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Abstract 

The interaction of fully dense 45S5-bioglass derived samples produced by Spark 

Plasma Sintering (SPS) with Simulated Body Fluid (SBF) solution was investigated in detail 

taking advantage of the Rietveld refinement method to quantitatively evidence the 

corresponding microstructural and compositional changes. It is observed that, when the 

original amorphous nature is mostly (75 wt.%) preserved in the material during sintering (550 

°C, 2 min), the resulting specimens dissolve faster and determine relatively higher pH 

increase and ions release in the SBF solution. Correspondingly, a relatively lower amount of 

hydroxycarbonate apatite (HCA) is formed on their surface. In contrast, a more extensive 

apatite layer with trabecular structure is generated within 3 days storage on the surface of 

fully crystallized samples obtained at 600 °C by SPS, which only consists of Na-Ca silicate 

grains (20 nm). Moreover, as the sintering temperature and dwell time were increased to 700 

°C and 20 min, respectively, a rhenanite-like phase was also formed (about 15 wt.%), other 

than crystallites growth to 90 nm. Interestingly, the presence of rhenanite provides a 

beneficial contribution for the production of the HCA layer, which was found the largest 

highest for this system when considering storage periods of 7 and 14 days, respectively.  

 

Keywords: Spark Plasma Sintering; Bioactive glasses, In-vitro-test; Rietveld method 
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1. Introduction 

After the first bioactive glass was discovered in late 60s by Larry Hench and its ability 

to bond with bones and promote new bone generation well-recognized in the subsequent 

years, this class of materials has been broadly used in the biomedical field [1-3].1-3 In this 

context, depending on the specific application, the conventional 45S5 Bioglass® originally 

developed by Hench, composed of 45 % SiO2-24.5 % Na2O-24.5 % CaO-6 % P2O5 (wt. %), 

as well as other glass formulations proposed more recently, have been utilized as particulates, 

coatings or massive products, by orthopaedic surgeons and dentists [1-3].1-3 Despite the 

recent progress reached for these materials, an extensive and intense research is still ongoing 

to further improve their mechanical and biological properties, so that their potential 

application could be extended [2-3].2-3 In this regard, it is well known that several factors 

such as glass composition, porosity, surface/volume ratio, surface roughness, crystallinity 

degree, etc., affect the mechanical and biological behavior of this materials family. In 

particular, as far as the mechanical characteristics are concerned, the occurrence of 

crystallization in glass-ceramic products is generally found beneficial with respect to the 

completely amorphous counterpart. On the other hand, controversial results were reported in 

the literature regarding the effect of the crystallization from the parent glass on the material 

bioactivity. The latter characteristics is generally associated with the capability of the glass to 

form a hydroxycarbonate apatite (HCA) layer when in contact with biological fluids. 

Although the formation mechanism of HCA is rather well documented [3]3, the investigations 

conducted so far on the consequences produced by an enhancement of crystallization from 

the glass phase, do not result thoroughly clarified and appear to be even conflicting [4-7].4-7 

For instance, the formation of apatite was significantly delayed when highly crystallized 

bioglass specimens were used instead of samples containing a large fraction of the glassy 

phase [4].4 On the same line, the time needed for the apatite formation during in-vitro test in 

Simulated Body Fluid (SBF) solution monotonically increased as the volume fraction of 
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crystals in 45S5 glass-ceramics was augmented up to 60% [5].5 In addition, no further 

noticeable changes were observed to take place as the crystallization proceeded until its 

completion. Filho et al.5 (1996) stressed the positive role played by the residual amorphous 

phase in the control of the ion exchange rate at the substrate-SBF interface [5].5  

In contrast to previous findings, the occurrence of crystallization phenomena in 45S5 

Bioglass® was recently reported to improve the biological response of samples soaked in 

acellular SBF [6].6 More specifically, calcium silicate and calcium carbonate, rather than 

HCA, were the only phases detected on the surface of 45S5 amorphous bioglass after storage 

in SBF up to 14 days. On the other hand, the formation of an apatite layer was clearly 

evidenced in crystallized samples obtained after heat-treatment at 1000 °C of the original 

(amorphous) material. Analogously, the presence of fine crystals in 45S5 Bioglass® samples, 

obtained by Spark Plasma Sintering (SPS) at 600 °C, was found to promote the formation of 

HCA during in-vitro tests in SBF, compared to fully amorphous specimens produced with the 

same technique at 550 °C [7].7  

Other than controversial, the previously cited studies did not provide quantitative 

information on the amount of HCA formed during the in-vitro tests. This holds also generally 

true when considering the structural characteristics of the starting samples, e.g. crystallite 

sizes, crystallization degree, etc., before and in the course of biological experiments.  

The scope of the present investigation is then to provide a useful contribution along 

this direction. To this aim, commercial 45S5 Bioglass® are first spark plasma sintered to 

produce three series of fully dense samples with different crystallization degree, crystallites 

size, and composition. The adopted SPS conditions are chosen on the basis of the results 

obtained in a recent study where the sintering behavior of the same kind of bioglass powders 

was investigated [8].8 The resulting 45S5-based products are then stored for different time 

intervals (0-14 days) in SBF. The biological response provided by the three groups of 

materials is subsequently examined by properly monitoring their weight, compositional and 
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morphological changes during the test. It should be noted that, to the best of our knowledge, 

the quantitative evaluation of the amount and crystallites size of apatite and other phases 

formed during the in-vitro test, or originally present in the substrate, is performed for the first 

time in the literature. In addition, all the modifications taking place on the surface of the 

different bioglass substrates will be associated with the corresponding variations in pH and 

ions concentration of the SBF solution to which specimens were exposed. 

 

2. Experimental Materials and Methods 

2.1 Preparation of Bioglass disks  

Bioglass® 45S5 Glass Spheres (Cod. GL0160P, Mo-Sci Corp., USA) were 

consolidated under vacuum conditions (20 Pa) by Spark Plasma Sintering (SPS 515S model, 

Fuji Electronic Industrial Co., Ltd., Kanagawa, Japan) to produce dense cylindrical 

specimens with approximately 14.7 mm diameter and 3 mm thickness. The composition of 

initial powders, as provided by the vendor, was 24.4 % Na2O, 26.9 % CaO, 46.1 % SiO2 and 

2.6 P2O5 (mol. %). Laser light scattering analysis (CILAS 1180, France) indicated that 

particles size was less than 15 µm with an average value of about 4.5 µm. Further details 

relative to powders characteristics and SPS experiments are reported elsewhere [8].8 Briefly, 

SPS experiments were carried out under temperature controlled mode using a K-type 

thermocouple (Omega Engineering Inc., USA) inserted inside a small hole drilled at the 

centre of the external surface of the graphite die. Fully dense samples with different 

crystallization degree and crystallite sizes were obtained by properly setting the dwell 

temperature (TD), holding time (tD) and mechanical pressure (P) in the ranges 550-700 °C, 2-

20 min and 16-70 MPa, respectively. Specifically, the three groups of 45S5-based glass 

specimens prepared for in-vitro tests are reported in Table 1 along with the values of the 

corresponding sintering parameters. 
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 Before using bioglass-derived products for in-vitro experiments, they were first 

lapped using coarse abrasive paper and then finely polished. The resulting final samples 

thickness was about 2.6 mm.  

 The residual surface roughness in the polished samples was measured using a Form 

Talysurf Intra 50 profilometer (Taylor-Hobson ltd., Leicester, UK). The obtained topological 

data were then analysed with the Ultra Software (Taylor-Hobson, Leicester, UK). The 

evaluation of roughness parameters was carried on 4 different profiles for each sample. In 

particular, the roughness parameter Ra, defined as the arithmetic average of the deviation of 

peak heights and valleys of the roughness profile from the mean line, was determined.  

 

2.2 SBF experiments  

To evaluate their bioactivity, the spark plasma sintered bioglass samples were 

subjected to in-vitro tests following the Kokubo protocol [9].9 Accordingly, 1000 mL of 

acellular SBF was prepared by adding 8.035 g of NaCl, 0.355 g of NaHCO3, 0.225 g of KCl, 

0.231 g of K2HPO4·3H2O, 0.311 g of MgCl2·6H2O, 39 mL of 1M HCl, 0.292 g of CaCl2, 

0.072 g of Na2SO4, 6.118 g of Tris hydroxymethylaminomethane and 0-5 mL of 1 M HCl to 

distilled water. The solution was then buffered at pH = 7.4 using 1 M HCl.  

Each specimen was stored in about 46 mL of solution to obtain a sample surface area 

to the SBF volume constant ratio equal to 0.1 cm-1. 

During the test, each specimen was stored in 45.93 mL of solution (Vs), that was 

determined according to the Kokubo procedure9, i.e.: 

Vs (mL) = Sa (mm2)/10       (1) 

where Sa is the apparent surface area of the sample, i.e. 459.3 mm2 in the present study. The 

test was conducted at 37 °C for different time periods, namely 6 h, 1, 3, 7 and 14 days. For 

the sake of reproducibility, each SBF experiment was repeated at least three times. 
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2.3 Characterization  

After being soaked in the SBF solution, bioactive glass disks were immediately rinsed 

with distilled water and dried. Gravimetric measurements (Analytical balance, KERN mod. 

ABS 120-4, Balingen, Germany) were carried out at the end of each immersion step to 

determine samples weight changes during the test. 

The crystalline phases initially present in the sintered samples and those ones 

subsequently formed after their immersion in the SBF solution were identified using a X-ray 

diffractometer (Philips PW 1830, Netherlands) equipped with a Ni filtered Cu Kα radiation 

(λ=1.5405 Å). A Rietveld analytical procedure was utilized to estimate the relative amount of 

the diverse phases originally present or formed during the test on the material surface as well 

as the related average crystallites size [10-12].10-12  

The microstructure and compositional modifications taking place on the specimens 

surface were examined by high resolution scanning electron microscopy (HRSEM) (mod. 

S4000, Hitachi, Tokyo, Japan) equipped with a UltraDry EDS Detector (Thermo Fisher 

Scientific, Waltham, MA, USA). 

Raman scattering measurements were carried out in backscattering geometry using a 

632.8 nm line by He-Ne Laser. Measurements were performed at room temperature with a 

triple spectrometer Jobin-Yvon Dilor integrated system with a spectral resolution of about 1 

cm-1. Spectra were recorded in the Stokes region by a 1200 groove/mm grating 

monochromator and a LN cooled charge coupled device (CCD) detector system. 

To better evidence the impact produced at relatively longer time intervals by the 

interaction of the three bioglass systems with the surrounding solution, the latter one was not 

renewed during the entire period of soaking. Thus, pH and the concentration of some 

important species present in the solution (Ca, P, Si, Na) were monitored at the prescribed 

immersion time ends. The latter analysis was carried out by means of Inductively Coupled 
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Plasma Optical Emission Spectroscopy (ICP-OES CCD Simultaneous, Vista – MPX Varian, 

Mulgrave, Australia).  

 

3. Results and discussion 

3.1 Fabrication of bioglass samples  

 The less severe SPS conditions identified in a recent study to achieve the full 

densification of the 45S5 bioglass powders used in present work were TD = 550 °C, tD =2 

min, and P = 70 MPa [8].8 The resulting sintered material mainly maintained its original 

glassy nature although the formation of a Na-Ca-silicate crystalline phase was also evidenced 

by the XRD analysis. This glass-ceramic biocomposite, indicated as 45S5_S1 in Table 1, 

represents the base systems tackled in this work for SBF tests. In addition, to highlight the 

possible effects of devitrification from the parent glass on the apatite formation during in-

vitro experiments, the SPS temperature and processing time were increased to generate the 

two additional sets of bioceramics listed in Table 1 as 45S5_S2 and 45S5_S3. To produce the 

latter group of products, it should be noted that the applied pressure was lowered from 70 to 

16 MPa to avoid sample breakage due to the excessive thermo-mechanical stresses 

established during the sintering process. 

 

3.2 SBF experiments  

3.2.1 Samples surface: XRD analysis 

 The compositional and microstructural modifications occurring on the surface of the 

bioglass disks during in-vitro tests are first examined by XRD analysis. The Rietveld method 

was used to evaluate the relative content of the different phases present and the corresponding 

crystallites size. The experimental patterns (red rhombohedral) and the corresponding best-fit 

(dark line) related relative to the 45S5_S1 samples are reported in Figure 1. In addition, the 
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obtained average crystallites size, microstrain and relative phases amount are summarized in 

Table 2.  

The first pattern, named "original powders", corresponds to an amorphous glass, heretoafter 

indicated as "amorphous 45S5" in Table 2, and which is computed using a pseudo-crystalline 

structure factor (Ca1.5Na2.64Si9O3, card n. 01-078-1650 of the ICDD database, crystallite size: 

20 Å, microstrain: 0.03) according to the LeBail approach [13-15].13-15  

The pattern indicated in Figure 1 as t = 0 d, corresponding to the dense product obtained by 

SPS under the conditions reported in Table 1 for 45S5_S1, shows the presence of an 

amorphous phase (75 wt.%) together with Bragg reflections ascribable to Ca1.5Na2.64Si9O3 (25 

wt.%). The deconvolution profiles of the pattern corresponding to t = 0 d can be better 

visualized in Figure 2. Therefore, It is apparent that a partial crystallization of the amorphous 

matrix occurs during the heat treatment process, although nanostructured domains (90 Å) of 

Ca1.5Na2.64O9Si3, indicated as " nanocrystalline 45S5", are preserved after SPS.  

The XRD analysis of the 45S5_S1 sample after 6 h in contact with the SBF solution 

evidenced some changes in the composition and surface microstructure with respect to the 

original ones. In particular, the peaks relative to the crystalline phase initially present in the 

sintered disk disappeared from the pattern. Moreover, after 1 day into SBF solution (pattern t 

= 1 d), the system undergoes a further amorphization, as evidenced by the background 

increasing in the angular 2θ range 20-30°. On the other hand, reflections ascribable to nano 

hydroxyapatite (card n. 00-024-0033 of the ICDD database) are clearly distinguishable in the 

pattern referred as t = 3 d. Correspondingly, as reported in Table 2, nanodomains of around 

15 nm are estimated for the apatite phase.  

After 7 days, the amount of hydroxyapatite still increased up to 9 wt.%. It is important to 

highlight that the sample presents shows a moderate texture with a preferred orientation 

situated on corresponding to the reflection 002 (25.84°): the hydroxyapatite formed onto 

amorphous glass nucleates or grows growths with (002) oriented. This aspect is better 
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emphasized in the sample stored for 14 days, where the peak (002) presents a unexpected 

intensity. Finally, the amount of nano apatite increases up to 15 wt.% with respect to 

amorphous matrix.  

 The experimental patterns and the best-fit profiles of the 45S5_S2 samples, are 

reported in Figure 3, while the corresponding compositional and structural data are 

summarized in Table 3. As indicated in Table 1, relatively higher temperature, with respect 

to the 45S5_S1 case, were adopted to produce this class of samples. Such more severe 

annealing conditions are responsible for the drastic changes produced in the microstructure of 

the 45S5 glass, as evinced in the pattern reported in Figure 3 (pattern t = 0 d). No amorphous 

phases can be detected in this pattern, supporting the almost complete crystallization event 

occurred to the glass during the SPS process for 2 min at the temperature of 600 °C. 

However, as shown in Table 3, Rietveld analysis on the XRD pattern reveals that the 

crystallites size do not overcome 200 Å. As for the previous system, the Rietveld procedure 

confirmed that the composition of this phase is Ca1.5Na2.64O9Si3. 

 In accordance with the behavior displayed by the 25 wt.% crystallized system, the 

surface of 45S5_S2 samples also undergoes to a progressive amorphization when in contact 

with the SBF solution up to 1 day. Nonetheless, as the immersion time was prolonged to 3 

days, the XRD analysis provided an unequivocal indication of the apatite formation. 

Specifically, under such condition, three main phases were detected in the sample, i.e. 

amorphous glass (65 wt.%), nanocrystalline 45S5 (20 wt.%) and nanohydroxyapatite (15 

wt.%). The amount of apatite was found to increase up to 21 wt.% in samples stored for 7 

days, and a further raise of the apatite phase content (25 wt.%) was recorded in specimens 

immersed for 14 days into SBF solution. Another aspect evidenced by the Rietveld analysis 

(cf. Table 3) is that crystallites size of nanocrystalline 45S5 decreases from 20 to 13 nm 

during the course of the test.  

Page 10 of 78

Journal of the American Ceramic Society

Journal of the American Ceramic Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

10 
 

 As reported in Table 1, the third group of samples (45S5_S3) was produced by SPS 

by increasing both the dwell temperature and holding time to 700 °C and 20 min, 

respectively. Correspondingly, the amorphous phase crystallizes with a trigonal habitat and 

space group R-3m:H. In particular, this system presents shows crystallites size for the 

Ca1.5Na2.64O9Si3 phase of 900 Å, larger with respect to those ones present in the 45S5_S2 

material. Moreover, a series of new peaks ascribable to an additional phase with rhenanite-

type structure were also detected (Figure 4, t = 0 d). In this work, these peaks are attributed 

to rhenanite (NaCaPO4, card n. 29-1193 of the ICDD database), albeit it should be noted that 

they might also be associated with silicorhenanite (Na2Ca4(PO4)2SiO4), which is the 

formulation generally indicated in the literature for the crystalline phase formed when of 

45S5 bioactive glass are heat treated at temperature above 800°C [16].16 All the parameters 

obtained by the fit analysis are reported in Table 4. 

 Also for the case of the 45S5_S2 samples family, a partial amorphization of the 

material surface preceded the formation of the apatite phase during in-vitro test in SBF. 

Specifically, 10 wt. % was the content of apatite revealed after 3 days. As the immersion time 

was prolonged to 7 days, a further progress in the amorphization of the material surface was 

observed in parallel to a higher amount (25 wt.%) of apatite. Finally, the latter phase 

increased to 33 wt.% after 14 days in contact with the SBF solution.  

 Analogously to the 45S5_S2 system (cf. Table 3), Rietveld data relative to 45S5_S3 

(cf. Table 4) also evidence that the initial crystallites size of nanocrystalline 45S5 (90 nm) is 

reduced during the test in SBF, mostly within three days from the beginning of samples 

storage, to approach values in the range 15-18 nm.  

 For the sake of comparison, the time profiles showing the relative content of apatite, 

as estimated through the Rietveld procedure for the three classes of bioglass products, are 

reported in Figure 5.  
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3.2.2 Samples surface: SEM observation and EDX analysis 

 To better assess the compositional and morphological changes taking place on the 

glass-ceramic composite samples during in-vitro tests, particularly for relatively short 

immersion time intervals (up to 3 days), the surfaces of the three groups of products were 

examined in detail by SEM and EDX. The obtained results are reported in Figures 6-8. The 

SEM micrographs shown in Figure 6b indicated that the specimens after 6h immersion in 

SBF appeared fractured (45S5_S1 and 45S5_S2) or otherwise degraded (45S5_S3) on their 

surfaces. In any case, no evidence of the formation of new crystalline phases could be 

detected at this stage by SEM. However, the EDX analysis evidenced a significant change in 

the surface composition (cf. Figure 8 7). In particular, the relative content of Na and Si 

rapidly decreased from the original value, albeit it did not drop to zero after 6h storage. In 

parallel, the percentages of Ca and P markedly increased markedly, particularly when 

considering the 45S5_S2 system. It should be noted that, during such short time period, the 

Ca/P atomic ratio strongly decreased from the original value of about 5.2 to approximately 

1.5. As shown in Figure 6c, the SEM micrograph relative to 45S5_S1 samples stored in SBF 

for 24 h evidenced the presence of aggregated grains, approximately round shaped, on the 

bioglass surface. A different situation is encountered when the 45S5_S2 sample was tested 

under the same conditions. Indeed, in the latter case, the entire surface was almost wholly 

covered by a uniform and fine layer, with a trabecular bone-like structure. The latter phase is 

also present, although only barely detectable by SEM, on the surface of 45S5_S3 samples. 

The EDX analysis results reported in Figure 8 7 are quite consistent with the SEM 

observations. In particular, after 1 day storage, Si completely disappeared, Na further 

decreased while the relative contents of both Ca and P still increased. Correspondingly, a 

value for the Ca/P atomic ratio in the range 1.5-1.6 resulted for all the three 45S5-based 

systems. SEM results relative to samples contacted for 3 days with SBF confirmed that a 

relatively large amount of the new phase was present on the surface of 45S5_S2 materials. 
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The microstructure and composition of the latter one was examined in detail at higher 

magnifications, as shown in Figure 7 8. The reported micrograph indicates that this phase 

displays a trabecular-like morphology. Moreover, based on the EDX spectra, it basically 

consists of Ca, P and O with traces of Na and C. It should be noted that the small C signal 

appearing in the EDX spectra could be either due to the carbonation of the apatite layer but 

also to graphite used to guarantee the electric conduction of samples observed by SEM. 

Nonetheless, the issue related to the apatite carbonation will be clarified in next section 

taking advantage of Raman spectroscopy. On the other hand, the small Na signal is likely 

ascribable to the sample underneath the apatite layer. The EDX analysis revealed also that, as 

the soaking time was increased, the Ca and P at.% reached a maximum value and then 

slightly decreased, whereas an opposite behavior was correspondingly observed for O. In 

parallel, the Ca/P atomic ratio only slightly changed to finally reach an approximate value of 

about 1.6. 

 
3.2.3 Samples surface: Raman analysis 

The apatite phase formed on the surface of 45S5 samples during the SBF test was further 

characterized by Raman spectroscopy. As an example, Figure 9 reports the Raman spectrum 

in the region between 900 and 1150 cm-1 relative to the 45S5_S2 sample soaked for a 3 days 

into the SBF solution. For comparison, that one relative to pure apatite is also shown. 

Apatite reports several bands in this spectra region related to the phosphate Raman ones 

bands. In particular, the main peak at 965 cm-1 is assigned to the ν1 mode while the lower 

peaks in the region around 1050-1080 cm-1 are connected to the triply degeneration of the ν3 

modes [17].17  

The peak related to ν1 mode of carbonate appears at about 1070 cm-1..In this regard, it was 

has been already observed in the literature18-19 [18-19] that even small amounts of carbonate 

generate large variation in the Raman spectrum of apatite samples with a large broadening of 

the ν3 phosphate modes and the presence of the additional carbonate band. Moreover, if the 
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amount of carbonate is above 3 wt%, the contribution of the ν1 mode of carbonate mode 

overlaps the phosphate modes, thus avoiding a clear identification of the different degenerate 

features. In this view and according to Awonusi et al.18
 (2007) [18], the spectra of the 

carbonated apatite sample can be well fitted with three Gaussian: a first contribution at about 

960 cm-1 related to the phosphate, a broad band at about 1050 cm-1, that takes into account 

the ν3 modes, and a broad signal at about 1070 cm-1 related to CO3
2– ν1 mode (cf. Figure 9). 

Hence, a rough estimation of the carbonated content can be obtained from the ratio between 

the area of the 1070 cm-1 carbonate band and the 960 cm-1 phosphate contribution; in our 

analysis a ratio of 0.27 has been obtained which corresponds to about 8 wt% of carbonate 

content, according to Awonusi et al. (2007) [18].18 In conclusion, the Raman spectroscopy 

unequivocally confirmed that the formed phosphate phase consisted of carbonated 

hydroxyapatite (HCA). 

 

3.2.4 Sample weight loss  

Weight changes data of the three 45S5 groups of bioglass specimens during their immersion 

in the SBF solution are plotted in Figure 10. The obtained results indicate that mass losses, 

due to sample dissolution, always prevailed with respect to the corresponding gain, caused by 

the new phases formation on the materials surface. In addition, it is observed that dissolution 

phenomena are mainly confined to the first day of immersion, while they tends to become 

less important as the soaking time is progressively augmented. When the behavior of the 

three series of specimens is compared, it can be stated that weight loss takes place in the 

following order 45S5_S1 >> 45S5_S2 > 45S5_S3. In particular, the obtained data clearly 

indicated that, during the in-vitro test, the samples consisting for of the 75 wt.% of the glassy 

phase lose their mass almost twice with respect to the fully crystallized counterparts.  
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3.2.5 Changes in the SBF solution  

The time-evolution of pH in the SBF solution during the test is shown in Figure 11. For all 

the three bioglass systems, which exhibited a similar (qualitative) behavior, this parameter 

increases monotonically from its initial value. In addition, the major changes take place 

during the first three days of immersion in the SBF, while minor variations are observed 

during the progress of as the test proceeds. In any case, pH did not overcome the value of 8. 

Nonetheless, in correspondence to of the prescribed storage time intervals, relatively higher 

pH were obtained according to the following order 45S5_S1 > 45S5_S2 > 45S5_S3.  

The latter hierarchy holds also generally true when the differences between the concentration 

of some of the more relevant species present in the solution with respect to the initial values, 

are compared for the three bioglass groups, as reported in Figure 12. Firstly, it is seen that 

the main changes take place within 3 days from the beginning of the test. In addition, Ca and 

Si released were found relatively higher for 45S5_S1, whereas slightly superior Na 

concentration was revealed for the 45S5_S3 system. The data relative to the P content plotted 

in Figure 12 display a monotonically decreasing behavior, for all groups of 45S5 samples, 

during the progress of the in-vitro test. Furthermore, a relatively higher depletion rate of P 

from the solution, particularly up to 3 days immersion, was detected when considering the 

45S5_S2 samples.  

 

4. Discussion 

 As mentioned in the Introduction section, the response of bioactive materials during in-

vitro tests depends not only by the nominal composition of the system, i.e. that one of 

classical Bioglass® for the present study, but also by various several other factors. In 

particular, the relative density of bulk materials, topological aspects (surface roughness), type 

and content of crystallized phases formed during powders processing, crystallization degree, 
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crystallites size, etc., also affect the interaction between the material and the physiological 

solution. Therefore, the discussion of the results obtained during in-vitro experiments in this 

investigation has to be preceded by an accurate analysis of the samples characteristics prior 

the biological test.  

 Since the main scope of this work is to highlight the consequences arising from the use 

of differently crystallized bioactive glasses on the apatite formation, the other possibly 

affecting features, particularly material porosity and surface roughness, have been minimized. 

In this regard, it should be first noted that the three groups of 45S5-based specimens 

considered for biological tests are completely dense. This outcome was confirmed by SEM 

observation of the corresponding cross sections, whose results are not reported here for the 

sake of brevity. In addition, before their immersion in the SBF solution, all samples were 

finely polished, so that the resulting residual roughness was very low. To support the latter 

statement, it should be noted that the measured values of the Ra parameter for the 45S5_S1, 

45S5_S2 and 45S5_S3 specimens were 0.046 ± 0.012, 0.045 ± 0.006, and 0.036 ± 0.006 µm, 

respectively. Of course, the latter roughness property will be unavoidably modified during the 

scaffolds samples immersion in the SBF solution due to the occurrence of dissolution 

phenomena and the deposition of new phases on the material surface.  

As described in the previous section, the microstructural characteristics of the three different 

classes of sintered disks are consistent with the corresponding SPS parameters adopted to 

consolidate the bioglass powders (cf. Table 1). Specifically, when the latter ones were 

processed under the milder temperature (550 °C) and holding time (2 min) conditions 

required, with an applied pressure of 70 MPa, to achieve their complete densification, about 

75 wt% of the 45S5_S1 material preserved its original amorphous nature. On the other hand, 

the remaining fraction underwent devitrification during the heat treatment, to generate 9 nm 

sized nanocrystallites, whose composition was ascertained by the fitting procedure as 

Ca1.5Na2.64Si9O3. In this regard, it should be noted that the use of the Rietveld approach 
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allowed us to identify a more precise formulation for the crystalline phase formed from the 

glass with respect to that one (Na2Ca2Si3O9) indicated in our previous study [8]8 and reported 

in prior investigations addressed to 45S5 bioglass processing either by SPS [20]20 or using 

alternative heat treatment methods [5-6, 21-22].5-6,21-22 Moreover, additional formulations, for 

instance Na2CaSi2O6 [7]
7or Na2CaSi3O8 [23]

23, were also attributed to the crystallized phases 

formed in 45S5 bioactive glasses during SPS. The difficulty in identifying the precise 

composition for such sodium-calcium-silicate is ascribed to the fact that all these phases not 

only display similar XRD patterns but are also prone to generate solid-solid solutions [24].24 

In addition, the specific crystalline phase formed from 45S5 bioglass could also depend on 

particle size of original powders as well as the conditions adopted during heat treatment 

[24].24 In any case, the Ca1.5Na2.64O9Si3 composition was used in this work as it allowed us to 

reproduce more satisfactorily, with respect to the alternative silicate phases mentioned above, 

the XRD patterns of the SPSed samples taken into account.  

As shown in Figure 3 and summarized in Table 3 (t = 0 d), the slight augment of 50 °C in 

the dwell temperature, while maintaining the other SPS parameters unchanged, was anyhow 

sufficient to determine the crystallization completion from the glass phase as well an increase 

of the Ca1.5Na2.64Si9O3 crystallites size to 20 nm (45S5_S2). Finally, as the TD and tD values 

were both raised to 700°C and 20 min, respectively, to produce the 45S5_S3 series of 

specimens, grains growth proceeded up to 90 nm (Table 4). Furthermore, in addition to the 

silicate phase, about 15 wt.% of NaCaPO4 with 80 nm grains sized was also formed during 

SPS in the latter group of samples.  

Before examining the results obtained in the present work relatively to the behavior 

displayed by these three groups of samples during in-vitro tests, some preliminary 

considerations are worth to be made. In particular, it should be mentioned that the 

physiological media used in various studies reported in the literature were periodically 

refreshed [25-27].25-27 Such choice was aimed to maintain the ions concentration more stable 
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during the test more stable. Relatively higher Ca and P amounts are consequently made 

available in the SBF solution, so that more favorable conditions for the formation of the 

apatite layer on the bioglass surface can be established. Alternatively, according to the 

procedure followed by other authors [6, 28-29],6,28-29 the SBF solution was not renewed 

during the course of the biological test conducted in the present work. The reason for that is 

to better highlight the different outcomes correspondingly produced, which might not be so 

apparent, particularly as far as the changes in the solution are concerned, if the SBF is 

frequently replaced.  

Results relative to SBF experiments will be then analyzed. The data plotted in Figure 

10 testify the superior weight loss manifested by the 45S5_S1 category of samples. This 

outcome can be readily associated with the primary amorphous nature of such system, which 

makes it more reactive, with respect to the fully crystalline 45S5_S2 and 45S5_S3 ones, 

when in contact with the solution. In addition, although the latter two groups of specimens 

displayed similar dissolution behavior, the 45S5_S2 samples decreased their weight markedly 

during the first week storage in SBF, as compared to 45S5_S3 ones. It is likely that the 

relatively larger grains boundary area made available by the presence of finer grains in the 

first kind of material justifies its preferential dissolution with respect to the second, coarser, 

one. It is also possible that the presence of rhenanite might play a role in this regard. 

The chemical changes observed in the SBF solution are quite in agreement with the 

corresponding dissolution behavior and could be interpreted on the basis of the mechanism 

proposed in the literature for the apatite formation in bioactive glasses [3].3 Firstly, the rapid 

increase of pH and concentration cations manifested by all groups of samples (cf. Figures 11 

and 12) is a logical consequence of initial phenomena taking place at the glass-SBF solution 

interface, which involve the ion exchange of Ca2+ and Na+ (material � solution) with H+  

(solution � glass surface) [3].3 The more significant pH increase and Ca release taking place 

for the 45S5_S1 system, followed by the 45S5_S2 and, finally, 45S5_S3 series of samples, is 
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consistent with the dissolution character they exhibited. Also Si concentration profiles 

followed the same behavior. The only exception is represented by the preferential Na release 

observed for the case of 45S5_S3 products (cf. Figure 12), particularly at relatively short 

immersion times. In this regard, it was previously made the hypothesis that the presence of 

NaCaPO4 previously postulated could explain the dissolution behavior displayed by the latter 

class of materials. Therefore, it is likely that it could also likely influence the selective ions 

release during the in-vitro test. 

Besides, more important is the comparison of the three series of bioglass samples relatively to 

the apatite formation is even more important. Surprisingly, different situations are 

encountered depending upon the immersion time taken into account. In particular, the results 

shown in Figure 5 for systems immersed for three days in SBF evidenced that the amount of 

apatite varies in the following decreasing order: 45S5_S2 > 45S5_S3 > 45S5_S1. The latter 

outcome was confirmed by SEM observations (Figure 6d) coupled with EDX analysis 

(Figure 7). Due to the detection limit of the XRD analysis, no reliable data on the apatite 

formation could be provided by the Rietveld procedure for storage time periods equal or 

shorter than 1 day. Nonetheless, the generation of the new phase after 1 day immersion was 

assessed by SEM (Figure 6c). Moreover, the related results also confirmed that more 

favorable conditions for the formation of a homogeneous apatite layer are established when 

considering the 45S5_S2 samples. This statement is further supported by the correspondingly 

more drastic reduction of P concentration in SBF (Figure 12), in particular for soaking times 

equal or shorter than 1 day. Indeed, the faster formation of the HCA layer on the surface of 

45S5_S2 materials, has to be necessarily accompanied by a quicker consumption of the P 

species in the SBF solution. 

On the basis of the obtained results, it is therefore possible to state that, among the three 

groups of 45S5-based bioceramics considered in this work, the fully crystallized samples 

exclusively consisting of Ca1.5Na2.64Si9O3 grains with average size of about 20 nm display 
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superior capability to more rapidly produce more rapidly larger amounts of apatite within 

three days storage.  

However, a slightly diverse situation was encountered when the contact period of the 

materials with the SBF solution was extended. Indeed, the surface of 45S5_S3 samples 

immersed for 7 and 14 days was relatively richer in HCA with respect to the other systems. 

As previously highlighted previously, the presence of rhenanite in this class of bioglass 

products was found to affect their interaction with SBF. In this regard, the lower mass loss 

they generally displayed (cf. Figure 10), and the corresponding less significant pH increase 

(cf. Figure 11), are expected to play a positive role in establishing more favorable conditions 

for the HCA formation and its preservation on the bioceramic surface at relatively longer 

immersion times. Nonetheless, Figure 5 still confirmed a lower amount of apatite on the 

surface of the 75 wt.% amorphous samples with respect to the other two groups of specimens.  

Therefore, the generation of the HCA layer is always preferably promoted in fully 

crystallized samples with respect to the glass-ceramic 45S5_S1 group, where the amorphous 

fraction prevails. These findings are then in contrast with the results obtained by Li et al. 

(1992) [4]
4 and Filho et al. (1996) [5]5, who emphasized the negative effects produced by the 

bioglass crystallization on the apatite formation. The different bioglass formulation and 

physiological solution [4]
4 and/or annealing method/conditions adopted to induce 

crystallization from the parent glass [5]
5 are possibly responsible for the observed 

discrepancies with respect to the present study. On the other hand, our findings are seem to be 

more consistent with those ones reported in recent studies where conventional sintering [6]6 

or the SPS method [7]7 were used to promote the devitrification of 45S5 bioglass. In 

particular, Grasso et al. (2013)
7
 found that the formation of HCA during in-vitro tests in SBF 

was facilitated by the presence of fine Na2CaSi2O6 crystals in dense samples obtained by SPS 

at 600°C [7].7 However, the different sintering conditions and characterization methods 

adopted in the latter two studies were not sufficient to evidence, also from the quantitative 
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point of view, the experimental findings described in the present work from a quantitative 

point of view.  

Some considerations to possibly explain the peculiar behavior exhibited by 45S5_S2 and 

45S5_S3 samples will be finally made taking advantage of the mechanism of interaction 

recently proposed by Boccaccini et al. (2007)22 for Bioglass® based glass-ceramics scaffolds 

in SBF [22]. First of all, it was postulated that during storage the crystalline grains break-

down through preferential dissolution at crystal structural defects. This fact is consistent with 

the progressive reduction of crystallites size evidenced in both systems by the Rietveld 

analysis. In addition, the fact that ion-exchange is expected to take place preferably at the 

grains boundaries likely explains the larger amount of apatite formed during the first 3 days 

immersion on the surface of 45S5_S2 samples, which exhibit relatively smaller crystallites 

size with respect to 45S5_S3 specimens. On the other hand, as shown in Tables 3-4, the 

progressive crystallites refinement makes their size in the two class of biomaterials roughly 

similar, i.e. 13 and 15-18 nm, so that the latter effect tends to vanish as the immersion time 

was increased. Under such circumstances, the presence of rhenanite-type ceramic makes the 

only relevant difference between the two systems. Thus, it is likely that this phase is 

responsible for the improved HCA formation. In this regard, it should be noted that in-vivo 

experiment involving various calcium phosphates including rhenanite, evidenced the 

capability of the latter phase to be transformed completely into apatite [30].30 The 

progressively decrease of rhenanite content during the in-vitro test conducted in the present 

work (cf. Table 4) supported the latter statement.  

 

5. Concluding remarks 

The biological response of three series of bioceramics obtained by SPS from 45S5 

Bioglass powders was examined in detail. As revealed by the Rietveld analysis of the related 

XRD patterns, about 25 wt.% of the material underwent devitrification under the milder SPS 
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conditions (550 °C, 2 min) adopted to achieve the full powder densification in the first group 

of samples. The resulting crystalline phase (Ca1.5Na2.64Si9O3) exhibits approximately 9 nm 

sized grains. The second class of 45S5-derived materials was obtained by increasing the 

dwell temperature to 600°C. Correspondingly, the crystallization process from the parent 

glass went to completion accompanied by grains growth to 20 nm. Finally, the third category 

of bioglasses was produced under the most severe SPS conditions here investigated (700 °C, 

20 min) which determined not only a further increase of crystallites size (90 nm), but also the 

formation of a new phase characterized by a rhenanite-like structure, ascribed to NaCaPO4, 

whose content was estimated of approximately 15 wt.%.  

The in-vitro tests results involving the interaction of these samples with acellular SBF 

are briefly summarized in what follows:  

a) within the entire immersion time period investigated, HCA formation is mostly 

promoted in the two series of fully crystallized samples instead of the mainly 

amorphous system; in addition, the latter one displayed the higher weight loss, and 

determined the more significant increase in pH and ions released; in this regard, it 

is important to note that too high pH levels have to be avoided as they might 

provoke cells damage or even their death;  

b) a larger content of apatite was detected during the first 3 days immersion on the 

surface of specimens exclusively consisting of Ca1.5Na2.64Si9O3 with crystallites 

size of 20 nm; such biological response is probably ascribed to the large grains 

boundary area made available by the presence of such nanocrystallites, which 

determines an intensification of ion-exchange phenomena and, in turn, the 

formation of the HCA layer; 

c) the initial presence of the rhenanite phase in the third group of bioglass scaffolds 

products contributes favorably to the formation of larger amounts of HCA at 

relatively longer storage periods. 
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Table 1. Designation of 45S5 bioglass samples and related SPS conditions  

 

 

 

 

 

 

 

Sample ID TD (°C) tD (min) P (MPa) 

45S5_S1 550 2 70 

45S5_S2 600 2 70 

45S5_S3 700 20 16 
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Table 2. Phases and quantitative phase analysis results relatively to 45S5_S1 samples stored 

in the SBF for different time intervals.  

Sample Phases Crystallite 

sizes 

Microstrain wt. % 

Original 

powders 

Amorphous 45S5   100 

t = 0 d Amorphous 45S5/nanocrystalline 

45S5 

/90 Å /1*10-3 75/25 

t = 6 h New amorphous phase   >95 

t = 1 d New amorphous phase    >95 

t = 3 d New amorphous phase / apatite /150 Å /4*10-3 93/7 

t = 7 d New amorphous phase / apatite /230 Å /4*10-3 91/9 

t = 14 d New amorphous phase / apatite /190 Å /3*10-3
 85/15 
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Table 3. Phases and quantitative phase analysis results relatively to 45S5_S2 samples stored 

in the SBF for different time intervals.  

Sample Phases Crystallite 

sizes 

Microstrain wt. % 

Original 

powders 

Amorphous 45S5    100 

t = 0 d Nanocrystalline 45S5 200 /1*10-3 100 

t = 6 h New amorphous phase/ 

nanocrystalline 45S5 

/200 /1*10-3 10/90 

t = 1 d New amorphous phase/ 

nanocrystalline 45S5 

/180 /1*10-3
 30/70 

t = 3 d New amorphous phase/ 

nanocrystalline 45S5/apatite 

/130/210 /1*10-3/5*10-3 65/20/15 

t = 7 d New amorphous phase/ 

nanocrystalline 45S5/apatite 

/130/170 /1*10-3/5*10-3 64/15/21 

t = 14 d New amorphous phase/ 

nanocrystalline 45S5/apatite 

/130 /220 /2*10-3/4*10-3
 65/10/25 
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Table 4. Phases and quantitative phase analysis results relatively to 45S5_S3 samples stored 

in the SBF for different time intervals. 

Sample Phases Crystallite 

sizes 

Microstrain wt. % 

Original 

powders 

Amorphous 45S5    100 

t = 0 d Nanocrystalline 

45S5/rhenanite 

900/800 2*10-3/4*10-3 85/15 

t = 6 h New amorphous phase/ 

nanocrystalline 45S5/ 

rhenanite 

/900/700 1*10-3/3*10-3 8/86/6 

t = 1 d New amorphous phase/ 

nanocrystalline 45S5/ 

rhenanite 

/600/650 1*10-3/3*10-3 12/84/3 

t = 3 d New amorphous phase/ 

nanocrystalline 45S5/apatite 

/150/260 /1*10-3/5*10-3 60/30/10 

t = 7 d New amorphous phase/ 

nanocrystalline 45S5/apatite 

/160 /280 /1*10-3/5*10-3 55/20/25 

t = 14 d New amorphous phase/ 

nanocrystalline 45S5/apatite 

/180/131 /1*10-3/1*10-3 52/15/33 
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Captions figures 

Figure 1. XRD patterns and related Rietveld refinements of 45S5_S1 samples as a function 

of the immersion time in the SBF solution. Data relative to the original bioglass powders are 

also shown for the sake of comparison. Label 45S5 refers to the Ca1.5Na2.64Si9O3 phase. 

Figure 2. Deconvolution of the XRD pattern relative to the SPSed 45S5_S1 product before 

being immersed in the SBF solution.  

Figure 3. XRD patterns and related Rietveld refinements of 45S5_S2 samples as a function 

of the immersion time in the SBF solution. Data relative to the original bioglass powders are 

also shown for the sake of comparison. Label 45S5 refers to the Ca1.5Na2.64Si9O3 phase. 

Figure 4. XRD patterns and related Rietveld refinements of 45S5_S3 samples as a function 

of the immersion time in the SBF solution. Data relative to the original bioglass powders are 

also shown for the sake of comparison. Label 45S5 refers to the Ca1.5Na2.64Si9O3 phase. 

Figure 5. Temporal changes of apatite content on the surface of the three class of 45S5-

bioglass samples during in-vitro test, as revealed by the Rietveld analysis. 

Figure 6. SEM micrographs (5000X) of the three groups of 45S5 specimens at different 

immersion times in the SBF solution: (a) 0 h, (b) 6 h, (c) 1 d, and (d) 3 d.  

Figure 7. Detailed micrograph, and related EDX analysis result, of the surface of 45S5_S2 

sample after immersion for 3 days in the SBF solution.  

Figure 87. Compositional changes, as revealed by EDX analysis, taking place on the surface 

of the three groups of 45S5 specimens during their immersion in the SBF solution.  

Figure 8. Detailed micrograph, and related EDX spectra, of the surface of 45S5_S2 sample 

after immersion for 3 days in the SBF solution. The EDX analysis provided the following 

results: Ca: 34 at. %, P: 21 at.%, O: 44 at. %, and Na: 1 at.%. The contribution of the C signal 

was not considered, due to the presence of graphite used to guarantee the electric contact in 

samples examined by SEM. 
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Figure 9. Raman spectrum of the 45S5_S2 sample immersed for 3 days in SBF. The Raman 

data of pure apatite is also shown for the sake of comparison. 

Figure 10. Weight changes of the three groups of 45SS specimens as a function of immersion 

times in the SBF solution. 

Figure 11. Temporal evolution in pH of the SBF solutions where the three groups of 45S5 

specimens were immersed. 

Figure 12. ICP results Compositional changes of the SBF solutions where the three series of 

45S5 samples were soaked up to 14 days. 
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Abstract 

The interaction of fully dense 45S5-bioglass derived samples produced by Spark 

Plasma Sintering (SPS) with Simulated Body Fluid (SBF) solution was investigated in detail 

taking advantage of the Rietveld refinement method to quantitatively evidence the 

corresponding microstructural and compositional changes. It is observed that, when the 

original amorphous nature is mostly (75 wt.%) preserved in the material during sintering (550 

°C, 2 min), the resulting specimens dissolve faster and determine relatively higher pH 

increase and ions release in the SBF solution. Correspondingly, a relatively lower amount of 

hydroxycarbonate apatite (HCA) is formed on their surface. In contrast, a more extensive 

apatite layer with trabecular structure is generated within 3 days storage on the surface of 

fully crystallized samples obtained at 600 °C by SPS, which only consists of Na-Ca silicate 

grains (20 nm). Moreover, as the sintering temperature and dwell time were increased to 700 

°C and 20 min, respectively, a rhenanite-like phase was also formed (about 15 wt.%), other 

than crystallites growth to 90 nm. Interestingly, the presence of rhenanite provides a 

beneficial contribution for the production of the HCA layer, which was found the largest for 

this system when considering storage periods of 7 and 14 days, respectively.  

 

Keywords: Spark Plasma Sintering; Bioactive glasses, In-vitro-test; Rietveld method 
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1. Introduction 

After the first bioactive glass was discovered in late 60s by Larry Hench and its ability 

to bond with bones and promote new bone generation well-recognized in the subsequent 

years, this class of materials has been broadly used in the biomedical field.1-3 In this context, 

depending on the specific application, the conventional 45S5 Bioglass® originally developed 

by Hench, composed of 45 % SiO2-24.5 % Na2O-24.5 % CaO-6 % P2O5 (wt. %), as well as 

other glass formulations proposed more recently, have been utilized as particulates, coatings 

or massive products, by orthopaedic surgeons and dentists.1-3 Despite the recent progress 

reached for these materials, an extensive and intense research is still ongoing to further 

improve their mechanical and biological properties, so that their potential application could 

be extended.2-3 In this regard, it is well known that several factors such as glass composition, 

porosity, surface/volume ratio, surface roughness, crystallinity degree, etc., affect the 

mechanical and biological behavior of this materials family. In particular, as far as the 

mechanical characteristics are concerned, the occurrence of crystallization in glass-ceramic 

products is generally found beneficial with respect to the completely amorphous counterpart. 

On the other hand, controversial results were reported in the literature regarding the effect of 

the crystallization from the parent glass on the material bioactivity. The latter characteristics 

is generally associated with the capability of the glass to form a hydroxycarbonate apatite 

(HCA) layer when in contact with biological fluids. Although the formation mechanism of 

HCA is rather well documented3, the investigations conducted so far on the consequences 

produced by an enhancement of crystallization from the glass phase, do not result thoroughly 

clarified and appear to be even conflicting.4-7 For instance, the formation of apatite was 

significantly delayed when highly crystallized bioglass specimens were used instead of 

samples containing a large fraction of the glassy phase.4 On the same line, the time needed 

for the apatite formation during in-vitro test in Simulated Body Fluid (SBF) solution 

monotonically increased as the volume fraction of crystals in 45S5 glass-ceramics was 
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augmented up to 60%.5 In addition, no further noticeable changes were observed to take place 

as the crystallization proceeded until its completion. Filho et al.
5 stressed the positive role 

played by the residual amorphous phase in the control of the ion exchange rate at the 

substrate-SBF interface.5  

In contrast to previous findings, the occurrence of crystallization phenomena in 45S5 

Bioglass® was recently reported to improve the biological response of samples soaked in 

acellular SBF.6 More specifically, calcium silicate and calcium carbonate, rather than HCA, 

were the only phases detected on the surface of 45S5 amorphous bioglass after storage in 

SBF up to 14 days. On the other hand, the formation of an apatite layer was clearly evidenced 

in crystallized samples obtained after heat-treatment at 1000 °C of the original (amorphous) 

material. Analogously, the presence of fine crystals in 45S5 Bioglass® samples, obtained by 

Spark Plasma Sintering (SPS) at 600 °C, was found to promote the formation of HCA during 

in-vitro tests in SBF, compared to fully amorphous specimens produced with the same 

technique at 550 °C.7  

Other than controversial, the previously cited studies did not provide quantitative 

information on the amount of HCA formed during the in-vitro tests. This holds also generally 

true when considering the structural characteristics of the starting samples, e.g. crystallite 

sizes, crystallization degree, etc., before and in the course of biological experiments.  

The scope of the present investigation is then to provide a useful contribution along 

this direction. To this aim, commercial 45S5 Bioglass® are first spark plasma sintered to 

produce three series of fully dense samples with different crystallization degree, crystallites 

size, and composition. The adopted SPS conditions are chosen on the basis of the results 

obtained in a recent study where the sintering behavior of the same kind of bioglass powders 

was investigated.8 The resulting 45S5-based products are then stored for different time 

intervals (0-14 days) in SBF. The biological response provided by the three groups of 

materials is subsequently examined by properly monitoring their weight, compositional and 
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morphological changes during the test. It should be noted that, to the best of our knowledge, 

the quantitative evaluation of the amount and crystallites size of apatite and other phases 

formed during the in-vitro test, or originally present in the substrate, is performed for the first 

time in the literature. In addition, all the modifications taking place on the surface of the 

different bioglass substrates will be associated with the corresponding variations in pH and 

ions concentration of the SBF solution to which specimens were exposed. 

 

2. Experimental Materials and Methods 

2.1 Preparation of Bioglass disks  

Bioglass® 45S5 Glass Spheres (Cod. GL0160P, Mo-Sci Corp., USA) were 

consolidated under vacuum conditions (20 Pa) by Spark Plasma Sintering (SPS 515S model, 

Fuji Electronic Industrial Co., Ltd., Kanagawa, Japan) to produce dense cylindrical 

specimens with approximately 14.7 mm diameter and 3 mm thickness. The composition of 

initial powders, as provided by the vendor, was 24.4 % Na2O, 26.9 % CaO, 46.1 % SiO2 and 

2.6 P2O5 (mol. %). Laser light scattering analysis (CILAS 1180, France) indicated that 

particles size was less than 15 µm with an average value of about 4.5 µm. Further details 

relative to powders characteristics and SPS experiments are reported elsewhere.8 Briefly, SPS 

experiments were carried out under temperature controlled mode using a K-type 

thermocouple (Omega Engineering Inc., USA) inserted inside a small hole drilled at the 

centre of the external surface of the graphite die. Fully dense samples with different 

crystallization degree and crystallite sizes were obtained by properly setting the dwell 

temperature (TD), holding time (tD) and mechanical pressure (P) in the ranges 550-700 °C, 2-

20 min and 16-70 MPa, respectively. Specifically, the three groups of 45S5-based glass 

specimens prepared for in-vitro tests are reported in Table 1 along with the values of the 

corresponding sintering parameters. 
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 Before using bioglass-derived products for in-vitro experiments, they were first 

lapped using coarse abrasive paper and then finely polished. The resulting final samples 

thickness was about 2.6 mm.  

 The residual surface roughness in the polished samples was measured using a Form 

Talysurf Intra 50 profilometer (Taylor-Hobson ltd., Leicester, UK). The obtained topological 

data were then analysed with the Ultra Software (Taylor-Hobson, Leicester, UK). The 

evaluation of roughness parameters was carried on 4 different profiles for each sample. In 

particular, the roughness parameter Ra, defined as the arithmetic average of the deviation of 

peak heights and valleys of the roughness profile from the mean line, was determined.  

 

2.2 SBF experiments  

To evaluate their bioactivity, the spark plasma sintered bioglass samples were 

subjected to in-vitro tests following the Kokubo protocol.9 Accordingly, 1000 mL of acellular 

SBF was prepared by adding 8.035 g of NaCl, 0.355 g of NaHCO3, 0.225 g of KCl, 0.231 g 

of K2HPO4·3H2O, 0.311 g of MgCl2·6H2O, 39 mL of 1M HCl, 0.292 g of CaCl2, 0.072 g of 

Na2SO4, 6.118 g of Tris hydroxymethylaminomethane and 0-5 mL of 1 M HCl to distilled 

water. The solution was then buffered at pH = 7.4 using 1 M HCl.  

During the test, each specimen was stored in 45.93 mL of solution (Vs), that was 

determined according to the Kokubo procedure9, i.e.: 

Vs (mL) = Sa (mm2)/10       (1) 

where Sa is the apparent surface area of the sample, i.e. 459.3 mm2 in the present study. The 

test was conducted at 37 °C for different time periods, namely 6 h, 1, 3, 7 and 14 days. For 

the sake of reproducibility, each SBF experiment was repeated at least three times. 

 

2.3 Characterization  

Page 41 of 78

Journal of the American Ceramic Society

Journal of the American Ceramic Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

6 
 

After being soaked in the SBF solution, bioactive glass disks were immediately rinsed 

with distilled water and dried. Gravimetric measurements (Analytical balance, KERN mod. 

ABS 120-4, Balingen, Germany) were carried out at the end of each immersion step to 

determine samples weight changes during the test. 

The crystalline phases initially present in the sintered samples and those ones 

subsequently formed after their immersion in the SBF solution were identified using a X-ray 

diffractometer (Philips PW 1830, Netherlands) equipped with a Ni filtered Cu Kα radiation 

(λ=1.5405 Å). A Rietveld analytical procedure was utilized to estimate the relative amount of 

the diverse phases originally present or formed during the test on the material surface as well 

as the related average crystallites size.10-12  

The microstructure and compositional modifications taking place on the specimens 

surface were examined by high resolution scanning electron microscopy (HRSEM) (mod. 

S4000, Hitachi, Tokyo, Japan) equipped with a UltraDry EDS Detector (Thermo Fisher 

Scientific, Waltham, MA, USA). 

Raman scattering measurements were carried out in backscattering geometry using a 

632.8 nm line by He-Ne Laser. Measurements were performed at room temperature with a 

triple spectrometer Jobin-Yvon Dilor integrated system with a spectral resolution of about 1 

cm-1. Spectra were recorded in the Stokes region by a 1200 groove/mm grating 

monochromator and a LN cooled charge coupled device (CCD) detector system. 

To better evidence the impact produced at relatively longer time intervals by the 

interaction of the three bioglass systems with the surrounding solution, the latter one was not 

renewed during the entire period of soaking. Thus, pH and the concentration of some 

important species present in the solution (Ca, P, Si, Na) were monitored at the prescribed 

immersion time ends. The latter analysis was carried out by means of Inductively Coupled 

Plasma Optical Emission Spectroscopy (ICP-OES CCD Simultaneous, Vista – MPX Varian, 

Mulgrave, Australia).  
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3. Results and discussion 

3.1 Fabrication of bioglass samples  

 The less severe SPS conditions identified in a recent study to achieve the full 

densification of the 45S5 bioglass powders used in present work were TD = 550 °C, tD =2 

min, and P = 70 MPa.8 The resulting sintered material mainly maintained its original glassy 

nature although the formation of a Na-Ca-silicate crystalline phase was also evidenced by the 

XRD analysis. This glass-ceramic biocomposite, indicated as 45S5_S1 in Table 1, represents 

the base systems tackled in this work for SBF tests. In addition, to highlight the possible 

effects of devitrification from the parent glass on the apatite formation during in-vitro 

experiments, the SPS temperature and processing time were increased to generate the two 

additional sets of bioceramics listed in Table 1 as 45S5_S2 and 45S5_S3. To produce the 

latter group of products, it should be noted that the applied pressure was lowered from 70 to 

16 MPa to avoid sample breakage due to the excessive thermo-mechanical stresses 

established during the sintering process. 

 

3.2 SBF experiments  

3.2.1 Samples surface: XRD analysis 

 The compositional and microstructural modifications occurring on the surface of the 

bioglass disks during in-vitro tests are first examined by XRD analysis. The Rietveld method 

was used to evaluate the relative content of the different phases present and the corresponding 

crystallites size. The experimental patterns (red rhombohedral) and the corresponding best-fit 

(dark line) related to 45S5_S1 samples are reported in Figure 1. In addition, the obtained 

average crystallites size, microstrain and relative phases amount are summarized in Table 2.  

The first pattern, named "original powders", corresponds to an amorphous glass, heretoafter 

indicated as "amorphous 45S5" in Table 2, and is computed using a pseudo-crystalline 
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structure factor (Ca1.5Na2.64Si9O3, card n. 01-078-1650 of the ICDD database, crystallite size: 

20 Å, microstrain: 0.03) according to the LeBail approach.13-15  

The pattern indicated in Figure 1 as t = 0 d, corresponding to the dense product obtained by 

SPS under the conditions reported in Table 1 for 45S5_S1, shows the presence of an 

amorphous phase (75 wt.%) together with Bragg reflections ascribable to Ca1.5Na2.64Si9O3 (25 

wt.%). The deconvolution profiles of the pattern corresponding to t = 0 d can be better 

visualized in Figure 2. It is apparent that a partial crystallization of the amorphous matrix 

occurs during the heat treatment process, although nanostructured domains (90 Å) of 

Ca1.5Na2.64O9Si3, indicated as " nanocrystalline 45S5", are preserved after SPS.  

The XRD analysis of the 45S5_S1 sample after 6 h in contact with the SBF solution 

evidenced some changes in the composition and surface microstructure with respect to the 

original ones. In particular, the peaks relative to the crystalline phase initially present in the 

sintered disk disappeared from the pattern. Moreover, after 1 day into SBF solution (pattern t 

= 1 d), the system undergoes a further amorphization, as evidenced by the background 

increasing in the angular 2θ range 20-30°. On the other hand, reflections ascribable to nano 

hydroxyapatite (card n. 00-024-0033 of the ICDD database) are clearly distinguishable in the 

pattern referred as t = 3 d. Correspondingly, as reported in Table 2, nanodomains of around 

15 nm are estimated for the apatite phase.  

After 7 days, the amount of hydroxyapatite still increased up to 9 wt.%. It is important to 

highlight that the sample shows a moderate texture with a preferred orientation corresponding 

to the reflection 002 (25.84°): the hydroxyapatite formed onto amorphous glass nucleates or 

grows with (002) oriented. This aspect is better emphasized in the sample stored for 14 days, 

where the peak (002) presents a unexpected intensity. Finally, the amount of nano apatite 

increases up to 15 wt.% with respect to amorphous matrix.  

 The experimental patterns and the best-fit profiles of the 45S5_S2 samples, are 

reported in Figure 3, while the corresponding compositional and structural data are 
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summarized in Table 3. As indicated in Table 1, relatively higher temperature, with respect 

to the 45S5_S1 case, were adopted to produce this class of samples. Such more severe 

annealing conditions are responsible for the drastic changes produced in the microstructure of 

the 45S5 glass, as evinced in the pattern reported in Figure 3 (pattern t = 0 d). No amorphous 

phases can be detected in this pattern, supporting the almost complete crystallization event 

occurred to the glass during the SPS process for 2 min at the temperature of 600 °C. 

However, as shown in Table 3, Rietveld analysis on the XRD pattern reveals that the 

crystallites size do not overcome 200 Å. As for the previous system, the Rietveld procedure 

confirmed that the composition of this phase is Ca1.5Na2.64O9Si3. 

 In accordance with the behavior displayed by the 25 wt.% crystallized system, the 

surface of 45S5_S2 samples also undergoes to a progressive amorphization when in contact 

with the SBF solution up to 1 day. Nonetheless, as the immersion time was prolonged to 3 

days, the XRD analysis provided an unequivocal indication of the apatite formation. 

Specifically, under such condition, three main phases were detected in the sample, i.e. 

amorphous glass (65 wt.%), nanocrystalline 45S5 (20 wt.%) and nanohydroxyapatite (15 

wt.%). The amount of apatite was found to increase up to 21 wt.% in samples stored for 7 

days, and a further raise of the apatite phase content (25 wt.%) was recorded in specimens 

immersed for 14 days into SBF solution. Another aspect evidenced by the Rietveld analysis 

(cf. Table 3) is that crystallites size of nanocrystalline 45S5 decreases from 20 to 13 nm 

during the course of the test.  

 As reported in Table 1, the third group of samples (45S5_S3) was produced by SPS 

by increasing both the dwell temperature and holding time to 700 °C and 20 min, 

respectively. Correspondingly, the amorphous phase crystallizes with a trigonal habitat and 

space group R-3m:H. In particular, this system shows crystallites size for the Ca1.5Na2.64O9Si3 

phase of 900 Å, larger with respect to those ones present in the 45S5_S2 material. Moreover, 

a series of new peaks ascribable to an additional phase with rhenanite-type structure were 
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also detected (Figure 4, t = 0 d). In this work, these peaks are attributed to rhenanite 

(NaCaPO4, card n. 29-1193 of the ICDD database), albeit it should be noted that they might 

also be associated with silicorhenanite (Na2Ca4(PO4)2SiO4), which is the formulation 

generally indicated in the literature for the crystalline phase formed when of 45S5 bioactive 

glass are heat treated at temperature above 800°C.16 All the parameters obtained by the fit 

analysis are reported in Table 4. 

 Also for the case of the 45S5_S2 samples family, a partial amorphization of the 

material surface preceded the formation of the apatite phase during in-vitro test in SBF. 

Specifically, 10 wt. % was the content of apatite revealed after 3 days. As the immersion time 

was prolonged to 7 days, a further progress in the amorphization of the material surface was 

observed in parallel to a higher amount (25 wt.%) of apatite. Finally, the latter phase 

increased to 33 wt.% after 14 days in contact with the SBF solution.  

 Analogously to the 45S5_S2 system (cf. Table 3), Rietveld data relative to 45S5_S3 

(cf. Table 4) also evidence that the initial crystallites size of nanocrystalline 45S5 (90 nm) is 

reduced during the test in SBF, mostly within three days from the beginning of samples 

storage, to approach values in the range 15-18 nm.  

 For the sake of comparison, the time profiles showing the relative content of apatite, 

as estimated through the Rietveld procedure for the three classes of bioglass products, are 

reported in Figure 5.  

 
3.2.2 Samples surface: SEM observation and EDX analysis 

 To better assess the compositional and morphological changes taking place on the 

glass-ceramic composite samples during in-vitro tests, particularly for relatively short 

immersion time intervals (up to 3 days), the surfaces of the three groups of products were 

examined in detail by SEM and EDX. The obtained results are reported in Figures 6-8. The 

SEM micrographs shown in Figure 6b indicated that the specimens after 6h immersion in 

SBF appeared fractured (45S5_S1 and 45S5_S2) or otherwise degraded (45S5_S3) on their 
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surfaces. In any case, no evidence of the formation of new crystalline phases could be 

detected at this stage by SEM. However, the EDX analysis evidenced a significant change in 

the surface composition (cf. Figure 7). In particular, the relative content of Na and Si rapidly 

decreased from the original value, albeit it did not drop to zero after 6h storage. In parallel, 

the percentages of Ca and P markedly increased, particularly when considering the 45S5_S2 

system. It should be noted that, during such short time period, the Ca/P atomic ratio strongly 

decreased from the original value of about 5.2 to approximately 1.5. As shown in Figure 6c, 

the SEM micrograph relative to 45S5_S1 samples stored in SBF for 24 h evidenced the 

presence of aggregated grains, approximately round shaped, on the bioglass surface. A 

different situation is encountered when the 45S5_S2 sample was tested under the same 

conditions. Indeed, in the latter case, the entire surface was almost wholly covered by a 

uniform and fine layer, with a trabecular bone-like structure. The latter phase is also present, 

although only barely detectable by SEM, on the surface of 45S5_S3 samples. The EDX 

analysis results reported in Figure 7 are quite consistent with the SEM observations. In 

particular, after 1 day storage, Si completely disappeared, Na further decreased while the 

relative contents of both Ca and P still increased. Correspondingly, a value for the Ca/P 

atomic ratio in the range 1.5-1.6 resulted for all the three 45S5-based systems. SEM results 

relative to samples contacted for 3 days with SBF confirmed that a relatively large amount of 

the new phase was present on the surface of 45S5_S2 materials. The microstructure and 

composition of the latter one was examined in detail at higher magnifications, as shown in 

Figure 8. The reported micrograph indicates that this phase displays a trabecular-like 

morphology. Moreover, based on the EDX spectra, it basically consists of Ca, P and O with 

traces of Na and C. It should be noted that the small C signal appearing in the EDX spectra 

could be either due to the carbonation of the apatite layer but also to graphite used to 

guarantee the electric conduction of samples observed by SEM. Nonetheless, the issue related 

to the apatite carbonation will be clarified in next section taking advantage of Raman 
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spectroscopy. On the other hand, the small Na signal is likely ascribable to the sample 

underneath the apatite layer. The EDX analysis revealed also that, as the soaking time was 

increased, the Ca and P at.% reached a maximum value and then slightly decreased, whereas 

an opposite behavior was correspondingly observed for O. In parallel, the Ca/P atomic ratio 

only slightly changed to finally reach an approximate value of about 1.6. 

 
3.2.3 Samples surface: Raman analysis 

The apatite phase formed on the surface of 45S5 samples during the SBF test was further 

characterized by Raman spectroscopy. As an example, Figure 9 reports the Raman spectrum 

in the region between 900 and 1150 cm-1 relative to the 45S5_S2 sample soaked for a 3 days 

into the SBF solution. For comparison, that one relative to pure apatite is also shown. 

Apatite reports several bands in this spectra region related to the phosphate Raman ones. In 

particular, the main peak at 965 cm-1 is assigned to the ν1 mode while the lower peaks in the 

region around 1050-1080 cm-1 are connected to the triply degeneration of the ν3 modes.17  

The peak related to ν1 mode of carbonate appears at about 1070 cm-1..In this regard, it has 

been already observed in the literature18-19 that even small amounts of carbonate generate 

large variation in the Raman spectrum of apatite samples with a large broadening of the ν3 

phosphate modes and the presence of the additional carbonate band. Moreover, if the amount 

of carbonate is above 3 wt%, the contribution of the ν1 mode of carbonate mode overlaps the 

phosphate modes, thus avoiding a clear identification of the different degenerate features. In 

this view and according to Awonusi et al.
18, the spectra of the carbonated apatite sample can 

be well fitted with three Gaussian: a first contribution at about 960 cm-1 related to the 

phosphate, a broad band at about 1050 cm-1, that takes into account the ν3 modes, and a broad 

signal at about 1070 cm-1 related to CO3
2– ν1 mode (cf. Figure 9). Hence, a rough estimation 

of the carbonated content can be obtained from the ratio between the area of the 1070 cm-1 

carbonate band and the 960 cm-1 phosphate contribution; in our analysis a ratio of 0.27 has 
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been obtained which corresponds to about 8 wt% of carbonate content, according to Awonusi 

et al..18 In conclusion, the Raman spectroscopy unequivocally confirmed that the formed 

phosphate phase consisted of carbonated hydroxyapatite (HCA). 

 

3.2.4 Sample weight loss  

Weight changes data of the three 45S5 groups of bioglass specimens during their immersion 

in the SBF solution are plotted in Figure 10. The obtained results indicate that mass losses, 

due to sample dissolution, always prevailed with respect to the corresponding gain, caused by 

the new phases formation on the materials surface. In addition, it is observed that dissolution 

phenomena are mainly confined to the first day of immersion, while they tends to become 

less important as the soaking time is progressively augmented. When the behavior of the 

three series of specimens is compared, it can be stated that weight loss takes place in the 

following order 45S5_S1 >> 45S5_S2 > 45S5_S3. In particular, the obtained data clearly 

indicated that, during the in-vitro test, the samples consisting of the 75 wt.% of the glassy 

phase lose their mass almost twice with respect to the fully crystallized counterparts.  

 

3.2.5 Changes in the SBF solution  

The time-evolution of pH in the SBF solution during the test is shown in Figure 11. For all 

the three bioglass systems, which exhibited a similar (qualitative) behavior, this parameter 

increases monotonically from its initial value. In addition, the major changes take place 

during the first three days of immersion in the SBF, while minor variations are observed as 

the test proceeds. In any case, pH did not overcome the value of 8. Nonetheless, in 

correspondence to the prescribed storage time intervals, relatively higher pH were obtained 

according to the following order 45S5_S1 > 45S5_S2 > 45S5_S3.  

The latter hierarchy holds also generally true when the differences between the concentration 

of some of the more relevant species present in the solution with respect to the initial values, 
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are compared for the three bioglass groups, as reported in Figure 12. Firstly, it is seen that 

the main changes take place within 3 days from the beginning of the test. In addition, Ca and 

Si released were found relatively higher for 45S5_S1, whereas slightly superior Na 

concentration was revealed for the 45S5_S3 system. The data relative to the P content plotted 

in Figure 12 display a monotonically decreasing behavior, for all groups of 45S5 samples, 

during the progress of the in-vitro test. Furthermore, a relatively higher depletion rate of P 

from the solution, particularly up to 3 days immersion, was detected when considering the 

45S5_S2 samples.  

 

4. Discussion 

 As mentioned in the Introduction section, the response of bioactive materials during in-

vitro tests depends not only by the nominal composition of the system, i.e. that one of 

classical Bioglass® for the present study, but also by several other factors. In particular, the 

relative density of bulk materials, topological aspects (surface roughness), type and content of 

crystallized phases formed during powders processing, crystallization degree, crystallites 

size, etc., also affect the interaction between the material and the physiological solution. 

Therefore, the discussion of the results obtained during in-vitro experiments in this 

investigation has to be preceded by an accurate analysis of the samples characteristics prior 

the biological test.  

 Since the main scope of this work is to highlight the consequences arising from the use 

of differently crystallized bioactive glasses on the apatite formation, the other possibly 

affecting features, particularly material porosity and surface roughness, have been minimized. 

In this regard, it should be first noted that the three groups of 45S5-based specimens 

considered for biological tests are completely dense. This outcome was confirmed by SEM 

observation of the corresponding cross sections, whose results are not reported here for the 

sake of brevity. In addition, before their immersion in the SBF solution, all samples were 
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finely polished, so that the resulting residual roughness was very low. To support the latter 

statement, it should be noted that the measured values of the Ra parameter for the 45S5_S1, 

45S5_S2 and 45S5_S3 specimens were 0.046 ± 0.012, 0.045 ± 0.006, and 0.036 ± 0.006 µm, 

respectively. Of course, the roughness property will be unavoidably modified during samples 

immersion in the SBF solution due to the occurrence of dissolution phenomena and the 

deposition of new phases on the material surface.  

As described in the previous section, the microstructural characteristics of the three different 

classes of sintered disks are consistent with the corresponding SPS parameters adopted to 

consolidate the bioglass powders (cf. Table 1). Specifically, when the latter ones were 

processed under the milder temperature (550 °C) and holding time (2 min) conditions 

required, with an applied pressure of 70 MPa, to achieve their complete densification, about 

75 wt% of the 45S5_S1 material preserved its original amorphous nature. On the other hand, 

the remaining fraction underwent devitrification during the heat treatment, to generate 9 nm 

sized nanocrystallites, whose composition was ascertained by the fitting procedure as 

Ca1.5Na2.64Si9O3. In this regard, it should be noted that the use of the Rietveld approach 

allowed us to identify a more precise formulation for the crystalline phase formed from the 

glass with respect to that one (Na2Ca2Si3O9) indicated in our previous study8
 and reported in 

prior investigations addressed to 45S5 bioglass processing either by SPS20 or using 

alternative heat treatment methods.5-6,21-22 Moreover, additional formulations, for instance 

Na2CaSi2O6
7 or Na2CaSi3O8

23, were also attributed to the crystallized phases formed in 45S5 

bioactive glasses during SPS. The difficulty in identifying the precise composition for such 

sodium-calcium-silicate is ascribed to the fact that all these phases not only display similar 

XRD patterns but are also prone to generate solid-solid solutions.24 In addition, the specific 

crystalline phase formed from 45S5 bioglass could also depend on particle size of original 

powders as well as the conditions adopted during heat treatment.24 In any case, the 

Ca1.5Na2.64O9Si3 composition was used in this work as it allowed us to reproduce more 
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satisfactorily, with respect to the alternative silicate phases mentioned above, the XRD 

patterns of the SPSed samples taken into account.  

As shown in Figure 3 and summarized in Table 3 (t = 0 d), the slight augment of 50 °C in 

the dwell temperature, while maintaining the other SPS parameters unchanged, was anyhow 

sufficient to determine the crystallization completion from the glass phase as well an increase 

of the Ca1.5Na2.64Si9O3 crystallites size to 20 nm (45S5_S2). Finally, as the TD and tD values 

were both raised to 700°C and 20 min, respectively, to produce the 45S5_S3 series of 

specimens, grains growth proceeded up to 90 nm (Table 4). Furthermore, in addition to the 

silicate phase, about 15 wt.% of NaCaPO4 with 80 nm grains sized was also formed during 

SPS in the latter group of samples.  

Before examining the results obtained in the present work relatively to the behavior 

displayed by these three groups of samples during in-vitro tests, some preliminary 

considerations are worth to be made. In particular, it should be mentioned that the 

physiological media used in various studies reported in the literature were periodically 

refreshed.25-27 Such choice was aimed to maintain the ions concentration more stable during 

the test. Relatively higher Ca and P amounts are consequently made available in the SBF 

solution, so that more favorable conditions for the formation of the apatite layer on the 

bioglass surface can be established. Alternatively, according to the procedure followed by 

other authors,6,28-29 the SBF solution was not renewed during the course of the biological test 

conducted in the present work. The reason for that is to better highlight the different 

outcomes correspondingly produced, which might not be so apparent, particularly as far as 

the changes in the solution are concerned, if the SBF is frequently replaced.  

Results relative to SBF experiments will be then analyzed. The data plotted in Figure 

10 testify the superior weight loss manifested by the 45S5_S1 category of samples. This 

outcome can be readily associated with the primary amorphous nature of such system, which 

makes it more reactive, with respect to the fully crystalline 45S5_S2 and 45S5_S3 ones, 
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when in contact with the solution. In addition, although the latter two groups of specimens 

displayed similar dissolution behavior, the 45S5_S2 samples decreased their weight markedly 

during the first week storage in SBF, as compared to 45S5_S3 ones. It is likely that the 

relatively larger grains boundary area made available by the presence of finer grains in the 

first kind of material justifies its preferential dissolution with respect to the second, coarser, 

one. It is also possible that the presence of rhenanite might play a role in this regard. 

The chemical changes observed in the SBF solution are quite in agreement with the 

corresponding dissolution behavior and could be interpreted on the basis of the mechanism 

proposed in the literature for the apatite formation in bioactive glasses.3 Firstly, the rapid 

increase of pH and concentration cations manifested by all groups of samples (cf. Figures 11 

and 12) is a logical consequence of initial phenomena taking place at the glass-SBF solution 

interface, which involve the ion exchange of Ca2+ and Na+ (material � solution) with H+  

(solution � glass surface).3 The more significant pH increase and Ca release taking place for 

the 45S5_S1 system, followed by the 45S5_S2 and, finally, 45S5_S3 series of samples, is 

consistent with the dissolution character they exhibited. Also Si concentration profiles 

followed the same behavior. The only exception is represented by the preferential Na release 

observed for the case of 45S5_S3 products (cf. Figure 12), particularly at relatively short 

immersion times. In this regard, the presence of NaCaPO4 previously postulated could 

explain the dissolution behavior displayed by the latter class of materials. Therefore, it could 

also likely influence the selective ions release during the in-vitro test. 

Besides, the comparison of the three series of bioglass samples relatively to the apatite 

formation is even more important. Surprisingly, different situations are encountered 

depending upon the immersion time taken into account. In particular, the results shown in 

Figure 5 for systems immersed for three days in SBF evidenced that the amount of apatite 

varies in the following decreasing order: 45S5_S2 > 45S5_S3 > 45S5_S1. The latter outcome 

was confirmed by SEM observations (Figure 6d) coupled with EDX analysis (Figure 7). 

Page 53 of 78

Journal of the American Ceramic Society

Journal of the American Ceramic Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

18 
 

Due to the detection limit of the XRD analysis, no reliable data on the apatite formation could 

be provided by the Rietveld procedure for storage time periods equal or shorter than 1 day. 

Nonetheless, the generation of the new phase after 1 day immersion was assessed by SEM 

(Figure 6c). Moreover, the related results also confirmed that more favorable conditions for 

the formation of a homogeneous apatite layer are established when considering the 45S5_S2 

samples. This statement is further supported by the correspondingly more drastic reduction of 

P concentration in SBF (Figure 12), in particular for soaking times equal or shorter than 1 

day. Indeed, the faster formation of the HCA layer on the surface of 45S5_S2 materials, has 

to be necessarily accompanied by a quicker consumption of the P species in the SBF solution. 

On the basis of the obtained results, it is therefore possible to state that, among the three 

groups of 45S5-based bioceramics considered in this work, the fully crystallized samples 

exclusively consisting of Ca1.5Na2.64Si9O3 grains with average size of about 20 nm display 

superior capability to more rapidly produce larger amounts of apatite within three days 

storage.  

However, a slightly diverse situation was encountered when the contact period of the 

materials with the SBF solution was extended. Indeed, the surface of 45S5_S3 samples 

immersed for 7 and 14 days was relatively richer in HCA with respect to the other systems. 

As previously highlighted, the presence of rhenanite in this class of bioglass products was 

found to affect their interaction with SBF. In this regard, the lower mass loss they generally 

displayed (cf. Figure 10), and the corresponding less significant pH increase (cf. Figure 11), 

are expected to play a positive role in establishing more favorable conditions for HCA 

formation and its preservation on the bioceramic surface at relatively longer immersion times. 

Nonetheless, Figure 5 still confirmed a lower amount of apatite on the surface of the 75 wt.% 

amorphous samples with respect to the other two groups of specimens.  

Therefore, the generation of the HCA layer is always preferably promoted in fully 

crystallized samples with respect to the glass-ceramic 45S5_S1 group, where the amorphous 
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fraction prevails. These findings are then in contrast with the results obtained by Li et al.
4 

and Filho et al.
5, who emphasized the negative effects produced by the bioglass 

crystallization on the apatite formation. The different bioglass formulation and physiological 

solution4 and/or annealing method/conditions adopted to induce crystallization from the 

parent glass5 are possibly responsible for the observed discrepancies with respect to the 

present study. On the other hand, our findings seem to be more consistent with those ones 

reported in recent studies where conventional sintering6 or the SPS method7
 were used to 

promote the devitrification of 45S5 bioglass. In particular, Grasso et al.
 7
 found that the 

formation of HCA during in-vitro tests in SBF was facilitated by the presence of fine 

Na2CaSi2O6 crystals in dense samples obtained by SPS at 600°C.7 However, the different 

sintering conditions and characterization methods adopted in the latter two studies were not 

sufficient to evidence the experimental findings described in the present work from a 

quantitative point of view.  

Some considerations to possibly explain the peculiar behavior exhibited by 45S5_S2 and 

45S5_S3 samples will be finally made taking advantage of the mechanism of interaction 

recently proposed by Boccaccini et al.
22
 for Bioglass® based glass-ceramics in SBF. First of 

all, it was postulated that during storage the crystalline grains break-down through 

preferential dissolution at crystal structural defects. This fact is consistent with the 

progressive reduction of crystallites size evidenced in both systems by the Rietveld analysis. 

In addition, the fact that ion-exchange is expected to take place preferably at the grains 

boundaries likely explains the larger amount of apatite formed during the first 3 days 

immersion on the surface of 45S5_S2 samples, which exhibit relatively smaller crystallites 

size with respect to 45S5_S3 specimens. On the other hand, as shown in Tables 3-4, the 

progressive crystallites refinement makes their size in the two class of biomaterials roughly 

similar, i.e. 13 and 15-18 nm, so that the latter effect tends to vanish as the immersion time 

was increased. Under such circumstances, the presence of rhenanite-type ceramic makes the 
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only relevant difference between the two systems. Thus, it is likely that this phase is 

responsible for the improved HCA formation. In this regard, it should be noted that in-vivo 

experiment involving various calcium phosphates including rhenanite, evidenced the 

capability of the latter phase to be transformed completely into apatite.30 The progressively 

decrease of rhenanite content during the in-vitro test conducted in the present work (cf. Table 

4) supported the latter statement.  

 

5. Concluding remarks 

The biological response of three series of bioceramics obtained by SPS from 45S5 

Bioglass powders was examined in detail. As revealed by the Rietveld analysis of the related 

XRD patterns, about 25 wt.% of the material underwent devitrification under the milder SPS 

conditions (550 °C, 2 min) adopted to achieve the full powder densification in the first group 

of samples. The resulting crystalline phase (Ca1.5Na2.64Si9O3) exhibits approximately 9 nm 

sized grains. The second class of 45S5-derived materials was obtained by increasing the 

dwell temperature to 600°C. Correspondingly, the crystallization process from the parent 

glass went to completion accompanied by grains growth to 20 nm. Finally, the third category 

of bioglasses was produced under the most severe SPS conditions here investigated (700 °C, 

20 min) which determined not only a further increase of crystallites size (90 nm), but also the 

formation of a new phase characterized by a rhenanite-like structure, ascribed to NaCaPO4, 

whose content was estimated of approximately 15 wt.%.  

The in-vitro tests results involving the interaction of these samples with acellular SBF 

are briefly summarized in what follows:  

a) within the entire immersion time period investigated, HCA formation is mostly 

promoted in the two series of fully crystallized samples instead of the mainly 

amorphous system; in addition, the latter one displayed the higher weight loss, and 

determined the more significant increase in pH and ions released; in this regard, it 
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is important to note that too high pH levels have to be avoided as they might 

provoke cells damage or even their death;  

b) a larger content of apatite was detected during the first 3 days immersion on the 

surface of specimens exclusively consisting of Ca1.5Na2.64Si9O3 with crystallites 

size of 20 nm; such biological response is probably ascribed to the large grains 

boundary area made available by the presence of such nanocrystallites, which 

determines an intensification of ion-exchange phenomena and, in turn, the 

formation of the HCA layer; 

c) the initial presence of the rhenanite phase in the third group of bioglass products 

contributes favorably to the formation of larger amounts of HCA at relatively 

longer storage periods. 
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Table 1. Designation of 45S5 bioglass samples and related SPS conditions  

 

 

 

 

 

 

 

Sample ID TD (°C) tD (min) P (MPa) 

45S5_S1 550 2 70 

45S5_S2 600 2 70 

45S5_S3 700 20 16 
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Table 2. Phases and quantitative phase analysis results relatively to 45S5_S1 samples stored 

in the SBF for different time intervals.  

Sample Phases Crystallite 

sizes 

Microstrain wt. % 

Original 

powders 

Amorphous 45S5   100 

t = 0 d Amorphous 45S5/nanocrystalline 

45S5 

/90 Å /1*10-3 75/25 

t = 6 h New amorphous phase   >95 

t = 1 d New amorphous phase    >95 

t = 3 d New amorphous phase / apatite /150 Å /4*10-3 93/7 

t = 7 d New amorphous phase / apatite /230 Å /4*10-3 91/9 

t = 14 d New amorphous phase / apatite /190 Å /3*10-3
 85/15 
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Table 3. Phases and quantitative phase analysis results relatively to 45S5_S2 samples stored 

in the SBF for different time intervals.  

Sample Phases Crystallite 

sizes 

Microstrain wt. % 

Original 

powders 

Amorphous 45S5    100 

t = 0 d Nanocrystalline 45S5 200 /1*10-3 100 

t = 6 h New amorphous phase/ 

nanocrystalline 45S5 

/200 /1*10-3 10/90 

t = 1 d New amorphous phase/ 

nanocrystalline 45S5 

/180 /1*10-3
 30/70 

t = 3 d New amorphous phase/ 

nanocrystalline 45S5/apatite 

/130/210 /1*10-3/5*10-3 65/20/15 

t = 7 d New amorphous phase/ 

nanocrystalline 45S5/apatite 

/130/170 /1*10-3/5*10-3 64/15/21 

t = 14 d New amorphous phase/ 

nanocrystalline 45S5/apatite 

/130 /220 /2*10-3/4*10-3
 65/10/25 
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Table 4. Phases and quantitative phase analysis results relatively to 45S5_S3 samples stored 

in the SBF for different time intervals. 

Sample Phases Crystallite 

sizes 

Microstrain wt. % 

Original 

powders 

Amorphous 45S5    100 

t = 0 d Nanocrystalline 

45S5/rhenanite 

900/800 2*10-3/4*10-3 85/15 

t = 6 h New amorphous phase/ 

nanocrystalline 45S5/ 

rhenanite 

/900/700 1*10-3/3*10-3 8/86/6 

t = 1 d New amorphous phase/ 

nanocrystalline 45S5/ 

rhenanite 

/600/650 1*10-3/3*10-3 12/84/3 

t = 3 d New amorphous phase/ 

nanocrystalline 45S5/apatite 

/150/260 /1*10-3/5*10-3 60/30/10 

t = 7 d New amorphous phase/ 

nanocrystalline 45S5/apatite 

/160 /280 /1*10-3/5*10-3 55/20/25 

t = 14 d New amorphous phase/ 

nanocrystalline 45S5/apatite 

/180/131 /1*10-3/1*10-3 52/15/33 
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Captions figures 

Figure 1. XRD patterns and related Rietveld refinements of 45S5_S1 samples as a function 

of the immersion time in the SBF solution. Data relative to the original bioglass powders are 

also shown for the sake of comparison. Label 45S5 refers to the Ca1.5Na2.64Si9O3 phase. 

Figure 2. Deconvolution of the XRD pattern relative to the SPSed 45S5_S1 product before 

being immersed in the SBF solution.  

Figure 3. XRD patterns and related Rietveld refinements of 45S5_S2 samples as a function 

of the immersion time in the SBF solution. Data relative to the original bioglass powders are 

also shown for the sake of comparison. Label 45S5 refers to the Ca1.5Na2.64Si9O3 phase. 

Figure 4. XRD patterns and related Rietveld refinements of 45S5_S3 samples as a function 

of the immersion time in the SBF solution. Data relative to the original bioglass powders are 

also shown for the sake of comparison. Label 45S5 refers to the Ca1.5Na2.64Si9O3 phase. 

Figure 5. Temporal changes of apatite content on the surface of the three class of 45S5-

bioglass samples during in-vitro test, as revealed by the Rietveld analysis. 

Figure 6. SEM micrographs (5000X) of the three groups of 45S5 specimens at different 

immersion times in the SBF solution: (a) 0 h, (b) 6 h, (c) 1 d, and (d) 3 d.  

Figure 7. Compositional changes, as revealed by EDX analysis, taking place on the surface 

of the three groups of 45S5 specimens during their immersion in the SBF solution.  

Figure 8. Detailed micrograph, and related EDX spectra, of the surface of 45S5_S2 sample 

after immersion for 3 days in the SBF solution. The EDX analysis provided the following 

results: Ca: 34 at. %, P: 21 at.%, O: 44 at. %, and Na: 1 at.%. The contribution of the C signal 

was not considered, due to the presence of graphite used to guarantee the electric contact in 

samples examined by SEM. 

Figure 9. Raman spectrum of the 45S5_S2 sample immersed for 3 days in SBF. The Raman 

data of pure apatite is also shown for the sake of comparison. 
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Figure 10. Weight changes of the three groups of 45SS specimens as a function of immersion 

times in the SBF solution. 

Figure 11. Temporal evolution in pH of the SBF solutions where the three groups of 45S5 

specimens were immersed. 

Figure 12. Compositional changes of the SBF solutions where the three series of 45S5 

samples were soaked up to 14 days. 
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Figure 1. XRD patterns and related Rietveld refinements of 45S5_S1 samples as a function of the immersion 
time in the SBF solution. Data relative to the original bioglass powders are also shown for the sake of 

comparison. Label 45S5 refers to the Ca1.5Na2.64Si9O3 phase.  
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Figure 2. Deconvolution of the XRD pattern relative to the SPSed 45S5_S1 product before being immersed 
in the SBF solution.  
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Figure 3. XRD patterns and related Rietveld refinements of 45S5_S2 samples as a function of the immersion 
time in the SBF solution. Data relative to the original bioglass powders are also shown for the sake of 

comparison. Label 45S5 refers to the Ca1.5Na2.64Si9O3 phase.  
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Figure 4. XRD patterns and related Rietveld refinements of 45S5_S3 samples as a function of the immersion 
time in the SBF solution. Data relative to the original bioglass powders are also shown for the sake of 

comparison. Label 45S5 refers to the Ca1.5Na2.64Si9O3 phase.  
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Figure 5. Temporal changes of apatite content on the surface of the three class of 45S5-bioglass samples 
during in-vitro test, as revealed by the Rietveld analysis.  
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Figure 6. SEM micrographs (5000X) of the three groups of 45S5 specimens at different immersion times in 
the SBF solution: (a) 0 h, (b) 6 h, (c) 1 d, and (d) 3 d.  
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Figure 7. Compositional changes, as revealed by EDX analysis, taking place on the surface of the three 
groups of 45S5 specimens during their immersion in the SBF solution.  
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Figure 8. Detailed micrograph, and related EDX spectra, of the surface of 45S5_S2 sample after immersion 
for 3 days in the SBF solution. The EDX analysis provided the following results: Ca: 34 at. %, P: 21 at.%, O: 

44 at. %, and Na: 1 at.%. The contribution of the C signal was not considered, due to the presence of 

graphite used to guarantee the electric contact in samples examined by SEM.  
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Figure 9. Raman spectrum of the 45S5_S2 sample immersed for 3 days in SBF. The Raman data of pure 
apatite is also shown for the sake of comparison.  
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Figure 10. Weight changes of the three groups of 45SS specimens as a function of immersion times in the 
SBF solution.  
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Figure 11. Temporal evolution in pH of the SBF solutions where the three groups of 45S5 specimens were 
immersed.  
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Figure 12. Compositional changes of the SBF solutions where the three series of 45S5 samples were soaked 
up to 14 days.  
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