The Journal of Organic Chemistry

Supporting Information

One-pot diastereoselective synthesis of pyrrolopiperazine-2,6-diones by an Ugi/nucleophilic substitution/*N*-acylation sequence

Beatriz González-Saiz, Israel Carreira-Barral, Pablo Pertejo, Javier Gómez-Ayuso, Roberto Quesada, María García-Valverde*

magaval@ubu.es

CONTENTS

NMR and HRMS spectra of the compounds	S3
X-Ray diffraction studies	\$39
Computational study	S41

NMR and HRMS spectra of the compounds

(*E*)-Methyl 2-(3-bromo-*N*-(3-(cyclohexylamino)-1-hydroxy-3-oxo-1-phenylprop-1-en-2-yl)propanamido) acetate, 5a

Figure S2. ¹³C and DEPT NMR spectra of 5a (75 MHz, CDCl₃).

Figure S3. HRMS spectrum of 5a.

Methyl 2-(2-benzoyl-2-(cyclohexylcarbamoyl)-5-oxopyrrolidin-1-yl)acetate, 6a

Figure S5. ¹³C and DEPT NMR spectra of 6a (75 MHz, CDCl₃).

Figure S6. HRMS spectrum of 6a.

Figure S9. HRMS spectrum of 6b.

(2S)-Methyl 2-(2-benzoyl-2-(cyclohexylcarbamoyl)-5-oxopyrrolidin-1-yl)-3-methylbutanoate, 6c

Figure S11. ¹³C and DEPT NMR spectra of 6c (75 MHz, CDCl₃).

Figure S12. HRMS spectrum of 6c.

2-Cyclohexyldihydropyrrolo[1,2-a]pyrazine-1,3,6(2H,4H,7H)-trione, 7a

σ	n m	m	2	0	6	8		ß	4	σ,	ω	9	9	ß	4	2	ف	9	ωı	2	4	m	2	0	6	8	و	Ŀ	ы	Ν	÷	0	б		9	9	\sim	ω	m d	ი თ	n c	5	i m	6	8	Ь	4	-	0		9	4 0	v oc	ഹ	n m
∞	တ	ഹ	ഹ	ഹ	4	4	4	4	4	2	\sim	2	2	\sim	\sim	8		ഹ	ы I	ר	ഹ	ഹ	ഹ	ഹ	4	4	4	4	4	4	4	4	m	m	m	2	\sim	-	- 0	~ ^	Ś	9	ŝ	2	\sim	\sim	2	\sim	2	-	Η.		-	∞) oo (
4	4	4	4	4	4	4	4	4	4	4	4	4.	4	4	4	ς.	ι.	N.	N N	N	N.	сi	i,	N.	N,	N.	i,	N,	N,	n' i	N,	-i	i –	- 	i Hi	÷	÷	÷	÷	÷	÷	÷	÷.	÷.,	-i c	5 0	i o'								
														- L-	_	_	_																				-	- L		L				- L		- L.	- L.	. L.					1 1		

Figure S15. HRMS spectrum of 7a.

(4S,8aS)-2-Cyclohexyl-4-phenyldihydropyrrolo[1,2-*a*]pyrazine-1,3,6(2*H*,4*H*,7*H*)-trione, 7b

Figure S17. ¹³C and DEPT NMR spectra of 7b (75 MHz, CDCl₃).

Figure S14. HRMS spectrum of 7b.

(4S,8aS)-2-Cyclohexyl-4-isopropyldihydropyrrolo[1,2-*a*]pyrazine-1,3,6(2*H*,4*H*,7*H*)-trione, 7c

Figure S22. ¹³C and DEPT NMR spectra of 7c (75 MHz, CDCl₃).

Figure S23. HRMS spectrum of 7c.

(4S,8aS)-2-Cyclohexyl-4-methyldihydropyrrolo[1,2-*a*]pyrazine-1,3,6(2*H*,4*H*,7*H*)-trione, 7d

Figure S16. ¹³C and DEPT NMR spectra of 7d (75 MHz, CDCl₃).

Figure S17. HRMS spectrum of 7d.

(4*S*,8a*S*)-4-Benzyl-2-cyclohexyldihydropyrrolo[1,2-*a*]pyrazine-1,3,6(2*H*,4*H*,7*H*)-trione, 7e

Figure S28. ¹³C and DEPT NMR spectra of 7e (75 MHz, CDCl₃).

(4S,8aS)-2-Butyl-4-phenyldihydropyrrolo[1,2-a]pyrazine-1,3,6(2H,4H,7H)-trione, 7f

(4S,8aS)-2-Butyl-4-isopropyldihydropyrrolo[1,2-a]pyrazine-1,3,6(2H,4H,7H)-trione, 7g

Figure S22. ¹³C and DEPT NMR spectra of 7g (75 MHz, CDCl₃).

(4S,8aS)-4-Benzyl-2-butyldihydropyrrolo[1,2-a]pyrazine-1,3,6(2H,4H,7H)-trione, 7h

Figure S38. ¹³C and DEPT NMR spectra of **7h** (75 MHz, CDCl₃).

Figure S39. HRMS spectrum of 7h.

Figure S41. ¹³C and DEPT NMR spectra of 8a (75 MHz, CDCl₃).

Figure S42. HRMS spectrum of 8a.

(4S,8aS)-2-Cyclohexyl-7-methylene-4-phenyldihydropyrrolo[1,2-*a*]pyrazine-1,3,6(2H,4H,7H)-trione, 8b

Figure S47. HRMS spectrum of 8b.

(4*S*,8a*S*)-2-Cyclohexyl-4-isopropyl-7-methylenedihydropyrrolo[1,2-*a*]pyrazine-1,3,6(2*H*,4*H*,7*H*)-trione, 8c

Figure S49. ¹³C and DEPT NMR spectra of 8c (75 MHz, CDCl₃).

Figure S50. HRMS spectrum of 8c.

Figure S52. ¹³C and DEPT NMR spectra of 8d (75 MHz, CDCl₃).

Figure S53. HRMS spectrum of 8d.

(4S,8aS)-4-Benzyl-2-cyclohexyl-7-methylenedihydropyrrolo[1,2-*a*]pyrazine-1,3,6(2*H*,4*H*,7*H*)-trione, 8e

Figure S55. ¹³C and DEPT NMR spectra of 8e (75 MHz, CDCl₃).

Figure S56. HRMS spectrum of 8e.

X-Ray diffraction studies

Figure S57. X-ray molecular structure of compound 7c. The Olex2 plot is at the 30% probability level.

Single crystals of compound **7c** were obtained by slow evaporation of a solution of the isolated compound in a 2:1 methanol:water mixture. Crystal data and details on data collection and refinement are summarized in **Table S1**. The structure was drawn with the Olex2 program.¹

Three dimensional X-ray data were collected on a Bruker D8 VENTURE diffractometer. Data were corrected for absorption effects using the multi-scan method (SADABS).² Complex scattering factors were taken from the SHELXL-2016³ program running under the WinGX program system⁴ as implemented on a Pentium[®] computer. The structure was solved with SIR92⁵ and refined by full-matrix least-squares on F². All hydrogen atoms were included in calculated positions and refined in riding mode. Refinement converged with anisotropic displacement parameters for all non-hydrogen atoms.

¹ Olex2: Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. *J. Appl. Cryst.* **2009**, *42*, 339-341.

² SADABS: Krause, L.; Herbst-Irmer, R.; Sheldrick, G. M.; Stalke, D. J. Appl. Cryst. **2015**, 48, 3-10.

³ SHELX-2016: Sheldrick, G. M. Acta Cryst. **2008**, A64, 112-122.

⁴ WinGX: Farrugia, L. J. J. Appl. Cryst. **1999**, 32, 837-838.

⁵ SIR92: Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A.; Burla, M. C.; Polidori, G., Camalli, M. *J. Appl. Cryst.* **1994**, *27*, 435-435.

Empirical formula	$C_{16}H_{24}N_2O_3$
MW	292.37
crystal system	Monoclinic
space group	P 21
<i>Т/</i> К	299(2)
a/Å	5.2417(6)
b/Å	9.0213(10)
<i>c</i> /Å	17.3575(19)
α/deg	90
β /deg	91.763(6)
γ/deg	90
V/Å ³	820.39(16)
F(000)	316
Ζ	2
λ, Å	1.54178
$D_{\rm calc}/{\rm g~cm^{-3}}$	1.184
μ/mm ⁻¹	0.661
heta range/deg	7.66 – 65.92
R _{int}	0.0603
reflections measured	5817
unique reflections	2672
reflections observed	2392
GOF on F ²	1.058
R1 ^a	0.0792
wR2 ^b	0.2293

Table S1. Crystal data and refinement details for 7c.

 ${}^{o}R1 = \sum \left| \left| F_{0} \right| - \left| F_{C} \right| \left| / \sum \right| F_{0} \right|. {}^{b}wR2 \text{ (all data)} = \left\{ \sum \left[w(\left| \left| F_{0} \right|^{2} - \left| F_{C} \right|^{2} \right)^{2} \right] / \sum \left[w(F_{0}^{4}) \right] \right\}^{1/2}$

Computational study

Gibbs' free energies in Hartree of epimers of **7c** on C8a (gas phase) at the B3LYP/6-31G** level

Gibbs' free energies in Hartree of epimers of 8c on C8a (gas phase) at the B3LYP/6-31G** level

(4*S*,8a*S*)-**8c**

-997,171465

(4S,8aR)-8c (epi-8c)

-997,163195