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ABSTRACT: Skipped diynones, efficiently prepared from biomass-derived ethyl lactate, undergo a tandem hydra-

tionoxacyclization reaction under gold(I)-catalysis. Reaction conditions have been developed for a switchable process that allows 

selective access to 4-pyrones or 3(2H)-furanones from the same starting diynones. Further application of this methodology in the 
total synthesis of polyporapyranone B was demonstrated. 

Due to the availability and renewability of biomass -derived 

chemicals, the development of useful synthetic organic proce-
dures that employ eco-friendly and sustainable feedstocks 

represents a major challenge in current chemistry.
1
 For exam-

ple, ethyl lactate (EL) has demonstrated a great potential as  a 

green solvent and building block for the preparation of value-
added products.

2
 In this field, we have recently reported the 

synthesis of symmetric 1,4-diyn-3-ones 2 by the oxidative 
cleavage of the corresponding 1,2-diols 1, using EL as a car-

bonyl source (Scheme 1, eq 1).
3
 These skipped diynones 2 are 

interesting functionalized molecules that possess a wide varie-
ty of synthetic applications.

4
 

On the other hand, oxygenated heterocycles, such as -pyrones 
and 3(2H)-furanones, are interesting compounds as well as 

intermediates for the preparation of other products with rele-
vant biological activities. The 4-pyrone ring occurs in many 

therapeutic agents and bioactive molecules.
5
 In the same way, 

several natural products that possess antibiotic and antitumoral 
properties present the 3(2H)-furanone core as a key structure.

6
 

Thus, the synthesis of these heterocyclic frameworks has 

attracted considerable attention in recent years and so, many -

pyrone and 3(2H)-furanone derivatives and their synthetic 
methods have been disclosed in the literature, traditionally 

related with condensation cyclization reactions of carbonyl 
compounds typically involving multistep sequences or limited 

scope.
7
 More recently, different strategies based on transition 

metal-catalyzed cyclizations have been reported.
8
 However, 

one of the simplest and most atom-economical approaches 

involves the hydration/cyclization of diynones or the cycliza-

tion of acetylenic -diketones. The first one has been devel-

oped by different authors towards the synthesis of 4-pyrones 
using Brønsted acids, such as triflic

9
 acid or p-toluenesulfonic 

acid,
10

 as catalysts (Scheme 1, eq 2). Nevertheless, this useful 

Scheme 1. Previous Work and Proposed Hydra-

tionCyclization of Skipped Diynones 

 

reaction suffers from moderate yields when the substituent of 
the alkyne is an alkyl group, or a hydrogen atom and no ex-



 

amples have been reported with alkenyl groups as substituents. 

Using 4-pentyn-1,3-diones as starting materials, which are 
synthesized from ynals and silyl enol ethers in two steps, their 

cyclization provides mixtures of 3(2H)-furanones, via 5-exo, 

and -pyrones, via 6-endo. The latter alternative is the most 

favorable pathway with an additional influence of the alkyne 
substituent (Scheme 1, eq 3).

11
 Both approaches face a critical 

challenge: the regiocontrol of the cyclization: 5-exo vs. 6-
endo. This regiochemistry affair in cyclization reactions is 

relatively general allowing, in an ideal situation, the access of 

two different scaffolds from the same starting material.
12

 

Taking advantage from our efficient procedure for accessing 

diynones 2,
3
 as well as from our experience in gold chemis-

try,
13

 we planned to tackle their selective transformation in the 

corresponding 4-pyrones 3 and 3(2H)-furanones 4 by an hy-

drationcyclization sequence catalyzed by gold complexes 

(Scheme 1, eq 5). However, a 1,3-transposition of skipped 

diynones 2 to the corresponding conjugated isomers 5 has 
been reported by Gevorgyan et al., thus adding an additional 

competitive pathway to our initial proposal (Scheme 1, eq 4).
14

 
Also in this field, the hydration of ynones to 1,3-diketones has 

been reported.
15

 Herein, we report the gold(I)-catalyzed path-

way-switchable tandem hydrationoxacyclization to 4-

pyranones and 3(2H)-furanones from skipped diynones.
16

 

 

Table 1. Optimization of the Reaction Conditions for the 

HydrationCyclization of 2a
a
 

 
ent. catalyst t (h) products (yields)b 3a/4a 

1c Ph3PAuNTf2 3 3a (11)+4a (64)+5a (7) 1/5.8 

2 Ph3PAuCl/AgOTf 5 3a (7)+4a (71)+5a (5) 1/9.6 

3 Ph3PAuCl/AgNTf2 5 3a (8)+4a (65)+5a (7) 1/8.4 

4 Ph3PAuCl/AgSbF6  5 3a (4)+4a (78) 1/19 

5d Ph3PAuCl/AgSbF6  6 3a (8)+4a (53)+5a (10) 1/6.6 

6 (t-Bu)3PAuCl/AgSbF6 5 3a (11)+4a (69) 1/6.3 

7 (C6F5)3PAuCl/AgSbF6  5 3a (30)+4a (52) 1/1.7 

8e AgSbF6  8 3a (12)+4a (18) 1/1.5 

9 SPhosAuNTf2 3 3a (56)+4a (29) 1.9/1 

10 JohnPhosAu(MeCN)SbF6 5 3a (60)+4a (25) 2.4/1 

11f XPhosAuNTf2 3 3a (67)+4a (11) 6/1 

12f IPrAuNTf2 1 3a (73)+4a (8) 9/1 

13 IPrAuCl/AgNTf2 5 3a (58)+4a (26) 2.2/1 

aReaction conditions: H2O (1 mL) was added to the catalyst (5 

mol%) in dioxane (1 mL) and submerged into an oil bath at 100 °C, 
then 2a (0.2 mmol) in dioxane (1 mL) was added and the mixture 

stirred at 100 °C for the specified time. bDetermined by 1H NMR 

analysis using 1,3,5-trimethoxybenzene as internal standard. cAt rt 

for 24 h only 5a was obtained with 50% conversion. dH2O (0.1 mL 

instead 1 mL). e31% conversion. fAt rt for 16 h the major compound 
was 5a (~50%). 

We selected symmetric diynone 2a as model substrate for 

attempting the proposed hydrationcyclization reaction. After 
having essayed a variety of Lewis acids , we found that only 

gold(I) complexes
17

 possess significant activity for the planned 
sequence using dioxane as solvent.

18
 Gagosz´s catalyst

19
 

Ph3PAuNTf2 led to a ca. 1/6 mixture of the oxacyclic products 
3a and 4a, along with the rearranged conjugated diynone 5a, 

which was the only compound at rt (entry 1). The effect of the 

presence of silver was then tested (entries 24),
20

 observing a 

positive effect on the regioselectivity of the process in favor of 

4a. Moreover, the counterion of the gold complex also had a 

significant effect on the 3a/4a ratio, resulting that SbF6

 pro-

vided an almost complete selectivity toward 4a (entry 4). Not 
unexpectedly, lowering the amount of water led to the compet-

itive formation of conjugated diynone 5a (entry 5). Other 
phosphines were tested, although lower regioselectivities were 

observed (entries 6 and 7). Silver salts by their own did not 
provide satisfactory results (entry 8). Interestingly, a switch to 

bulkier phosphine ligands caused a change in the 

regioselectivity of the cyclization leading to the major for-

mation of 3a (entries 911). Looking for an even more suc-

cessful switch of the regioselectivity, we gratifyingly found 
that the use of IPrAuNTf2, bearing a bulky NHC ligand, gave 

rise to 3a with a higher regioselectivity in a shorter reaction 
time (entry 12). In this case the presence of silver led to a 

significant decrease in the regioselectivity (entry 13). 

 

Table 2. Synthesis of 4-Pyrones 3
a
 

 
entry diynone R 3/4b product yield (%)c 

1 2a Ph 9/1 3a 73 (78)d 

2 2b p-Tol 10/1 3b 81 

3 2c 4-MeOC6H4 12/1 3c 83 

4 2d 3-MeOC6H4 >20/1 3d 78 

5e 2e 4-FC6H4 10/1 3e 79 

6 2f 3-Thf 5/1 3f 70 

7 2h n-Bu >20/1 3h 81 

8 2i c-C3H5 >20/1 3i 80 

9 2j (CH2)2Ph >20/1 3j 86 

10 2k c-C6H9
g >20/1 3k 67 

11 2l C(CH3)=CH2 >20/1 3l 74 

12 2m CH2O(4-MeOC6H4) >20/1 3m 65 

13 2n CH2O[3,5-(MeO)2C6H3] >20/1 3n 70 

aReaction conditions: 2 (0.5 mmol), IPrAuNTf2 (5 mol%), H2O 

(1 mL) in dioxane (2 mL) at 100 °C for 1 h. bDetermined by 1H 
NMR analysis of the crude mixture. cIsolated yield after column 

chromatography. dReaction carried out at 4 mmol scale. e10 mol% 

of catalyst was used. f3-Thienyl. gCyclohexen-1-yl.  

 

With the optimal reaction conditions in hand for both 

regiodivergent cyclizations, we investigated the scope of the 

gold-catalyzed formation of 4-pyrones 3. Table 2 shows the 

results obtained in the hydrationcyclization of a selection of 



 

diynones 2, which provides a variety of 4-pyrones 3 in high 

yields. Diynones bearing aryl substituents with either electron-

donating groups or electron-withdrawing groups (entries 25) 

led to the corresponding 4-pyrones 3b-e with even higher 
regioselectivity compared with model 2a (entry 1). A 

heteroaromatic group is also suitable although a slightly lower 
regioselectivity was observed (entry 6). Changing to 

(cyclo)alkyl-substituted diynones 2h-j the corresponding 
pyrones 3h-j were also efficiently obtained with an almost 

complete selectivity (entries 79). Interestingly, alkenyl sub-

stituents were also well-tolerated allowing access to 4-pyrones 
3k,l with excellent regioselectivity (entries 10 and 11). It is 

worthy to note that 3k could not be prepared by any of the 
reported Brønsted acid-catalyzed methods.

21
 Finally, we also 

expand successfully the scope of this reaction to diynones 
2m,n bearing additional functional groups on the alkyne sub-

stituent (entries 12 and 13). 

Having evaluated the synthesis of 4-pyrones 3 from diynones 
2, we decided to explore the scope of the process to get access 

to the isomeric 3(2H)-furanones 4 (Table 3). By using the 
catalytic conditions established in the optimization study (Ta-

ble 1, entry 4), a variety of furanones 4a-g possessing (het-
ero)aromatic groups were synthesized in high yields (entries 

17). In contrast to (hetero)aryl-substituted diynones 2a-g, the 
presence of linear aliphatic or cyclopropyl-substituted alkynes 

greatly influences the regioselectivity of the process.
22

 

Diynones 2h,i gave rise to mixtures of 3 and 4, with ratios in 
favor of the products 3, though the furanones 4h,i could even 

be isolated in low to moderate yields (entries 8 and 9). 

 

Table 3. Synthesis of 3(2H)-furanones 4
a
 

 
entry diynone R 4/3b product yield (%)c 

1 2a Ph 18/1 4a 80 (79)d 

2 2b p-Tol 11/1 4b 77 

3 2c 4-MeOC6H4 >20/1 4c 81 

4 2d 3-MeOC6H4 >20/1 4d 79 

5e 2e 4-FC6H4 10/1 4e 70 

6 2f 3-Thf 18/1 4f 79 

7 2g 2-Thg 18/1 4g 74 

8h 2h n-Bu 1/1.5 4h 35 

9h 2i c-C3H5 1/2.5 4i 26 

aReaction conditions: 2 (0.5 mmol), Ph3PAuCl/AgSbF6 (5 

mol%), H2O (1 mL) in dioxane (2 mL) at 100 °C for 5 h. 
bDetermined by 1H NMR analysis of the crude mixture. cIsolated 

yield after column chromatography. dReaction carried out at 4 

mmol scale. e10 mol% of catalyst was used. f3-Thienyl. g2-
Thienyl. hReaction time: 8 h.  

 

To gain some insights into the plausible mechanism some 
control experiments were carried out. Using D2O instead of 

H2O, dideuterated 3a-D2 and 4a-D2 were obtained under the 
respective standard conditions with almost complete deuteri-

um incorporation (Scheme 2, eq 1). We prepared known 

alkynyl-1,3-diketone 6a
23

 and submitted it to both of the gold-

catalyzed oxacyclization conditions in the presence and in the 
absence of water. Surprisingly, 3a was selectively generated 

with the two gold catalytic systems, with a slight influence of 
the presence of water on the regioselectivity (Scheme 2, eq 

2).
24

 Next, alkynyl-1,2-diketone 7a
25

 was treated under the two 
different gold-catalyzed conditions leading exclusively to 

furanone 4a (Scheme 2, eq 3). So, both diketones 6 and 7, or 

their tautomers 6´ and 7´, seem to be plausible intermediates. 
Next, the role of the catalyst was evaluated. Xu, Hammond 

and co-workers
26

 have pointed that Ph3PAuOTf complex is 
unstable causing disproportionation into Au(0), Au(III) and 

OPPh3, being accelerated at higher temperatures. Based on 
these findings, it is likely to think that under the described 

reaction conditions this process could take place affording 
Au(0) clusters or nanoparticles that may be responsible of the 

differential reactivity leading to the formation of furanones 4, 

whereas more stable catalysts
27

 such as IPrAu
+
 favor the for-

mation of pyrones 3. When Ph3PAuCl/AgSbF6 was heated at 

100 ºC in dioxane/water mixtures, considerable amounts of 
OPPh3 were observed from the crude by 

31
P-NMR analysis, 

which could suggest the formation of Au(0) species.
18

 Addi-
tionally, the higher stabilization of the gold complex provided 

by NTf2

 counteranion

26
 over SbF6


 also explains the lower 

ratio 3/4 observed (Table 1, entries 3 vs 4). 

 

Scheme 2. Mechanistic Investigation and Proposal 

 

Thus, our mechanistic proposal involves a key initial gold(I)-

catalyzed hydration of ynone moiety that would lead to 6´ or 
7´ depending on the Michael or anti-Michael addition way 

(Scheme 2, eq 4). Then, an intramolecular oxacylization 
would take place giving rise to six- or five-membered O-

heterocycles A and B, depending on the diketone intermediate. 
Finally, protodeauration affords the final compounds 3 and 4 

recovering the catalytic species. So, our results indicate that 



 

the regiocontrol of the process is determined by the initial 

hydration reaction instead of by a more intuitive 6-endo vs 5-
exo oxacyclization from a common intermediate 6´. 

At this point, starting skipped diynones 8 bearing two different 
alkyne units were also evaluated under the conditions favoring 

the furanone formation (Table 4).
28

 Initially, diynones 8a,b 
possessing an aryl- and a (cyclo)alkyl-substituted alkyne were 

used giving rise to ~1/1 mixtures of the corresponding pyrones 

9 and furanones 10 (entries 1 and 3). In both cases, the 
furanone derivative obtained possesses a benzylidene moiety. 

These results seem to indicate that the initial hydration takes 
place over the two alkynes in a similar extension, but in a 

Michael mode on the alkyl-substituted alkyne and in an anti-
Michael way onto the aryl-substituted one. Employing un-

symmetrical diynones 8c,d, bearing two different aryl-
substituted alkyne moieties, the furanone formation was, not 

unexpectedly, favored (entries 4 and 5). In these cases, alt-

hough two regioisomeric furanones (10 and 10´) can be 
formed, the one derived from an initial anti-Michael hydration 

of the more electron-poor alkyne moiety is favored. Finally, an 
unsymmetrical diynone 8e bearing a terminal alkyne was 

studied. With this substrate both catalytic conditions led to the 
same result, the selective formation of 4-pyrone 9e (entries 6 

and 7), thus suggesting a favored initial Michael addition of 

water onto the terminal alkyne. 

 

Table 4. Oxacyclization of Unsymmetrical Diynones 8 

 
entry 8 R1 R2 Productsa 9/10+10´b 10/10´b 

1 8a Ph n-Bu 9a (35) +10a (42) 1/1.25 1/0 

2c 8a Ph n-Bu 9a (82) >20/1 

3 8b Ph c-C3H5 9b (37) +10b (35) 1/1.1 14/1 

4 8c Ph 4-MeOC6H4 10c (71) 1/20 3/1 

5 8d 4-FC6H4 4-MeOC6H4 9d (8) +10d (72) 1/10 4/1 

6 8e Ph H 9e (74) >20/1  

7c 8e Ph H 9e (76) >20/1 

aIn brackets, isolated yield for each compound after column 
chromatography. bDetermined by 1H NMR analysis of the crude 

mixture. cCarried out with IPrAuNTf2 for 1 h (8a) and 5 h (8e). 

Additionally, the first total synthesis of polyporapyranone B 

(11) employing the reaction reported herein as the key step 
was undertaken (Scheme 3). Rukachaisirikul and coworkers 

isolated this pyrone derivative from two seagrass-derived 
fungi Polyporales and is a rare example of naturally-occurring 

2-substituted -pyrones.
29

 Our synthetic route involves the 
preparation of asymmetric diynone 8f, which was accessed 

from commercially available 2,4-dimethoxyiodobenzene in an 

overall, though non-optimized, 40% yield, through standard 
reactions: a) Sonogashira coupling with propargylic alcohol; 

b) oxidation; c) addition of ethynylmagnesium bromide, and 
d) oxidation.

18
 The key gold-catalyzed oxacyclization of 8f 

proceeds efficiently under our established conditions leading 

to -pyrone 11 in high yield (Scheme 3). 

Scheme 3. Synthesis of Polyporapyranone B 

 

Finally, products 3 or 4 can be readily prepared on gram 

scale,
18

 enabling further transformations as shown in Scheme 
4. First, treatment of pyrone 3b with a Grignard reagent and 

subsequent addition of HBF4 led to the pyrylium salt 12. This 

type of compounds has been demonstrated as useful organic 
photoredox catalysts.

30
 Meanwhile, furanones such as 4a,b 

react with N-nucleophilic reagents leading to functionalized N-
heterocycles such as 5-hydroxy-2-pyrrolin-4-one 13

31
 and 4,5-

dihydroisoxazoles 14
32

 (Scheme 4). 

 

Scheme 4. Synthetic Applications of Selected 4-Pyranone 
3b and Furanones 4a,b 

 

In summary, we have established complementary conditions 

for selectively accessing 4-pyrones and 3(2H)-furanones from 
a common skipped diynone precursor, which in turn is synthe-

sized from biomass-derived ethyl lactate. Achieving a fine 

tuning of the gold ligands, the silver salt and counteranion 
effects is decisive in developing this strategy for the divergent 

synthesis of oxacyclic compounds. The initial hydration reac-
tion can take place in a Michael or anti-Michael manner de-

pending on the catalytic system used. This hydration has been 
revealed as the key step that determines the final reaction 

outcome. The intermediate diketones evolve through an endo-
oxacyclization reaction affording the O-heterocyclic deriva-

tives. 
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