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Abstract: An accurate prediction of freight volume at the sanitary facilities of seaports is a key factor
to improve planning operations and resource allocation. This study proposes a hybrid approach
to forecast container volume at the sanitary facilities of a seaport. The methodology consists of a
three-step procedure, combining the strengths of linear and non-linear models and the capability
of a clustering technique. First, a self-organizing map (SOM) is used to decompose the time series
into smaller clusters easier to predict. Second, a seasonal autoregressive integrated moving averages
(SARIMA) model is applied in each cluster in order to obtain predicted values and residuals of
each cluster. These values are finally used as inputs of a support vector regression (SVR) model
together with the historical data of the cluster. The final prediction result integrates the prediction
results of each cluster. The experimental results showed that the proposed model provided accurate
prediction results and outperforms the rest of the models tested. The proposed model can be used as
an automatic decision-making tool by seaport management due to its capacity to plan resources in
advance, avoiding congestion and time delays.

Keywords: maritime transport; container forecasting; support vector regression; self-organizing maps;
machine learning; hybrid models

1. Introduction

Over the last decades, ports have played an important role in international trade and most of the
overseas shipping of products is aboard deep-sea container vessels [1]. The increase in traffic of goods
and the European unification has led to consider the enhancement of security at border crossings
of the European Union. In this sense, the Border Inspection Posts (BIPs) were created in order to
guarantee the security at border crossings and the quality of the import-export goods. BIPs are the
approved facilities where the checks of goods (transported within containers by trucks or towing
vehicles) are carried out before entering the Community territory. However, the sustained growth in
the worldwide exchange of goods is creating the need for further inspections resulting in congestion
and high load-peaks within the sanitary facilities. This causes time delays and higher costs in the
supply chain. The BIPs are thereby bottlenecks that must be necessarily assessed by Port Authorities in
order to keep the quality level of the port and avoid losing competitiveness. In order to avoid time
delays and congestion in the sanitary facilities, the port management should be able to accurately
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forecast the number of container passing through these facilities. An accurate prediction of the volume
of container traffic through the BIP may become a useful tool to improve human resources, planning
operations and the service quality at ports.

Forecasting time series have focused attention of many researchers for a long time. Many efforts
have been carried out to improve the existing methodologies and to achieve enhanced models to
obtain accurate predictions in any forecasting fields (for instance, energy consumption, transportation,
environment, economy, medicine and health). The focus of this study is mainly set on maritime
transport due to the traffic associated with the port BIPs. The proposed forecasting techniques can be
divided into three categories: single methods, combined methods and hybrid methods.

The first class comprises both linear and nonlinear techniques. Linear techniques are based on the
assumption that a linear relationship exists between the future values and the current and past values
of the time series. One of the linear models that has attracted more attention over the past few decades
is the well-known autoregressive integrated moving averages (ARIMA) model and its further extended
versions. Based on the Box and Jenkins methodology [2] the ARIMA models have been constantly
applied to solve forecasting tasks related to maritime transport. ARIMA models were successfully
applied to predict export operations in container terminals [3], to predict certain traffic flows of goods
that pass through a port [4,5] and recently for predicting container throughput volumes at ports [6].

Moreover, nonlinear techniques have become a strength alternative against the weaknesses of
linear models. This forecasting technique has proved to be effective when time series show nonlinear
patterns, overcoming the main constraints of linear models. Real-world problems are complex and
mostly generated by an underlying nonlinear process [7], such could be the case of volume of containers
demand at BIPs. In this subcategory, two machine learning techniques highlight: artificial neural
networks (ANNs) and support vector machines for regression (SVR). Instead of ANNs, SVR has
attracted increasing attention in recent years due to its inherent abilities to overcome some general
limitations of ANNs, such as the achievement of a global minimum. Due to its great generalization
ability, SVR has been used in forecasting transport tasks with promising results. These two techniques
have been constantly compared in the research literature.

The second category comprises the combined models. These models attempt to overcome the
constraints of the single forecasting models when time series exhibit seasonal features, temporal
evolutions, correlations, and other patterns hard to capture by single models. To this aim, single
methods are combined to seize the abilities of each one in certain forecasting tasks. One of the
most frequently used approaches consists of combining a single prediction technique (mainly a soft
computing technique) with a clustering method. Based on the divide-and-conquer principle, clustering
methods allow to divide the original database into a number of smaller groups, called clusters. The main
assumption is that simpler clusters are easier to solve than addressing the whole database. When the
clustering method has divided the database into several clusters, a prediction technique is then applied
in each cluster independently. Self-organizing maps (SOMs) [8] is probably the best-known clustering
method. This popular unsupervised learning technique has been proved to be faster and more accurate
and efficient than other clustering methods [9], improving the final prediction performance in time
series [10]. A combined SOM-ANN model was introduced by Chen et al. [11] to predict traffic flows in
transportation. This work also compared the forecasting performance of the proposed model to the
obtained with a SOM-ARIMA model and a single ARIMA model. Results showed that the SOM-ANN
model outperformed the rest of models. Due to the recent emergence of SVR in transportation,
there is hardly any research related to transport combining SOM and SVR in a two-stage procedure.
Nevertheless, it is a widespread solution in many other forecasting fields [12].

The third category includes hybrid models. Single linear models have shown to have several
constraints, limitations and disadvantages in particular situations and certain applications (for instance,
when the underlying generating mechanism is nonlinear or uncertainty is presented) [13]. In a similar
manner, the use of nonlinear models can be totally inappropriate if linear patterns are presented.
Moreover, real-world time series are not completely linear or nonlinear, but rather contain both
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components. Thus, a methodology using linear and nonlinear models in a hybrid way takes the
capabilities of both models, improving the forecasting accuracy and reducing the risk of failure when
an unsuitable single model is used. Hybridizing linear models and machine learning techniques have
been proposed in recent years to forecast transportation time series. Particularly, ARIMA has been the
most commonly used linear model in literature to construct this kind of hybrid model. The first works
were proposed considering ANNs as the machine learning technique in [7,14] to forecast time series
and they concluded that hybrid ARIMA-ANN models were superior to single SARIMA and ANN
models. Since then, many research works can be found in the literature in many areas linked to time
series analysis [15,16]. Several authors were also proposed a hybridization of SARIMA and SVR to
address several forecasting tasks outside the transport sector [17,18], although it is less widespread
compared to SARIMA-ANN models. Related to maritime transport, Xie et al. [19] proposed several
hybrid approaches in a comparative way including the SARIMA-SVR model for container throughput
forecasting. All these previous studies coincided in pointing out that a hybrid strategy considering
ARIMA and SVR models overcame the performance of single models in their respective domains.

In this study, a combined-hybrid forecasting model is proposed in such a way that a hybrid model
(SARIMA-SVR) is combined with a clustering method (SOM) to forecast the daily number of containers
passing through a BIP, thus resulting in a SOM-SARIMA-SVR model. This methodology unifies the
strengths of clustering methods in decomposing the forecasting task into some relatively easier subtasks
(using a SOM method) and the strengths of hybrid models to fit linear and nonlinear components
(using a SARIMA-SVR model). Thus, the final aim of this study is twofold: first, to demonstrate that the
SOM-SARIMA-SVR outperforms the rest of possible hybrid or combined models in forecasting the daily
number of containers passing through BIP of a maritime port; and second, to test the generalization
capabilities of SVR in forecasting logistic tasks, especially the container inspection process that can be a
bottleneck in the supply chain. To train the new model, a three-step procedure was developed. In the
first step a SOM algorithm allows to divide the database into different clusters or regions. On a second
step, a SARIMA model is fitted to the data of each cluster in order to capture the seasonality and the
linear behavior. Finally, a SVR model is applied over each obtained cluster considering several hybrid
approaches (different input configurations) which can consider the original database and the outputs
of the first step (residual and predicted values).

The rest of the paper is organized as follows: The second section gives an overview of
self-organizing maps (SOM), seasonal autoregressive integrated moving average (SARIMA) and
support vector machines for regression (SVR). The empirical data, the combined-hybrid methodology,
and the experimental procedure are presented in Section 3. The fourth section discusses the results
obtained. Finally, the last section summarizes the important conclusions of this work.

2. Methods

The proposed model consists of hybridizing a seasonal autoregressive integrating moving average
(SARIMA) model as a linear model, and a non-linear model such as a support vector machine
for regression (SVR). These methods are two of the most important forecasting models concerning
their respective domains. Additionally, a clustering method, Kohonen self-organizing map (SOM),
is combined with this hybrid (SARIMA-SVR) model. The methodology and basic concepts are
next described.

2.1. Self-Organizing Maps (SOM)

Within the unsupervised learning field, a SOM is a kind of neural network that has gained special
attention during the past two decades. First proposed by Kohonen [8,20], a SOM is a classification
technique that groups objects of the systems into regions called clusters. This classification is based
on the similarity or nearness of these objects without external factors influencing their performance.
In the process, the neurons of the model organize themselves considering only those that play a similar
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role, forming a cluster. The representative point of this cluster is called centroid, being the central
point, which can be used as the center point of a classifier based on minimum distance.

The topology of a SOM model consists of several neurons distributed into two layers: the input
and the output layer. The first one is formed by k neurons. Each neuron corresponds with one
input. The output layer, called the competition layer, can consist of different topologies (2-D grid
for this case). The pre-processing is performed in this layer. In the process, all the neurons j of
the output layer are connected by weights (wi,j) with all neurons i of the input layer. A weight

vector, w j =
(
w j,1, w j,2, . . . , w j,k

)
, is thereby associated to each output neuron j of the competitive layer

(k is thereby the input vector dimension). The training of a SOM model is based on a competitive process
where networks are trained iteratively. Different input vectors xi = [x1, x2, . . . , xk]

T are presented to the
network at each iteration. During the network training, the Euclidean distance between x and all the
weight vectors are computed as follows:∥∥∥x−wb

∥∥∥ = min
j

{
‖x(t) −w j(t)‖

}
, j = 1, 2, . . . , l, (1)

where l is the number of output neurons. According to Equation (1), wb is considered the winning neuron,
i.e., the neuron that has the weight vector closest to x. In addition, the weight of the winning neuron is
updated at time t + 1, according to Equation (2). The same occurs with its associated neighbor neurons:

wi(t + 1) = βi·δb,i(t) · [x(t) −wi(t)] + wi(t) (2)

where δb,i(t) is the neighborhood function (usually a Gaussian function) associated to the neuron i,
and β(t) is the exponential decay learning factor. Both parameters, β(t) and δb,i(t), decay with time.
The training algorithm stops when the maximum number of epochs (a representation of all inputs
patterns) is achieved, or when the performance is minimized to the target.

2.2. Auto-Regressive Integrated Moving Averages (ARIMA)

ARIMA models were introduced by Box and Jenkins [2]. ARIMA has been a widely used
forecasting linear model during several decades. In these kind of models, the future value is accepted to
be a linear function of several past observation and an error term. Three prediction terms compose this
linear function: the autoregressive term (AR), the moving average term (MA), and the integration term
(I). A SARIMA model can be obtained by extending the ARIMA model to include seasonal features.
In this way, the model is specified as SARIMA(p,d,q)(P,D,Q)S, where q represent the order of the moving
average terms, p denotes the order of the autoregressive terms, and d is the degree of differencing.
(P,D,Q) deals with the seasonal part and the capital letters corresponds to their counterparts for the
seasonal models with the seasonal orders and the seasonality of the model is represented by the
parameter s. Equation (3) depicts a typical expression of the SARIMA model:

ϕp(L)ΦP(Bs)∇d
∇

D
s yt = θq(B)ΘQ(Bs)at, (3)

where yt is the observed value, ∇d and ∇D
s are the regular and seasonal differencing operators,

respectively, p and P are the number of non-seasonal and seasonal autoregressive terms, q and Q
are the number of non-seasonal and seasonal moving average terms, d and D are the number of
regular and seasonal differences, ϕ and Φ depict the value weights of the non-seasonal and seasonal
autoregressive term, θ and Θ represent the weights of the non-seasonal and seasonal moving average
term, the seasonality is represented by S, and at is the noise term. The first step is to identify the SARIMA
structure assisted by the observation of the simple and partial autocorrelation function (ACF and
PACF) of the time series. In addition, data must be stationarity in mean, using power transformations,
and stationarity in variance, employing differencing of the time series. Second, the parameters of the
model are estimated. Third, the estimated residuals must be checked. The requirements of a white
noise process should be satisfied by the residuals and they are assumed to be independent. Several
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statistic tests and plots of the residuals are used for this purposes. Finally, an estimation of the future
value of the volume of containers is obtained. In this work, a value range of the model parameters are
iteratively tested to identify the most suitable model.

2.3. Support Vector Machines for Regression (SVR) Models

In contrast to ANN models, support vector machines (SVM) is a kind of machine learning
technique focused on the structural risk minimization instead of the empirical risk minimization
principle. The main objective of this method is maximizing the margin distance [21]. The model can be
formulated as the following equation:

y(x) = wTφ(x) + b, (4)

where b denotes the bias term and w is the vector of weights. φ(x) represents the kernel function used
to deal with the nonlinear problem, mapping the input data into a higher dimensional (feature) space
where data can be linear. First introduced for classification problems, the ε-insensitive loss function,
presented in Equation (5), has enabled its use in regression problems:

Lε(y)
{

0, if
∣∣∣ f (x) − y

∣∣∣ ≤ ε∣∣∣ f (x) − y
∣∣∣− ε, otherwise

, (5)

In Equation (5), ε denotes the area of ε-insensitive. The process is the following: first, the input
data are mapped into a new space of higher dimensional features, called feature space, by a non-linear
mapping a priori using a kernel transformation. The aim of this feature space is to detect a linear
regression function that can be fit the output data with the input data. This linear regression corresponds
to the nonlinear regression model in the original space. Equation (6) represents the problem that should
be optimized:

min
w,b,ξ

1
2 ||w||

2 + C
N∑

i=1
(ξ+i + ξ−i )

subject to :
w · xi + b− yi ≤ ε+ ξ+i
yi −w · xi − bi ≤ ε+ ξ−i
ξ+i , ξ−i ≥ 0

(6)

with i = 1, . . . , l. ξi
− and ξi

+ are the slack variables that deal with the training error on the top
and the bottom, respectively. These variables take zero values within the {−ε, ε} area, and non-zero
values outside it. 1

2 ||w||
2 is the structure risk concerning the flatness of the model and the parameter

C is a correction factor that deals with the trade-off between the flatness and the error. In this work,
the Gaussian kernel was chosen as kernel function. The dual optimization problem can be solved with
the Lagrangian multiplier method [21]. Finally, the method obtains the support vectors as the final
decision, which are the observations with non-zero coefficients of the Lagrangian multipliers.

3. Forecasting Approach

In this study, a three-step procedure based on a SOM-SARIMA-SVR model is proposed in order
to predict the daily number of containers passing through a sanitary facility of a seaport. A further
objective is to compare the prediction results of the proposed three-step procedure with the obtained
using other possible methodologies, such as the SVR models in a single way, the hybrid SARIMA-SVR
model and the combined SOM-SVR model. The proposed approach combines the capability of SARIMA
models in capturing the linear patterns and the ability of SVR in modelling nonlinear patterns, together
with the advantages of the SOM clustering algorithm.

The experimental database comes from the BIP of the Port of Algeciras Bay, located in the South
of Spain. The BIP of Algeciras is the approved facility where import goods are inspected and checked
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before entering the Community territory of the European Union. The Port of Algeciras Bay was the
first port in the Mediterranean Sea and the fourth port in the European continent related to the total
throughput in 2019 (109.4 million tons) only surpassed by the ports of Rotterdam (The Netherlands),
Antwerp (Belgium) and Hamburg (Germany). The database was provided by the Port Authority and
contains daily records of the number of containers at the Algeciras BIP from 2010 to 2014.

3.1. The Proposed Hybrid Methodology

A SOM algorithm (step I) was firstly used to divide the whole database into several disjoint
clusters with similar statistical properties. Then, the seasonality and the linear patterns were captured
using a SARIMA model in each cluster (step II). As a result, a set of predicted values and residuals
from each cluster was obtained. Finally, a SVR model was then implemented in the third step over
each cluster to generalize the non-linear relationship, obtaining the final prediction (step III). Inputs of
the SVR model were the original and predicted data from the second (SARIMA) step. Two hybrid
approaches were tested in the last step considering the configuration and the number of inputs.

The forecasting performance was assessed using different prediction horizons: for the SARIMA
step, only one-day (ph = 1) prediction horizon was considered; and for the final (SVR) step, two prediction
horizons were tested, one-day (ph = 1) and seven-day (ph = 7) ahead. The prediction is one-step ahead
(yt+ph) in both cases. In the ph = 1 case, the prediction is yt+1, and for the ph = 7 case the prediction is
yt+7. The estimation can be thereby modelled as a nonlinear function of the n preceding values of the
time series and an error term. This is called the autoregressive window (n) and its design is presented
in Figure 1. The autoregressive window for ph = 1 (steps II and III) is presented on the top of the figure
and for ph = 7 (step III) is showed on the bottom of the figure.
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Figure 1. Autoregressive window sizes in Steps II and III and their prediction horizons (ph): one-day
prediction horizon (below the timeline) and seven-day prediction horizon (allow the timeline). n is the
size of the autoregressive window.

For the ph = 7 case, the autoregressive window is composed of values of the container series
periodically sampled every seven days in the past. This is due to the weekly seasonality found in
the analysis of the autocorrelation function of the time series. The main assumption here is that best
prediction is obtained when using as inputs several samples from the past of the same day of the
week (i.e., using several successive Mondays in the past to predict a future Monday). The proposed
SOM-SARIMA-SVR procedure is shown graphically in Figure 2.
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3.1.1. Step I: SOM

A self-organizing feature map (SOM) is first applied to the data in order to split the database
into several disjoint groups, called clusters, with similar statistical distribution. The assumption is
that, in the next step, a forecasting technique can predict more accurate each cluster instead of the
whole database. Each cluster works independently in the second and third step. In such cases, a single
SARIMA and SVR models are applied independently after decomposing the heterogeneous data into
smaller homogeneous regions. A predefined number of clusters, c, are selected, before starting the
SOM algorithm, to assess and compare the performance of different solutions.

An experimental framework was developed in order to select the optimal number of past values
(nc) of the input vector (the number of input neurons). Thus, a database of inputs was designed as in
Equation (7):

xi =
[
yt, yt−1·k, yt−2·k, . . . , yt−nc·ph,

]T
, (7)

where t is each sample in the daily time series from 2010 to 2014 and k means the sample period
explained graphically in Figure 1 (k = 1 or k = 7 days). Each row is arranged recursively using different
lagged terms (as in an autoregressive window).

A large number of different experiments were performed modifying the input vector size and the
number of iterations. In order to consider the inherent randomness of the process, 20 repetitions of
each experiment were carried out.
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3.1.2. Step II: SARIMA

A SARIMA model is fitted to each cluster generated by the SOM in Step I, obtaining different
predicted and residual values of these clusters. The main reason to select SARIMA as a forecasting
model is its ability to capture linear patterns. In order to assess the forecasting performance, and due
to the deterministic nature of linear models, a hold-out validation technique was applied during the
process. The data (of each cluster) was divided into two groups: the training set containing two-thirds
of the dataset, and the test set comprising the rest of the samples. The parameters of the model were
adjusted using the training set and the test set was used to validate the model. Different values of the
model parameters were tested using a trial-and-error procedure. Only the ph = 1 prediction horizon
was tested. The values of the parameters tested within each cluster are, for the non-seasonal part:
p = 0, 1, 2, 3, 4; d = 0, 1, 2 and q = 1, 2, 3, 4; and for the seasonal part: s = 2, 5, 7; P = 0, 1, 2; D = 0, 1, 2
and Q = 0, 1, 2, 3.

3.1.3. Step III: SVR

At this stage, a SVR model is applied to each cluster. The three different adjustable parameters,
which governs the SVR model, were determined by an iterative process (trial-and-error). The parameters
of the different SVR models tested are shown in Table 1. Note that the optimum number of clusters
was two. This issue is further explained below.

Table 1. Parameter ranges used for the SVR models in the third step. The subscript indicates the cluster
to which the parameter belongs to (1 or 2).

Parameters Cluster Values

Hybrid configuration: SOM-SARIMA-SVR-1 SOM-SARIMA- SVR-2
Number of variables:

Input layer 1 e1 y1, p1, e1
2 e2 y2, p2, e2

Output layer 1 e1 y1
2 e2 y2

Autoregressive window size (step: 1):
Residual (e): ne 1, 2 1:20 none, 1:20

Original data (y): ny 1, 2 - none, 1:10
Predicted values (p): np 1, 2 - none,1:20

Parameters:
ε (step: 1): 1, 2 2(−12:−2) 2(−12:−2)

γ (step: 1): 1, 2 2(−12:−2) 2(−12:−2)

C: 1, 2 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 50, 100:1000 (step: 100)
Prediction horizons 1, 2 1, 7 days

For each cluster, the inputs of the SVR model are formed by the clustered data of the original
time series, yi, and their forecasted values, pi, and residuals, ei, obtained in the second (SARIMA)
step (i denotes the cluster they belong to). The presence or absence of these variables in the inputs
determine the hybrid configurations. Each variable is sorted recursively as an autoregressive window.
The sizes of the original data, predicted values and residuals from the SARIMA step are denoted as ny,
np and ne, respectively.

Due to the reduction of available data in the clusters, a randomized resampling strategy was
implemented during the SVR process to ensure the independence of the results. For this work, a twofold
cross-validation (2-CV) technique was used. This validation strategy was repeated 20 times and the
final value of the prediction performances was the average of these repetitions. The 20 repetitions were
implemented for each combination of parameter values of the range shown in Table 1. Once all the range
values of the parameters were tested, the parameter combination that achieves the best performance
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index values is selected. The total predicted time series is formed by adding the predictions of each
clusters. Note that, as in the SARIMA model, the best SVR model may be different on each cluster.

Two hybrid approaches were proposed and assessed. The prediction results were obtained for
two prediction horizons, ph = 1 and ph = 7.

SOM-SARIMA-SVR-1 model (hybrid approach 1). This classical approach considers that the
relationship between the linear component Lt and the nonlinear component NLt of a time series is
additive. Therefore, the time series can be decomposed in these two independent terms. Then, a linear
forecasting model such as SARIMA can be applied in order to model the linear component and thereby
to obtain the predicted values, p̂t, and the residual, et. Subsequently, a SVR model is applied over
the residuals in order to fit the nonlinear component NLt. The main assumption of this traditional
approach is that the nonlinear relationship of the time series can be found, if any, in the residuals of the
linear model. As a consequence, NLt is a predicted error and it is a function of the residuals obtained
from the linear model:

NLt+ph = f (et, et−ph, . . . , et−n·ph) + εt = êt+ph, (8)

where êt is the predicted residual, f is the nonlinear function obtained by the SVR model, n is the size of
the autoregressive window, ph is the prediction horizon, and εt is the error term. Finally, the prediction
is obtained by adding the two single components:

Yt+ph = L̂t+ph + NLt+ph. (9)

Other proposals in the framework of these kinds of hybrid models have emerged in recent years.
Particularly, incorporating the predicted values from a previous step and the original data with the
residuals as inputs of the non-linear forecasting model has gained special attention. The time series
is considered as a function of several variables, such as the original data, the residuals, and the
predicted values from the linear model. Some examples of this two-step methodology are the works of
Khasei and Bijari [15,21]. Based on these last works, the following hybrid approach 2 was developed
(after applying the SOM method) considering two or three types of variables as inputs.

SOM-SARIMA-SVR-2 model (hybrid approach 2). The time series is here considered a nonlinear
function of the original data and the residuals and the predicted values from the first step:

Ŷt+ph = f (y, e, p̂) + εt+ph, (10)

where f is the nonlinear function obtained with the SVR model, yt is the original data, et is the residual
obtained in the SARIMA model, and p̂ is the predicted value from the SARIMA model at time t.
These variables are presented in an autoregressive form, as it is expressed in the following equation:

Ŷt+ph = f (yt, yt−1·ph, yt−2·ph . . . , yt−ny·ph, et+ph, et, et−1·ph, . . . , et−ne·ph, p̂t+ph, p̂t, p̂t−1·ph, . . . , p̂t−np·ph) + εt+ph (11)

where ne, ny and np represent autoregressive window sizes for e, y and p̂ variables, respectively.
Considering two or three variables, and their autoregressive window sizes, a large number of possible
functions can be tested.

These two hybrid approaches are used in each clusters formed in the second step. Considering
two clusters, the parameter ranges used are also presented in Table 1. Note that in cases which variables
e and p are involved, their first value used as input is the predicted value at t + ph time. The same
cannot be said for the original data variable y, due to the y value at time t + ph is the final prediction
pursued. In all instances, the SARIMA model is necessary to obtain the required data used as inputs in
the third step, together with the original patterns of the container series.
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3.2. Performance Indexes

3.2.1. Performance Criteria of Stage I (Clustering)

The effectiveness of the clustering process was measured using two clustering quality indices
(CQIs) based on the Silhouette function (Si). The silhouette value determines the degree of equality in
clusters between a selected pattern and the other patterns that conform a certain cluster compared with the
patterns in other clusters. The Si value for each pattern is between −1 to +1 and is defined in Equation (12):

Si = Di − di/max(di, Di), (12)

where Di is the minimum average distance from one pattern of a cluster to another pattern in another
cluster and di is the average distance in the own cluster from one pattern to the rest of patterns. The two
CQIs, which are based on the mean and the sum of the silhouette values of all clusters respectively,
are collected in Equations (13) and (14). The lower of these values, the worst of the clustering results:

QI1 = (Si), (13)

QI2 =
∑

Si. (14)

3.2.2. Performance Indexes of Prediction Stages

In order to compare the forecasting performance of multiple models, the index of agreement (d),
the autocorrelation coefficient (R), the mean square error (MSE), the mean absolute percentage error
(MAPE), and the mean absolute error (MAE) are the performance indices that were considered
to calculate the estimation of the generalization error in the prediction stages (steps I and III).
Equations (15)–(19) shows these performance criteria and their calculation, where m is the sample
size, yt is the real value of the observation and ŷt is its corresponding predicted value. R values
are comprised between −1 and 1 whereas d values are between 0 and 1. These indices measure
the correlation between predicted and real values. By contrast, MAE, MAPE and MSE measure the
deviation between predicted and real value. d and R values close to 0 indicate a worse performance
whereas lower MAE, MAPE and MSE values indicate better performance:

d = 1−
∑m

i=1
(ŷi − yi)

2
/∑m

i=1
(
∣∣∣ŷi − y

∣∣∣+ ∣∣∣yi − y
∣∣∣)2

(15)

R =
∑m

i=1
(yi − y)(ŷi − ŷ)

/√∑m

i=1
(yi − y)2

·

∑m

i=1
(ŷi − ŷ)

2
(16)

MSE = 1/m ·
∑m

i=1
(yi − ŷi)

2, (17)

MAE = 1/m ·
∑m

i=1

∣∣∣ŷi − yi
∣∣∣, (18)

MAPE = 1/m ·
∑m

i=1

∣∣∣(yi − ŷi)/yi
∣∣∣. (19)

4. Experimental Results and Discussion

The results of the proposed hybrid SARIMA-SOM-SVR models to predict the daily number of
containers passing through the BIP of the Port of Algeciras Bay are presented and discussed in this
section. These results are those obtained in the third step of the proposed procedure and they were
assessed and compared with those achieved with the single SVR, the combined SOM-SVR, and the
hybrid SARIMA-SVR models. Nevertheless, a cursory discussion of the previous results obtained at
the first and the second steps (SARIMA and SOM stages) is given in this section for a general overview.
The prediction was one-step ahead and two prediction horizons were considered, ph = 1 and ph = 7 days.
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First, a two-dimensional competitive Kohonen network (SOM 2-D) was employed as a clustering
technique. The final aim of this step is to divide the whole database into several disjoint clusters with
similar statistical features. The assumption is that the prediction of a smaller cluster can be easier than
the prediction of the whole database. Testing different configurations of the SOM network, the most
appropriate SOM map size for the data was 8 × 8 neurons in the output layer with a hexagonal grid
topology and a three-dimensional input space.

Figure 3a represents the SOM weight positions, which shows the locations of the data points and
the weight vectors after the SOM algorithm was trained. Grey and green points represent neurons
and input vectors, respectively. Red lines are the connections between neurons. Although the figure
suggests the existence of two different groups (a group appears in the bottom-left region and another
more disperse group in the central region), not all the weights can be visualized at the same time
(one weight for each element of the input vector). Thus, the SOM neighbor distances could be useful
(Figure 3b). This figure indicates the distances between neighboring neurons, where grey hexagons
represent the neurons (8 × 8 map), connecting themselves by the red lines. The color of the segments
containing these red lines indicates the distance between neighboring neurons. Lighter colors represent
smaller distances, whereas larger distances are represented by darker colors. As the figure indicates,
a group of light segments appear in the bottom-right region. This region is bounded by some dark
segments. According with the previous figure, this situation indicates that the SOM network has
clustered the data into two groups.
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Figure 3. (a) The SOM weight positions and (b) the SOM neighbor distances between neurons.

These results can be contrasted analytically and are collected in Table 2, which shows the best
results obtained per cluster and its input-vector configuration. Based on two clustering performance
indexes (CQI1, and CQI2), the two-classes clustering was confirmed to be the best choice for the time
series, reaching the highest values of CQI1 and CQI2 (0.659 and 717.548, respectively). Consequently,
the database was divided into two groups, hereinafter called Cluster 1 and Cluster 2. These results
were achieved using a three-element input vector (nc = 3) with a temporal leap of 7-day in the past.
Therefore, the input vector xt is comprised of the actual value of the time series yt, and two 7-day lagged
past value (yt−7 and yt−14), conforming a three-dimensional input space. That is, xt = [yt,yt–7,yt–14]T,
where t = 1, 2, . . . , 1461.
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Table 2. Clustering results of the SOM step, where c is the number of clusters tested and nc is the size
of the input vector. The temporal leap in the past is 1 or 7 days.

Best Configuration Performance Indices

Clusters (c) Temporal Leap nc CQ1 CQ2

2 7 3 0.659 717.548
3 7 3 0.627 682.549
4 1 3 0.588 643.792
5 1 3 0.601 658.248

A SARIMA model was applied independently in each cluster in the second step. Considering
the nature of the time series of each cluster, the clustered data was stationarized in mean (using a
logarithmic transformation) and variance (using second differencing for Cluster 1 and second seasonal
differencing for Cluster 2). Then, using an iterative trial-and-error procedure, the best-fitted models
were ARIMA(2,0,3) for Cluster 1 (without seasonal part) and SARIMA(2,1,2)(2,1,3)5, with a seasonality
of 5 days for Cluster 2. Although these linear models obtained the best values of the performance
indexes, they have to be validated before continuing to step III. The residuals of the model must be
satisfied the requirements of a white noise process. Therefore, the residuals of both clusters were
checked. On the one hand, Figure 4 left collects the residual diagnosis plot of Cluster 1. According
to Figure 4a left, the residuals have a mean around zero whereas Figure 4b left shows no obvious
violation of the normality assumption. Figure 4c,d left show no significant autocorrelation and residuals
are thereby uncorrelated. On the other hand, Figure 4 right shows the residual diagnosis plot of
Cluster 2, corresponding to SARIMA(2,1,2)(2,1,3)5 model. As in the previous case, residuals satisfy the
requirements of a white noise process. In conclusion, the ARIMA(2,2,3) and SARIMA(2,1,2)(2,1,3)5

models were validated as linear models to Cluster 1 and 2, respectively, in the second step. Once the
ARIMA model is applied, a set of residuals and predicted values are obtained for each cluster. These
values, together with the original data, are used as inputs in the third step.
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residual plot; (b) quantile–quantile plot of standard residual versus the normal distribution; (c) sample
ACF of the residual and (d) partial ACF of the residual.
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Finally, in the third step a SVR model was applied to each cluster considering the two proposed
hybrid approaches, which were configured depending on the input setting used. Considering each
hybrid configuration separately, a most accurate SVR model was achieved in each cluster to fit the
data. Two hybrid approaches with two prediction horizons were considered in this third step for each
cluster. Therefore, four prediction schemes for each cluster were evaluated (two hybrid approaches for
each cluster and two prediction horizons for each hybrid approach). The final prediction results of
each hybrid approach were obtained by joining the prediction values achieved in the two clusters as a
single predicted time series. That is:

ŷinspections =
{
ŷCluster1

}
∪

{
ŷCluster2

}
, (20)

The most accurate models for each hybrid approach are collected in Table 3. The prediction results
in terms of performance indexes reflect those obtained once the predicted values of the two clusters
were grouped. Table 3 is divided according to the prediction horizon used (ph = 1 or ph = 7 days).
Additionally, for each prediction horizon, results are collected depending on the hybrid configuration
applied. For the hybrid approach 2 (SOM-SARIMA-SVR-2), results are presented considering the
inputs employed in the model (y, e or p) in order to demonstrate which inputs are most relevant.
Regardless of the parameter configuration, only the best value achieved in each performance index
is depicted in both prediction horizons for a better understanding. The best overall value of each
performance index and the best hybrid configuration are pointed out in bold.

Table 3. Mean prediction performance results of the proposed SOM-SARIMA-SVR models for one-day
and seven-day prediction horizons. The final number of the model indicates the hybrid approach
(1 or 2). The column inputs indicate the inputs used in the SVR models, where y, e, and p represent the
original data, residuals and predicted values from the second step, respectively. Best values in bold.

ph Hybrid
Approach Model Inputs

Performance Indices

R d MSE MAE MAPE

1 1 SOM-SARIMA-SVR 1 e 0.8039 0.8917 296.3551 11.8413 18.6794
1 2 SOM-SARIMA-SVR 2 y, e 0.8101 0.8936 287.0105 11.6790 17.9391
1 2 SOM-SARIMA-SVR 2 y, p 0.8024 0.8914 288.7795 11.7174 17.7721
1 2 SOM-SARIMA-SVR 2 y, e, p 0.8054 0.8919 287.8423 11.8362 17.8603

7 1 SOM-SARIMA-SVR 1 e 0.8037 0.8888 299.6534 11.9761 18.4053
7 2 SOM-SARIMA-SVR 2 y, e 0.8051 0.8912 290.8783 11.8295 18.1178
7 2 SOM-SARIMA-SVR 2 y, p 0.7906 0.8803 306.1622 12.4121 18.3690
7 2 SOM-SARIMA-SVR 2 y, e, p 0.8101 0.8920 289.7224 11.8394 17.9783

The SOM-SARIMA-SVR-2 (the one without p as input) provides the most accurate results for
one-day ahead prediction, followed by the rest of possible models of the hybrid approach 2 (considering
different inputs) and finally the hybrid approach 1, in that order. This hybrid approach achieved the
best value in at least four performance indexes. In this case, more sophisticated models obtained no
better results. Nevertheless, the classical approach considers an additive relationship between the
linear and nonlinear component of the time series. Consequently, this is less powerful than the other
approach. For one-day ahead predictions, two different input variables (y and e) are proved sufficient
to predict the time series accurately. However, there are not great differences among the prediction
performances with the rest models.

Similar results were obtained considering the behavior of the models for 7-day ahead prediction,
where better values of performance indexes were reached with the hybrid approach 2. The most
complex approach (SOM-SARIMA-SVR 2 with all variables as inputs) obtained the best results, reaching
four of the five best performance indexes. Surprisingly, the classical approach SARIMA-SOM-SVR-1 is
positioned as the third best model, obtaining a great MAE value. However, the results from this
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prediction horizon do not outperform those obtained using one-day prediction horizon though the
difference is not very significant.

Although all the best performance indexes were gained with one-day ahead predictions,
good forecasting performance were also obtained considering both prediction horizons and there exist
no major differences among the hybrid approaches. Moreover, the use of a certain set of input variables
from the second step (SARIMA set) does not seem to be very relevant to improve the performance of
the models in the third step. This could be due to the clustering procedure of the second step, which
grouped the variables with similar properties, minimizing the negative or positive impact of selecting
a certain set of input variables. Nevertheless, better results in any situation were yielded using the
more sophisticated models (hybrid approach 2) instead of the classical approach (hybrid approach 1).
Particularly, SARIMA-SOM-SVR-2 with variables e and y as inputs of the SVR achieved the best results.

It is worth mentioning that each performance index of any hybrid approach were computed using
different configurations of the parameters. That is, for instance, with the SOM-SARIMA-SVR-2 model
(with e and y as input variables), the configuration of the SVR parameters (C, ε and γ) that reached
the best value of d is not the same as the one obtained the better value of MAE. It may be caused by
the high number of model tested, approximately about 106 models for each prediction scheme, where
there are parameter configurations almost equal. In this sense and in order to get the smallest MAE
value (11.679), the best-fitted network of Cluster 1 for this hybrid configuration 2 in the third step is
composed by autoregressive window sizes of twelve for the y input variable (ny = 12) and two for the e
input from SARIMA step (ne = 2), being the optimal SVR parameters C = 200, γ = 2−4 and ε = 2−8.
To model Cluster 2, the best parameter configuration was ny = 12, ne = 2, C = 50, γ = 2−2 and ε = 2−2.
For this network architecture, the number and size of SVR inputs coincide in both clusters. The final
prediction is reached joining the predicted values of the two clusters. The best network architecture of
the hybrid approach 2 is plotted in Figure 5.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 14 of 17 

from the second step (SARIMA set) does not seem to be very relevant to improve the performance of 

the models in the third step. This could be due to the clustering procedure of the second step, which 

grouped the variables with similar properties, minimizing the negative or positive impact of selecting 

a certain set of input variables. Nevertheless, better results in any situation were yielded using the 

more sophisticated models (hybrid approach 2) instead of the classical approach (hybrid approach 

1). Particularly, SARIMA-SOM-SVR-2 with variables e and y as inputs of the SVR achieved the best 

results. 

It is worth mentioning that each performance index of any hybrid approach were computed 

using different configurations of the parameters. That is, for instance, with the SOM-SARIMA-SVR-

2 model (with e and y as input variables), the configuration of the SVR parameters (C, ε and γ) that 

reached the best value of d is not the same as the one obtained the better value of MAE. It may be 

caused by the high number of model tested, approximately about 106 models for each prediction 

scheme, where there are parameter configurations almost equal. In this sense and in order to get the 

smallest MAE value (11.679), the best-fitted network of Cluster 1 for this hybrid configuration 2 in 

the third step is composed by autoregressive window sizes of twelve for the y input variable (ny = 

12) and two for the e input from SARIMA step (ne = 2), being the optimal SVR parameters C = 200, γ 

= 2−4 and ε = 2−8. To model Cluster 2, the best parameter configuration was ny = 12, ne = 2, C = 50, γ = 

2−2 and ε = 2−2. For this network architecture, the number and size of SVR inputs coincide in both 

clusters. The final prediction is reached joining the predicted values of the two clusters. The best 

network architecture of the hybrid approach 2 is plotted in Figure 5. 

 

Figure 5. Best-fitting SVR network architecture for each cluster of SOM-SARIMA-SVR-2 hybrid model 

in the third step (ph = 1 case). C, γ and ε are the SVR parameters. Only the inputs y and e are used. 

To conclude, a complete comparison among other hybrid models proposed in literature was 

performed in order to gain a comprehensive view of the real improvement established by the 

proposed model. Then, the most accurate single SVR model, the most accurate combined SOM-SVR 

model and the most accurate hybrid SARIMA-SVR model were also compared against the most 

accurate proposed model. These comparisons are summarized in Table 4, where values and models 

in bold indicate the best overall performance index and model, respectively, considering both 

prediction horizons. As Table 4 shows, the proposed SOM-SARIMA-SVR model outperforms the rest 

of the models in both prediction horizons. The SOM-SARIMA-SVR model is more competitive than 

the other models in four of the five performance indexes. Interestingly, another model achieves the 

highest value in one of the five performance index (SARIMA-SVR for d and ph = 1; SOM-SVR for R 

  
 

1( )x

2( )x

( )kx

( )x

x2

…

1( , )k x x

2( , )k x x

( , )kk x x

w1

w2

…

C=200, 

γ=2-4

ε=2-8

      
 

      
 

        
 

     
 

  
 

Test Vectors x
 ( ) ( ) ( , )  i ix x k x x

…

x1

xk

…

S
O

M
 C

lu
st

er
1

x

  
 

1( )x

2( )x

( )lx

( )x

x2

…

1( , )k x x

2( , )k x x

( , )lk x x

Support

Vectors

w1

w2

…

Mapping Dot Product

C=50 

γ=2-2

ε=2-2

      
 

       
 

        
 

     
 

  
 

Output

*

1

( , ) ( , )



Nsv

i i i
i

w w k x x b

…

x1

xl

…

S
O

M
 C

lu
st

er
2

x

      

wK

wK

SARIMA

SARIMA

Figure 5. Best-fitting SVR network architecture for each cluster of SOM-SARIMA-SVR-2 hybrid model
in the third step (ph = 1 case). C, γ and ε are the SVR parameters. Only the inputs y and e are used.

To conclude, a complete comparison among other hybrid models proposed in literature was
performed in order to gain a comprehensive view of the real improvement established by the proposed
model. Then, the most accurate single SVR model, the most accurate combined SOM-SVR model and
the most accurate hybrid SARIMA-SVR model were also compared against the most accurate proposed
model. These comparisons are summarized in Table 4, where values and models in bold indicate
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the best overall performance index and model, respectively, considering both prediction horizons.
As Table 4 shows, the proposed SOM-SARIMA-SVR model outperforms the rest of the models in both
prediction horizons. The SOM-SARIMA-SVR model is more competitive than the other models in four
of the five performance indexes. Interestingly, another model achieves the highest value in one of the
five performance index (SARIMA-SVR for d and ph = 1; SOM-SVR for R and ph = 7). It can be concluded
that the proposed model performs significantly better than the rest of models, especially in terms of
MSE, MAE and MAPE values. This suggest that the “divide-and-conquer” principle, introduced with
the usage of the clustering stage, can improve the performance of the hybrid models that consider the
hybridization of linear and nonlinear forecasting techniques. The proposed methodology combines
the strengths of the combined forecasting models with a clustering stage (clustering + forecasting
technique) with the advantages of hybrid forecasting models (linear + nonlinear forecasting technique).
The combined-hybrid approach has proved to be more effective than the other models in forecasting
tasks and particularly in predicting the daily number of containers to be inspected at BIPs in ports and
overcomes SOM-SVR model.

Table 4. Comparison of the best mean prediction performance results of the single models (SVR),
the combined models (SOM-SVR), the hybrid model (SARIMA-SVR) and the proposed model
(SOM-SARIMA-SVR) for one-day and seven-day prediction horizon. Best values in bold.

ph Model
Performance Indices

R d MSE MAE MAPE

1 SVR 0.7989 0.8836 389.1624 14.3328 23.0695
1 SOM-SVR 0.8042 0.8862 381.6965 14.1565 21.8681
1 SARIMA-SVR 0.8048 0.8952 302.0054 12.0024 19.4246
1 SOM-SARIMA-SVR 0.8101 0.8936 287.0105 11.6790 17.7721
7 SVR 0.8041 0.8880 365.4109 13.7256 21.9900
7 SOM-SVR 0.8120 0.8917 359.7340 13.5181 21.3260
7 SARIMA-SVR 0.7969 0.8872 306.1086 12.0327 19.7383
7 SOM-SARIMA-SVR 0.8101 0.8927 289.7224 11.8295 17.9783

Figure 6 represents a comparison point-to-point between the observed and predicted values for
the best-fitted models concerning the ph = 1 (at the top) and ph = 7 case (at the bottom), respectively.
An example period of five weeks of the year 2012 is represented. These figures clearly show that the
proposed model produces a better fit to the data. The SARIMA-SOM-SVR model provides a better
prediction of the daily number of containers passing through the BIP even in cases where the values
are more difficult to predict.
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5. Conclusions

Prediction tasks and forecasting methodologies and models are constantly evolving. Diverse
methodologies to address forecasting problems have been proposed with mixed results, highlighting



Appl. Sci. 2020, 10, 8326 16 of 17

the combination of models and the hybridization of them. In this study, a combined-hybrid
SOM-SARIMA-SVR forecasting model has been proposed based on a three-step procedure to predict
the daily number of containers passing through a Border Inspection Post of a maritime port.

To reduce the complexity of the problem, a clustering SOM is first applied to obtain smaller
regions with similar statistical features which may be easier to predict. A SARIMA model is then fitted
within each cluster to obtain predicted values and residuals of the clustered database. Finally, a SVR
model is used to forecast each cluster independently using the variables obtained from the second step
together with the original data as inputs. The combination of each cluster results in the whole predicted
time series. The above methodology involves the advantages of combining a forecasting model with a
clustering technique and the strengths of the hybrid models in capture linear and nonlinear patterns.

The proposed SOM-SARIMA-SVR model has been developed and compared to other possible
methodologies implied in the process (SVR, SOM-SVR and SARIMA-SVR). The results showed that the
SOM-SARIMA-SVR model was the most competitive model, improving the forecasting performance
of the rest of the models concerning the prediction of the container demand, outperforming these
methodologies. Particularly, considering the SOM-SARIMA-SVR model, two hybrid approaches
were assessed: the classical additive approach, where the error term (e) of the linear model is the
input of the nonlinear model; and the proposed approach, where the prediction is a function of the
original data (y) and the error term (e), and the prediction of the linear model (p). Most accurate
results were yielded by the second approach in all cases tested. In addition, there are no significant
differences between the prediction performance using both prediction horizons. The same occurs with
the introduction of certain variables as inputs. These outcomes highlight the robustness of the model.
This investigation suggests thereby that the proposed hybrid approach achieves better outcomes
getting higher forecasting performance than the classical additive hybrid approach.

To conclude, this study is the first one in using the SOM-SARIMA-SVR model to forecast the
volume of containers passing through a BIP of ports in particular, and for time series forecasting in
general with promising results. Due to its ability to seize the strengths of linear and nonlinear models
and thereby to capture linear and nonlinear patterns, the proposed model could be applied in other
time series where these patterns are jointly presented. Particularly, the use of a clustering technique
allows reducing the complexity of the time series, increasing the accuracy of the final prediction.
Obviously, some limitations are found in the model. As with any data-driven model, when completely
different inputs come into the model, the prediction accuracy could worse. Thus, a retrained model
and a readjustment of the parameters might be required over time.

Future works will focus on the application of other latest non-linear techniques, such as Deep
Learning, in order to assess any improvements in the prediction. Knowing the daily container demand
in advance allows detecting workload peaks in a port facility. This guarantees the correct planning and
organization of available human and material resources. The proposed methodology can provide an
automatic tool to predict workloads at sanitary facilities avoiding congestion and delays. Therefore,
it can be used as a decision-making tool by port managers due to its capacity to plan resources
in advance.
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