probability of a given result, and the third piece indicates whether strategy
i is the minimal optimal strategy for this result.

If there are two or more occurrences of strategies from S2 other than 1, then all par-
tial derivatives of the product in (31) equal 0. Thus, for the purposes of computing the
Jacobian, we need only consider results in which there are 0 or 1 match partners playing
strategies other than strategy 1 ∈ S2. These results comprise the following possibilities:

(i) If all match partners play strategy 1 ∈ S2, then strategy 1 ∈ S1 earns total payoff κ ·0
and all other strategies earn total payoff κ · (−1), so strategy 1 has the best experienced
payoff.

(ii) If the lone match against another strategy j ∈ S2 \ {1} occurs when the revising
agent plays strategy 1 ∈ S1, then total payoffs are as above and strategy 1 has the best
experienced payoff.

(iii) If the lone match against another strategy occurs when the revising agent plays
strategy i ∈ S1 \ {1} and if this match occurs against an opponent playing strategy j ∈
S2 \ {1}, then (using the payoffs Aij defined in (2)) strategy 1 is the minimal strategy
earning the best experienced payoff if

κ · 0 ≥ (κ− 1) · (−1)+
{

2i− 2 if i ≤ j

2j − 3 if i > j;
otherwise, strategy i uniquely obtains the best experienced payoff.

Accounting for all of these possibilities, including the fact that the matches in cases
(ii) and (iii) can occur during any of the κ tests of the strategy in question, we have

ẋ1 = (y1)
κs1 + κ(y1)

κs1−1

(
s2∑
j=2

yj +
s1∑
i=2

(
i−1∑
j=2

yj12j−2≤κ +
s2∑
j=i

yj12i−1≤κ

))

− x1 +O
(
(y−1)

2)

ẋi = κ(y1)
κs1−1

(
i−1∑
j=2

yj12j−3≥κ +
s2∑
j=i

yj12i−2≥κ

)
− xi +O

(
(y−1)

2)�
(32a)

where y−1 = ∑s2

j=2 yj and i ∈ S1 \ {1}.
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Turning to population 2, the test results with 0 or 1 match against opponents playing
strategies other than 1 ∈ S1 comprise the following possibilities:

(i) If all match partners play strategy 1 ∈ S1, then all strategies earn total payoff κ · 0,
so strategy 1 is the minimal strategy earning the best experienced payoff.

(ii) If the lone match against another strategy occurs when the revising agent plays
strategy j ∈ S2, then strategy j earns a positive total payoff and other strategies earn total
payoff 0, so strategy j has the best experienced payoff.

Accounting for both possibilities, we obtain

ẏ1 = (x1)
κs2 + κ(x1)

κs2−1
s1∑
i=2

xi − y1 +O
(
(x−1)

2)

ẏj = κ(x1)
κs2−1

s1∑
i=2

xi − yj +O
(
(x−1)

2)�
(32b)

where x−1 = ∑s1

i=2 xi and j ∈ S1 \ {1}.
Taking the derivative of (32a) and (32b) at state ξ†, we obtain the matrix (we write

this matrix for the case of d even, so that s1 = s2; roughly speaking, the case of d odd
corresponds to removing the final column)

DV
(
ξ†) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 · · · · · · 0 κs1 + · · · · · · +
0 −1

� � �
� � �

��� 0 κ12i−2≥κ · · · · · · κ12i−2≥κ
���

� � �
� � �

� � �
���

��� κ12j−3≥κ
� � �

� � �
���

���
� � �

� � �
� � � 0

���
���

� � �
� � �

���

0 · · · · · · 0 −1 0 κ12j−3≥κ · · · κ12j−3≥κ κ12i−2≥κ

κs2 κ · · · · · · κ −1 0 · · · · · · 0

0 κ · · · · · · κ 0 −1
� � �

���
���

���
���

� � �
� � �

���
���

� � �
� � �

��� 0
���

���
� � �

� � �
���

���
� � �

� � �
� � � 0

0 κ · · · · · · κ 0 · · · 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� (33)

Each + above represents the number that makes the column sum in the block equal κs1.
If all indicator functions in the upper-right block of DV (ξ†) equal 0, then each + in

(33) equals κs1, implying that this block is the zero operator on TY . In this case, (33)
acts as a block triangular matrix on T�, and so its lone eigenvalue with respect to T� is
−1, implying that ξ† is stable.

To check that the indicators are all 0 when d is even, it is enough to consider the
indicator for entry j = i = s2 ≡ 1

2d+ 1, which is 0 if and only if κ≥ d+ 1. When d is odd, it
is enough to check the indicator for entry j = i = s1 − 1 ≡ 1

2(d + 1), which is 0 if and only
if κ≥ d. We conclude that ξ† is asymptotically stable in these cases.
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To show that ξ† is unstable in the remaining cases (when κ≥ 2 and d ≥ 3), write

χκ
ij =

{
12i−2≥κ if i ≤ j

12j−3≥κ� if i > j
� χκ

i� =
s2∑
j=2

χκ
ij� and χκ

�� =
s1∑
i=2

s2∑
j=2

χκ
ij

for i� j ≥ 2. A straightforward calculation shows that λ = κ
√
χκ
��

− 1 is an eigenvalue of

DV (ξ†) that corresponds to eigenvector

z =
(
−χκ

���χ
κ
2�� � � � �χ

κ
s1�

| − (
s2 − 1

)√
χκ
��

�
√
χκ
��

� � � � �
√
χκ
��

)
�

Since κ ≥ 2, λ is positive whenever at least one of the indicators in DV (ξ†) equals 1.
Combining this with the previous argument, we conclude that ξ† is unstable whenever
it is not asymptotically stable.
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