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Abstract 

 Atomistic simulations have revealed an unconventional behavior of point defects at interfaces found 

in multilayer composites synthesized by physical vapor deposition but the observed mechanisms that 

involve point-defect annihilation are subject to time-scale limitations. So, a mathematical model that 

describes long-term evolution of point defects in such materials under irradiation is presented in this work. 

Firstly, the effect of interface point-defect trapping and recombination mechanisms on point-defect 

concentrations has been studied. In addition, the effect of interface self-interstitial atoms loading, which has 

been seen during collision cascades, and constitutional vacancies has been studied too. Two interface 

configurations have been considered between metals in a β-α-β three-layer system (α = Cu and β = Nb, or 

V), KSmin and KS1. These interfaces correspond to ground-state and defect-free KS structures respectively. 

The respond to irradiation of the systems investigated here, Cu/Nb and Cu/V, depends on both, interface 

characteristics and bulk properties. Nonetheless, the influence of the properties of one metal in the point-

defect evolution of the other metal is only effective if there are constitutional vacancies at the interface, i.e., 

for KSmin. Especial attention has been paid to the behavior of the same metal (Cu) when it is surrounded by 

diverse metals (Nb, or V) with the aim of comparing quantitatively our model predictions with experimental 

results reported elsewhere. The lower concentration of vacancies in Cu layer of Cu/Nb system at steady state 

is due to the low mobility of vacancies in niobium. 
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1. Introduction 

 Heterophase boundaries are interfaces with a great complexity between crystals of dissimilar 

chemistry, structure and orientation. The increase of interfacial area respect total volume can make material 

behavior to be influenced or even determined by above boundaries. Thus, nanoscale metallic multilayer 

composites (NMMCs) with ultra-high strengths and enhanced radiation damage tolerance could be designed 

tailoring layer thickness to take advantage of the atomic structure and energetics of the interfaces [1]. 

Nevertheless, the increase of interfaces number is not enough as they must be of the correct type [2]. In spite 

of their well-known importance, it has not been possible to study heterophase boundaries in detail until last 

years in which the situation has changed thanks to analyses with increased resolution and sensitivity besides 

to high-performance computational resources [3]. 

 Variations in composition, stress or temperature may cause some interfaces to change easily from a 

metastable state to another one of almost the same energy which makes them affect a wide variety of 

processes [4]. Kurdjumov–Sachs (KS) [5] and Nishiyama–Wassermann (NW) [6,7] orientation relations are 

commonly found in close-packed fcc/bcc interfaces being the former the most studied. Despite their 

incommensurate character, a quasi-periodic pattern of patches may be present in these interfaces. This is the 

case of the interface atomic configuration termed KS1 in Cu/Nb multilayer composites which have been 

used as model systems. While in KS1 there are patches of undercoordination, i.e., interface areas where a Cu 

and Nb atom are practically above each other, no patches of undercoordination exist in KS2 [8]. KS1 is 

obtained joining Cu and Nb layers with the KS orientation relation. However, interfacial Cu plane in KS2 is 

homogeneously strained and rotated in such a way that makes this interface slightly favorable energetically 

respect KS1. As a consequence, KS2 contains an extra interface between the strained interfacial Cu plane 

(Cuα) and the rest of Cu layer, Cuα/Cu, in addition to Cuα/Nb one. 

 Lattice mismatch in heterophase interfaces may be accommodated by lattice strain, or by misfit 

dislocations injection which makes component crystals to return to the unstrained state. The existence of 

misfit dislocations can be proved by means of a disregistry analysis throughout the interface [4]. For such 

analysis, the relaxed structure and the correct reference state [9,10], in which the interface is coherent, are 

needed. There are two sets of parallel misfit dislocation in Cu/Nb interface of KS1 and there is one set in 

each interface of KS2 (Cuα/Nb and Cuα/Cu). Parameter values characterizing above sets of interfacial 

dislocations present in KS1 and KS2 can be found in Ref. (4) while their relative arrangement is illustrated in 

Ref. (11). 

 Real Cu/Nb interfaces are not atomically flat even in multilayer composites synthesized by physical 

vapor deposition (PVD). Shear elastic constants of Cu/Nb interfaces have been demonstrated to be highly 

temperature dependent and easily influenced by the step density [12]. Therefore, interfaces with different 

atomistic roughnesses may have different shear stiffnesses. Severe plastic deformation (SPD) techniques 

allow to create Cu/Nb interfaces with different orientation of the habit planes to that of KS1 and KS2 [13]. 

This is the case of the interface studied in above work (Cu/Nbspd) and that has been compared with KS1 and 
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KS2 (Cu/Nbpvd). Cu/Nbspd contains three sets of parallel misfit dislocations. The dissimilarities found in the 

interface shear response of Cu/Nbpvd and Cu/Nbspd do not proceed from the difference of interface energy 

[14] but from the difference in misfit dislocation structure. Just one set of Cu/Nbspd misfit dislocations has a 

Burgers vector within the interface plane which implies that the interface shears in that direction, i.e., the 

transverse direction along interface, but not at all in the horizontal direction along interface. The other two 

sets have Burgers vectors with non-zero component in the direction perpendicular to interface. These misfit 

dislocations are not able to glide within the interface by themselves, they would need climb to occur. 

Nevertheless, misfit dislocation climb is unlikely to occur [13]. 

 Light-ion beams are frequently used to study the effects of radiation on materials properties [15]. 

Such bombarding particles provoke atomic displacements that lead to the creation of self-interstitial atoms 

(SIAs) and vacancies mostly. These defects predominate in a region close to the irradiated surface where ion 

amount is negligible [16] and can be removed by means of recombination. One of the most promising 

strategies in the mitigation of radiation damage is the introduction of heterophase interfaces with enhanced 

ability to annihilate point defects [1]. An Embedded-Atom-Method (EAM) potential developed from Cu and 

Nb single-element potentials, and the Ziegler–Biersack–Littmark (ZBL) universal potential were joined to 

describe the interatomic and short range repulsive interactions respectively in Cu/Nb multilayers composites 

[17]. The resulting potential was used to simulate collision cascades nearby Cu/Nb-KS1 interface as well as 

in single Cu and Nb crystals. The number of point defects produced per keV of primary knock-on atom 

(PKA) energy in Cu/Nb multilayers was 50-70% lower than in single Cu and Nb crystals [17]. This unique 

response of Cu/Nb NMMCs to irradiation arises from the extraordinary behavior of point defects in Cu/Nb 

interfaces. Indeed, void density and size in Cu layers of Cu/Nb NMMCs decrease when reducing the 

thickness [18]. 

 Point-defects formation energies in Cu/Nb interfaces and bulk constituent metals were compared 

with the purpose of evaluating the point-defect trapping capacity of such interfaces. Molecular Dynamics 

(MD) simulations revealed similar and smaller point-defect formation energies away from Cu/Nbpvd 

interfaces and close to them respectively. Some Cu SIAs show similar formation energies to interfacial 

values at distances of up 1 nm [4]. The relaxation process analysis of a Cu SIA located 1 nm from Cu/Nb 

interface showed a spontaneous migration to the interface without any energetic barrier or a very small one. 

The sites of lowest point-defect formation energies in Cu/Nbpvd interfaces are located in the regions of the 

quasi-periodic pattern commented previously that in turn coincide with the misfit dislocation intersections 

(MDIs). A Density Functional Theory (DFT)-based explanation was given in strain terms for vacancies [19]. 

A high corrugation exists in MDIs because a Cu atom is nearly on the top of a Nb atom and they repulse 

each other. The introduction of a vacancy in these regions decreases the corrugation. The cost reduction of 

introducing a Cu vacancy is such that it ends up being energetically favorable unlike what happens outside 

of MDI regions. This means that a lower energy interface, KSmin, can be found removing appropriate Cu 

atoms from KS1 and KS2 [4]. In addition, González et al. calculated the formation energy of a vacancy in the 
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second plane of both sides of Cu/Nb interface near MDIs and the migration energy to the interfacial plane. 

Vacancy formation energies are between bulk and interface values, and vacancy migration energies are 

lower than in the bulk [20], so a successful vacancy trapping effect of Cu/Nb interface is expected. 

 A Cu atom removal or insertion in KS1 does not form compact point defects after relaxation but it 

changes the atomic volume in an extensive region and the interface reconstruction leads to the creation of 4- 

and 5-atoms rings in the 3-atom ring network [4]. A point defect can be seen as a square edge dislocation 

loop of atomic dimensions [4,11]. If the two edge segments of the dislocation loop glide in contrary 

directions, a screw segment is created. This would be unfavorable energetically unless a screw dislocation 

with opposite Burgers vector already exists as in this case. The elimination of the screw segment between 

edge ones results in a screw dislocation with a jog and a kink pair. Thus, a small patch climbs one atomic 

plane from Cu/Nb interface converting into KS2 [11]. On the other hand, the insertion or removal of an atom 

in Cuα plane of KS2 provokes the shifting of a small patch from Cuα/Cu to Cu/Nb interface becoming KS1. 

 Away from Cu/Nbspd interfaces, point-defect formation energies are similar to the values obtained in 

single Cu and Nb crystal as it occurs in Cu/Nb multilayer composites synthesized by PVD, but highly 

variable in their vicinity for vacancies [13]. The sites of lowest point-defect formation energies in Cu/Nbspd 

are located in MDI regions too. No constitutional vacancies are present in Cu/Nbspd interfaces since all 

vacancy formation energies are positive. Furthermore, no point-defect delocalization occurs. The penalty 

energy associated to strained Cuα plane of KS2 is compensated with the energy gained by avoiding misfit 

dislocations from intersecting at the same interface plane (KS1). Hence, differences in the interaction of 

Cu/Nbspd and Cu/Nbpvd interfaces with point defects may be caused by the inability of Cu/Nbspd misfit 

dislocations to shift one atomic plane. 

 In order to test the influence of thermodynamic properties and interface geometry on the atomic 

structure as well as on interface point-defect formation energies, EAM interaction potentials were fitted to 

different values of dilute heats of mixing [21] and lattice misfit [22] respectively keeping the rest of 

parameters unchanged. Variation of dilute heats of mixing, and therefore bonding strength, does not affect 

significantly the atomic structure or Cu vacancy formation energies, but it does affect Cu SIA formation 

ones. Variation of lattice misfit alters significantly the atomic structure due to changes in the misfit 

dislocation spacing and the dislocation character. All lattice misfits showed Cu point-defect formation 

energies lower than bulk values except in one case for vacancies. An increase of low vacancy formation 

energy sites is usually associated to an increase of MDI density so other semicoherent interfaces could be 

design to trap point defect effectively. 

 Cu/Nbpvd interfaces not only act as sinks for point defects, they are catalysts for point-defect 

recombination too. Kink-jog pairs formed after a Cu atom insertion or removal, have dipolar elastic fields 

that allow long-range interactions between them. This causes a significant increase of the critical distance 

for Frenkel-pair recombination compared to Cu single crystal [11]. On the contrary, the critical distance for 

Frenkel pair recombination in the interfacial Nb plane is not increased as markedly as in the Cu one because 
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Nb point defects remain compact. But, despite this, Frenkel pairs formed in Nb layer can also take advantage 

of the mechanism that aid rapid point-defect recombination in Cu layer if they migrate to the interfacial Cu 

plane [4]. In addition, the emission of SIAs from the interfaces may play an important role in the 

annihilation of radiation damage. MD simulations demonstrated that Cu SIAs are loaded in Cu/Nb interfaces 

during the collision cascades [23]. Next, such SIAs interact with the remaining vacancies in Cu layer even if 

the latter are some planes away from the interface. A SIA is emitted from the interface causing an organized 

movement of adjacent Cu planes atoms that ends with the annihilation of a vacancy. The creation of low 

vacancy formation energy sites in Cu layer as a result of SIAs loading confirms the existence of long-range 

SIA-vacancy interactions. The SIA emission mechanism can be seen both in Cu/Nbpvd and Cu/Nbspd 

interfaces but it has a greater range of interaction in the last ones. 

 Point-defect clusters delocalize forming 4- and 5-atoms rings in Cu/Nbpvd interfaces as single SIAs 

and vacancies [24]. Either single point defects or SIA clusters extent along set 1 of misfit dislocations while 

vacancy clusters extend along set 2. Taking as reference ground-state interface, KSmin, point-defect cluster 

formation energy increases linearly with the number of point defects in the cluster unlike in single Cu 

crystal. The lack of thermodynamic driving forces for clustering besides the higher configurational entropy 

of isolated point defects than forming a cluster suggest a tendency of point-defect clusters to divide into 

smaller ones and occupy different MDIs which may be beneficial due to the reduction of void formation. 

 MD simulations revealed that delocalized point defects migrate along set 1 of misfit dislocations 

from a MDI to a neighboring one in Cu/Nbpvd interfaces [24]. In between, the delocalized point defect 

extents and reside on both MDIs at the same time. The transition from delocalized state to extended one and 

vice versa requires the nucleation of thermal kink pairs at neighboring MDI and between both MDIs 

respectively. Then, a kink-jog of the delocalized point defect annihilates with a kink-jog of the thermal kink 

pair permitting the transition between states. Thermal kinks nucleation or annihilation determines the energy 

barriers in the migration path which are smaller than in the bulk. On the contrary, DFT calculations suggest 

that vacancies stabilize at MDIs once they get trapped [19]. Nevertheless, supercell size limitations do not 

allow considering delocalized vacancies in the last work. In Cu/Nbspd interfaces, point defects are expected 

to migrate in a conventional way due to the predominant edge character of the three misfit dislocation sets 

and the incapacity of point defects to delocalize [13]. Formation, migration and dissociation of point-defect 

clusters in Cu/Nbpvd interfaces are governed by a multistage process with similar mechanisms to single 

point-defect migration ones [24]. Either delocalized point defects or thermal kink pairs can be represented 

by dislocation segments and, saddle points in the migration path of point defects correspond to dislocation 

nucleation or annihilation. Hence, minimum energy paths may be analytically calculated with dislocation 

mechanics models [25]. 

 The reduction of layer thickness decreases point-defect concentrations and fluxes to the interface. 

Nevertheless, point-defect concentrations are very sensitive to sink efficiency [26]. Indeed, different atomic 

configurations results in different misfit dislocation structures that interact in turn differently with point 
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defects. Different void denuded zones (VDZ) widths were seen near Cu/Nb interfaces depending on their 

crystallographic character [18]. Sink efficiency of Cu/Nbspd interfaces is higher than Cu/Nbpvd one but none 

of them get decorated with voids unlike grain boundaries in nanocrystalline Cu [27]. Thus, synthesizing 

multilayer composites that remain free of voids is possible if layer thickness is reduced until VDZs near 

neighboring interfaces overlap. 

 He-irradiated Cu/Nb NMMCs are thermally stable in contrast with grains in nanocrystalline Cu that 

significantly coarsen [28]. Nevertheless, while He ions only transfer a small fraction of their kinetic energy 

to Cu and Nb atoms, morphological stability of Cu/Nb NMMCs may be compromised if they are irradiated 

with energetic neutrons or heavy ions [29]. Neutrons or heavy ions collide with Cu and Nb atoms initiating a 

ballistic phase followed by the formation of a thermal spike. The temperature reached is much higher than 

the melting one so a transient liquid phase forms until the energy is dissipated to surrounding atoms. 

Thermal spikes lead to the formation of point-defect clusters and, due to mixing across heterophase 

interfaces, an interfacial amorphous layer whose thickness is proportional to the square root of dose. 

Radiation-induced mixing is independent of interface crystallography and may be reduce by choosing low 

solubility metals with minimal liquid interdiffusivity as multilayer composite constituents [30,31]. In 

addition, the interdiffusion region of one interface should not overlap with the interdiffusion region of an 

adjacent interface to avoid layer pinchoff and, therefore, minimum layer thickness of Cu/Nb NMMCs should 

be between 2 and 4 nm [29]. 

 The mechanisms underlying point-defect annihilation at NMMC interfaces has been covered in 

enough detail at atomistic scale. Nevertheless, they are subject to time-scale limitations so a continuum 

approach that describes long-term evolution of point-defects in irradiated NMMCs is highly desirable. In 

order to provide a contribution along this line, Fadda et al. validated a mathematical model to study the 

dynamic behavior of vacancies and interstitials in nanostructured metallic monolayers of Cu and Nb [32]. 

Layer boundaries were described as continuum spatial distribution of sinks either neutral or variable-biased 

[33]. The effect of variation in layer thickness, temperature, point-defects production rate, and surface 

recombination coefficient on annihilation processes at interfaces was also addressed. In our previous work 

[34], above model was modified to take into account interface characteristics deriving from coupling 

different metals and, to allow metal layers influence each other’s behavior through the evolution of 

interfacial variable-bias sink occupation. 

 The present work goes a step further and compares, quantitatively, model predictions with 

experimental results in Cu/Nb and Cu/V NMMCs [35]. In such experiments, both multilayer composites 

were synthesized by PVD. Hence, we have focused on α/β-KSmin and -KS1 interfaces (α = Cu and β = Nb or 

V). These interfaces correspond to ground-state and defect-free KS structures respectively. The former 

contains constitutional vacancies, whose concentration is higher in Cu/Nb interface than in Cu/V one, and, 

according to Mao et al., they seem to play a key role in Cu vacancy concentration dissimilarities between the 

two systems at the steady state. They believe that interface constitutional vacancies trap interstitials and 
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facilitate vacancy recombination. Moreover, the unconventional behavior of point defects in above 

interfaces has to be considered. Accordingly, boundary equations and initial conditions have been adapted 

[34]. Point-defect interactions with damaged and pristine boundaries tend to be different [36]. KS1 may be 

seen as KSmin loaded with SIAs [37]. Thus, we have investigated the effect of interface SIA loading [23] and 

constitutional vacancies [38] on the long-term point-defect evolution. Cu/Nb- and Cu/V-KSmin interfaces 

have the same number of constitutional vacancies per MDI, however, the areal MDI density is different. 

Therefore, the effect of trap concentration has been analyzed too. 
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2. Mathematical model 

 We consider the same system described in our previous work [34], where a layer of metal α is in 

between two layers of metal β (cf. Figure 1a). Therefore, some points explained in detail in such work will 

not be commented again and the reader should refer to above-mentioned reference. However, all the 

necessary equations that allow the model resolution will be presented here for the sake of clarity. The 

evolution of point defects, i.e., self-interstitial atoms (SIA) (i) and vacancies (v) concentration in layers α 

and β is described by the following one-dimensional spatial reaction-diffusion equations: 
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γ
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along with their initial conditions 

 

.,;,;0 )(*)( βαγγγ ===∀= vijCCxt jj                      (2) 

 

 )(γ
jC  is the concentration of the point defect of type j in layer γ, )(γ

jD  is the diffusion coefficient of the 

point defect of type j in layer γ [26], while )(
0
γK  and )(γ

CR  are the production and the recombination rates of 

point defects per unit volume in layer γ, respectively. )(* γ
jC is the concentration of the point defect of type j 

in layer γ at thermodynamic equilibrium [33]. As the production rate of point defects is assumed time- and 

spatial-independent in each layer [34], the recombination rate of point defects is expressed as a second order 

reaction [33]: 

 

( )( ) ;,),( )(*)()(*)()()( βαγγγγγγγ =−−= vviiivC CCCCKtxR                                                        (3) 

 

where )(γ
ivK  is the kinetic constant. 

 Point defects tend to get trapped in MDI regions of NMMCs interfaces [21,22]. In our previous work 

[34], interfaces between metals α and β were assumed to have a surface concentration of traps for 

interstitials, )( βα −
i

totS , and a surface concentration of traps for vacancies, )( βα −
v

totS , as in Brailsford and 

Bullough’s original work [39]. This means that traps for SIAs and vacancies are treated as different physical 

entities, which is appropriate when point defects remain compact and well localized [13]. However, trapped 

SIAs and vacancies at interfaces of multilayer composites synthesized by PVD delocalize in a similar way 

and form kink-jog pairs [4]. Thus, only one trap typology is considered in this work which is capable of 

accommodate both SIAs and vacancies. Moreover, point-defect delocalization significantly increases the 

critical distance for Frenkel-pair recombination [11]. So, if a point defect jumps to an interface site close to a 
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trapped opposite point defect, they recombine. Therefore, boundary conditions at the interface between 

metals α and β may be expressed as: 
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where L  is the thickness of layer γ and )(γ
jK  is the transfer velocity of the point defect of type j from layer γ 

to the interface. A point defect may go into an unoccupied trap site, either by a SIA or a vacancy, or 

recombine with the nearest trapped opposite point defect, jumping there from z  possible adjacent sites in 

the matrix. In our previous work [34], z  was set equal to 4 for any material structure according to Brailsford 

and Bullough’s work. Thus, the two interface annihilation mechanisms consisting of a point defect jumping 

to an unoccupied trap and to an occupied trap by the opposite point defect can be considered to have a 

prefactor of 1 and 4 respectively. As point defects do not remain compact in PVD multilayer composites 

interfaces, the original physical meaning of giving z  a value of 4 may be lost. Nonetheless, the effect of z  

value in point-defect annihilation at the interface between metals α and β has been evaluated in next section. 

 Point-defect trap occupation probability is obtained by solving the following balance equations: 
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along with their initial condition 

 

;,,0 0 vijfft jj ===                        (6) 

 

where )( βα −Stot  is the surface concentration of traps for point defects and sα  is the surface recombination 

coefficient. Temporal evolution of trap occupation probability by the point defect of type j depends on the 

fluxes of SIAs and vacancies to the interface arriving from both metal layers, α and β, and the recombination 

of trapped SIAs with trapped vacancies. Fadda et al. [32] demonstrated that point-defect evolution in a metal 

monolayer did not depend on sα  value. Hence, sα  has been set equal to 0 in the same way that in our 

previous work [34] where we also studied metallic multilayer composites as here. The present work focuses 

on KSmin and KS1 interfaces [4]. While the latter does not possess constitutional vacancies, the former has 2-
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3 vacancies per MDI [38]. Neither KSmin nor KS1 possesses constitutional SIAs. For a temperature similar to 

the one of this work, it was seen that a cluster of 5-6 SIAs or vacancies added to KS1, i.e., defect-free 

interface, dissociated into smaller clusters and occupied different MDIs [24]. Moreover, according to above 

study too, if a SIA or vacancy cluster is added to KSmin, i.e., the ground state structure, the SIAs or vacancies 

constituting the cluster are likely to evaporate from it and remain isolated thereafter. Therefore, it is assumed 

that each MDI is capable of accommodate 2-3 SIAs or vacancies. KSmin and KS1 differ in the initial 

conditions of point-defect trap occupation probabilities, 0
jf , which may be in the range [0,1]. 0if  takes a nil 

value for both interface structures. However, 0
vf  takes a nil value for KS1 and a unity value for KSmin. 

 By referring to Figure 1b, boundary conditions can be completed by the following ones. In the case 

of the symmetric surface of the entire system, boundary conditions may be expressed as: 

 

;,0;0
)(

vij
x

C
tx j ==

∂
∂

∀=
α

                                 (7) 

 

while in the case of the free surface on layer β, boundary conditions may be expressed as: 
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 The model consisting of the balance Eqs. (1) along with their initial conditions, Eqs. (2), and their 

boundary conditions, i.e., Eqs. (4) in the case of the interface between metals α and β modelled as variable-

biased sinks, Eqs. (7) in the case of the symmetric surface of the entire system, or Eqs. (8) in the case of the 

free surface, allows one to describe the spatial-temporal evolution of point-defect concentrations inside 

layers α and β undergoing radiation. 

 In order to obtain dimensionless and normalized equations and parameters, a change of variables has 

been used in this work following the same procedure reported previously [34]. Dimensionless variables and 

parameters, as well as scaling and reference values can be found in above work. According to this change of 

variables, the evolution of dimensionless point-defect concentrations in layer γ as a function of the 

dimensionless time is described by the following equations: 
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along with the initial conditions 
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;,;,0;0 )( βαγχξτ γ ===∀= vijj                    (10) 

 

At the interface between metals α and β modelled as variable biased sinks, dimensionless boundary 

conditions may be expressed as: 
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The dimensionless balance equations of trap occupation probabilities appear as follows: 
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along with their initial conditions 

 

;,,0 0 vijff jj ===τ                      (13) 

 

Dimensionless boundary conditions for the symmetric surface of the entire system may be expressed as: 

 

;,0;0
)(

vijj ==
∂

∂
∀=

ξ
χ

τξ
α

                    (14) 

 

while dimensionless boundary conditions representing the free surface on layer β as: 

 

;,0;1
)(

vijj ==
∂

∂
∀=

ξ
χ

τξ
β

                    (15) 

 

 Average dimensionless concentration and net-production rate of the point defect of type j in layer γ, 

)(γχ j  and )(γΠ  respectively, as well as dimensionless flux of the point defect of type j from layer γ to the 

interface between metals α and β, )(γ
jJ , have been defined as in our previous work [34] with the aim of 

illustrating and discussing model results. Model equations are solved by using the commercial software 
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COMSOL Multiphysics 3.4, along with the parameters for Cu, Nb and V reported in our previous work [34] 

except the value of parameter z , which has been evaluated in next section before setting it, and )( βα −Stot
, 

which have been set equal to 2.5 times the values of )( βα −
j

totS  reported in above work. The latter is due to 

KSmin and KS1 capacity to accommodate 2-3 SIAs or vacancies in each MDI as it has been explained 

previously. 
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3. Results 

 In what follows, copper is represented by metal α while metal β is niobium, or vanadium. Results are 

shown in a double-log plot (Figures 2-9) and they are obtained by solving the dimensionless version of the 

model illustrated in the previous section. All the results belong to the half-symmetric part of the layered 

system depicted in Figure 1. Firstly, the effect of parameter z  value in point-defect evolution is evaluated 

as it has been indicated previously. This parametric sensitivity is performed in Cu/Nb NMMCs for either 

KSmin or KS1 interface configuration. Three z  values are considered, 0, 1 and 4. It should be noted that a nil 

value of parameter z  for KS1 permits point defects in the matrix to jump only to unoccupied traps, 

canceling the mechanism consisting in the recombination of a point defect jumping from the matrix with the 

nearest trapped opposite point defect (cf. Eq. (4)). For KSmin, a nil value of parameter z  cancels both 

interface annihilation mechanisms and suppresses point-defect fluxes. This last case represents the absence 

of point-defect traps. 

 The corresponding temporal profiles of average point-defect concentrations in Cu and Nb layers of 

Cu/Nb system for the different values of z  are shown in Figures 2 and 3, respectively. It can be seen in 

Figure 2a that χ��
(�) constantly increases from the equilibrium concentration until τ ≈ 0.2. This behavior can 

be observed for all z  values and for both interface configurations except for KSmin with z =0. In this case, 

χ��
(�) continues increasing until τ ≈ 103. Then, average concentration of SIAs remains constant up to τ ≈ 107 

in Cu layer. However, there is a different evolution for KS1 with z =0. Indeed, χ��
(�) abruptly increases to 

reach a stationary SIA average concentration. Figure 2b shows the temporal evolution of vacancy average 

concentration in Cu layer. Initially, χ��
(�) increases until longer times than χ��

(�) except for KSmin with z =0. In 

this case, vacancy and SIA average concentration in Cu layer show the same behavior. Similarly to χ��
(�), no 

differences can be observed for KS1 between the three values of z  until τ ≈ 107 . Then, χ��
(�) also increases 

abruptly for z =0 to reach a stationary vacancy average concentration. In contrast, χ��
(�) achieves a maximum 

for KSmin with z  equal to 1 and 4, to then decrease until steady state is reached. In all cases, the stationary 

value of χ��
(�) is higher compared to the stationary value of χ��

(�) except for KSmin with z =0 that is equal. 

 Figures 3a and 3b show the temporal profiles of SIA and vacancy average concentrations in Nb 

layer respectively for the different values of z . It can be seen a similar behavior of χ��
(�) compared to χ��

(�) for 

both interface configurations with the different values of z . The same occurs with χ�	
(
) with respect to χ��

(�), 

although, some differences can be observed either in SIA or vacancy average concentrations. Firstly, χ��
(�) 

decreases between τ ≈ 105 and τ ≈ 107 for all the cases studied except for KSmin with z =0. Secondly, χ�	
(
) 

does not reach a maximum and decreases before steady state as χ��
(�) for KSmin with z  equal to 1 and 4. 

Instead, a stationary vacancy average concentration is reached in Nb layer after the initial increase. So, 

according to the results of Figures 2 and 3 for the different values of parameter z ,  the overweighting of the 

mechanism consisting in the recombination of a point defect jumping from the matrix with the nearest 
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trapped opposite point defect seems not to be effective. Indeed, point-defect evolution is not affected by the 

increase of z value from 1 to 4 either for KSmin or KS1. Therefore, the value of parameter z  is set equal to 1 

and the following results correspond to this value. The effect of no interface recombination (KS1 with z =0) 

and point-defect traps absence (KSmin with z =0) is analyzed more extensively in the discussion section. 

 Now, a comparison between the respond of Cu/Nb and Cu/V systems to irradiation for KSmin and 

KS1 interface configuration is performed. Some details commented previously for Cu/Nb system would not 

be analyzed again and the reader should refer to above paragraphs. The corresponding temporal profiles of 

average point-defect concentrations in layers α (Cu) and β (Nb, or V) are depicted in Figures 4 and 5, 

respectively. It can be seen in Figure 4a that χ��
(�) does not show any difference between Cu/Nb and Cu/V 

systems and neither does it between KSmin and KS1. Similarly, χ��
(�) exhibits the same behavior for KS1 in 

both systems (Figure 4b). On the contrary, there is a different evolution of χ��
(�) depending on the interface 

configuration for each system, Cu/Nb or Cu/V. This can be seen too when comparing Cu/Nb to Cu/V for 

KSmin. 

 Figures 5a and 5b show the temporal profiles of SIA and vacancy average concentrations in layer β 

respectively. In contrast to χ��
(�) in Cu/Nb system that decreases before reaching steady state, SIA average 

concentration in V layer maintains the stationary value reached after the initial increase during the rest of 

irradiation time. Furthermore, there are no differences in the evolution of χ��
(�) between KSmin and KS1 in 

Cu/V system unlike in Cu/Nb one. Even though χ�	
(
) initially increases to reach a stationary value in all the 

cases studied except for Cu/V-KSmin system, where χ�	
(
) reaches a maximum and decreases before reaching 

steady state, significant dissimilarities can be observed in the temporal profiles of vacancy average 

concentration in layer β. 

 The investigation of point-defect production, transport and annihilation phenomena may help to 

explain differences and similarities shown in the temporal evolution of point-defect average concentrations 

between the systems studied. Point-defect production rates in layers α and β are constant temporally and 

spatially but, they have a different value for each metal [34]. On the contrary, point-defect recombination 

rates in layers α and β depend upon SIA and vacancy concentrations in layer α and β respectively. Thus, the 

corresponding temporal profiles of the average point-defect net-production rate in layers α and β, which are 

the result of combining point-defect production phenomena with recombination one, are shown in Figures 

6a and 6b, respectively. It can be seen in Figure 6a that Π�(�) keeps constant at any time for both systems 

investigated, Cu/Nb and Cu/V, and both interface configuration considered, KSmin and KS1. This can be 

considered to occur too in Π�(�) (Figure 6b) for Cu/V system as the decrease observed for KSmin is very 

small. On the other hand, average point-defect net-production rate in Nb layer shows a significant decrease, 

which is more notable for KSmin than for KS1, before steady-state is reached. 

 Point-defect flux to the interface between the two metals represents the other mechanism affecting 

point-defect annihilation in addition to bulk recombination. The corresponding temporal profiles of point-
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defect fluxes from layer α and layer β to the interface between the two metals are reported in Figures 7 and 

8, respectively. It can be seen in Figure 7a that J�
(�) shows the same behavior for all the systems 

investigated. The higher diffusivity of SIAs allows them to get the interface between metals faster than 

vacancies. Consequently, SIA flux achieves a maximum earlier than vacancy one (cf. Figures 7a and 7b). 

There are no differences in the evolution of J�
(�) between both systems, Cu/Nb and Cu/V, but only for KS1, 

not for KSmin. 

 It can be seen in Figure 8a that J�
(�) increases to reach a stationary value for all the cases considered. 

Only SIA flux from layer β in Cu/V-KS1 system maintains this value during the whole irradiation exposure. 

For the rest of cases, J�
(�) decreases before reaching steady state. The significance of the decrease is very 

small in Cu/V system for KSmin. In Cu/Nb system, the decrease is more notable for KSmin than for KS1. 

Figure 8b shows that vacancy flux from layer β strongly depend upon the system investigated and the 

interface configuration. It should be noted that, once the steady state is reached, the fluxes of SIAs and 

vacancies from layer α, or layer β, to the interface have the same value for each particular system and 

interface configuration. 

 Besides the transfer velocity of point defects to the interface, which does not generate differences in 

layer α since it is the same metal (Cu) for all the systems investigated, point-defect flux relies on point-

defect concentration at the interface and point-defect trap occupation probability (cf. Eq. (4)). Despite the 

differences between the values of point-defect concentration at the interface and point-defect average 

concentration, their temporal profiles show a very similar behavior. So, the former are not shown here. On 

the other hand, and lastly, temporal profiles of trap occupation probabilities by point defects are depicted in 

Figure 9. Trap occupation probability by SIAs (Figure 9a) increases and then it reaches a stationary state 

for all the cases studied. It can be also seen that the stationary value is higher for KS1 than for KSmin in both 

systems, Cu/Nb and Cu/V. Steady state is reached sooner by Cu/V system than by Cu/Nb one either for KS1 

or KSmin. The stationary value of �� is the same in both systems for KS1 but not for KSmin. For this case, the 

steady-state value of �� is higher for Cu/Nb system than for Cu/V one. Vacancy trap occupation probability 

shows a similar behavior to SIA one for KS1 in both systems (cf. Figure 9a and 9b). Nevertheless, �� 

behaves very different for KSmin due to the initial condition. 
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4. Discussion 

 Thin layered systems are designed with the aim to increase interfaces density. The higher the 

available surface for annihilation of point defects, the lower their concentration within the system. This was 

demonstrated at very different time scales [17,26]. Cu/Nb interfaces synthesized by PVD are virtually 

inexhaustible sinks for radiation-induced point defects [4,11]. SIA and vacancy delocalization allows long-

range interactions between them which facilitate Frenkel-pair recombination. Cu SIAs are loaded at Cu/Nb 

interfaces during the collision cascades and their subsequent emission promotes enhanced recombination 

near the interface [23]. However, the effect of interface point-defect trapping and recombination 

mechanisms on the long-term evolution of point defects has not been investigated. So, before comparing 

model predictions in Cu/Nb and Cu/V NMMCs, it is worth discussing the influence of above mechanisms 

on point-defect concentrations. 

 Temporal profiles of average SIA and vacancy concentrations in Cu and Nb layers of Cu/Nb system 

for the different values of z  are shown in Figures 2 and 3, respectively. In previous section, it has been 

stated that point-defect evolution is not affected by the increase of z value from 1 to 4 either for KSmin or 

KS1. KSmin, i.e., ground state structure, along a value of z  equal to 1, can be considered the reference case 

among the cases studied as it is the one that most accurately represents reality in multilayer composites 

synthesized by PVD. On the other hand, KS1, i.e., defect-free structure, can be seen as KSmin loaded with 

SIAs. Thus, interface SIA loading (KS1 with z =1) decreases steady-state values of vacancy average 

concentration in Cu and Nb layers with respect to the reference case (cf. Figures 2b and 3b respectively) 

while, on the contrary, the stationary SIA average concentration value does not show any difference in Cu 

layer (cf. Figure 2a) or increases slightly in Nb one (cf. Figure 3a). These value differences are caused by 

dissimilarities on the evolution of average point-defect net-production rate and/or point-defect flux to the 

interface between metals. Either in Cu or Nb layer, the higher flux of vacancies for KS1 (cf. Figures 7b and 

8b respectively) results in the lower value of vacancy average concentration. On the contrary, the higher 

point-defect net-production rate for KS1 (cf. Figure 6b) is responsible of the higher SIA average 

concentration value in Nb layer. 

 For KS1, temporal profiles of point-defect average concentrations are independent of z  value up to τ 

≈ 107. But then, if point-defect trapping is allowed but point-defect recombination at the interface is not 

(KS1 with z =0), point-defect average concentrations increase (cf. Figures 2 and 3) until bulk recombination 

compensates the suppression of point-defect flux to the interface due to the saturation of traps by SIAs and 

vacancies, i.e., �� + �� = 1 (results not shown here). So, with respect to the equivalent case in which 

interface recombination is allowed (KS1 with z =1), it can be concluded that either SIA or vacancy average 

concentration at steady state increases when no recombination of point defects occurs at the interface. If 

neither point-defect trapping nor point-defect recombination at the interface are allowed (KSmin with z =0), 

steady-state value of SIA and vacancy average concentration increases and decreases respectively in 

comparison to the rest of cases studied (cf. Figures 2 and 3). This case represents the absence of traps for 
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point defects. Since there is no point-defect flux to the interface between metals, the only annihilation 

mechanism of point defects is the bulk recombination and, consequently, evolution of SIA and vacancy 

average concentration show the same behavior. 

 Now, a comparison between point-defect concentrations within the systems investigated is 

performed. Especial attention is paid to the behavior of the same metal Cu (layer α), when it is surrounded 

by diverse metals β (Nb, or V). Cu/Vpvd interfaces are capable of accommodate 2-3 SIAs or vacancies per 

MDI as Cu/Nbpvd ones but their areal MDI density is different [38]. According to Mao et al. [35], 

constitutional vacancies seem to play an important role in Cu vacancy concentration dissimilarities between 

the two systems studied at the steady state. So, numerical simulation results for KSmin and KS1 interface 

configurations are compared too. Temporal profiles of average SIA and vacancy concentrations in layers α 

and β are represented in Figures 4 and 5, respectively. SIA average concentration in layer α show the same 

behavior for all the cases studied (cf. Figure 4a). This is due to the absence of differences in Π�(�) (cf. 

Figure 6a) and J�
(�) (cf. Figure 7a). On the other hand, a general comparison of the results reveals that 

vacancy average concentration in layer α group by interface configurations, KSmin or KS1 (cf. Figure 4b), 

while in layer β, SIA and vacancy average concentration group by system, Cu/Nb or Cu/V (cf. Figures 5a 

and 5b respectively). However, differences can be found between the cases that belong to each group except 

in χ��
(�) for KS1. The lower steady-state values of χ��

(�) correspond to Cu/Nb- and Cu/V-KS1 systems (cf. 

Figure 4b) and are the result of a higher J�
(�) before reaching a stationary state (cf. Figure 7b). For KSmin, 

dissimilarities in χ��
(�) between Cu/Nb and Cu/V systems are caused by differences in vacancy flux from 

layer α too. J�
(�) reaches steady state in Cu/V system but, in Cu/Nb one, vacancy flux from layer α continues 

increasing for a while (cf. inset of Figure 7b) because �� decrease (recalling boundary condition (11) and cf. 

inset of Figure 9b). This causes that, between τ ≈ 3 105 and τ ≈ 2 106, the vacancies annihilated at the 

interface are more than the vacancies produced in layer α which decreases χ��
(�) in Cu/Nb system (cf. Figure 

4b). Consequently, steady-state value of χ��
(�) is lower in Cu/Nb system than in Cu/V one for KSmin. Before 

comparing vacancy-concentration results in layer α to results reported in Ref. (35), point-defect 

concentrations in layer β are analyzed too. Differences in the steady-state value of χ��
(�) and χ��

(�) between the 

four cases investigated can be explained by means of the evolution of Π�(�) and J�
(�) respectively. Thus, the 

higher the average point-defect net-production rate in layer β at longer times (cf. Figure 6b), the higher the 

stationary value of SIA average concentration (cf. Figure 5a). And, the higher the vacancy flux from layer β 

to the interface at longer times (cf. Figure 8b), the lower the stationary value of vacancy average 

concentration (cf. Figure 5b). As in χ��
(�) for Cu/Nb-KSmin system, there is an interval in which χ��

(�) 

decreases for Cu/V-KSmin system (cf. Figures 4b and 5b). Mechanisms illustrated above are also 

responsible of this effect in this case. This confirms that the decrease of vacancy average concentration seen 

before reaching steady state in Cu layer of Cu/Nb system and V layer of Cu/V one for KSmin is due to the 
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lower diffusion coefficient of vacancies in the other metal, niobium and copper respectively. So, in short, the 

respond to irradiation of the systems investigated here depends on both, interface characteristics and bulk 

properties. The presence of interface constitutional vacancies makes decrease the concentration of SIAs 

slightly, if at all, and increase the concentration of vacancies significantly in each system. 

 Lastly, vacancy-concentration results in layer α are compared to results reported in Ref. (35). 

According to experimental results, vacancy concentration at the center of 30-nm Cu layer was 1.9 times 

lower in Cu/Nb system than in Cu/V one. Similar predictions, a factor of 2 instead of 1.9, were obtained for 

vacancy average concentration in kinetic Monte Carlo simulations. As commented previously, the case that 

most accurately represents reality in multilayer composites synthesized by PVD corresponds to KSmin 

interface configuration along a z  value equal to 1. For this case, vacancy concentration at the center of Cu 

layer (results not shown here due to the similitudes with vacancy average concentration) and χ��
(�) (cf. Figure 

4b) are approximately 1.8 and 1.9 times lower respectively in Cu/Nb system than in Cu/V one. Mao et al. 

associated the lower Cu vacancy concentration in Cu/Nb-KSmin system to its higher probability of absorbing 

a vacancy at the interface. Either Cu/Nbpvd or Cu/Vpvd interfaces are capable of accommodate 2-3 SIAs or 

vacancies per MDI but the areal MDI density is ~6.4 times higher in Cu/Nbpvd interface than in Cu/Vpvd one. 

However, the lower the point-defect trap concentration, the lower the vacancy average concentration 

according to our results (KSmin with z =0). So, the explanation for above factor values, ~1.8 and ~1.9, points 

to the diffusivity of vacancies that is lower in copper than in niobium and makes Cu vacancy concentration 

decrease in Cu/Nb system before reaching steady state. This results in a stationary value which is lower than 

in Cu/V system. In spite of the very good qualitative agreement between experimental results and our model 

predictions, it is worth to discuss some details. The production rate of Frenkel pairs has been calculated for 

copper, niobium, and vanadium layers with the irradiation conditions reported in Ref. (35) using Transport 

of Ions in Matter (TRIM) [40]. Then, a factor of 10-2 has been applied. According to Mao et al., this 

normalization achieved a perfect agreement between the absolute concentrations of Cu vacancies calculated 

in their rate-theory model and the experimental data. Nevertheless, a factor of ~2.41 10-4 and ~1.17 10-4 is 

needed in Cu/Nb and Cu/V system respectively with our model which is quite smaller than 10-2. 

Experimental results are given only in Cu layer (layer α) so it would be recommendable to have vacancy 

concentration in layer β (Nb, or V) too. Thus, it could be estimated a factor for each metal layer. 
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5. Conclusions 

 A continuum model of point-defect evolution in multilayer composites is presented in this work. In 

order to compare quantitatively model predictions with experimental results in multilayer composites 

synthesized by PVD [35], previous work boundary equations and initial conditions [34] have had to be 

adapted. Firstly, the effect of interface annihilation mechanisms on the long-term evolution of point defects 

has been studied. If SIAs and vacancies can be trapped but cannot recombine with the opposite point defect 

at the interface between metals, SIA and vacancy concentrations within the system increase. However, if 

none of the two mechanisms is operative, i.e., absence of traps for point defects, SIAs and vacancies behave 

similarly which leads to a rise and a drop in the concentration of SIAs and vacancies respectively. In 

addition, the effect of interface SIA loading and constitutional vacancies has been investigated too by 

comparing the results corresponding to KSmin and KS1 interface configuration. The presence of interface 

constitutional vacancies makes decrease the concentration of SIAs slightly, if at all, and increase the 

concentration of vacancies significantly. The latter is in agreement with VDZ measurements [18] that reveal 

a higher sink efficiency in Cu/Nbspd interfaces [13] than in Cu/Nbpvd ones [4] for vacancies. On the contrary, 

interface SIA loading has the reverse effect to the presence of constitutional vacancies at the interface. The 

emission of SIAs loaded at the interface promotes enhanced recombination near the interface according to 

Liu et al. [23]. So, this agrees too with our results that predict a significant decrease of vacancy 

concentration when SIAs are loaded at the interface. 

 The respond to irradiation of the systems investigated here, Cu/Nb and Cu/V, depends on both, 

interface characteristics and bulk properties. It is worth highlighting that point-defect flux to the interface 

depends upon the value of point-defect trap concentration, which is characteristic of each metal couple α-β, 

and the properties of the two adjacent layers (recalling boundary condition (4)). However, the influence of 

the properties of one metal in the point-defect evolution of the other metal is only effective if there are 

constitutional vacancies at the interface, i.e., for KSmin. This can be seen in the temporal evolution of 

vacancies. The concentration of vacancies decreases before reaching steady state in Cu layer of Cu/Nb 

system because the diffusivity of vacancies is lower in niobium than in copper. It occurs similarly in V layer 

of Cu/V system. A comparison of model results for KSmin shows no differences between Cu/Nb and Cu/V 

system regarding SIA temporal evolution in copper (layer α), while in layer β, SIA concentration at steady 

state is lower in niobium than in vanadium. On the other hand, the lower steady-state value of vacancy 

concentration in layer α and β correspond to Cu/Nb and Cu/V system respectively for KSmin. Irradiated 

Cu/Nb NMMCs had numerous voids in Cu layers at the end of the experiment but no voids were seen in Nb 

layers due to the high and low mobility of vacancies respectively in these metal layers [18]. Hence, the high 

concentration of vacancies in Nb layer should not be an issue in terms of damage. 

 As a final conclusion, there is a very good qualitative agreement between our model predictions and 

results reported in Ref. (35). Indeed, vacancy concentration at the center of Cu layer and average one are 

approximately 1.8 and 1.9 times lower respectively in Cu/Nb system than in Cu/V one for KSmin. So that the 
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agreement is quantitative too, a factor of ~2.41 10-4 and ~1.17 10-4 should be applied in Cu/Nb and Cu/V 

system respectively to the production rate of Frenkel pairs calculated using TRIM for each layer (Cu, Nb, or 

V) instead the factor of 10-2 suggested by Mao et al. and used in the present work. The small value of above 

factors could mean that, although Cu vacancy concentration differences between Cu/Nb- and Cu/V-KSmin 

systems are determined at longer time scales, multilayer composites designed at the nanometric scale may be 

governed by mechanisms that occurs in lower time scales. In the case of having also experimental vacancy 

concentration in layer β (Nb, or V) too and not only in Cu (layer α), it could be estimated a factor for each 

metal layer that in turn may allow relating interface characteristics and bulk properties with the magnitude of 

the factor. After validation with data of experiments carried out in other systems, point-defect concentrations 

may be calculated for any NMMC whose properties were known without the need of further experiments or 

atomistic simulations. 
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Nomenclature 

A dimensionless production rate of point defects, -; 

C concentration of point defects, m-3; 

D diffusivity, m2 s-1; 

E dimensionless parameter of point-defect jumps from the matrix, -; 

F dimensionless parameter of point-defect surface recombination, -; 

f trap occupation probability,  -; 

K transfer velocity, m s-1; 

Kiv recombination factor of the anti-defects, m3 s-1; 

K0 production rate of point defects, m-3 s-1; 

L layer thickness, m; 

RC removal rate of point defects due to recombination, m-3 s-1; 
totS concentration of traps for point defects, m-2; 

t time, s; 

x spatial coordinate, m; 

z number of jumps, -; 

 

Greek letters 

αs surface recombination coefficient, m-2 s-1; 

χ dimensionless concentration of point defects, -; 

δ dimensionless diffusivity, -; 

τ dimensionless time, -; 

ϖ dimensionless lattice spacing, -; 

ξ dimensionless spatial coordinate, -; 

 

Superscripts 
* equilibrium; 
 (α) layer of element α; 
(γ) layer of element γ; 
(β) layer of element β; 
(α-β) system formed by elements α and β; 

 

Subscripts  

i self-interstitial atom; 

j point defect of the type j; 

v vacancy. 
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Figure 1 Schematic of (a) the entire system and (b) the half-symmetric part modelled. Layer α 

represents Copper while β indicates Niobium, or Vanadium [34]. 
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Figure 2 Temporal profiles of average (a) SIA and (b) vacancy concentration in Cu layer of Cu/Nb 

system for different values of parameter z . 
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Figure 3 Temporal profiles of average (a) SIA and (b) vacancy concentration in Nb layer of Cu/Nb 

system for different values of parameter z . 
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Figure 4 Temporal profiles of average (a) SIA and (b) vacancy concentration in layer α ( 1=z ). 
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Figure 5 Temporal profiles of average (a) SIA and (b) vacancy concentration in layer β ( 1=z ). 
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Figure 6 Temporal profiles of average point-defect net-production rate in (a) layer α and (b) layer β (

1=z ). 
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Figure 7 Temporal profiles of (a) SIA and (b) vacancy flux from layer α to the interface between 

metals α and β ( 1=z ). 
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Figure 8 Temporal profiles of (a) SIA and (b) vacancy flux from layer β to the interface between 

metals α and β ( 1=z ). 
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Figure 9 Temporal profiles of (a) SIA and (b) vacancy trap occupation probability at the interface 

between metals α and β ( 1=z ). 
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