Subcritical water extraction of quercetin and derivatives from onion skin wastes (Allium cepa cv. Horcal): effect of temperature and solvent properties

Coimbra (Portugal), 1 March 2022

Dr. Óscar Benito-Román

B. Blanco, M.T. Sanz, S. Beltrán

Dept. Biotechnology and Food Science (Chemical Eng. Section)

Universidad de Burgos (Spain)

Contents

1. Introduction

- 1.1 Circular economy
- 1.2 Biomass valorization
- 1.3 Onion skin wastes as an opportunity

2. FLAVONOIDS RECOVERY

- 2.1 Conventional extraction
- 2.2 Subcritical water

- 3. MATERIALS AND METHODS
- **3.1 HPLC**
- 3.2 Semicontinuous SubW extractor

- 4. EXPERIMENTAL RESULTS
- 5. CONCLUSIONS
- 6. ACKNOWLEDGEMENTS

1. Introduction

Our journey: economy is changing

1. Introduction: From Linear to Circular Economy

What is the Linear Economy?

1. Introduction: From Linear to Circular Economy

What is the Circular Economy?

A new paradigm

"closing the loop"

Resource supply

1.1 Circular Economy: Background

December 2015

✓ Circular Economy Action Plan COM(2015) 614 final

> Purposes

- new boost to jobs, growth and investment
- to develop a carbon neutral, resource-efficient and competitive economy
- > 54 actions

1.2 Circular Economy: biomass valorization

✓ Circular Economy Action Plan COM(2015) 614 final

- > Two key aspects:
 - 3. Turning waste into resources (Recycling)
 - Closing loops of recovered materials

(Secondary raw material)

- Growing concern in the EU
 - Food industry: huge amount of food wastes
 - Change of paradigm:
 - ✓ Not residues anymore
 - ✓ By-products

New opportunities

1.3 Onion Skin Wastes: an opportunity

PROBLEMS

- Worldwide production: 96.8 Mt (2018), 0.5% wastes
- Not to be used for animal feeding or fertilizing

OPPORTUNITIES

- ✓ Rich quercetin, quercetin derivatives and other flavonoids
- ✓ New extraction processes

1.3 Onion Skin Wastes

OPPORTUNITIES

- ✓ Quercetin derivatives:
 - Quercetin aglycone (QC)
 - Quercetin-4'-O-glycoside (QC4')
 - Quercetin-3,4'-O-diglycoside (QC3,4')
 - Quercetin-3-O-glycoside (QC3)

- ✓ Low solubility in water
- ✓ Strongly linked to the structural compounds of onion

2. Flavonoids recovery procedures

2.1 Conventional

- Based on organic solvents: EtOH, MeOH, aqueous mixtures
- Complex downstream processing to remove them

2.2 Alternative: Subcritical Water (SubW)

Water at temperature ranging from 100 °C (boiling point) to 374 °C (critical point); remains in a liquid state due to the application of pressure

2. Flavonoids recovery procedures

2.2 Alternative: Subcritical Water (SubW)

Zhang et al. Trends in Food Science & Technology 95, 183-195 (2020)

- 1. Change in physical properties:
 - viscosity, surface tension and dielectric constant
- Mass transfers enhancement
- 3. Promotion of the hydrolysis reactions

2. Flavonoids recovery procedures

2.2 Subcritical Water: literature review

Batch Extractors

Semicontinuous
Extractors

- ➤ 110 to 230 °C
- > Extraction times <30 min
- Significant increase in the extraction yield
- ➤ Difficulty to control the heating/cooling times

continuous pumping of fresh solvent through the raw material

- kinetic modelling of the extraction experiments
- discussion about how the change in the physical properties of water when heated and cooled after the extraction affects the solubility of the target compounds

3. Materials & Methods

3.1 Raw Material: Onion skin wastes (OSW) Horcal cultivar

- Key Ingredient for blood sausage production
- Local Company: Embutidos Cardeña (http://www.morcilladeburgos.com/)
- Uses 350 t/year of onion, producing 11 t/year of external skin
- ➤ 11-12% extractives
- Particle size < 1mm</p>

3. Materials & Methods

3.2 Total Flavonoids Content (TFC)

Spectrophotometric Method: absorbance at 415 nm after incubation with 0.5 mL of the sample were mixed with 1.5 mL of absolute ethanol, 0.1 mL of CH_3COOK solution (0.1 M), 0.1 mL of $AlCl_3$ solution (10%, w/v) and 2.8 mL of distilled water.

Standard Curve: Based on quercetin. Results expressed as milligrams of Quercetin Equivalent per gram of dry OSW (mg QE/g OSW).

3.3 Quercetin and derivatives identification

HPLC

Double comparison:

- peak retention time
- UV spectra

3. Materials & Methods. QC and derivatives identification.

Compound	Retention time (min)	UV spectra	Match (%)
QC	Standard: 67.37 Peak: 67.55	Norm 400 300 200 100 0 220 240 290 280 390 320 340 350 380 nm	98.8±0.7
QC4'	Standard: 62.8 Peak: 62.77	Norm 140 120 100 - 00 00 00 00 00 00 00 00 00 00 00 00	99.2±0.4
QC3,4'	Standard: 47.39 Peak: 47.56	Norm 70 60 60 40 30 20 10 0 220 240 260 280 300 320 340 360 380 nm	99.7±0.1
QC3	Standard: 56.40 Peak: 56.56	Nem 10 8 6 4 2 20 240 260 280 300 320 340 360 380 nm	97.4±0.9

3. Materials & Methods. QC and derivatives identification.

Column	Kinetex [®] Biphenyl column (250 × 4.6 mm, particle size 5 μm, pore size 100 Å)
Detector	DAD - Agilent 1100
Mobile phase	 (A) ammonium acetate 5 mM with acetic acid (1%, v/v) in water (B) ammonium acetate 5 mM with acetic acid (1%, v/v) in acetonitrile.
Flow rate	0.8 mL/min
Temperature	25°C
Wavelenghts	280, 330, 370 nm
Reference	Alonso-Riaño, P.; Diez, M.T.S.; Blanco, B.; Beltrán, S.; Trigueros, E.; Benito-Román, O. Water ultrasound assisted extraction of polyphenol compounds from brewer's spent grain: Kinetic study, extract characterization, and concentration. Antioxidants 2020 , 9, 265.

3. Materials & Methods

1) solvent bottle; 2) pump; 3) bursting disk; 4) heater; 5) by-pass pipe; 6) 26 mL extractor; 7) chiller; 8) backpressure regulator.

3. Materials & Methods

3.4 SubW semicontinuous plant. Working conditions.

Working Conditions

- ➤ 4 g of OSW + 8 g of 5 mm glass beads (avoid packaging and channeling through the bed)
- > Flow rate: 2.5 mL/min
- Residence time: 10-11 min
- > Extraction time: 180 min
- > Temperature range: 105 to 180 °C.
- Analysis of TFC and individual flavonoids
- Modelling

4.1 Conventional Extraction

- > 37 °C for 60 min, under stirring (275 rpm)
- > solvent ethanol:water mixture (70%, v/v)

Dielectric constant: 43 (aprox)

Maximum TFC

20.4±0.2 mg QE/g DOSW

4.2 SubW extraction: Flavonoids extraction kinetics.

Effect of temperature

> Fast extraction

 95% of the total flavonoids <45 min

Effect of T:

- 105 °C: 19.9±0.4 mg QE/g OSW
- 145 °C: 25 mg QE/g OSW

4.2 SubW extraction: Flavonoids extraction kinetics.

4.2 SubW extraction: Effect of solvent polarity.

> Extract at room temperature

- A precipitate is formed
- **≻** How to proceed?
 - Centrifugate it, and HPLC
 - Resuspend and HPLC

CENTRIFUGED

QC: x6.4

QC4': x1.5

QC3: x1.4

QC3,4: no changes

RESUSPENDED

Ethanol, final concentration 70%, v/v

Extracts obtained at 145 °C

0

0-10

10-20

20-30

time (min)

30-45

45-60

CENTRIFUGED

TOTAL QCS SOLUBLE FRACTION

105 °C: 40.6%

145 °C: 36.5%

180 °C: 28.9%

RESUSPENDED

Ethanol, final concentration 70%, v/v

Extracts obtained at 145 °C

0

0-10

20-30

time (min)

30-45

45-60

10-20

4.2 SubW extraction: Effect of solvent polarity.

T (°C)	3
25	78.6
105	53.9
145	44.7
180	37.9

Dielectric constant → compounds solubility

Irreversible precipitation at room temperature of compounds that were dissolved during the extraction at high temperatures

QC has a solubility in water of 2.15 ppm at 25 °C, which is increased up to 665 ppm at 140 °C ¹.

An ethanol/water mixture (70%, v/v) has a dielectric constant around 43

4.2 SubW: effect of temperature of individual flavonoids.

4.2 SubW: effect of temperature of individual flavonoids.

	Total Extracted (mg/g OSW)					
	Conventional*	105 °C	125 °C	145 °C	160 °C	180 °C
QC	6.6±0.2	12.5±0.2	13.3±0.1	15.4±0.4	16.0±0.2	16.4±0.6
QC4'	9.8±0.3	6.7±0.1	8.0±0.2	8.4±0.1	7.8±0.1	7.0±0.1
QC3	0.21±0.03	ND	0.23±0.01	0.29±0.03	0.245±0.012	0.27±0.01
QC3,4'	2.04±0.03	0.54±0.04	0.44±0.02	0.84±0.04	0.453±0.015	0.45±0.02
Total QCs*	18.7±0.6 ^A	19.7±0.3 ^B	22.0±0.3 ^C	24.9±0.6 ^D	24.5±0.3 ^D	24.1±0.7 ^D
Ratio QC4'/QC	1.48±0.04 ^E	0.54±0.01 ^C	0.60±0.02 ^D	0.55±0.02 ^C	0.49±0.01 ^B	0.43±0.02 ^A

^{*} EtOH 70% (v/v), 37 °C, 60 min

4.2 SubW: effect of temperature of individual flavonoids.

	Total Extracted (mg/g OSW)						
	Conventional*	105 °C	125 °C	145 °C	160 °C	180 °C	
QC	6.6±0.2	12.5±0.2	13.3±0.1	15.4±0.4	16.0±0.2	16.4±0.6	
QC4'	9.8±0.3						
QC3	0.21±0.03	ND	0.23±0.01	0.29±0.03	0.245±0.012	0.27±0.01	
QC3,4'	2.04±0.03						
Total QCs*	18.7±0.6 ^A	19.7±0.3 ^B	22.0±0.3 ^C	24.9±0.6 ^D	24.5±0.3 ^D	24.1±0.7 ^D	
Ratio QC4'/QC	1.48±0.04 ^E	0.54±0.01 ^c	0.60±0.02 ^D	0.55±0.02 ^c	0.49±0.01 ^B	0.43±0.02 ^A	

^{*} EtOH 70% (v/v), 37 °C, 60 min

<u>QC</u>

- SubW favors the extraction
- Up to 2.5 times more

4.2 SubW: effect of temperature of individual flavonoids.

	Total Extracted (mg/g OSW)					
	Conventional*	105 °C	125 °C	145 °C	160 °C	180 °C
QC	6.6±0.2	12.5±0.2	13.3±0.1	15.4±0.4	16.0±0.2	16.4±0.6
QC4'	9.8±0.3	6.7±0.1	8.0±0.2	8.4±0.1	7.8±0.1	7.0±0.1
QC3	0.21±0.03	ND	0.23±0.01	0.29±0.03	0.245±0.012	0.27±0.01
QC3,4'	2.04±0.03	0.54±0.04	0.44±0.02	0.84±0.04	0.453±0.015	0.45±0.02
Total QCs*	18.7±0.6 ^A	19.7±0.3 ^B	22.0±0.3 ^C	24.9±0.6 ^D	24.5±0.3 ^D	24.1±0.7 ^D
Ratio QC4'/QC	1.48±0.04 ^E	0.54±0.01 ^c	0.60±0.02 ^D	0.55±0.02 ^c	0.49±0.01 ^B	0.43±0.02 ^A

^{*} EtOH 70% (v/v), 37 °C, 60 min

<u>QC</u>

- SubW favors the extraction
- Up to 2.5 times more

QC4′

- SubW decreases the extraction
- Possible hydrolysis?

4.2 SubW: effect of temperature of individual flavonoids.

	Total Extracted (mg/g OSW)						
	Conventional*	105 °C	125 °C	145 °C	160 °C	180 °C	
QC	6.6±0.2	12.5±0.2	13.3±0.1	15.4±0.4	16.0±0.2	16.4±0.6	
QC4'	9.8±0.3	6.7±0.1	8.0±0.2	8.4±0.1	7.8±0.1	7.0±0.1	
QC3	0.21±0.03	ND	0.23±0.01	0.29±0.03	0.245±0.012	0.27±0.01	
QC3,4'	2.04±0.03	0.54±0.04	0.44±0.02	0.84±0.04	0.453±0.015	0.45±0.02	
Total QCs*	18.7±0.6 ^A	19.7±0.3 ^B	22.0±0.3 ^c	24.9±0.6 ^D	24.5±0.3 ^D	24.1±0.7 ^D	
Ratio QC4'/QC	1.48±0.04 ^E	0.54±0.01 ^c	0.60±0.02 ^D	0.55±0.02 ^c	0.49±0.01 ^B	0.43±0.02 ^A	

^{*} EtOH 70% (v/v), 37 °C, 60 min

<u>QC</u>

- SubW favors the extraction
- Up to 2.5 times more

<u>QC4'</u>

- SubW decreases the extraction
- Possible hydrolysis?

4.2 SubW: effect of temperature of individual flavonoids.

	Total Extracted (mg/g OSW)					
	Conventional*	105 °C	125 °C	145 °C	160 °C	180 °C
QC	6.6±0.2	12.5±0.2	13.3±0.1	15.4±0.4	16.0±0.2	16.4±0.6
QC4'	9.8±0.3					
QC3	0.21±0.03	ND	0.23±0.01	0.29±0.03	0.245±0.012	0.27±0.01
QC3,4'	2.04±0.03	0.54±0.04	0.44±0.02	0.84±0.04	0.453±0.015	0.45±0.02
Total QCs*	18.7±0.6 ^A	19.7±0.3 ^B	22.0±0.3 ^C	24.9±0.6 ^D	24.5±0.3 ^D	24.1±0.7 ^D
Ratio QC4'/QC	1.48±0.04 ^E	0.54±0.01 ^C	0.60±0.02 ^D	0.55±0.02 ^C	0.49±0.01 ^B	0.43±0.02 ^A

^{*} EtOH 70% (v/v), 37 °C, 60 min

<u>QC</u>

- SubW favors the extraction
- Up to 2.5 times more

QC4′

- SubW decreases the extraction
- Possible hydrolysis?

4.2 SubW: effect of temperature of individual flavonoids.

	Total Extracted (mg/g OSW)						
	Conventional*	105 °C	125 °C	145 °C	160 °C	180 °C	
QC	6.6±0.2	12.5±0.2	13.3±0.1	15.4±0.4	16.0±0.2	16.4±0.6	
QC4'	9.8±0.3						
QC3	0.21±0.03	ND	0.23±0.01	0.29±0.03	0.245±0.012	0.27±0.01	
QC3,4'	2.04±0.03	0.54±0.04	0.44±0.02	0.84±0.04	0.453±0.015	0.45±0.02	
Total QCs*	18.7±0.6 ^A	19.7±0.3 ^B	22.0±0.3 ^C	24.9±0.6 ^D	24.5±0.3 ^D	24.1±0.7 ^D	
Ratio QC4'/QC	1.48±0.04 ^E	0.54±0.01 ^c	0.60±0.02 ^D	0.55±0.02 ^c	0.49±0.01 ^B	0.43±0.02 ^A	

^{*} EtOH 70% (v/v), 37 °C, 60 min

SubW increases the extraction yield of quercetin and derivatives by 30% at 145 °C

5. Conclusions

✓ Onion Skin Wastes

- Potential source of flavonoids, specially QC and QC4'
- Subcritical Water:
 - Useful to recover the highly insoluble QC (2.5 times increase)
 - Fast extraction (<45 min)
 - Important to re-dissolve the precipitate formed as a consequence of the temperature decrease: dielectric constant increases and the solubility of some compounds drops
 - Temperature effect: best results at 145 °C

6. Acknowledgements

PID2020-116716RJ-I00

PID2019-104950RB-I00

European Regional Development Fund European Social Fund BU301P18

BU050P20

Subcritical water extraction of quercetin and derivatives from onion skin wastes (Allium cepa cv. Horcal): effect of temperature and solvent properties

Coimbra (Portugal), 1 March 2022

Dr. Óscar Benito-Román

B. Blanco, M.T. Sanz, S. Beltrán

Dept. Biotechnology and Food Science (Chemical Eng. Section)

Universidad de Burgos (Spain)