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RESUMEN 

Spain is one of the countries with the highest shared mobility fleet in the world. The shared 
use of motorcycles, also known as moped-style scooter sharing, has spread far and wide 
throughout the country at a dramatic pace in recent years. Despite its increasing popularity 
and impact on urban mobility, efforts devoted to the study of its spatio-temporal travel 
patterns are still scant.  

Based on the analysis of GPS records of an operator present in seven Spanish cities, this 
study aims to contribute to this research gap by analysing mopeds’ location patterns over 
time and assessing how different dynamics influence its usage level and self-balance 
potential. Our study is replicable to different cities and different shared modes, since we 
propose a methodology to identify the most important origins and destinations over time 
and analyse the system’s self-balance capacity based on spatial autocorrelation tools. These 
insights are useful for operators to adjust and optimise vehicle distribution routes and 
maintenance/recharge tasks, decreasing congestion and increasing efficiency. The results 
may also be helpful for policy makers when planning and offering effective policies and 
infrastructure to encourage shared mobility.   
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1. INTRODUCTION  
 
In recent years, shared mobility has grown in many cities around the world. It has been 
defined as the short-term access to shared vehicles (cars, bicycles, moped-style scooters, 
and scooters), according to the user’s needs and convenience, instead of requiring vehicle 
ownership (Shaheen et al., 2016). More specifically, the term micromobility was coined to 
refer to low-speed shared vehicles like bicycles and scooters (moped and kick-style) that 
have recently drawn more attention (Shaheen & Cohen, 2019). Micromobility offers a 
flexible transport option capable of avoiding road congestion, reducing the required 
parking space, lowering noise/air pollution, since all vehicles are hybrid-electric/electric, 
and last but not least, encouraging intermodality with mass transit. Additionally, mopeds 
particularly provide faster speeds than bicycles, and this is a very attractive mode for non-
flat cities (Aguilera-García et al., 2020).  
 
Studies regarding micromobility essentially focus on docked and dockless bike-sharing 
systems (for example, Gu et al., 2019; Ji et al., 2020; Lazarus et al., 2020), comparing 
bike-sharing to scooter-sharing services (McKenzie, 2019) or analysing scooter-sharing 
travel patterns (Feng et al., 2020; McKenzie, 2020), but there is almost nothing to be found 
related to moped-style scooter sharing particularly. Most contributions regarding mopeds 
are related to accidents and safety issues (Aare & von Holst, 2003; R. A. Blackman & 
Haworth, 2013; Haworth, 2012; Huang & Wong, 2015) or riders’ attributes, but they only 
consider those who own a motorcycle (R. Blackman & Haworth, 2010; Jamson & 
Chorlton, 2009; Rose & Delbosc, 2016; Yannis et al., 2007). As a clean alternative to the 
car and as a growing shared mobility sector, we consider this effort to be worthwhile. The 
few studies that exist on shared mopeds focus on user characteristics and preferences 
(Degele et al.,2018; Aguilera-García et al., 2020).  
 
Our study will focus not on users, but rather of their trips. Our objective is to analyse and 
visualise mopeds’ urban footprint and compare its spatio-temporal dynamics in different 
cities. The research aims to fill a knowledge gap related to the spatio-temporal patterns of 
shared mopeds. It proposes an original methodology that uses spatial autocorrelation tools 
to analyse travel patterns and visualise spatio-temporal behaviour over time, identifying the 
spots where most trips begin or attend, and assessing to which extent the system is self-
balanced, obtaining insights from different dynamics. We based our analysis on a dataset 
provided by an operator present all throughout Spain called Muving.  
 
These kinds of data-sharing initiatives have grown increasingly popular in recent times and 
will continue to do so, especially with the institutional support that they are attracting; an 
example of this is the recent proposal to build the European Common Mobility Data Space 
(European Commission, 2020) as a strategy to enable data availability, access, and 
exchange between different stakeholders.  
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Our findings are useful for authorities to understand the mobility patterns of this important 
sector, plan and offer strategies or public policy, design infrastructure to promote their use, 
and regulate accordingly.  
 
They are also important for shared mobility operators, adding value to raw datasets and 
using insights to improve everyday operational tasks (maintenance, recharging, and 
distribution of vehicles). The rest of the article is divided into four sections. Following the 
introduction, Section 2 summarises the related literature. Section 3 describes the study 
context, data, and methods used for the research. Results are presented in Section 4, and 
lastly, the main conclusions are outlined in Section 5. 
 
2. RELATED LITERATURE  
 
Urban mobility technologies have undergone substantial and increasingly rapid change 
over the past two decades, especially in relation to shared mobility services (Pangbourne et 
al., 2020; Shaheen & Cohen, 2018). The rapid development of social media, Information 
and Communication Technologies (ICT), and new business models based on the sharing 
economy have enabled these new services to appear in many cities, changing the transport 
supply and causing an important impact on travel behaviour. The European Commission 
has highlighted the importance of multimodality and new shared mobility solutions that 
take advantages from each mode and are proving crucial to improve the transport system’s 
resilience (especially during the COVID-19 pandemic) (European Commission, 2020).  
 
Some even consider shared mobility development as one of the three revolutions in urban 
transportation, along with vehicle electrification and automation (Fulton, 2018).  
 
Shared mobility and micromobility are still relatively recent topics because the technology 
that allowed them to arise in many cities only occurred about a decade ago. Nevertheless, 
many studies related to bike-sharing (Eren & Uz, 2019; Ricci, 2015) have been published.  
 
This was not the case for the scooter sharing sector (kick or moped-style), which is 
understandable, since it mostly started running operations only a few years back (in the 
case of Spanish cities, around 2017). Given the recent nature of their worldwide expansion, 
to our knowledge, only two studies have been found regarding moped-style scooter 
sharing. With the data provided by a German operator, Degele et al.,(2018) developed a 
cluster analysis to segment users according to their age, time between rides, distance 
driven, and revenue per customer.  
 
They identified four types of moped users (power users, generation-X casual users, 
generation-Y casual users, and one-time users), analysed which type provided the most 
revenue, and proposed strategies to retain and promote their usage.  
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On the other hand, (Aguilera-García et al., 2020) conducted a generalised ordered logit 
model to identify the key drivers determining the adoption and frequency of use of mopeds 
in Spanish urban areas. They found that both personal socioeconomic characteristics and 
trip-related attributes played a major role in explaining the adoption of scooter-sharing 
services. Young and highly-educated people proved to be the segment of the population 
with the highest probability of using mopeds, but they also found a considerable amount of 
people in middle-aged groups.  

None of the previously mentioned studies examined the spatial distribution patterns of 
moped trips. However, bikeshare-related studies can offer some lessons on travel 
behaviour associated with these systems. Temporal usage patterns show a morning and an 
evening peak, especially for commuting (Wang et al., 2018). Spatial analyses show that 
bikes are commonly taken from residential areas to travel to commercial zones, central 
business districts (CBDs), employment centres, and train stations in the morning, and back 
to residential areas during evenings (Caspi et al., 2020). In addition, it has been found that 
the temporal and spatial concentrations of dockless bikes are mainly influenced by the built 
environment, particularly density and street connectivity (Xu et al., 2019), and that most 
riders cycle short distances in urban centres (Li et al., 2018). Bicycle travel times are 
especially competitive compared to other transport modes for short trips in the city centre 
during peak periods (Romanillos & Gutiérrez, 2019). Most of these papers used GPS 
datasets collected by operators.  

Studies regarding micromobility and the analysis of spatial patterns using spatial 
autocorrelation tools are particularly scarce. An exception is the study on shared e-scooters 
by Jiao & Bai (2020) which uses univariate LISA to identify areas of high demand (hot 
spots) as a preliminary step before applying regression models. We elaborate on this 
research line and use the most common spatial autocorrelation tools to explore 
micromobility trips, making use of univariate and bivariate Global Moran’s I and LISA 
statistics and including the temporal component (time bands) in order to capture the 
dynamics of the system. Univariate analysis allows us to answer the questions of when and 
where demand is more clustered, and bivariate analysis allows us to answer the question of 
when and where demand is more self-balanced. Both issues (demand concentration and 
self-balance potential) are key elements for good management and planning of 
micromobility services. 

3. STUDY CONTEXT, DATA, AND METHODOLOGY

3.1 Study context 
Spanish city centres are generally characterised by old historic urban structures, with 
narrow streets and recurrent congestion problems, which could positively influence the use 
of shared mopeds. Whatever the reason, the country is one of the hubs with the highest 
shared moped fleet in Europe, resulting in approximately 9,000 motorcycles (Aguilera-



R-EVOLUCIONANDO EL TRANSPORTE 1677 

García et al., 2020; Howe, 2018). This research was conducted with a dataset provided by 
one of the most important operators present in seven Spanish cities in 2019: Madrid, 
Valencia, Seville, Saragossa, Malaga, Cordova, and Cadiz. Table 1 summarises some of 
their relevant characteristics for the study. As can be seen, Madrid and Valencia are the 
most important cities in terms of population; however Saragossa, Seville, and Cadiz also 
show high density (Inh/km2) which is an important factor influencing the adoption of 
shared services (Munkácsy, 2017; Velázquez Romera, 2019).  
 
Three of them are coastal cities, which usually have higher tourist activities promoting the 
use of mopeds. Warmer cities are mostly within the Andalusia Region in the south of Spain 
(Seville, Malaga, and Cadiz). Annual precipitation level is low in the seven cities analysed, 
which is also important to consider, as rainfall may reduce the use of micromobility in 
general.   
 

Attribute Madrid Valencia Seville Saragossa Malaga Cordova Cadiz 
Population (municipality) 3,174,000 791,413 688,711 666,880 571,026 325,701 116,027 
Average annual temperature (ºC) 15.0 18.3 19.2 15.5 18.5 18.2 18.6 
Average annual precipitation (mm) 421 475 539 322 534 605 523 
Coastal city No Yes No No Yes No Yes 

Modal split 
(%) 

Public transport 24 21.8 26.2 24 13.2 12.04 7 
Car 39 21.5 35 28 37 44.15 48 
Active** 37 56.7 38.8 48 49.8 43.81 45 

Moped-style 
scooter-
sharing 
operators 

Number of 
operators 

4 3 2 2 1 1 1 

Name of 
companies 

Acciona, 
Movo, 

Ecooltra, 
Muving 

Acciona, 
Ecooltra, 
Muving 

Acciona, 
Muving 

Acciona, 
Muving 

Muving  Muving  Muving  

Topography Hilly Flat Flat Flat Flat Flat Flat 

Table 1 -Summarised characteristics of the seven cities analysed. Source: the authors 
with data from Greenpeace, (2019). *updated with results from the last Mobility Survey in 
2018 (Comunidad de Madrid, 2018). ** Active = walk + bicycle + other low-speed mode. 
Data for Cordova and Cadiz was extracted from official reports (ETRALUX, 2011; Junta 
de Andalucía, 2018). 

 
Only Valencia and Madrid have three or more moped-style scooter sharing operators. In 
the case of Madrid alone, some studies point to its role as one of the most important shared 
mobility labs in Europe, with an estimated fleet of more than 20 thousand vehicles (Arias-
Molinares & García-Palomares, 2020a; Granda & Sobrino, 2019). These operators usually 
manage and maintain a fleet offered through an application where individuals access and 
subscribe to their service. Users pay a fee every time they use a vehicle, while operators 
are in charge of energy consumption and maintenance. In Spain, electric vehicles do not 
have parking restrictions in city centres and generally benefit from free on-street parking, 
providing an attractive alternative for inner districts (for example, in the case of Madrid, 
within the M-30 highway) (Aguilera-García et al., 2020).  
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3.2 Data  
The dataset for the study contains data collected by the GPS devices installed on mopeds 
owned by Muving. The data was provided in CVS format, including all trips made between 
13 February 2019 and 31 December 2019, and the following information:  
 

● Id_vehicle: an identification number for each motorcycle.    
● Id_customer: an identification number for each user.  
● Start_time: trip starting timestamp (format: yy-mm-dd hh:mm:ss).  
● Start_latitude and longitude: xy coordinates where the motorcycle was picked up.  
● End_time: trip ending timestamp (format: yy-mm-dd hh:mm:ss)   
● End_latitude and longitude: xy coordinates where the motorcycle was left.  
● Trip time: trip duration in minutes.   
● Travelled distance: travelled distance in km of the real trajectory by the street 

network.   
 

3.3 Methodology   
The data workflow covered entering, cleaning, transforming, describing, analysing, and 
visualising data. Given the size of the dataset (almost two million entries), we processed it 
using Python (vs 3.8) programming language. A script performing all steps was created: to 
load the CSV files, extract the day and hour of the trip in the timestamp information, and 
obtain a new output table. This output table was then imported to a GIS environment 
(ArcGIS Pro vs. 2.5.2) to display coordinates, geolocate points, and create a new column 
with the city name. An outlier cleaning process followed, using travelled distances, which 
in some cases went unrealistically higher than average. In order to discard these outliers, 
boxplots were made for each city and the final valid dataset included 1,797,2228 trips (see 
Table 2). 
 
City 

Trips with 
outliers 

Distance (km) from which 
outliers were identified (boxplot) 

Trips without outliers 

Madrid 307,876 9.3 298,031 
Valencia 437,795 8.1 425,683 
Seville 477,424 8.4 463,825 
Saragossa 201,294 8.6 195,942 
Malaga 135,626 9.8 131,940 
Cordova 126,061 6.4 121,034 
Cadiz 163,616 6.7 160,773 

Total 1,849,692   1,797,228 

Table 2 -Dataset without outliers. Source: the authors. 
 
Since time and distance travelled were provided, we calculated average speed, as well as 
some other indicators, like average usage (trips/customers) and average vehicle rotation per 
day (trips/vehicles/365days per year). Consequently, a model builder was created in 
ArcGIS to split the dataset by city, day of the week, and time band. We decided to 
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aggregate the days of the week into two groups: working days (from Monday through 
Thursday) and weekends (Saturday and Sunday).  
 
We excluded Friday from working days because in Spain, as described by Romanillos 
(2018), it is common to finish work earlier on Fridays, with particular travel patterns that 
could influence the normal working-day dynamic.  
 
Regarding time bands, we selected four different hour periods: from 07 to 10 to evaluate 
the morning peak, especially for obligatory trips (commuting to work/study), 13 to 16 to 
analyse midday behaviour (lunchtime or midday activities), then 19 to 22 for after-work 
activities and/or return-to-home trips, and finally, from 23 to 02 hours to evaluate nightlife 
patterns. After splitting the dataset by time bands, the different layers according to each 
scenario (city, day of the week, and time band) were spatially aggregated into a hexagonal 
grid, obtaining the number of starting/ending trips by hexagon. Studies focusing 
specifically on walking distances to pick up shared mopeds were not found, but (Aguilera-
García et al., 2020) found that users were willing to walk up to 500m. Hence, we 
determined 200 meter-sided hexagons with a surface area of 10,3923048 Has as the 
optimal size to aggregate our data, since 200m appears to be an acceptable walking 
distance to pick up a motorcycle. 
 
Lastly, the hexagonal grids were used to perform location patterns analysis using ESDA 
tools. To this end, we used GeoDa software (vs 1.16.0.16) to calculate two different Global 
Moran’s Indices (Anselin, 1995). The first one was univariate Global Moran’s I statistics 
for origins and destinations separately. This helped us to study the level of concentration or 
dispersion of the origins and destinations of moped trips, and their variation over the 
course of the day. This insight could be of interest to inform operators as to the most 
optimal time and location to carry out operational tasks, like vehicle redistribution, 
recharging, and maintenance, and to know when/where demand is coming from. In 
addition, bivariate Global Moran's  
 
I was calculated to measure the spatial association between the destinations and origins of 
trips. Insights from this statistic served to analyse whether the system is self-balanced 
throughout the day by answering the question: “are users ending their trips near where 
others are starting theirs?” If the system is balancing itself, then the locations where users 
are arriving at a certain time are also the locations where other users are starting their trips, 
allowing for higher vehicle rotation. Both univariate and bivariate Global Moran’s I 
statistics were calculated using a contiguity weight matrix of 1st order. The resulting 
univariate and bivariate Global Moran Indices and their z-score were graphed, and 
symbology was applied to the hexagonal grids, generating maps by time bands. 
 
Figure 1 illustrates the conceptual framework of the different Global Moran’s Indices 
calculated, in relation to expected origin-destination location patterns. Our hypothesis 
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predicts that origins are more dispersed than destinations in the early morning band 
(predominance of trips from residential areas to the city centre), while the opposite should 
occur in the last bands of the day (predominance of return-to-home trips).  
 
It also expected that the system will tend to balance itself during the middle bands, since, at 
those hours, the population tends to be concentrated in the city centre, which produces a 
greater proximity between origins and destinations. 
 

 
Fig 1- Conceptual framework of the different Global Moran’s Indices calculated. 

Source: the authors.   
 
In addition, univariate Anselin Local Moran's I (LISA statistic) was used in order to 
identify and map local tendencies (clusters and outliers) related to the location of origins 
and destinations by time bands. With LISA statistics, it is possible to distinguish High-
High clusters (a high value surrounded primarily by high values), Low-Low clusters (a low 
value surrounded primarily by low values), and spatial outliers, either High-Low (high 
values surrounded primarily by low values) or Low-High (low values surrounded primarily 
by high values) (Anselin, 1995). Lastly, bivariate LISA cluster maps for origins and 
destinations, by time bands, and on working days, were graphed in order to identify areas 
with a high concentration of both origins and destinations (HH clusters) in which the 
system self-balances, or other areas with imbalances between origins and destinations (HL 
and LH outliers).  
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4. RESULTS  
 
4.1 Service characteristics and performance 
Table 3 shows the descriptive characteristics of the dataset analysed. Seville and Valencia 
generated the greatest number of trips during 2019, with 463,825 and 425,683 trips 
respectively, while Madrid, the most populated city, generated 298,031.  
 
In relation to this fact, it is important to consider that large metropolitan areas usually have 
more operators, so competition is a crucial factor that determines their market share. In 
addition, Madrid is one of the cities with the highest shared mobility fleet, not only of 
mopeds, but also of other modes like bicycles, cars, kick-scooters, etc.  
 
This context could also explain why, although Madrid has more deployed vehicles, 
Valencia and Seville show a higher number of trips and more trips per customer 
throughout the year, with 13.87 and 12.92 respectively, in comparison with Madrid, with 
9.33 trips per customer. The average vehicle rotation per day results in 2.04. Cities above 
this average, like Cadiz, Saragossa, Seville, and Valencia, are more attractive for 
companies (as the system is more profitable) than, for instance, Madrid, which bears the 
minimum value with just 1.08 vehicle rotations per day. 
 

City Trips Vehicles Customers 
Usage Veh. rotation/day Average 

trip time 
(min) 

Average trip 
distance (km) 

Average 
Speed  
(km/hr) 

(trips by 
customers) 

(trips/vehicles/365 
days) 

Madrid 298,031 755 31,934 9.33 1.08 11.48 3.49 18.24 
Valencia 425,683 578 30,692 13.87 2.02 10.28 3.18 18.56 
Seville 463,825 591 35,902 12.92 2.15 10.40 3.23 18.63 

Saragossa 195,942 240 15,313 12.80 2.24 10.53 3.42 19.49 
Malaga 131,940 196 12,613 10.46 1.84 10.86 3.68 20.33 
Cordova 121,034 184 9,715 12.46 1.80 9.06 2.67 17.68 

Cadiz 160,773 186 10,755 14.95 2.37 9.05 2.73 18.1 

Total 1,797,228 

2,414 129,384 

13.89 2.04 10.24 3.20 18.72  (316 vehicles 
duplicated in 

different cities) 

(17,540 users 
duplicated in 

different cities) 

Table 3 -Descriptive characteristics of the dataset analysed. Source: the authors.  
 

Average trip time, distance, and speed prove relatively homogenous across the different 
cities, with a trip time of around 10 minutes, a 3 km distance, and an 18km/hr speed. The 
city with the highest trip time is Madrid (11.48 minutes), which could be expected since it 
is the capital of Spain and is a more congested urban area.  
 
However, this 12-minute ride is still relatively fast compared to other services, such as 
bike-sharing, which displays trip times of 15 minutes or more (Romanillos, 2018).  In any 
case, travel time and distance may be highly influenced by the size of the company’s 
service area. Certainly, future expansions of these areas could allow users to travel longer 
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distances. Regarding distances travelled, mopeds are mostly used for short urban trips 
between 1 and 3 km (see Figure 2). Madrid, Valencia and Seville, which are large 
metropolitan areas, display a considerable number of trips with longer distances.  

Fig 2 - Number of trips by distance travelled and city. Source: the authors. 

In addition to this comparative analysis between cities, when it comes to general fleet and 
customers, we found that 2,414 mopeds were operating in Spain during 2019 and almost 
130,000 clients used one (of which 17,540 made trips in more than one city). The fact that 
some customers use the app in different cities could demonstrate their intention to use this 
kind of platform when travelling to different areas, which is an important insight, 
especially with the introduction of new concepts like Mobility as a Service (MaaS) (Arias-
Molinares & García-Palomares, 2020b; Jittrapirom et al., 2017).  

4.2 Temporal patterns 
When analysing average daily trips by month, we identify a general trend for Spanish 
cities, with high peaks in March, May and October, and valleys in April and August (see 
Figure 3). Peaks are related to the beginning of spring season, when the temperatures rise 
and shared mobility becomes more attractive. High trip counts in September and October 
correspond to the return from summer holidays when users begin their daily routines again.  

The valley seasons (April and August) concentrate most holidays (especially the summer 
season), when most Spaniards travel for holiday; this is very notorious in the case of 
Madrid, where the trip count drops considerably. Cities that follow a different trend are, for 
example Seville, which shows a high peak in April. This is probably due to the increase in 
tourist and local activity during the Holy Week and Seville’s Fair.  

Other cities that follow different patterns are Malaga and Cadiz, which display high 
number in August, possibly related to the fact that these cities are summer tourist 
destinations. In these latter cities, trip counts are homogenous throughout the year, 
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increasing notoriously only during the summer season, from which we might infer that 
many of the moped users during those months are tourists.  
 

 
Fig 3 - Average daily trips by month (2019). Source: the authors.  
 
When aggregating data by day of the week, Table 4 shows that in general, 72% of the trips 
are made on working days and 28% over weekends. These results lead us to infer that 
mopeds are not only used for recreational trips, but also for other purposes, like commuting 
or running errands. Figure 4 shows that the distribution of trips is quite homogeneous 
throughout the week in greater detail.   
 

 

City 
Working days (M-

T) 
Friday Weekends (S +D) Total 

Madrid 169,425 45,773 82,833 298,031 

Valencia 240,681 62,587 122,415 425,683 

Seville 262,801 71,843 129,181 463,825 

Saragossa 107,846 29,684 58,412 195,942 

Malaga 73,771 20,030 38,139 131,940 

Cordova 67,629 18,869 34,536 121,034 

Cadiz 90,363 24,037 46,373 160,773 

Total 1,012,516 272,823 511,889 1,797,228 

Table 4 -Trips by day of the week. Source: the authors. 
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Fig 4 -Percentage of trips by day of the week. Source: the authors. 

When exploring hourly patterns, Figure 5 shows the average daily trips on working days 
and weekends. Relatively homogeneous temporal behaviour is revealed with trips 
increasing toward the afternoon. We noticed three different peaks: the smallest one from 8 
to 9 for commuting, a medium one from 13 to 14 related to midday activities (i.e., 
lunchtime), and the greatest one from 18 to 20 related to after-work activities and/or 
returning home. On the other hand, over weekends, the early morning rush hour 
disappears, and the midday peak (13-14 hrs) becomes as great as the night-time period (19-
20 hrs), since many people start doing their activities from late morning onward. And 
lastly, over weekends, a significant percentage of trips is observed in the early hours 
(dawn), when customers use mopeds to return home from their night-life activities, given 
that the subways or public transport options are more limited. Given the lower usage over 
the weekend and the greater diversity in purpose, the spatial analysis was performed only 
for working days.  
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Fig 5- Average daily trips by hour of the day (top: working days, bottom: weekends). 
Source: the authors.  
 
4.3 Mapping origins and destinations of trips over time 
Visualisation of the spatial distribution of trip origins and destinations over the course of a 
working day is shown in Figure 6. In general terms, it reveals that, in the first band (07-
10), origins are more dispersed than destinations, while in the last time band (23-02), the 
opposite occurs. This pattern follows the hypothesis outlined in the initial conceptual 
framework, as morning users usually come from different residential zones and commute 
to (mostly) specific clustered workplaces. In the late hours, users do the opposite, coming 
from clustered after-work locations and returning to those dispersed residences. In some 
cases, these residential areas may match, meaning that late-night users are leaving mopeds 
at the same or near the same areas where morning users will take them, which will make 
the system self-balanced. However, in most cases, the ending spots do not match the 
starting ones, which requires vehicle redistribution by the operator to cover demand areas 
in mornings.   
 
On the other hand, band 2 (13-16) and 3 (19-22) have more similar dynamics since origins 
and destinations are homogeneously distributed, with a slight difference in band 3 when 
destinations appear to be a bit more concentrated. In these two bands, trips are coming and 
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arriving at similar areas, enabling a higher vehicle rotation. This time period of the day 
responds to midday-activities, like having lunch, running errands, and doing after-work 
activities, which usually take place at public facilities, restaurants, bars, gyms, and 
entertainment locations that are very spread throughout the city. This contributes to a less 
marked difference between origins and destinations. Hence, this is the period of time when 
the system’s self-balance potential is most realized, in comparison with bands 1 and 4.  
 
These results illustrate that the different spatio-temporal dynamics for shared mopeds in 
cities are closely related to their land-use distribution. For each city, we can identify the 
most important origins and destinations by time of the day, which informs operators where 
to allocate their resources at each time to cover a greater demand, and also for public 
authorities to know where to allocate infrastructure like parking facilities. The results 
obtained in the particular case of Cadiz, for this analysis and subsequent analyses, must be 
carefully interpreted, considering its particular location and shape: the city of Cadiz is 
located on a narrow slice of land surrounded by the sea. All results and maps are affected 
by this spatial singularity. 
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Fig 6- Spatio-temporal dynamics of mopeds during working days. Source: the authors. 
 
4.4 Spatial autocorrelation analysis: local trends 
As described in the methods section, in addition to map visualisations, we performed a 
series of spatial statistical analyses in order to further explore and quantify the trends 
previously identified. Firstly, Anselin Local Moran's I statistic was calculated in order to 
map the presence of origin and destination clusters at local level. The maps illustrated in 
Figure 7 show the marked differences between High-High clusters in bands 1 and 4, due to 
the location of residential zones and workplaces, especially in Valencia and Madrid, 
whereas  HH clusters in bands 2 and 3 are located quite similarly. In all cases, there is a 
clear concentration of HH clusters in the city centre and LL on the periphery. Interestingly, 
the HH cluster maps of destinations in each time band are very similar to the HH cluster 
maps of origins in the following time band, which proves that the availability of vehicles 
near the users’ location clearly influences increased usage.  
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Moreover, interesting results are obtained from observing spatial outliers, especially in the 
first band, which is mostly for commuting trips. In Madrid, for example, an HL spatial 
outlier for origins is located at Ciudad Universitaria, which is Madrid’s main higher-
education hub, meaning that from 07 to 10 AM, many trips begin on these university 
campuses.  

Fig 7- Univariate LISA cluster maps for origins and destinations by time bands and 
working days. Source: the authors.  

When considering Madrid as an example case to zoom closer, we differentiate certain 
dynamics throughout the day, especially during band 1 (see Figure 8). In the morning 
hours, demand mostly comes from districts that concentrate residential zones with a 
medium-high income population (Chamberi, Salamanca, and the east area of Tetuan) and 
mostly arrives at workplaces and offices located over the north-south axis of Paseo de la 
Castellana. The geolocation of demand is consistent with results obtained by Aguilera-
García et al. (2020), which revealed that most moped users had relatively high incomes.   
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Fig 8-visualisation of Madrid's spatial clusters on band 1 during working days. 
Source: the authors.  
 
Moreover, Bivariate Anselin Local Moran's I statistics for destinations around origins were 
calculated for every city and time band on working days. The results illustrated in Figure 9 
show the same centre-periphery pattern for all case studies, with the exception of Cadiz, 
which seems to rather have a north-south pattern with HH clusters in the north area and LL 
clusters in the south. We observe that in time bands 2 and 3, HH clusters are more 
compacted around the city centres in comparison with bands 1 and 4.  
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Fig 9- Bivariate LISA cluster maps for origins around destinations by time bands for 
working days. Source: the authors.

4.5 Spatial autocorrelation analysis: global trends 
In order to better understand the system’s spatio-temporal trends and assess its potential to 
be self-balanced, we graphed the calculated Global univariate and bivariate Moran’s 
indices for each time band as seen in Figure 10. Most of the cities fall under the expected 
conceptual framework and their clustering degree is very similar in the central time bands 
(2 and 3), whereas origins are more clustered than destinations in late hours (band 4), and 
the opposite tends to occur in early hours (band 1). More interestingly, when observing the 
result from bivariate Global Moran’s I statistics, the seven cities display the same dynamic: 
low values in early and late hours (07-10 and 23-02), since people are arriving at places 
where no trips are starting, and high values in midday and afternoon hours (13-16 and 19-
22), since they are arriving at the same places where others are starting their trips. This 
dynamic makes the system less self-balanced during the first and last time bands, requiring 
moped redistribution, while band 2 and 3 are the hours when the system balances itself 
because mopeds are arriving where other users are starting their trips.  
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An exception, as we mentioned before, is Cadiz, which in general behaves as an outlier, 
most likely influenced by its particular urban structure, since its urban centre is located on 
a narrow peninsula, detached from peripheral residential areas.  

 

 
Fig 10- Global univariate and bivariate Moran Indices calculated for working days. 
Source: the authors.  
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The bivariate LISA results for working days also show how destinations in one time band 
are similar to origins in the following time band. When considering the results from the 
bivariate local Moran's I statistic between destinations and origins in all time bands, the 
highest numbers are found in the relationships of destinations with origins in the next time 
band (see Table 5).   
 

Madrid 

Origin (07-10 h) Origin (13-16 h) Origin (19-22 h) Origin (23-02 h) 

Destination (07-10 h) 0.327 (18.6) 0.529 (26.9) 0.486 (26.3) 0.393 (23.7) 

Destination (13-16 h) 0.480 (24.5) 0.598 (28.9) 0.605 (29.6) 0.560 (30.1) 

Destination (19-22 h) 0.516 (26.3) 0.574 (29.4) 0.610 (30.2) 0.626 (31.7) 

Destination (23-02 h) 0.416 (21.4) 0.395 (21.8) 0.444 (23.6) 0.447 (24.7) 

Valencia 

Destination (07-10 h) 0.524 (24.1) 0.705 (29.6) 0.655 (28.6) 0.584 (27.3) 

Destination (13-16 h) 0.642 (28.0) 0.742 (30.7) 0.735 (30.0) 0.667 (28.4) 

Destination (19-22 h) 0.652 (27.8) 0.681 (29.2) 0.717 (28.7) 0.680 (27.4) 

Destination (23-02 h) 0.623 (26.3) 0.494 (23.6) 0.574 (25.2) 0.558 (23.9) 

Seville 

Destination (07-10 h) 0.430 (18.3) 0.542 (21.5) 0.509 (21.0) 0.466 (20.5) 

Destination (13-16 h) 0.561 (22.3) 0.615 (23.6) 0.620 (23.7) 0.589 (23.7) 

Destination (19-22 h) 0.557 (22.8) 0.608 (23.9) 0.624 (23.7) 0.623 (24.0) 

Destination (23-02 h) 0.524 (21.2) 0.504 (21.3) 0.525 (21.8) 0.491 (21.2) 

Saragossa 

Destination (07-10 h) 0.488 (21.3) 0.595 (25.1) 0.593 (26.3) 0.571 (25.9) 

Destination (13-16 h) 0.587 (24.2) 0.660 (26.7) 0.661 (27.5) 0.628 (27.1) 

Destination (19-22 h) 0.562 (24.6) 0.639 (27.1) 0.653 (27.5) 0.641 (27.4) 

Destination (23-02 h) 0.537 (22.3) 0.534 (23.2) 0.532 (23.5) 0.498 (22.4) 

Malaga 

Destination (07-10 h) 0.343 (14.3) 0.505 (19.8) 0.465 (18.7) 0.445 (18.9) 

Destination (13-16 h) 0.414 (16.2) 0.508 (19.2) 0.495 (18.6) 0.484 (19.1) 

Destination (19-22 h) 0.412 (16.2) 0.486 (18.8) 0.484 (18.2) 0.494 (19.1) 

Destination (23-02 h) 0.424 (16.7) 0.394 (16.3) 0.413 (16.7) 0.408 (16.6) 

Cordova 

Destination (07-10 h) 0.374 (10.7) 0.526 (14.1) 0.493 (13.5) 0.471 (13.4) 

Destination (13-16 h) 0.446 (11.9) 0.550 (14.5) 0.544 (14.2) 0.512 (13.8) 

Destination (19-22 h) 0.432 (11.6) 0.546 (14.4) 0.539 (13.8) 0.520 (13.6) 

Destination (23-02 h) 0.428 (11.3) 0.442 (12.4) 0.460 (12.4) 0.388 (11.0) 

Cadiz 

Destination (07-10 h) 0.346 (7.2) 0.330 (6.8) 0.324 (6.8) 0.289 (6.3) 

Destination (13-16 h) 0.398 (8.0) 0.364 (7.3) 0.363 (7.3) 0.318 (6.7) 

Destination (19-22 h) 0.377 (7.7) 0.352 (7.1) 0.352 (7.1) 0.318 (6.5) 

Destination (23-02 h) 0.401 (8.1) 0.365 (7.4) 0.366 (7.4) 0.318 (6.6) 

Table 5 - Bivariate Moran's I (z-score) between destinations and origins for all time 
bands on working days. Source: the authors. 
  



R-EVOLUCIONANDO EL TRANSPORTE 1693 

4.6 Relationship between spatial patterns and number of vehicles used 
To explore the possible relationship between potential vehicle rotation and the number of 
vehicles used, we graphed the bivariate Global Moran’s I results with the percentage of 
vehicles used by time band on working days (see Figure 11). A clear relationship was 
revealed, as the resulting curves tend to follow a similar pattern throughout the day for all 
the cities. Nevertheless, all the cities show a peak in the percentage of vehicles used around 
band 3 (19-22 hrs), while the peak for the bivariate results is in band 2 (13-16 hrs).  
 
Consequently, potential vehicle rotation could support and stimulate a higher number of 
trips, but not determine it. The number of trips would be the result of a high demand and 
high moped availability and proximity, increased when origins and destinations are closed 
to each other. Therefore, operators should foster this dynamic, especially in band 2 and 3.  
 
These differences between time bands are important when operators need to know how 
many vehicles to deploy according to the day of the week. Hence, operators could adjust 
their logistics to respond to the different dynamics, which could reduce and optimise their 
distribution tasks.  
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Fig 11- Bivariate Moran vs. percentage of vehicles used (working days). Source: the 
authors. 

5. CONCLUSIONS

Based on GPS data collected, this paper explored the different dynamics of a moped-style 
scooter sharing service in urban areas over the course of a day. The research provides 
valuable information regarding the temporal and spatial patterns of this scarcely-studied 
micromobility service.  
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More importantly, it proposes a useful methodology based on the use of ESDA tools to 
understand travel patterns, increasing our knowledge of where demand comes from, when 
the service’s peaks and valleys take place, popular destinations, the extent to which the 
system is potentially self-balanced, and how this is related to the percentage of vehicles 
being used. All these are insights that contribute to making better decisions in the shared 
mobility sector.  
 
A considerable number of users have subscribed to moped services and use this shared 
mode even across different cities, which is an interesting fact related to the introduction of 
new concepts like mobility as a service beyond the city scale.  
 
They ride mopeds mostly during warmer months in spring (May-June) and October when 
daily routines start. The dynamics revealed respond to certain patterns and variations that 
could be closely related to the existing land-use distribution in each city. In general, the 
spatio-temporal patterns identified correspond to what could be expected according to the 
conceptual framework initially outlined. We have learned that similarly to bicycles, 
mopeds are generally used for short urban trips (around 3.5 km). However, average speed 
is significantly higher for mopeds in comparison with  cycling (14.3 kph in the case of 
bikeshare and 18.2 kph in the case of mopeds) (Romanillos & Gutiérrez, 2019). This fact 
makes this mode an attractive alternative, especially for cities like Madrid, which are not 
completely flat.  
 
We have also demonstrated that time band 2 and 3 (13-16 and 19-22) are the most 
profitable hours for shared mopeds, as vehicle rotation (trip start and end locations are 
nearer) and the number of vehicles used are higher.  
 
Our methodology also allowed us to identify when demand is more clustered (HH clusters 
in the univariate analysis) and more self-balanced (HH clusters in the bivariate analysis), 
pointing to the most profitable areas within the cities, and other areas where demand is 
particularly low (LL clusters) or not self-balanced (HL outliers). The assessment of both, 
the location of demand hubs, and the extent to which the system can balance itself, are 
important aspects to consider when planning and managing these micromobility services. 
 
Our exploration results are useful for operators and authorities to make better decisions 
related to shared mobility services, especially in the post-pandemic era, when most of them 
are experiencing a worldwide boom  (Ardila-Gomez, 2020; Harrabin, 2020).  
 
As a clean alternative to cars, knowing where moped trips mostly start and end could have 
an impact on the infrastructure offered to improve the service and promote intermodality 
with mass transit.  
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Our study also demonstrated the importance of analysing and representing the dynamics of 
mopeds over time and illustrating activity during working days and weekends, which 
provides relevant knowledge when promoting policies or measures for specific periods of 
time. The fact that our methodology was tried in different cities allowed for comparisons 
and demonstrated that our methods are replicable.  

Since our study was based on the dataset provided by one of the many moped-style 
scooter-sharing operators, it is important to consider that, while the sample is absolutely 
representative in small- and medium-sized cities where no other companies besides  

Muving operate (we have all records), this is not the case for Madrid, Valencia, Seville, 
and Saragossa, which have more than one moped operator. In these cities, results must be 
carefully interpreted, as we are not covering the entire available moped fleet. When 
considering Madrid, Muving represented 14% of the available moped fleet during 2019, 
thus the presence of other companies would vary the vehicle density in some areas, which 
could have an impact that we are not yet able to identify. Nevertheless, the dataset allowed 
us to glean more meaningful insights into a sharing sector that has not been exhaustively 
studied.  

Future studies could complement our study by analysing the all moped-sharing services in 
cities with more than one operator, and even by considering other shared services, in order 
to holistically comprehend what basically conforms the interconnected  

Mobility as a Service network. Future research lines could also focus on monitoring travel 
behaviour in the coming months and even years, monitoring and visualising the impact of 
the COVID-19 pandemic on the use of this and other shared modes.  
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