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Abstract 

Awareness about environmental impact of greenhouse gas emissions has lead to search for other 

alternatives which can cover the same utility range of wellknown CFCs, HCFCs and PFCs but 

without their undesirable effects on the planet. Since Hydrofluoroether fluids (HFEs) have emerged 

as a good alternative, it is necessary to characterize their thermophysical properties in order to bring 

reliable data to the industry. Density and speed of sound are two of the most important physical 

properties because of the amount of information that they provide in the design of the machinery 

involved in the utilization of these fluids as well as data for the parametrization of equations of state. 

This paper reports a set of new data concerning high pressure density, ρ, for the binary mixture x 

HFE-7200 + (1-x) 2-propanol in a broad range of pressures (0.1 – 140 MPa), and at several 

temperatures (from 293.15 to 393.15 K). Density values were correlated by employing a Tait-like 

equation in the same p, T ranges, and the derivative properties, that is, the isothermal compressibility 

κT, and the isobaric expansion αP, were determined. Excess molar volumes V
E
, which bring 

information about the change in volume observed in the mixture were also calculated for the eight 

mole fractions investigated. Speeds of sound, c, at 0.1 MPa were measured experimentally in the 

temperature range (293.15 – 333.15 K). By using the Laplace equation, isentropic compressibilities, 

κS, were calculated from density and sound velocity values. 
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1. Introduction 

 



  

Segregated hydrofluoroethers (HFEs) are a class of fluids which were introduced in 1996 as an 

environmentally acceptable alternative to commonly used CFCs and HCFCs [1]. Unlike these two 

kind of fluids, HFEs have no chlorine atoms in its molecule, which lead to a favorable environmental 

profile. In the same manner, the presence of fluorine atoms impart characteristics of stability and 

nonflammability [2], and the ether structure promotes an increase of reaction with –OH radicals in the 

lower atmosphere. HFEs exhibit a good balance between safety, performance, and environmental 

properties, due to its low toxicity, nonflammability, compatibility with other materials, stability, zero 

ODP, short atmospheric lifetimes (ALT), low global warming potentials (GWP), and low solubility in 

water among others [3] . 

1-Ethoxy-1,1,2,2,3,3,4,4,4-nonafluorobutane, or HFE-7200, exhibits low viscosity, low surface 

tension, high density, no flash point and higher boiling point than most CFCs, HCFCs and HFCs, 

properties which make it useful as heat transfer fluid besides rinsing agent for vapor degreasing, 

aerosol cleaning, wipe cleaning, lubricant carrier, CFC, HCFC, HFC and PFC replacement agent. 

Particularly it is indicated to be a good substitute of HCFC-225 ca/cb, and HCFC-141b. Due to its 

dielectric nature, it can also be used for electronic cooling, and its mixture formulations are being 

considered for thermal management systems in the electronics industry [4]. 

Of utmost interest is its mixture with 2-propanol because at a mass composition of 87% of HFE-7200 

an azeotrope is formed with a minimun boiling point at 338.15 K. This binary azeotrope is viable to 

replace HCFC-225ca/cb for solvent cleaning operations [5]. The cleaning processes that use 

azeotropes require a stronger solvent mixture, and the mechanism of cleaning with an azeotrope 

system is almost exclussively via dissolving the soil [6], being able to clean many oils, waxes and 

greases. Though isopropanol is a flammable agent, the addition of the HFE leads the mixture to be 

nonflammable, and the equipment in which this azeotrope can be used does not differ from the 

conventionally used with other azeotropes. 

Due to the applications of the binary mixture x HFE-7200 + (1-x) 2-propanol, its thermophysical 

properties characterization is of interest. Density provides information about the change in volume 

that takes place when changes in pressure, p, and in temperature, T, occur in the mixture, and from its 

knowledge, derivative properties such as isobaric expansion αP, and isothermal compressibility κT, 

which are also of importance, can be determined. Obtaining high pressure and high temperature 

density data will provide the industry valuable information concerning this mixture. This paper 

reports 1264 points of density at several pressures (from 0.1 to 140 MPa) and at different 

temperatures (from 293.15 to 393.15 K) for eight mole fractions of the binary system x HFE-7200 + 

(1-x) 2-propanol. Isothermal compressibilities κT, and isobaric expansion values αP, were also 

determinded as well as the excess volumes in the temperature and pressure ranges considered. Speeds 

of sound at atmospheric pressure and in the temperature range (293.15 – 333.15 K) were determined 

and isentropic compressibilities were calculated from these data. 

 



  

2. Experimental 

 

2.1 Materials 

Hydrofluoroether fluid 1-ethoxy-1,1,2,2,3,3,4,4,4-nonafluorobutane, also known as HFE-7200 (CAS 

163702-06-5 / 163702-05-4) which consists of a mixture of two inseparable isomers with identical 

properties, was supplied by the 3M Company with a mass fraction purity greater than 99.0%. The 

compositions of the binary isomers of HFE-7200 were determined both by using F-NMR and H-

NMR analysis, with a Varian Unity Inova 400 MHz apparatus. The obtained results showed that the 

mole fraction of the isomer with CAS number 163702-06-5 was 61.7%, whereas the mole 

composition of the isomer with CAS 163702-05-4 was 38.3%, with an expanded uncertainty U(x) = 

0.05. The observed peaks for both spectroscopies are gathered in Figures S1 and S2. 

2-propanol (CAS 67-63-0) was obtained from Sigma-Aldrich with mole fraction purity greater than 

99.8%. This fluid was stored over molecular sieves type 0.4 to prevent any moisture. Both the two 

fluids were degassed prior any measurement in order to avoid air bubbles in the sample. None of the 

fluids was subject to further purtification method. The data list concerning the properties of the pure 

compounds can be seen in Table 1. 

 

 

2.2. Measurement technique. High pressure density 

Various techniques are available to determine density data: piezometers, pycnometers, isochoric 

methods, densitometers based on vibrating elements, etc. One of the most widely used methods 

corresponds to vibrating tube densitometers (VTD), which used has increased due to its main 

advantages: simple operation, high accuracy and small sample requirement among others [7]. 

In our case, we used an Anton Paar vibrating tube densitometer model DMA HPM to measure high 

pressure density values. The description and operation of this densitometer was addressed in a 

previous paper [8]. The ranges in which the measurements were carried out are (0.1 – 140 MPa) for 

the pressure and (293.15 – 393.15 K) for the temperature. The pressure inside the measuring cell is 

generated by a step by step engine, while the Anton Paar mPDS 2000V3 evaluation unit controls the 

oscillation period from the measuring cell which is filled with the sample. The estimated expanded 

uncertainty of the measured pressure was ±0.04 MPa (pressure transducer WIKA CPH 6000). The 

temperature inside the densitometer is ensured by means of a silicone oil circulating fluid which is 

heated or cooled in a thermosthatic bath Julabo F25 HE. A Pt 100 probe directly inserted in the 

measuring cell measures the temperature of the sample with an expanded uncertainty of ±0.03 K. 

Both temperature and pressure probes were periodically calibrated before and after the measurement 

campaign. 



  

Densitometer calibrations were performed according to the procedure described by Comuñas et al. [9] 

which is a modification of the procedure previously proposed by Lagourette et al. [10]. Taking this 

into account, two reference fluids were used, vacuum and water. The density values of water were 

taken from the equation of state (EoS) reported by Wagner and Pruss [11]. Because of the boiling 

points of the pure components (Tb = 349.15 K for HFE-7200, reference [12], and Tb = 355.39 K for 2-

propanol, reference [13]), no measurements were carried out at temperatures 353.15 K and higher at 

0.1 MPa for all the compositions in order to ensure liquid state.  

Concerning the uncertainty, taking into account the accuracy of the temperature, the pressure, the 

period of oscillation measurement for water, vacuum, and the studied systems, and the water density 

accuracy, the estimated expanded density uncertainty (k = 2) is 0.7 kgm
-3

 (i.e, around 0.07 % for 

density close to water density), following the EA-4/02 document [14]. 

To prevent any bubble formation inside the sample, a degasification procedure was carried out before 

introducing the sample in the densitometer. An ultrasonic bath PSelecta, model Ultrasons-H was 

employed for this purpose. The mixtures were prepared by weighing amounts of the pure components 

with a Mettler Toledo model MS 204S with resolution of 10
-4

 g, and uncertainty ±0.0001 g. The 

estimated expanded uncertainty in the composition of the mixture is ±5·10
-4 

in mole fraction. Then 

the expanded uncertainty for the excess volumes is stated to be ±0.004 cm
3
·mol

-1
. 

 

 

2.3. Measurement technique. Speed of sound 

Speed of sound at 0.1 MPa was measured by using an Anton Paar DSA 5000 density and sound 

velocity meter in the temperature ranges (293.15 – 333.15 K). The temperatures differ from those 

considered for high pressure density measurements due to the limit in temperature given by the 

manufacturer of the apparatus. Speed of sound in a fluid is obtained by measuring the travelling time, 

t that a wave needs to pass across the fluid at a fixed distance. In the case of this benchtop apparatus, 

two transducers (emitter and receiver), working in a frequency of approximately 3 MHz, are 

responsible for the determination of the speed of sound. This property provides information on 

transport coefficients, thermodynamic properties as well as relaxation processes [7]. The sound 

velocity analyzer employed allows us also to calculate the density of the sample; a vibrating tube 

made of glass located inside the apparatus is filled with the sample, being the operating principle the 

one of a vibrating tube densitometer. Then the two properties, speed of sound and density can be 

determined simultaneously with the same sample. The density and sound velocity analyzer is 

provided with a built-in thermostat, with a stability in temperature ±0.01 K. The uncertainty for the 

experimental pressure, measured by using a Lambrecht model 604 barometer is determined to be 

U(p0.1) = 10
-3

 MPa. The expanded uncertainty in speed of sound is estimated to be ±1 m∙s-1
 while the 

expanded uncertainty in density is ±9∙10
-4

 g∙cm
-3

. The instrument is calibrated once a week following 



  

the instructions of the manufacturer with two fluids: ambient air and Millipore quality water or n-

decane. Concerning the sound velocity, as there are no certified liquid standards for speed of sound 

available, the calibration method involves the comparison with a reference value, and it is only 

possible to do this procedure for the density. In our case, during the calibration procedure, three 

measurements with each fluid were made in order to calculate an average of the period of vibration 

for the sample. With these data it is possible to determine the two constants, a and b of the following 

calibration equation: 

 

 ba  2       (1) 

 

Where τ corresponds to the period of oscillation of the vibrating tube with the sample. The results of 

the calibrations were compared with those of [11] in the case of water, and with reference [15] in the 

cases of air and n-decane. The choice of n-decane was subject to the bubbles formation inside the 

glass tube at high temperatures (323.15 K and 333.15 K), which lead to bad values of density in the 

case of water. In those cases, calibration was made with ambient air and n-decane. The mixtures were 

prepared by weighing amounts of each compound by using a Mettler Toledo balance model MS 204S 

with resolution of 10
-4

 g, and uncertainty ±0.0001 g. The expanded uncertainty in the composition is 

determined to be 5∙10
-4

 in mole fraction. The components were placed in stoppered bottles of 14 cm
3
 

and degassed during at least 15 minutes prior to any measurement with an ultrasonic bath PSelecta, 

model Ultrasons-H. The standard uncertainty for the experimental pressure, determined by using a 

Lambrecht model 604 barometer, is determined to be U(P0.1)= 10
-4

 MPa. 

 

 

3. 3. Results and Discussion 

 

3.1. Density 

For the purpose of bringing an adequate representation of density along the different compositions in 

the mixture, eight mole fractions were studied (x = 0.0000, x = 0.1520, x = 0.3275, x = 0.5019, x = 

0.6053, x = 0.6777, x = 0.8526 and x = 1.0000). Since an azeotrope is described to appear at a mass 

composition of 87% [5], the corresponding mole fraction, x = 0.6053 was added in order to 

characterize the density at this point. Density of every mole fraction was determined along 23 isobars 

from 0.1 MPa to 140 MPa at every 5 MPa (from 0.1 to 65 MPa), and at every 10 MPa (from 70 to 

140 MPa), and along seven isotherms (293.15 K, 298.15 K, 313.15 K, 333.15 K, 353.15 K, 373.15 K 

and 393.15 K). All the density values at each p, T sets are gathered in Table 2. As mentioned in the 

previous section, no measurements were carried out at 0.1 MPa and at temperatures 353.15 K and 

over due to the boiling point of the pure compounds is lower or close to 353.15 K.  



  

 

3.2. Tait representation 

Correlation equations are necessary to be employed with experimental data due to with its utilization 

density points which have not been measured at a determined P or T can be obtained. In our case we 

have used a Tait-like equation to correlate the high pressure density values measured experimentally. 

The Tait equation, which was firstly used to fit the results on the compressibility of fresh water and 

seawater at different pressures, has demonstrated to bring a great accuracy in reproducing high 

pressure density data for liquids [16]. This equation was used in some of our previous works [17 - 

20], and is as follows: 
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The Ai, Bi and C parameters are obtained by correlating simultaneously all the experimental densities 

values versus pressure and temperature. Table 3 shows the eight parameters obtained for the eight 

mole fractions along with its deviations: AAD% (Average Absolute Deviation), MD% (Maximum 

Deviation), Bias% (Average Deviation), σ (Standard Deviation), and RMSD (Root Mean Square 

Deviation). It can be seen that for all the mole fractions the AAD% and the Bias% are lower than the 

experimental uncertainty. Evaluating the MD%, mole fractions x = 0.5019, x = 0.6053, x = 0.6777, x 

= 0.8526 and x = 1.0000 slightly exceed this value, with a maximum MD% = 0.10 for the 

compositions x = 0.8526 and x = 1.0000.  

 

 

Figure 1 reports some representations of experimental densities with the correlation given by the Tait 

equation vs. the temperature T, in cases (a) and (b), and vs. the pressure for graphs (c) and (d). Graphs 

(a) and (b) show data at each mole composition at 1 MPa (a) and at 140 MPa (b). Regardless of 

pressure, a decrease in the value of density is observed when the temperature increases. Considering 

the different pressures, the density values are higher at 140 MPa than at 1 MPa when comparing the 

same composition at the same temperature, with a maximum value of density = 1.6428 g∙cm
-3

 at a 

mole fraction x = 1.000. Graphs (c) and (d) report density data at 293.15 K and at 393.15 K 



  

respectively. In both two graphs the shape of the curves is concave, which is related to the negative 

second order derivative, being this appearance compatible with the logarithmic relationship used in 

the Tait-like equation. Following this trend of the curves, it can be stated that when the pressure 

increases, the density also increases in a logarithmic form regardless of the temperature. The highest 

values of density are found at 293.15 K (graph 1 (c)), due to at lower temperatures the molecules in 

the fluid have less energy than at high temperature, resulting in an approximation of them and hence 

in lower values of density. 

 

 

3.3. Comparison with literature data 

It was possible to compare our density values for the two pure compounds with the literature data 

available, but concerning the mixture, no data was found to compare with. Due to some of the 

published data are not in the same p, T, sets than ours, we used equations (2) to (4) to establish a 

correlation that would allow to compare our data with those from the literature. Three references [4], 

[21 and 22] at atmospheric pressure were found for pure HFE-7200, while references [23 and 24] 

report 126 points at high pressure in the interval (0.1 – 100 MPa), and reference [25] provides 80 

points between the temperature ranges (298.15 – 323.15) and in the pressure interval (0.1 – 40) MPa. 

Only reference [21] reports deviations lower than the expanded uncertainty, with a MD% = 0.06, an 

AAD% = 0.04 and a Bias% = -0.04. For the references at high pressure, the MD% reported by 

references [23 and 24] is = 0.38 while the AAD% and the Bias% return data slightly higher than the 

uncertainty, 0.13 and -0.13 respectively. Reference [25] brings better results than references [23 and 

24], with a MD% = 0.12, an AAD% = 0.03 and a Bias% = -0.02. The worst datum is given by 

reference [22], with a MD% = AAD% = 0.75 and a Bias% = -0.75. Table 4 gathers all the 

information concerning the comparisons done for pure HFE-7200. A graphical comparison is also 

given in Figure 2. 

Several references were found for 2-propanol; in this work we have considered those which contain 

data at high pressure. Figure 3 shows graphically the deviations obtained when comparing with the 11 

references found [17], [26 - 35]. 

Most of the references report density data at pressures lower than 70 MPa, being references [27], 

[33], [35] and [17] the ones which have measured up to 140 MPa (up to 138.9 in the case of reference 

[27]. According to the temperature intervals, no reference overlaps our lower limit (293.15 K), since 

the lowest temperature value measured is 293.15 K for reference [33]. The upper limit in temperature 

(393.15 K) is overtaken by references [27] and [35], with 400.00 and 403.15 K respectively. For the 

deviations between the literature values and those obtained by our correlation, the best values are 

those found in the comparison with our previous paper [17], with a MD% = 0.04, and AAD% = 0.01 

and a Bias% = -8.30∙10
-6

. References [27], [28], [33 and 34], report maximum deviations MD close to 



  

the experimental uncertainty, with values of 0.09%, 0.09%, 0.12% and 0.06% respectively. The worst 

value correspond to the comparison with reference [31], which reports 156 points with an AAD% = 

0.18, a MD% = 0.27 and a Bias% = 0.18. 

 

 

3.4. Excess Molar Volumes 

The excess volume V
E
, can be defined as the difference between the real change in volume on the 

mixture and the ideal change of volume on mixing. Excess volumes provide reliable information so 

its determination from experimental high pressure density data is reported in this section. From the 

aforementioned definition one can determine the equation of calculation for excess volume: 
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Where n is the number of components, xi is the mole fraction of component i in the mixture, Mi is the 

molar mass of component i, ρ and ρi are the measured densities of the mixture and pure component i, 

respectively. 

Figure 4 shows representations of excess volumes V
E
, vs. the composition x, at different pressures and 

at (a) 293.15 K and (b) at 393.15 K and at different temperatures, where (c) shows excess volumes at 

1 MPa, and (d) at 140 MPa. In all cases excess volumes show a positive trend and relatively high 

values, which is a result of the low packing effect between the molecules of HFE-7200 and 2-

propanol. When comparing graph (a) with (b) a big difference in the values of excess volumes is 

observed. At higher temperatures, as is the case of (b), the packing effect is less effective than at 

lower temperatures, being the V
E
 values much higher at 393.15 K (b) than at 293.15 K (a). At 293.15 

K the highest value of excess volume is found at the lowest pressure (1 MPa) and at a mole 

composition of x = 0.5019 being this trend the same for the rest of the pressures. In the case of 393.15 

K (b), the highest value of V
E
 is found also at 1 MPa, but for a mole composition of x = 0.6777. In 

graphs (c) and (d) the difference in the excess volumes values is much higher at low pressures (1 

MPa, case (c)) than at high pressures (case (d), 140 MPa). The highest value of V
E
 is observed at 1 

MPa, at the temperature of 393.15 K and at the mole composition x = 0.6053 with an excess volume 

of 4.16 cm
3∙mol

-1
. 

 

Figure 4 also shows the fitting curves obtained for both the two binary systems by using a Redlich-

Kister polynomial of the type: 
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In equation (6) zi are the adjustable parameters, and x is the mole fraction of HFE-7200. Then, for the 

mixture studied in this work, x HFE-7200 + (1-x) 2-propanol, the solid line represents the fitting 

curve to the experimental data. Table 5 reports the values of the adjustable parameters, zi, and the 

standard deviations obtained by using equation (6) for the pressures 0.10 MPa and at temperatures 

from 293.15 K to 333.15 K, and at 1.00 MPa, 70 MPa, 110 MPa and 140 MPa all at temperatures 

from 293.15 K to 393.15 K. 

 

3.5. The derived thermodynamic properties. 

The derived thermodynamic properties, that is, the isothermal compressibility T, and isobaric 

expansion p, can give valuable information on the dependence of the volumetric properties on 

temperature and pressure. The isothermal compressibility, T, describes the effect of pressure on the 

density based on the equation: 
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Table 6 gathers the values of isothermal compressibility for all the measured compositions of the 

binary mixture x HFE-7200 + (1-x) 2-propanol. It can be seen that the values of κT are higher for 

HFE-7200 than for any of the mixtures and for pure 2-propanol, and in the same way κT increases 

when increasing the temperature but taking into account the pressure, it promotes an effect of 

decrease when the higher the pressure is.  

In a similar way, the isobaric expansion p, could also be obtained by differentiating equation (2) 

taking into account the temperature dependence of 0(T) and B(T): 
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Nevertheless, the estimated isobaric expansion depends on the form of functions B(T) and 0(T) as 

pointed out by references [36, 37]. Then, it is better to derive the isobaric thermal expansion from the 



  

isobaric densities. So at each pressure we suppose that p(T) = a0+a1T+a2T
2  

and consequently 

(/T)p = a1 + 2a2T. For each pressure we get a set (a0, a1, a2 ). 

By inserting the differentiated density and the calculated densities p(T) into p = -(1/(/)p the 

isobaric thermal expansivity at the different T, p conditions has been derived: 
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      (9) 

 

As mentioned, the method used to evaluate the isobaric thermal expansion coefficient may affect the 

accuracy of the values. The differences sometimes found for the values of this coefficient from the 

literature are due not only to differences in density values but also to the fitting equations, as stated in 

[38]. 

The isobaric expansion, p, and the isothermal compressibility, T, were calculated from the above 

procedures. The estimated uncertainty following [14] is 1% for the isothermal compressibility and 

around 3% for the isobaric expansion, as recently indicated on similar high-pressure density studies 

[8, 9] and [39] with the same methods. 

Table 7 reports the isobaric expansion, p. Similarly as it occurs with the isothermal compressibility, 

the highest values of p are found for HFE-7200, and the values of p increase with increasing 

temperature and decrease with increasing pressure. 

 

 

3.6. Speed of Sound 

Speeds of sound c, of binary mixtures x HFE-7200 + (1-x) 2-propanol were determined at 0.1 MPa 

and in the range of temperatures (293.15 – 333.15 K) by using an Anton Paar DSA 5000 density and 

sound velocity meter. Densities ρ, at 0.1 MPa in the same temperature range were also determined, 

and isentropic compressibilities κS, were calculated from these experimental data by means of the 

Laplace equation (10) 

 

21   cS         (10) 

 

The obtained data are showed in Table 8. It can be seen that the highest values of speed of 

sound are found for pure 2-propanol (x = 0.0000), and it can be stated also that the speed of 

sound values decrease when increasing the temperature. By contrast, isentropic 



  

compressibilities show the highest values at the mole fraction x = 1.0000 (pure HFE-7200), 

and these values increase when increasing temperature. This fact is due to the densities for 

HFE-7200 are quite higher than those of 2-propanol, and its values decrease in the same way 

as the temperature increases. 

A comparison between the obtained experimental values for the two pure fluids HFE-7200 

and 2-propanol has been done in order to check the goodness of our data. For HFE-7200  

only one reference was found  [40], giving an AAD% = 0.11, MD% = 0.23, and Bias % = -2.83∙10
-

3
. The results of this comparison can be seen in Figure 5. For pure 2-propanol, several references [41 - 

49] were compared with our experimental data at 0.1 MPa and in our temperature interval. Almost all 

of the references show deviations lower than the uncertainty given for speed of sound, being 

reference [42] the only one that has a MD higher than 1%, with a value of 1.33%, an AAD% = 0.50 

and a Bias% = -0.48 for a total of 3 points. The better values of deviations are those given by 

reference [45], with a MD% = AAD% = Bias% = 0.02 at the two corresponding temperatures, 293.15 

and 323.15 K. The rest of the references show values of deviations in all cases lower than 1%. These 

results can be observed in Table 9. 

 

 

Figure 6 shows the deviations between the isentropic compressibility values calculated from the pure 

compounds, and those calculated from the experimental speeds of sound and densities obtained at 

every mole fraction. In all the cases the highest values are found at compositions approximately x = 

0.5000, and as occurs for isentropic compressibility, the deviations are higher when the higher the 

temperatures are. 

 

4. Conclusions 

 

High pressure densities ρ, were determined by using a vibrating tube densitometer for the binary 

system x HFE-7200 + (1-x) 2-propanol. The densities were determined along 23 isobars ranging from 

0.1 to 140 MPa and in the temperature interval from 293.15 to 393.15 K for eight mole fractions. A 

Tait-like equation was employed to correlate the density values over the entire pressure and 

temperature ranges, showing a good agreement between the experimental data and the calculated 

ones. Isothermal compressibility κT, and isobaric expansion αP, data was determined by deriving the 

Tait-like equation A literature comparison for the densities of both the two pure fluids was carried out 

since no data for the binary mixture was found in the literature. Excess volumes V
E
, were also 

determined from the high pressure density data of the pure compounds and of the mixtures, showing 

positive values in the whole range of compositions. Speeds of sound c, and densities ρ, at 0.1 MPa 

were measured by using an Anton Paar DSA 5000 density and sound velocity meter along six 



  

isotherms from 293.15 K to 333.15 K, and isentropic compressibilities κS, were calculated from these 

data sets.  

 

 

List of symbols 

AAD   Absolute Average Deviation 

ai  coefficients of isobaric thermal expansion correlation  

Ai, Bi, C coefficients of density correlation  

Bias   Average Deviation 

calc  calculated 

exp  experimental 

i  constituent identification 

lit  literature 

m  number of parameters 

MD  Maximum Deviation 

NP  number of experimental data points which are in our p, T ranges 

p  pressure 

RMSD   Root Mean Square Deviation 

T  temperature 

V
E
  excess molar volume 

 

Greek letters 

αp   isobaric expansion 

  
density  

0   density at a reference pressure P0  

S  isentropic compressibility 

T    isothermal compressibility 

   standard deviation 



  

τ  period of oscillation 
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Figure 1. Experimental high pressure density values ρ, for the binary system x HFE-7200 + 

(1-x) 2-propanol at the eight molar compositions studied vs. (a) the pressure, p at 293.15 K, 

(b) the pressure, p at 393.15 K, (c) the temperature, T at 1 MPa, and (d) the temperature, T at 

140 MPa. ◊; x = 0.0000, ▲; x = 0.1520, ; x = 0.3275, □; x = 0.5019, ●; x = 0.6053, ○; x = 

0.6777, ♦; x = 0.8526,  Δ; x = 1.0000. 

(─); Tait equation (2) to (4). 

 



  

 

 

Figure 2. Deviations between the values generated by the correlation given by equations (2) to (3) and 

those found in the literature for the hydrofluoroether fluid HFE-7200 considering the same p, T sets. 

▲; reference [4], ; reference [21], ♦; reference [22], ○; references [23 and 24], and Δ; reference [25] 

 



  

 

Figure 3. Obtained deviations between the values from the literature and the values generated by our 

correlation (equations (2) to (4)) at the same p, T sets for pure 2-propanol. Ж; reference [17], ●; 

reference [26], Δ; reference [27], ▼; reference [28], ○; reference [29], ; reference [30], ◊; reference 

[31], □; reference [32], ♦; reference [33], ▲; reference [34], +; reference [35]. 
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Figure 4. Experimental values for excess volumes obtained for the binary mixture x HFE-7200 + (1-x) 

2-propanol as a function of the mole fraction and at different pressures p, (a) at 293.15 K, (b) at 

393.15 K, where: ●; 1 MPa, Δ; 35 MPa, ■; 70 MPa, ○; 110 MPa, ▲; 140 MPa, and at different 

temperatures T, (c) at p = 1 MPa and (d) at p = 140 MPa where: ●; 293.15 K, Δ; 298.15 K, ■; 313.15 

K, ○; 333.15 K, ▲; 353.15 K, ; 373.15 K, ♦; 393.15 K. (─); Redlich-Kister’s equation. 

 



  

 

 

Figure 5. Deviations between the speed of sound literature values given by reference [40], and the 

experimental ones for HFE-7200 at 0.1 MPa and at temperatures from (293.15 to 323.15) K. 

 



  

 

 

Figure 6. Deviations from isentropic compressibility ΔκS, vs. the mole fraction at different 

temperatures for the binary mixture x HFE-7200 + (1-x) 2-propanol. ●; 293.15 K, Δ; 298.15 K, ■; 

303.15 K, ○; 313.15 K, ▲; 323.15 K, ◊; 333.15 K. 

 



  

Table 1. Related data for the studied chemicals. 

Compound Source Formula 
Molar mass 

/ g∙mol
-1

 

Stated 

purity
a
  

CAS number 

HFE-7200
b
 

3M 

Company 
C6H5F9O 264.09 >99.0

c
 

163702-06-5 

/ 163702-05-

4
d
 

2-propanol 
Sigma-

Aldrich 
C3H8O 60.096 >99.8

e, f
 67-63-0 

a
 Determined by gas chromatography (GC) by the supplier. 

b
 HFE-7200 = 1-ethoxy-1,1,2,2,3,3,4,4,4-nonafluorobutane. 

c
 Mass fraction purity, wt% 

d
 Binary mixture of two isomers with mole fraction, x, 0.617 for CAS number 163702-06-5 and 0.383 for CAS 

163702-05-4, determined by 
1
H-NMR and 

19
F-NMR, with an expanded uncertainty (k = 2), U(x) = 0.05. 

e
 The water content was checked to be less than 0.01% (mass%) by titration method by the supplier. 

f  
Mole fraction purity, mol%. 



  

 

Table 2. Values of experimental high pressure densities ρ, at temperatures T and pressures p 

for the binary mixture x HFE-7200
a
 + (1-x) 2-propanol

b
. 

x p / MPa T / K            

   293.15 298.15 313.15 333.15 353.15 373.15 393.15 

 ρ / g·cm
-3

 

0.0000 0.10 0.7854 0.7814 0.7682 0.7494    

 1.00 0.7862 0.7821 0.7691 0.7505 0.7298 0.7066 0.6804 

 5.00 0.7896 0.7856 0.7730 0.7549 0.7350 0.7128 0.6882 

 10.00 0.7936 0.7898 0.7774 0.7600 0.7410 0.7199 0.6967 

 15.00 0.7974 0.7937 0.7818 0.7649 0.7465 0.7263 0.7044 

 20.00 0.8011 0.7973 0.7857 0.7693 0.7517 0.7320 0.7114 

 25.00 0.8045 0.8009 0.7895 0.7736 0.7565 0.7377 0.7176 

 30.00 0.8079 0.8043 0.7933 0.7777 0.7610 0.7429 0.7235 

 35.00 0.8112 0.8077 0.7969 0.7815 0.7654 0.7478 0.7290 

 40.00 0.8142 0.8108 0.8001 0.7853 0.7693 0.7522 0.7342 

 45.00 0.8172 0.8138 0.8034 0.7889 0.7733 0.7566 0.7390 

 50.00 0.8201 0.8167 0.8065 0.7923 0.7770 0.7607 0.7435 

 55.00 0.8229 0.8197 0.8096 0.7956 0.7806 0.7647 0.7479 

 60.00 0.8256 0.8225 0.8125 0.7987 0.7840 0.7686 0.7521 

 65.00 0.8282 0.8252 0.8154 0.8018 0.7874 0.7721 0.7561 

 70.00 0.8308 0.8276 0.8182 0.8048 0.7906 0.7756 0.7600 

 80.00 0.8358 0.8328 0.8234 0.8105 0.7967 0.7823 0.7672 

 90.00 0.8405 0.8375 0.8285 0.8159 0.8026 0.7885 0.7739 

 100.00 0.8450 0.8423 0.8331 0.8209 0.8080 0.7944 0.7802 

 110.00 0.8494 0.8464 0.8378 0.8258 0.8132 0.7999 0.7862 

 120.00 0.8535 0.8508 0.8421 0.8304 0.8181 0.8053 0.7918 

 130.00 0.8576 0.8548 0.8464 0.8348 0.8228 0.8102 0.7972 

 140.00 0.8612 0.8587 0.8504 0.8392 0.8273 0.8151 0.8023 

         

0.1520 0.10 0.9747 0.9686 0.9495 0.9222    

 1.00 0.9760 0.9699 0.9509 0.9239 0.8943 0.8614 0.8246 

 5.00 0.9813 0.9754 0.9571 0.9312 0.9030 0.8721 0.8384 

 10.00 0.9875 0.9819 0.9642 0.9395 0.9128 0.8839 0.8527 

 15.00 0.9933 0.9879 0.9709 0.9471 0.9216 0.8942 0.8651 

 20.00 0.9988 0.9934 0.9770 0.9540 0.9297 0.9033 0.8761 

 25.00 1.0040 0.9988 0.9827 0.9606 0.9371 0.9120 0.8858 

 30.00 1.0090 1.0039 0.9884 0.9668 0.9440 0.9199 0.8947 

 35.00 1.0137 1.0088 0.9936 0.9725 0.9506 0.9273 0.9031 

 40.00 1.0183 1.0134 0.9985 0.9781 0.9565 0.9339 0.9106 

 45.00 1.0225 1.0179 1.0033 0.9834 0.9624 0.9403 0.9178 

 50.00 1.0267 1.0221 1.0079 0.9884 0.9679 0.9465 0.9244 

 55.00 1.0308 1.0263 1.0123 0.9932 0.9731 0.9522 0.9307 

 60.00 1.0347 1.0303 1.0165 0.9977 0.9782 0.9577 0.9368 

 65.00 1.0385 1.0341 1.0206 1.0022 0.9830 0.9630 0.9425 

 70.00 1.0421 1.0377 1.0246 1.0064 0.9877 0.9680 0.9480 



  

 80.00 1.0492 1.0449 1.0321 1.0145 0.9963 0.9774 0.9583 

 90.00 1.0558 1.0517 1.0392 1.0222 1.0046 0.9862 0.9678 

 100.00 1.0621 1.0582 1.0459 1.0293 1.0123 0.9945 0.9767 

 110.00 1.0682 1.0641 1.0524 1.0362 1.0196 1.0023 0.9849 

 120.00 1.0740 1.0702 1.0584 1.0426 1.0264 1.0097 0.9926 

 130.00 1.0796 1.0757 1.0643 1.0489 1.0330 1.0166 1.0000 

 140.00 1.0847 1.0812 1.0699 1.0549 1.0392 1.0233 1.0071 

         

0.3275 0.10 1.1263 1.1184 1.0937 1.0587    

 1.00 1.1280 1.1201 1.0958 1.0612 1.0238 0.9824 0.9361 

 5.00 1.1352 1.1277 1.1043 1.0714 1.0362 0.9981 0.9565 

 10.00 1.1436 1.1364 1.1140 1.0828 1.0498 1.0146 0.9770 

 15.00 1.1513 1.1444 1.1229 1.0932 1.0619 1.0289 0.9941 

 20.00 1.1585 1.1518 1.1311 1.1025 1.0728 1.0412 1.0090 

 25.00 1.1654 1.1589 1.1388 1.1113 1.0827 1.0527 1.0219 

 30.00 1.1719 1.1655 1.1461 1.1194 1.0918 1.0632 1.0337 

 35.00 1.1780 1.1719 1.1529 1.1270 1.1004 1.0728 1.0445 

 40.00 1.1839 1.1778 1.1594 1.1342 1.1081 1.0814 1.0543 

 45.00 1.1894 1.1836 1.1656 1.1411 1.1158 1.0898 1.0634 

 50.00 1.1949 1.1890 1.1714 1.1475 1.1229 1.0976 1.0721 

 55.00 1.2001 1.1944 1.1772 1.1537 1.1296 1.1050 1.0801 

 60.00 1.2050 1.1996 1.1824 1.1595 1.1360 1.1121 1.0879 

 65.00 1.2098 1.2044 1.1878 1.1652 1.1422 1.1187 1.0951 

 70.00 1.2145 1.2091 1.1928 1.1707 1.1481 1.1251 1.1020 

 80.00 1.2234 1.2182 1.2023 1.1810 1.1591 1.1371 1.1149 

 90.00 1.2317 1.2267 1.2113 1.1906 1.1696 1.1481 1.1267 

 100.00 1.2396 1.2348 1.2197 1.1997 1.1791 1.1585 1.1378 

 110.00 1.2473 1.2423 1.2278 1.2082 1.1884 1.1681 1.1480 

 120.00 1.2544 1.2497 1.2354 1.2162 1.1969 1.1772 1.1577 

 130.00 1.2613 1.2567 1.2427 1.2241 1.2051 1.1859 1.1668 

 140.00 1.2678 1.2634 1.2496 1.2315 1.2128 1.1941 1.1755 

         

0.5019 0.10 1.2352 1.2260 1.1972 1.1567    

 1.00 1.2373 1.2281 1.1998 1.1598 1.1167 1.0691 1.0158 

 5.00 1.2460 1.2373 1.2102 1.1724 1.1322 1.0889 1.0421 

 10.00 1.2561 1.2477 1.2220 1.1864 1.1490 1.1093 1.0676 

 15.00 1.2654 1.2574 1.2327 1.1988 1.1636 1.1267 1.0885 

 20.00 1.2740 1.2663 1.2425 1.2101 1.1767 1.1416 1.1062 

 25.00 1.2821 1.2747 1.2517 1.2206 1.1885 1.1553 1.1217 

 30.00 1.2898 1.2825 1.2604 1.2302 1.1994 1.1677 1.1356 

 35.00 1.2971 1.2900 1.2685 1.2391 1.2095 1.1791 1.1483 

 40.00 1.3039 1.2971 1.2760 1.2477 1.2187 1.1893 1.1599 

 45.00 1.3105 1.3038 1.2833 1.2557 1.2276 1.1991 1.1706 

 50.00 1.3168 1.3102 1.2901 1.2633 1.2359 1.2082 1.1805 

 55.00 1.3229 1.3164 1.2969 1.2705 1.2438 1.2168 1.1899 

 60.00 1.3286 1.3224 1.3031 1.2773 1.2513 1.2250 1.1989 



  

 65.00 1.3342 1.3281 1.3092 1.2840 1.2584 1.2327 1.2072 

 70.00 1.3396 1.3334 1.3151 1.2902 1.2653 1.2401 1.2152 

 80.00 1.3500 1.3440 1.3262 1.3022 1.2781 1.2540 1.2300 

 90.00 1.3596 1.3539 1.3365 1.3134 1.2901 1.2667 1.2436 

 100.00 1.3686 1.3632 1.3462 1.3237 1.3012 1.2786 1.2563 

 110.00 1.3775 1.3719 1.3555 1.3337 1.3117 1.2898 1.2680 

 120.00 1.3857 1.3805 1.3643 1.3429 1.3216 1.3001 1.2790 

 130.00 1.3936 1.3884 1.3727 1.3518 1.3310 1.3100 1.2894 

 140.00 1.4011 1.3961 1.3806 1.3603 1.3398 1.3188 1.2993 

         

0.6053 0.10 1.2869 1.2770 1.2465 1.2034    

 1.00 1.2892 1.2794 1.2493 1.2067 1.1610 1.1108 1.0547 

 5.00 1.2986 1.2893 1.2606 1.2205 1.1781 1.1326 1.0838 

 10.00 1.3096 1.3007 1.2734 1.2358 1.1965 1.1551 1.1117 

 15.00 1.3196 1.3111 1.2850 1.2493 1.2124 1.1739 1.1343 

 20.00 1.3289 1.3207 1.2957 1.2615 1.2266 1.1900 1.1535 

 25.00 1.3376 1.3297 1.3055 1.2728 1.2393 1.2048 1.1702 

 30.00 1.3459 1.3381 1.3149 1.2832 1.2510 1.2181 1.1851 

 35.00 1.3537 1.3462 1.3235 1.2928 1.2619 1.2302 1.1986 

 40.00 1.3611 1.3538 1.3316 1.3019 1.2717 1.2412 1.2110 

 45.00 1.3680 1.3610 1.3395 1.3105 1.2813 1.2517 1.2224 

 50.00 1.3748 1.3678 1.3468 1.3186 1.2902 1.2615 1.2331 

 55.00 1.3813 1.3745 1.3539 1.3263 1.2986 1.2707 1.2430 

 60.00 1.3875 1.3809 1.3606 1.3336 1.3066 1.2794 1.2526 

 65.00 1.3934 1.3870 1.3672 1.3407 1.3142 1.2876 1.2614 

 70.00 1.3992 1.3927 1.3734 1.3475 1.3216 1.2955 1.2699 

 80.00 1.4102 1.4040 1.3853 1.3602 1.3351 1.3101 1.2856 

 90.00 1.4205 1.4144 1.3962 1.3721 1.3479 1.3237 1.3000 

 100.00 1.4301 1.4244 1.4066 1.3831 1.3597 1.3363 1.3133 

 110.00 1.4395 1.4336 1.4165 1.3935 1.3709 1.3481 1.3258 

 120.00 1.4482 1.4427 1.4257 1.4034 1.3813 1.3592 1.3375 

 130.00 1.4567 1.4512 1.4347 1.4129 1.3912 1.3696 1.3484 

 140.00 1.4645 1.4593 1.4431 1.4218 1.4006 1.3795 1.3588 

         

0.6777 0.10 1.3188 1.3086 1.2768 1.2322    

 1.00 1.3212 1.3110 1.2797 1.2358 1.1886 1.1369 1.0794 

 5.00 1.3311 1.3215 1.2917 1.2503 1.2066 1.1599 1.1102 

 10.00 1.3426 1.3334 1.3052 1.2663 1.2259 1.1836 1.1395 

 15.00 1.3531 1.3443 1.3173 1.2805 1.2426 1.2033 1.1631 

 20.00 1.3628 1.3543 1.3284 1.2932 1.2574 1.2203 1.1831 

 25.00 1.3719 1.3637 1.3388 1.3050 1.2708 1.2356 1.2006 

 30.00 1.3805 1.3725 1.3485 1.3159 1.2830 1.2495 1.2161 

 35.00 1.3887 1.3810 1.3575 1.3259 1.2943 1.2622 1.2302 

 40.00 1.3963 1.3888 1.3659 1.3354 1.3046 1.2736 1.2430 

 45.00 1.4036 1.3963 1.3741 1.3445 1.3146 1.2845 1.2548 

 50.00 1.4106 1.4034 1.3817 1.3528 1.3237 1.2947 1.2659 



  

 55.00 1.4174 1.4103 1.3892 1.3608 1.3325 1.3041 1.2762 

 60.00 1.4238 1.4170 1.3961 1.3685 1.3408 1.3132 1.2860 

 65.00 1.4300 1.4233 1.4029 1.3759 1.3487 1.3217 1.2952 

 70.00 1.4360 1.4293 1.4094 1.3828 1.3564 1.3299 1.3040 

 80.00 1.4474 1.4409 1.4217 1.3960 1.3704 1.3452 1.3202 

 90.00 1.4580 1.4518 1.4331 1.4083 1.3837 1.3591 1.3352 

 100.00 1.4681 1.4622 1.4438 1.4197 1.3960 1.3722 1.3490 

 110.00 1.4777 1.4717 1.4541 1.4306 1.4074 1.3844 1.3618 

 120.00 1.4868 1.4811 1.4636 1.4408 1.4183 1.3958 1.3739 

 130.00 1.4955 1.4899 1.4729 1.4506 1.4286 1.4066 1.3852 

 140.00 1.5037 1.4983 1.4816 1.4599 1.4382 1.4169 1.3960 

         

0.8526 0.10 1.3851 1.3737 1.3404 1.2931    

 1.00 1.3877 1.3764 1.3436 1.2970 1.2476 1.1940 1.1355 

 5.00 1.3986 1.3879 1.3567 1.3130 1.2675 1.2195 1.1691 

 10.00 1.4112 1.4009 1.3714 1.3307 1.2886 1.2453 1.2008 

 15.00 1.4226 1.4127 1.3848 1.3462 1.3069 1.2668 1.2264 

 20.00 1.4331 1.4236 1.3969 1.3600 1.3230 1.2850 1.2478 

 25.00 1.4430 1.4338 1.4080 1.3728 1.3374 1.3016 1.2665 

 30.00 1.4524 1.4434 1.4186 1.3846 1.3506 1.3166 1.2830 

 35.00 1.4612 1.4524 1.4284 1.3954 1.3629 1.3302 1.2981 

 40.00 1.4694 1.4609 1.4375 1.4057 1.3739 1.3424 1.3118 

 45.00 1.4773 1.4690 1.4463 1.4154 1.3846 1.3541 1.3244 

 50.00 1.4849 1.4767 1.4546 1.4244 1.3946 1.3649 1.3362 

 55.00 1.4922 1.4842 1.4625 1.4330 1.4039 1.3752 1.3472 

 60.00 1.4990 1.4913 1.4700 1.4413 1.4128 1.3849 1.3577 

 65.00 1.5057 1.4981 1.4773 1.4491 1.4213 1.3939 1.3674 

 70.00 1.5121 1.5045 1.4843 1.4566 1.4295 1.4027 1.3767 

 80.00 1.5244 1.5170 1.4975 1.4708 1.4446 1.4189 1.3941 

 90.00 1.5359 1.5286 1.5098 1.4840 1.4587 1.4338 1.4098 

 100.00 1.5465 1.5397 1.5212 1.4962 1.4717 1.4477 1.4245 

 110.00 1.5569 1.5499 1.5322 1.5078 1.4841 1.4607 1.4381 

 120.00 1.5666 1.5601 1.5425 1.5187 1.4956 1.4729 1.4510 

 130.00 1.5759 1.5693 1.5523 1.5292 1.5065 1.4844 1.4629 

 140.00 1.5847 1.5784 1.5617 1.5391 1.5169 1.4953 1.4743 

         

1.0000 0.10 1.4339 1.4228 1.3884 1.3407    

 1.00 1.4366 1.4256 1.3918 1.3448 1.2952 1.2421 1.1839 

 5.00 1.4482 1.4377 1.4056 1.3616 1.3161 1.2684 1.2183 

 10.00 1.4613 1.4515 1.4211 1.3801 1.3381 1.2951 1.2508 

 15.00 1.4734 1.4639 1.4351 1.3963 1.3571 1.3173 1.2770 

 20.00 1.4845 1.4754 1.4478 1.4108 1.3739 1.3362 1.2991 

 25.00 1.4948 1.4862 1.4595 1.4242 1.3889 1.3533 1.3183 

 30.00 1.5047 1.4961 1.4706 1.4364 1.4026 1.3688 1.3354 

 35.00 1.5139 1.5057 1.4808 1.4478 1.4153 1.3829 1.3509 

 40.00 1.5225 1.5145 1.4903 1.4585 1.4268 1.3956 1.3651 



  

 45.00 1.5308 1.5230 1.4995 1.4686 1.4379 1.4077 1.3781 

 50.00 1.5387 1.5311 1.5081 1.4780 1.4482 1.4188 1.3902 

 55.00 1.5463 1.5388 1.5164 1.4870 1.4579 1.4294 1.4016 

 60.00 1.5535 1.5463 1.5243 1.4955 1.4672 1.4395 1.4124 

 65.00 1.5605 1.5534 1.5319 1.5037 1.4759 1.4489 1.4225 

 70.00 1.5672 1.5602 1.5392 1.5115 1.4845 1.4579 1.4321 

 80.00 1.5800 1.5732 1.5529 1.5263 1.5002 1.4747 1.4500 

 90.00 1.5919 1.5854 1.5657 1.5400 1.5148 1.4902 1.4662 

 100.00 1.6031 1.5969 1.5776 1.5527 1.5283 1.5045 1.4815 

 110.00 1.6139 1.6076 1.5890 1.5647 1.5411 1.5179 1.4955 

 120.00 1.6240 1.6180 1.5997 1.5760 1.5530 1.5305 1.5087 

 130.00 1.6337 1.6278 1.6100 1.5868 1.5643 1.5423 1.5211 

 140.00 1.6428 1.6372 1.6197 1.5972 1.5751 1.5537 1.5321 
a
 Composition of HFE-7200, with its corresponding uncertainty, was given in Table 1. 

b 
Estimated expanded uncertainties (k = 2) are: temperature, U(T) = ± 0.03 K; pressure, U(p) = ±0.04 MPa; mole 

fraction, U(x) = ±5∙10
-4

; density, U(ρ) = ±0.7 kg∙m
-3

. 

 



  

Table 3. Parameters and deviations for density correlation by using the Tamman-Tait 

equation for the mixture x HFE-7200
a
 + (1-x) 2-propanol. 

a
 Composition of HFE-7200, with its corresponding uncertainty, was given in Table 1. 

 

N is the number of experimental data points and m is the number of parameters. 
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Parameters x        

 0.0000 0.1520 0.3275 0.5019 0.6053 0.6777 0.8526 1.0000 

A0 / g∙cm-3 1.238217 1.590277 1.921285 2.163775 2.232172 2.262014 2.184386 2.222441 

A1 / g∙cm-3 K-1 -3.279986∙10-3 -4.287405∙10-3 -5.470008∙10-3 -6.360817∙10-3 -6.344043∙10-3 -6.197039∙10-3 -4.623221∙10-3 
-4.364889∙10-

3 

A2 / g∙cm-3 K-2 9.436122∙10-6 1.196245∙10-5 1.498874∙10-5 1.729270∙10-5 1.699920∙10-5 1.632308∙10-5 1.099809∙10-5 9.763048∙10-6 

A3 / g∙cm-3 K-3 -1.198655∙10-8 -1.533770∙10-8 -1.902113∙10-8 -2.181810∙10-8 -2.167670∙10-8 -2.099945∙10-8 -1.544841∙10-8 
-1.380877∙10-

8 

B0 / MPa 309.7820 314.6991 306.3666 296.5245 293.2964 292.0680 286.8810 276.3470 

B1 / MPa K-1 -0.978167 -1.165526 -1.213514 -1.211458 -1.215491 -1.220966 -1.215997 -1.168877 

B2 / MPa K-2 6.718266∙10-4 1.051842∙10-3 1.194813∙10-3 1.236862∙10-3 1.262329∙10-3 1.281457∙10-3 1.299226∙10-3 1.248849∙10-3 

C 0.08744809 0.08685676 0.08656384 0.08636395 0.08624520 0.08620237 0.08597850 0.08572617 

AADb / ( %) 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 

MDc / (%) 0.04 0.04 0.06 0.08 0.09 0.09 0.10 0.10 

Biasd / (%) 5.52∙10-5 2.09∙10-5 1.32∙10-6 -2.02∙10-5 -5.67∙10-5 1.89∙10-5 -4.48∙10-5 -4.59∙10-4 

e  (g·cm-) 0.11 0.16 0.20 0.22 0.23 0.23 0.31 0.27 

RMSDf / 

(g∙cm-3) 
0.11 0.16 0.20 0.22 0.22 0.23 0.30 0.26 



  

Table 4. Literature comparison between the values generated using the Tait-like equation at exactly 

the same experimental p, T sets given for HFE-7200
a
 for several literature references. 

Reference Year NP Tmin 
/ K 

Tmax 
/ K 

Pmin 
/ MPa 

Pmax 
/ MPa 

AAD 
 / % 

MD  
/ % 

Bias / 

% 
At Atmospheric Pressure 

Warrier and Teja [4] 2011 2 297.80 298.20 0.1 0.1 0.44 0.47 -0.44 

Rausch et al. [21] 2015 15 293.15 363.15 0.1 0.1 0.04 0.06 -0.04 

Murata et al. [22] 2002 1 296.15 296.15 0.1 0.1 0.75 0.75 -0.75 

             At High Pressure 

Fang et al. [23 and 24] 2014 - 2015 126 293.33 362.72 0.10 100.00 0.13 0.38 -0.13 

Piñeiro et al. [25] 2003 80 298.15 323.15 0.10 40.00 0.03 0.12 -0.02 
a
 Composition of HFE-7200, with its corresponding uncertainty, was given in Table 1. 

NP  Number of data points which are in our p, T ranges. 

 



  

 
Table 5. Values of parameters zi of equation (6) and the corresponding standard deviation, σ, for the 

binary system x HFE-7200
a
 + (1-x) 2-propanol for all the temperatures measured T, at different 

pressures p. 

 

 
z1 z2 z3 

σ (V
E 

)/ 

cm
3
∙mol

-1 

T / K (p = 0.10 MPa) 

293.15 3.9066 0.2586 1.8454 0.01 

298.15 4.2365 0.8903 2.7890 0.02 

313.15 5.1291 1.3157 2.7740 0.04 

333.15 6.6412 2.2488 3.6086 0.06 

     

T / K (p = 1.00 MPa) 

293.15 3.8644 0.2162 1.8120 0.01 

298.15 4.1922 0.8662 2.7045 0.04 

313.15 5.0660 1.2628 2.9083 0.04 

333.15 6.5910 2.1445 3.6355 0.05 

353.15 8.5969 3.3976 4.5572 0.06 

373.15 11.6002 5.3423 5.7151 0.08 

393.15 16.0255 8.0954 6.0922 0.12 

     

T / K (p = 70.00 MPa) 

293.15 2.6680 0.0000 1.6825 0.02 

298.15 2.8787 0.2371 2.3223 0.01 

313.15 3.4175 0.2678 2.2462 0.03 

333.15 4.1804 0.5302 2.5789 0.03 

353.15 5.0716 0.8184 2.7855 0.04 

373.15 6.0799 1.0669 3.1775 0.06 

393.15 7.1293 1.2353 3.4803 0.07 

     

T / K (p = 110.00 MPa) 

293.15 2.2786 0.0000 1.5878 0.02 

298.15 2.4436 0.1205 2.2456 0.01 

313.15 2.8939 0.1297 1.9117 0.02 

333.15 3.4994 0.3855 2.3211 0.03 

353.15 4.2129 0.5966 2.5047 0.04 

373.15 4.9713 0.7401 2.8253 0.05 

393.15 5.8006 0.9295 2.9419 0.06 

     

T / K (p = 140.00 MPa) 

293.15 2.0536 0.0000 1.4306 0.02 

298.15 2.1714 0.0000 1.9986 0.01 

313.15 2.5687 0.0000 1.5985 0.01 

333.15 3.1085 0.0285 1.7880 0.01 

353.15 3.7093 0.0983 1.9751 0.01 

373.15 4.5080 0.1267 1.7365 0.02 



  

393.15 4.9025 0.0000 1.7151 0.01 
a
 Composition of HFE-7200, with its corresponding uncertainty, was given in Table 1. 



  

Table 6. Values of isothermal compressibility T∙10
4
, for the system x HFE-7200

a
 + (1-x) 2-propanol 

as function of pressure p, and at different temperatures T
b
. 

 

x p  / MPa T / K            

   293.15 298.15 313.15 333.15 353.15 373.15 393.15 

κT.10
4
 / MPa

-1 

0.0000 0.10 10.8 11.2 12.6 14.9    

 1.00 10.7 11.1 12.4 14.7 17.8 22.3 29.2 

 5.00 10.2 10.6 11.8 13.9 16.6 20.4 26.0 

 10.00 9.7 10.1 11.2 12.9 15.3 18.5 23.0 

 15.00 9.3 9.6 10.5 12.1 14.2 16.9 20.6 

 20.00 8.8 9.1 10.0 11.4 13.2 15.6 18.7 

 25.00 8.5 8.7 9.5 10.8 12.4 14.4 17.1 

 30.00 8.1 8.3 9.1 10.3 11.7 13.5 15.8 

 35.00 7.8 8.0 8.7 9.8 11.0 12.6 14.7 

 40.00 7.5 7.7 8.3 9.3 10.5 11.9 13.7 

 45.00 7.2 7.4 8.0 8.9 10.0 11.3 12.9 

 50.00 7.0 7.1 7.7 8.5 9.5 10.7 12.1 

 55.00 6.7 6.9 7.4 8.2 9.1 10.2 11.5 

 60.00 6.5 6.7 7.1 7.9 8.7 9.7 10.9 

 65.00 6.3 6.5 6.9 7.6 8.4 9.3 10.4 

 70.00 6.1 6.3 6.7 7.3 8.0 8.9 9.9 

 80.00 5.8 5.9 6.3 6.8 7.5 8.2 9.1 

 90.00 5.5 5.6 5.9 6.4 7.0 7.6 8.4 

 100.00 5.2 5.3 5.6 6.0 6.5 7.1 7.8 

 110.00 5.0 5.0 5.3 5.7 6.2 6.7 7.3 

 120.00 4.7 4.8 5.1 5.4 5.8 6.3 6.8 

 130.00 4.5 4.6 4.8 5.2 5.5 6.0 6.5 

 140.00 4.3 4.4 4.6 4.9 5.3 5.7 6.1 

         

0.1520 0.10 13.7 14.3 16.4 20.1    

 1.00 13.5 14.1 16.1 19.7 24.7 32.0 43.5 

 5.00 12.8 13.3 15.1 18.2 22.4 28.2 36.8 

 10.00 12.0 12.4 14.0 16.6 20.1 24.6 31.0 

 15.00 11.3 11.7 13.1 15.3 18.2 21.9 26.8 

 20.00 10.7 11.0 12.3 14.2 16.7 19.7 23.7 

 25.00 10.1 10.4 11.5 13.3 15.4 18.0 21.3 

 30.00 9.6 9.9 10.9 12.4 14.3 16.5 19.3 

 35.00 9.2 9.4 10.3 11.7 13.4 15.3 17.7 

 40.00 8.8 9.0 9.8 11.1 12.5 14.3 16.3 

 45.00 8.4 8.6 9.4 10.5 11.8 13.3 15.1 

 50.00 8.1 8.3 9.0 10.0 11.2 12.6 14.2 

 55.00 7.8 8.0 8.6 9.5 10.6 11.9 13.3 

 60.00 7.5 7.7 8.2 9.1 10.1 11.2 12.5 

 65.00 7.2 7.4 7.9 8.7 9.6 10.7 11.9 

 70.00 7.0 7.1 7.6 8.4 9.2 10.2 11.3 



  

 80.00 6.5 6.7 7.1 7.8 8.5 9.3 10.2 

 90.00 6.1 6.3 6.7 7.2 7.9 8.6 9.4 

 100.00 5.8 5.9 6.3 6.8 7.3 8.0 8.7 

 110.00 5.5 5.6 5.9 6.4 6.9 7.4 8.1 

 120.00 5.2 5.3 5.6 6.0 6.5 7.0 7.5 

 130.00 5.0 5.1 5.3 5.7 6.1 6.6 7.1 

 140.00 4.8 4.8 5.1 5.4 5.8 6.2 6.7 

         

0.3275 0.10 16.2 17.0 19.8 24.9    

 1.00 16.0 16.7 19.5 24.3 31.2 41.6 58.2 

 5.00 15.0 15.6 18.0 22.1 27.6 35.4 46.9 

 10.00 13.9 14.5 16.5 19.8 24.2 30.0 37.9 

 15.00 12.9 13.5 15.2 18.0 21.5 26.1 31.9 

 20.00 12.1 12.6 14.1 16.5 19.4 23.1 27.6 

 25.00 11.4 11.8 13.1 15.2 17.7 20.7 24.4 

 30.00 10.8 11.2 12.3 14.1 16.3 18.8 21.9 

 35.00 10.2 10.6 11.6 13.2 15.1 17.3 19.8 

 40.00 9.7 10.0 11.0 12.4 14.1 16.0 18.2 

 45.00 9.3 9.6 10.4 11.7 13.2 14.8 16.8 

 50.00 8.9 9.1 9.9 11.1 12.4 13.9 15.6 

 55.00 8.5 8.7 9.5 10.5 11.7 13.0 14.6 

 60.00 8.2 8.4 9.0 10.0 11.1 12.3 13.7 

 65.00 7.9 8.1 8.7 9.6 10.5 11.7 12.9 

 70.00 7.6 7.7 8.3 9.1 10.1 11.1 12.2 

 80.00 7.1 7.2 7.7 8.4 9.2 10.1 11.0 

 90.00 6.6 6.7 7.2 7.8 8.5 9.2 10.1 

 100.00 6.2 6.3 6.7 7.3 7.9 8.5 9.3 

 110.00 5.9 6.0 6.3 6.8 7.4 8.0 8.6 

 120.00 5.6 5.7 6.0 6.4 6.9 7.4 8.0 

 130.00 5.3 5.4 5.7 6.1 6.5 7.0 7.5 

 140.00 5.0 5.1 5.4 5.8 6.2 6.6 7.1 

         

0.5019 0.10 18.1 19.0 22.4 28.5    

 1.00 17.8 18.7 21.9 27.7 36.2 49.0 70.0 

 5.00 16.5 17.3 20.1 24.9 31.4 40.7 54.3 

 10.00 15.2 15.9 18.2 22.0 27.0 33.7 42.6 

 15.00 14.1 14.7 16.6 19.8 23.8 28.8 35.2 

 20.00 13.2 13.7 15.3 18.0 21.2 25.2 30.1 

 25.00 12.3 12.8 14.2 16.5 19.2 22.5 26.3 

 30.00 11.6 12.0 13.3 15.2 17.6 20.3 23.4 

 35.00 11.0 11.3 12.5 14.2 16.2 18.5 21.2 

 40.00 10.4 10.7 11.7 13.3 15.0 17.0 19.3 

 45.00 9.9 10.2 11.1 12.5 14.0 15.8 17.7 

 50.00 9.4 9.7 10.5 11.8 13.1 14.7 16.4 

 55.00 9.0 9.2 10.0 11.1 12.4 13.8 15.3 

 60.00 8.6 8.8 9.5 10.6 11.7 13.0 14.4 



  

 65.00 8.3 8.5 9.1 10.1 11.1 12.2 13.5 

 70.00 8.0 8.1 8.7 9.6 10.6 11.6 12.8 

 80.00 7.4 7.6 8.1 8.8 9.6 10.5 11.5 

 90.00 6.9 7.0 7.5 8.2 8.9 9.6 10.5 

 100.00 6.5 6.6 7.0 7.6 8.2 8.9 9.6 

 110.00 6.1 6.2 6.6 7.1 7.7 8.3 8.9 

 120.00 5.8 5.9 6.2 6.7 7.2 7.7 8.3 

 130.00 5.5 5.6 5.9 6.3 6.7 7.2 7.8 

 140.00 5.2 5.3 5.6 6.0 6.4 6.8 7.3 

         

0.6053 0.10 18.9 20.0 23.6 30.2    

 1.00 18.6 19.6 23.1 29.4 38.5 52.5 75.3 

 5.00 17.2 18.1 21.0 26.1 33.2 43.1 57.4 

 10.00 15.8 16.5 19.0 23.0 28.3 35.3 44.5 

 15.00 14.6 15.2 17.3 20.6 24.8 30.0 36.5 

 20.00 13.6 14.1 15.9 18.6 22.0 26.1 31.1 

 25.00 12.7 13.2 14.7 17.1 19.9 23.2 27.1 

 30.00 11.9 12.4 13.7 15.7 18.1 20.9 24.0 

 35.00 11.3 11.6 12.8 14.6 16.7 19.0 21.7 

 40.00 10.7 11.0 12.0 13.6 15.4 17.4 19.7 

 45.00 10.1 10.4 11.4 12.8 14.4 16.1 18.1 

 50.00 9.7 9.9 10.8 12.0 13.5 15.0 16.8 

 55.00 9.2 9.5 10.2 11.4 12.7 14.1 15.6 

 60.00 8.8 9.0 9.8 10.8 12.0 13.2 14.6 

 65.00 8.5 8.7 9.3 10.3 11.3 12.5 13.7 

 70.00 8.1 8.3 8.9 9.8 10.8 11.8 13.0 

 80.00 7.5 7.7 8.2 9.0 9.8 10.7 11.7 

 90.00 7.0 7.2 7.6 8.3 9.0 9.8 10.6 

 100.00 6.6 6.7 7.1 7.7 8.3 9.0 9.8 

 110.00 6.2 6.3 6.7 7.2 7.8 8.4 9.0 

 120.00 5.9 6.0 6.3 6.8 7.3 7.8 8.4 

 130.00 5.6 5.7 6.0 6.4 6.8 7.3 7.9 

 140.00 5.3 5.4 5.7 6.0 6.5 6.9 7.4 

         

0.6777 0.10 19.4 20.5 24.3 31.2    

 1.00 19.1 20.1 23.7 30.3 39.9 54.5 78.1 

 5.00 17.7 18.5 21.6 26.9 34.2 44.4 59.0 

 10.00 16.2 16.9 19.4 23.6 29.1 36.2 45.5 

 15.00 14.9 15.5 17.6 21.1 25.3 30.7 37.2 

 20.00 13.9 14.4 16.2 19.0 22.5 26.6 31.6 

 25.00 12.9 13.4 15.0 17.4 20.2 23.6 27.5 

 30.00 12.1 12.6 13.9 16.0 18.4 21.2 24.4 

 35.00 11.4 11.8 13.0 14.8 16.9 19.3 21.9 

 40.00 10.8 11.2 12.2 13.8 15.6 17.7 19.9 

 45.00 10.3 10.6 11.5 13.0 14.6 16.3 18.3 

 50.00 9.8 10.1 10.9 12.2 13.6 15.2 16.9 



  

 55.00 9.3 9.6 10.4 11.5 12.8 14.2 15.8 

 60.00 8.9 9.2 9.9 10.9 12.1 13.4 14.7 

 65.00 8.6 8.8 9.4 10.4 11.5 12.6 13.9 

 70.00 8.2 8.4 9.0 9.9 10.9 11.9 13.1 

 80.00 7.6 7.8 8.3 9.1 9.9 10.8 11.8 

 90.00 7.1 7.2 7.7 8.4 9.1 9.9 10.7 

 100.00 6.7 6.8 7.2 7.8 8.4 9.1 9.8 

 110.00 6.3 6.4 6.7 7.3 7.8 8.4 9.1 

 120.00 5.9 6.0 6.4 6.8 7.3 7.9 8.5 

 130.00 5.6 5.7 6.0 6.4 6.9 7.4 7.9 

 140.00 5.3 5.4 5.7 6.1 6.5 7.0 7.5 

         

0.8526 0.10 20.4 21.5 25.6 33.0    

 1.00 20.0 21.1 25.0 32.0 42.1 57.5 81.5 

 5.00 18.4 19.4 22.6 28.2 35.8 46.3 60.9 

 10.00 16.8 17.6 20.2 24.6 30.2 37.5 46.6 

 15.00 15.5 16.1 18.3 21.8 26.2 31.6 37.9 

 20.00 14.3 14.9 16.7 19.7 23.2 27.3 32.1 

 25.00 13.4 13.8 15.4 17.9 20.8 24.1 27.9 

 30.00 12.5 12.9 14.3 16.4 18.9 21.6 24.7 

 35.00 11.8 12.1 13.4 15.2 17.3 19.6 22.2 

 40.00 11.1 11.5 12.5 14.2 16.0 18.0 20.1 

 45.00 10.5 10.8 11.8 13.3 14.9 16.6 18.5 

 50.00 10.0 10.3 11.2 12.5 13.9 15.4 17.1 

 55.00 9.5 9.8 10.6 11.8 13.0 14.4 15.9 

 60.00 9.1 9.3 10.1 11.1 12.3 13.5 14.9 

 65.00 8.7 8.9 9.6 10.6 11.6 12.8 14.0 

 70.00 8.4 8.6 9.2 10.1 11.1 12.1 13.2 

 80.00 7.8 7.9 8.5 9.2 10.0 10.9 11.9 

 90.00 7.2 7.4 7.8 8.5 9.2 10.0 10.8 

 100.00 6.8 6.9 7.3 7.9 8.5 9.2 9.9 

 110.00 6.4 6.5 6.8 7.4 7.9 8.5 9.2 

 120.00 6.0 6.1 6.4 6.9 7.4 8.0 8.5 

 130.00 5.7 5.8 6.1 6.5 7.0 7.5 8.0 

 140.00 5.4 5.5 5.8 6.2 6.6 7.0 7.5 

         

1.0000 0.10 20.9 22.0 26.1 33.4    

 1.00 20.4 21.5 25.4 32.4 42.4 57.2 79.7 

 5.00 18.8 19.7 23.0 28.5 36.0 46.1 59.8 

 10.00 17.1 17.9 20.5 24.8 30.3 37.3 45.9 

 15.00 15.7 16.4 18.5 22.0 26.3 31.4 37.5 

 20.00 14.5 15.1 16.9 19.8 23.2 27.2 31.7 

 25.00 13.5 14.0 15.6 18.0 20.8 24.0 27.6 

 30.00 12.7 13.1 14.5 16.5 18.9 21.5 24.4 

 35.00 11.9 12.3 13.5 15.3 17.3 19.6 22.0 

 40.00 11.2 11.6 12.6 14.2 16.0 17.9 20.0 



  

 45.00 10.6 10.9 11.9 13.3 14.9 16.5 18.3 

 50.00 10.1 10.4 11.2 12.5 13.9 15.4 16.9 

 55.00 9.6 9.9 10.7 11.8 13.0 14.4 15.8 

 60.00 9.2 9.4 10.1 11.2 12.3 13.5 14.7 

 65.00 8.8 9.0 9.7 10.6 11.6 12.7 13.9 

 70.00 8.4 8.6 9.2 10.1 11.0 12.0 13.1 

 80.00 7.8 8.0 8.5 9.2 10.0 10.9 11.8 

 90.00 7.3 7.4 7.9 8.5 9.2 9.9 10.7 

 100.00 6.8 6.9 7.3 7.9 8.5 9.2 9.8 

 110.00 6.4 6.5 6.9 7.4 7.9 8.5 9.1 

 120.00 6.0 6.1 6.5 6.9 7.4 7.9 8.5 

 130.00 5.7 5.8 6.1 6.5 7.0 7.4 7.9 

 140.00 5.4 5.5 5.8 6.2 6.6 7.0 7.5 
a
 Composition of HFE-7200, with its corresponding uncertainty, was given in Table 1. 

b 
Estimated expanded uncertainty (k=2): temperature U(T) = ±0.03 K, pressure U(p) = ±0.04 MPa, isothermal 

compressibility U(κT) = ±0.001
 κT. 

 

 

 



  

Table 7. Values of isobaric expansion αP∙10
4
, for the binary mixture x HFE-7200

a 
+ (1-x) 2-propanol 

as function of pressure p, and at different temperatures T
b
. 

 

x p  / MPa T / K            

   293.15 298.15 313.15 333.15 353.15 373.15 393.15 

αP.10
4
 / K

-1 

0.0000 0.10 9.90 10.33 11.66 13.53    

 1.00 9.78 10.20 11.51 13.36 15.35 17.52 19.91 

 5.00 9.51 9.89 11.06 12.72 14.49 16.42 18.52 

 10.00 9.44 9.77 10.79 12.22 13.76 15.42 17.22 

 15.00 9.18 9.48 10.40 11.70 13.09 14.58 16.19 

 20.00 8.99 9.26 10.09 11.25 12.50 13.83 15.26 

 25.00 8.77 9.02 9.78 10.86 12.00 13.22 14.53 

 30.00 8.54 8.77 9.49 10.49 11.55 12.68 13.89 

 35.00 8.37 8.58 9.25 10.19 11.18 12.23 13.35 

 40.00 8.26 8.46 9.06 9.91 10.81 11.76 12.77 

 45.00 8.08 8.27 8.85 9.65 10.51 11.41 12.36 

 50.00 7.92 8.10 8.65 9.41 10.22 11.07 11.98 

 55.00 7.84 8.00 8.51 9.21 9.94 10.72 11.55 

 60.00 7.73 7.88 8.36 9.01 9.70 10.43 11.20 

 65.00 7.55 7.70 8.17 8.81 9.49 10.21 10.97 

 70.00 7.43 7.57 8.01 8.63 9.28 9.95 10.67 

 80.00 7.20 7.33 7.74 8.30 8.89 9.50 10.15 

 90.00 6.98 7.10 7.48 8.01 8.56 9.13 9.74 

 100.00 6.84 6.95 7.29 7.77 8.26 8.78 9.32 

 110.00 6.67 6.77 7.09 7.52 7.97 8.45 8.94 

 120.00 6.51 6.60 6.91 7.32 7.75 8.20 8.67 

 130.00 6.32 6.41 6.70 7.10 7.52 7.95 8.40 

 140.00 6.21 6.30 6.57 6.94 7.33 7.73 8.15 

         

0.1520 0.10 11.95 12.40 13.81 15.82    

 1.00 11.74 12.18 13.56 15.53 17.67 20.03 22.66 

 5.00 11.02 11.43 12.73 14.56 16.55 18.73 21.14 

 10.00 10.30 10.69 11.90 13.62 15.47 17.48 19.69 

 15.00 9.71 10.09 11.23 12.85 14.59 16.48 18.55 

 20.00 9.27 9.63 10.74 12.30 13.97 15.77 17.74 

 25.00 8.79 9.13 10.18 11.67 13.25 14.96 16.81 

 30.00 8.50 8.83 9.87 11.32 12.87 14.54 16.34 

 35.00 8.07 8.39 9.38 10.77 12.25 13.83 15.54 

 40.00 7.83 8.15 9.13 10.49 11.94 13.49 15.17 

 45.00 7.51 7.82 8.77 10.09 11.49 12.99 14.59 

 50.00 7.26 7.56 8.49 9.79 11.16 12.62 14.19 

 55.00 7.21 7.51 8.45 9.76 11.14 12.61 14.19 

 60.00 6.86 7.16 8.07 9.34 10.68 12.11 13.63 

 65.00 6.65 6.94 7.84 9.07 10.38 11.76 13.24 

 70.00 6.42 6.71 7.59 8.81 10.10 11.46 12.91 



  

 80.00 6.12 6.40 7.25 8.44 9.69 11.00 12.40 

 90.00 5.80 6.08 6.93 8.10 9.32 10.62 11.99 

 100.00 5.54 5.81 6.64 7.79 9.00 10.26 11.61 

 110.00 5.30 5.57 6.39 7.53 8.71 9.96 11.28 

 120.00 5.09 5.36 6.18 7.30 8.47 9.70 11.00 

 130.00 4.90 5.16 5.97 7.08 8.24 9.45 10.74 

 140.00 4.71 4.97 5.77 6.87 8.01 9.21 10.48 

         

0.3275 0.10 14.29 14.67 15.87 17.58    

 1.00 14.15 14.53 15.71 17.41 19.26 21.32 23.62 

 5.00 13.22 13.57 14.65 16.20 17.90 19.76 21.82 

 10.00 12.53 12.86 13.87 15.32 16.89 18.61 20.51 

 15.00 11.93 12.24 13.20 14.56 16.04 17.64 19.40 

 20.00 11.41 11.70 12.61 13.90 15.29 16.80 18.45 

 25.00 10.93 11.21 12.08 13.30 14.62 16.04 17.59 

 30.00 10.50 10.77 11.59 12.76 14.01 15.36 16.82 

 35.00 10.10 10.36 11.15 12.26 13.45 14.73 16.12 

 40.00 9.74 9.99 10.74 11.81 12.95 14.17 15.49 

 45.00 9.39 9.63 10.36 11.38 12.47 13.64 14.89 

 50.00 9.07 9.30 10.00 10.98 12.03 13.14 14.34 

 55.00 8.83 9.05 9.73 10.68 11.69 12.77 13.93 

 60.00 8.48 8.69 9.35 10.26 11.22 12.25 13.34 

 65.00 8.21 8.41 9.04 9.92 10.85 11.84 12.89 

 70.00 7.95 8.15 8.76 9.60 10.50 11.45 12.46 

 80.00 7.46 7.65 8.22 9.01 9.85 10.73 11.66 

 90.00 7.07 7.25 7.79 8.54 9.32 10.15 11.03 

 100.00 6.81 6.98 7.50 8.22 8.97 9.76 10.60 

 110.00 6.59 6.75 7.25 7.95 8.67 9.44 10.24 

 120.00 6.38 6.54 7.02 7.70 8.40 9.13 9.91 

 130.00 6.19 6.35 6.82 7.47 8.15 8.86 9.61 

 140.00 6.02 6.17 6.63 7.26 7.92 8.61 9.33 

         

0.5019 0.10 14.81 15.20 16.40 18.13    

 1.00 13.86 14.36 15.91 18.15 20.63 23.39 26.52 

 5.00 13.56 13.93 15.09 16.76 18.58 20.59 22.82 

 10.00 13.04 13.32 14.20 15.46 16.82 18.30 19.93 

 15.00 12.57 12.79 13.48 14.45 15.51 16.64 17.88 

 20.00 12.11 12.29 12.85 13.65 14.50 15.42 16.42 

 25.00 11.66 11.82 12.30 12.97 13.69 14.46 15.29 

 30.00 11.19 11.33 11.77 12.39 13.04 13.75 14.50 

 35.00 10.76 10.89 11.29 11.86 12.46 13.10 13.78 

 40.00 10.40 10.52 10.89 11.42 11.98 12.57 13.20 

 45.00 10.06 10.18 10.53 11.02 11.54 12.09 12.68 

 50.00 9.77 9.88 10.21 10.67 11.16 11.68 12.23 

 55.00 9.70 9.81 10.15 10.63 11.14 11.68 12.24 

 60.00 9.24 9.34 9.64 10.06 10.50 10.96 11.45 



  

 65.00 9.04 9.13 9.42 9.83 10.26 10.71 11.18 

 70.00 8.80 8.89 9.16 9.55 9.95 10.37 10.82 

 80.00 8.42 8.50 8.76 9.12 9.50 9.90 10.31 

 90.00 8.08 8.16 8.41 8.75 9.10 9.48 9.87 

 100.00 7.77 7.85 8.08 8.41 8.74 9.10 9.47 

 110.00 7.50 7.58 7.80 8.12 8.44 8.79 9.14 

 120.00 7.27 7.34 7.56 7.86 8.18 8.51 8.86 

 130.00 7.04 7.11 7.33 7.62 7.93 8.26 8.59 

 140.00 6.84 6.91 7.13 7.42 7.73 8.04 8.38 

         

0.6053 0.10 15.04 15.45 16.74 18.59    

 1.00 14.24 14.73 16.28 18.51 20.98 23.73 26.86 

 5.00 13.90 14.26 15.39 17.00 18.77 20.73 22.90 

 10.00 13.08 13.41 14.46 15.95 17.58 19.36 21.33 

 15.00 12.39 12.70 13.68 15.07 16.58 18.23 20.04 

 20.00 12.05 12.28 12.99 13.99 15.08 16.25 17.52 

 25.00 11.51 11.73 12.39 13.32 14.33 15.41 16.58 

 30.00 11.03 11.23 11.85 12.72 13.65 14.65 15.74 

 35.00 10.59 10.77 11.36 12.17 13.04 13.98 14.98 

 40.00 10.18 10.36 10.91 11.67 12.49 13.36 14.30 

 45.00 9.80 9.97 10.49 11.21 11.97 12.79 13.66 

 50.00 9.45 9.61 10.10 10.78 11.50 12.26 13.07 

 55.00 9.22 9.38 9.85 10.51 11.20 11.94 12.72 

 60.00 8.85 8.99 9.43 10.04 10.69 11.38 12.11 

 65.00 8.55 8.69 9.11 9.69 10.30 10.94 11.63 

 70.00 8.32 8.45 8.85 9.41 10.00 10.62 11.28 

 80.00 7.94 8.07 8.45 8.99 9.55 10.14 10.77 

 90.00 7.60 7.72 8.09 8.61 9.14 9.71 10.31 

 100.00 7.30 7.42 7.78 8.28 8.80 9.34 9.92 

 110.00 7.03 7.15 7.50 7.98 8.49 9.02 9.58 

 120.00 6.79 6.90 7.24 7.72 8.21 8.73 9.28 

 130.00 6.57 6.68 7.02 7.49 7.98 8.50 9.03 

 140.00 6.39 6.50 6.83 7.30 7.78 8.28 8.81 

         

0.6777 0.10 14.88 15.38 16.97 19.26    

 1.00 14.46 14.94 16.47 18.67 21.10 23.82 26.91 

 5.00 14.13 14.47 15.56 17.12 18.82 20.70 22.80 

 10.00 13.54 13.79 14.58 15.69 16.90 18.22 19.67 

 15.00 12.98 13.17 13.77 14.61 15.52 16.51 17.58 

 20.00 12.47 12.62 13.09 13.75 14.46 15.22 16.03 

 25.00 11.99 12.12 12.50 13.03 13.60 14.21 14.86 

 30.00 11.56 11.66 11.98 12.43 12.90 13.41 13.94 

 35.00 11.22 11.30 11.56 11.92 12.30 12.70 13.12 

 40.00 10.88 10.96 11.17 11.47 11.79 12.12 12.47 

 45.00 10.51 10.57 10.78 11.06 11.36 11.67 11.99 

 50.00 10.25 10.31 10.47 10.70 10.94 11.19 11.45 



  

 55.00 10.23 10.28 10.45 10.68 10.92 11.17 11.43 

 60.00 9.76 9.80 9.93 10.10 10.27 10.46 10.65 

 65.00 9.52 9.56 9.67 9.83 9.99 10.16 10.33 

 70.00 9.30 9.34 9.44 9.58 9.72 9.87 10.02 

 80.00 8.94 8.97 9.04 9.15 9.25 9.36 9.48 

 90.00 8.60 8.62 8.68 8.77 8.85 8.94 9.03 

 100.00 8.32 8.34 8.38 8.44 8.50 8.56 8.62 

 110.00 8.04 8.05 8.09 8.14 8.20 8.25 8.30 

 120.00 7.82 7.83 7.86 7.89 7.92 7.95 7.98 

 130.00 7.59 7.59 7.62 7.65 7.68 7.71 7.75 

 140.00 7.39 7.40 7.41 7.43 7.45 7.47 7.49 

         

0.8526 0.10 15.48 15.88 17.11 18.90    

 1.00 14.85 15.29 16.67 18.66 20.87 23.32 26.09 

 5.00 14.44 14.74 15.68 17.03 18.50 20.12 21.92 

 10.00 13.78 13.99 14.64 15.56 16.55 17.63 18.81 

 15.00 13.14 13.30 13.77 14.43 15.15 15.91 16.74 

 20.00 12.60 12.71 13.06 13.56 14.09 14.65 15.25 

 25.00 12.10 12.19 12.46 12.83 13.23 13.65 14.09 

 30.00 11.64 11.71 11.93 12.23 12.54 12.87 13.22 

 35.00 11.25 11.30 11.47 11.70 11.94 12.19 12.45 

 40.00 10.92 10.96 11.08 11.26 11.43 11.62 11.81 

 45.00 10.55 10.58 10.69 10.84 11.00 11.16 11.33 

 50.00 10.26 10.29 10.37 10.49 10.61 10.73 10.85 

 55.00 10.55 10.55 10.55 10.53 10.52 10.49 10.46 

 60.00 9.75 9.76 9.81 9.87 9.93 9.99 10.05 

 65.00 9.52 9.53 9.57 9.61 9.66 9.70 9.75 

 70.00 9.27 9.28 9.31 9.36 9.40 9.44 9.48 

 80.00 8.92 8.92 8.93 8.93 8.94 8.94 8.94 

 90.00 8.55 8.55 8.56 8.56 8.56 8.56 8.55 

 100.00 8.27 8.26 8.25 8.23 8.21 8.18 8.15 

 110.00 7.97 7.97 7.96 7.94 7.91 7.89 7.86 

 120.00 7.78 7.77 7.73 7.69 7.64 7.59 7.53 

 130.00 7.52 7.51 7.49 7.45 7.41 7.37 7.32 

 140.00 7.31 7.30 7.28 7.24 7.20 7.15 7.10 

         

1.0000 0.10 15.42 15.75 16.79 18.28    

 1.00 10.55 11.33 13.74 17.19 20.99 25.27 30.17 

 5.00 9.01 9.76 12.10 15.41 19.04 23.07 27.65 

 10.00 8.14 8.83 10.93 13.90 17.11 20.66 24.63 

 15.00 7.30 7.95 9.95 12.77 15.81 19.13 22.82 

 20.00 6.63 7.26 9.20 11.91 14.81 17.97 21.46 

 25.00 6.11 6.72 8.59 11.20 13.98 17.00 20.32 

 30.00 5.62 6.22 8.06 10.61 13.33 16.26 19.48 

 35.00 5.22 5.81 7.61 10.11 12.75 15.60 18.72 

 40.00 4.87 5.45 7.22 9.67 12.26 15.04 18.07 



  

 45.00 4.57 5.14 6.88 9.29 11.83 14.56 17.52 

 50.00 4.29 4.85 6.57 8.95 11.45 14.12 17.02 

 55.00 4.25 4.82 6.55 8.93 11.44 14.13 17.04 

 60.00 3.81 4.36 6.05 8.36 10.80 13.39 16.19 

 65.00 3.61 4.16 5.82 8.12 10.53 13.09 15.84 

 70.00 3.41 3.96 5.61 7.89 10.27 12.80 15.52 

 80.00 3.07 3.61 5.24 7.48 9.81 12.29 14.95 

 90.00 2.78 3.31 4.93 7.14 9.44 11.88 14.49 

 100.00 2.51 3.04 4.64 6.82 9.10 11.50 14.06 

 110.00 2.28 2.80 4.39 6.56 8.81 11.18 13.71 

 120.00 2.07 2.59 4.17 6.32 8.55 10.89 13.39 

 130.00 1.88 2.40 3.97 6.10 8.31 10.64 13.11 

 140.00 1.73 2.25 3.81 5.93 8.13 10.44 12.90 
a
 Composition of HFE-7200, with its corresponding uncertainty, was given in Table 1. 

b 
Estimated expanded uncertainty (k=2): temperature U(T) = ±0.03 K, pressure U(p) = ±0.04 MPa, isobaric 

expansion U(αP) = ±0.003
 αP. 

 

 

 

 



  

Table 8. Experimental speeds of sound c, densities ρ, and calculated isentropic compressibilities κS, at 

different temperatures and at 0.1 MPa for the binary system x HFE-7200
a
 + (1-x) 2-propanol

b
. 

T / K x c / m∙s-1 ρ / g∙cm
-3 κS / TPa

-1 

293.15 0.0000 1157.54 0.78546 950 

 0.1517 931.61 0.97447 1182 

 0.3270 802.01 1.12622 1380 

 0.5016 729.80 1.23522 1520 

 0.6055 700.59 1.28720 1583 

 0.6762 684.39 1.31853 1619 

 0.8505 654.40 1.38484 1686 

 1.0000 637.83 1.43427 1714 

     

298.15 0.0000 1139.71 0.78127 985 

 0.1518 913.88 0.96845 1236 

 0.3511 772.59 1.13518 1476 

 0.4975 714.45 1.22380 1601 

 0.6057 683.91 1.27742 1674 

 0.6994 663.41 1.31768 1724 

 0.8484 638.73 1.37317 1785 

 1.0000 622.13 1.42306 1816 

     

303.15 0.0000 1122.56 0.77700 1021 

 0.1520 896.39 0.96232 1293 

 0.3281 767.25 1.11099 1529 

 0.5027 696.29 1.21713 1695 

 0.6068 667.45 1.26787 1770 

 0.6772 651.84 1.29814 1813 

 0.8510 622.54 1.36284 1893 

 1.0000 606.46 1.41162 1926 

     

313.15 0.0000 1087.20 0.76821 1101 

 0.1526 861.01 0.94996 1420 

 0.3288 733.22 1.09477 1699 

 0.5017 663.82 1.19732 1895 

 0.606 635.32 1.24692 1987 

 0.6757 620.05 1.27628 2038 

 0.8498 591.35 1.33989 2134 

 1.0000 575.75 1.38853 2173 

     

323.15 0.0000 1051.78 0.75907 1191 

 0.1518 827.09 0.93593 1562 

 0.3268 700.69 1.07643 1892 

 0.5036 630.75 1.17833 2133 

 0.6054 603.51 1.22564 2240 

 0.6776 588.19 1.25528 2303 

 0.8492 560.51 1.31658 2418 



  

 1.0000 545.46 1.36515 2462 

     

333.15 0.0000 1015.29 0.74942 1294 

 0.1501 794.18 0.92030 1723 

 0.3275 667.60 1.05879 2119 

 0.5007 599.56 1.15645 2406 

 0.6047 572.22 1.20354 2538 

 0.6738 557.64 1.23131 2612 

 0.8499 529.89 1.29295 2755 

 1.0000 515.64 1.34102 2805 
a
 Composition of HFE-7200, with its corresponding uncertainty, was given in Table 1. 

b 
Estimated expanded uncertainties (k = 2) are: temperature U(T) = ±0.01 K, U(p0.1) = 10

-3
 MPa, mole fraction, 

U(x) = ±5∙10
-4

, speed of sound U(c) = ±1 m∙s
-1

, density U(ρ) = ± 9∙10
-4

 g∙cm
-3

, isentropic compressibility U(κS) 

= ±0.50
 
κS.  

 



  

Table 9. Literature comparison between the values generated using the Tait-like equation at exactly 

the same experimental p, T sets given for HFE-7200 for several literature references. 

Reference Year NP Tmin / K Tmax / K AAD / % MD / % Bias / % 

Dubey and Kaur [41] 2014 4 293.15 313.15 0.84 0.95 -0.84 

Sastry et al. [42] 2014 3 303.15 323.15 0.50 1.33 -0.48 

González et al. [43] 2013 2 298.15 313.15 0.09 0.11 -0.09 

Singh et al. [44] 2013 3 298.15 313.15 0.08 0.10 0.08 

Calvar et al. [45] 2012 2 293.15 323.15 0.02 0.02 0.02 

Vercher et al. [46] 2011 1 298.15 298.15 0.14 0.14 0.14 

González et al. [47] 2007 2 298.15 313.15 0.18 0.20 0.18 

Pereiro and Rodríguez [48] 2007 3 293.15 303.15 0.11 0.14 0.11 

Rodríguez et al. [49] 2001 4 293.15 313.15 0.09 0.13 0.09 

NP  Number of data points which are in our p, T ranges. 

 



  

> New density data for the mixture HFE-7200 + 2-propanol 

> The pressure and temperature intervals are 0.10 – 140.00 MPa and 298.15 – 393.15 K 

> 1264 data at 6 compositions were used to fit coefficients of a Tait-like equation 

> Excess volumes have been calculated from the experimental data 

> The isobaric expansivity and the isothermal compressibility have been derived 

 

 

 

 

 


