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Abstract
Given an undirected graph, a clique is a subset of vertices in which the induced subgraph is complete; that is, all pairs of vertices
of this subset are adjacent. Clique problems in graphs are very important due to their numerous applications. One of these
problems is the clique partitioning problem (CPP), which consists of dividing the set of vertices of a graph into the smallest
number of cliques possible. The CPP is an NP-hard problem with many application fields (timetabling, manufacturing, sched-
uling, telecommunications, etc.). Despite its great applicability, few recent studies have focused on proposing specific resolution
methods for the CPP. This article presents a resolution method that combines multistart strategies with tabu search. The most
novel characteristic of our method is that it allows unfeasible solutions to be visited, which facilitates exploration of the solution
space. The computational tests show that our method performs better than previous methods proposed for this problem. In fact,
our method strictly improves the results of these methods in most of the instances considered while requiring less computation
time.
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1 Introduction

Given an undirected graphG = (V, E), where V represents the
set of vertices and E represents the set of edges, a clique is a
subset of V constituted by vertices that are pairwise adjacent –
that is, for every pair of vertices i and j in such a subset, (i, j) ∈
E. A clique partition of graph G is a partition of V such that
every subset in the partition is a clique. This work focuses on
the problem of finding a clique partition of a graph G with the
minimum cardinality. This problem is known as the clique
partitioning problem (CPP) or the minimum clique partition
problem, and it is an NP-hard problem [19]. Figure 1 of
Section 2 shows an example of an undirected graph with 9
vertices, and Fig. 6 presents an optimal solution to this prob-
lem with three cliques.

The problem described above should be distinguished from
another problem of the same name, which was addressed in
Lü et al. [12] and Hu et al. [8] among other references. This
problem is defined on complete graphs with weights on the

edges. The aim is to divide the set of vertices into subsets such
that the sum of the weights of the induced subgraphs is as
small as possible.

Clique problems are very popular in the literature on graph
problems. Perhaps the most widely known is the maximum
clique problem (MCP), which consists of searching inG for a
maximum clique – that is, a clique of maximum cardinality.
Another commonly used concept is the maximal clique, which
is a clique that is not contained in another clique. A maximum
clique must be maximal, but a maximal clique does not have
to be maximum. Pardalos and Xue [15] performed a thorough
analysis of the maximum clique problem (considering formu-
lations, complexity, algorithms, etc.), and Wu and Hao [21]
conducted a very complete survey of this problem. Other im-
portant works are those of San Segundo and Artieda [16] that
shows a practical application related to unmanned autono-
mous vehicles and San Segundo et al. [17], a methodological
paper proposing improvements in the exact algorithms for this
problem. Other known problems regarding cliques are the
maximal clique problem [9], the clique enumeration problem
[5] and the clique coloring problem [11].

Regarding the CPP, several applications can be found in
different areas, such as airport logistics [1, 6], timetabling [13,
20], manufacturing [4], the register-transfer synthesis of data
paths [10], social networks and the internet [18], telecommu-
nications [22], and data science [3, 14].
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Two of these applications are described below. The work
of Allignol et al. [1], addresses the problem of aviation author-
ities assigning flight levels (FLs) to different flights in a given
planning period. Flight levels are the heights at which aircraft
fly after take-off and before landing (known as “cruising alti-
tudes”). Flight levels have a margin of 1000 ft (the difference
in altitude between two consecutive levels). The problem is to
assign different FLs to “incompatible” flights, i.e., flights
whose trajectories may be less than 10 nautical miles apart
at or near the same point in time. Assigning different FLs to
incompatible flights involves establishing safety margins and
avoiding accidents. The problem is stated as a graph in which
each flight corresponds to a vertex and each edge joins two
vertices (flights) that are compatible and can therefore fly
without any type of conflict between them at the same FL.
The idea is to divide the flights into groups such that all flights
in a group are compatible. Therefore, each of these groups
corresponds to a clique in the network. Each group of com-
patible flights (clique) is assigned a different FL. The objec-
tive is to minimize the number of groups and therefore the
number of FLs to be used, or at least to ensure that this number
does not exceed a previously established maximum number of
FLs. Thus, the problem can be considered a real application of
the CPP. However, other aspects are also considered, such as
the costs of flying at each FL for each flight. Therefore, air-
lines request an ideal FL for each of their flights (normally the
FL such that the flight would have the lowest fuel cost), and
the allocation of FLs to flights must take these requests into
account (by minimizing the number of allocations that are
different from the ideal FLs, balancing the number of different
allocations between airlines, etc.).

The work of Casado et al. [4] addresses the improvement of
steel coil production by grouping processes. In the production
of steel coils, raw materials (mainly iron and carbon but also
manganese, silicon and niobium, among others) are first ex-
tracted. These ores are combined to produce steel in the form

of slabs. A rolling mill then converts the slabs into coils. The
characteristics of the coil determine the characteristics of the
slabs. The problem concerns the production of a series of
orders of steel coils requested by different customers. The
coils in each order are the same as each other and different
from those in other orders. Traditionally, it was ensured that
there would be a one-to-one correspondence between the dif-
ferent orders of coils and the types of slabs being produced.
However, the possibility of grouping the orders into compat-
ible groups is now considered so that orders in the same group
can be manufactured from the same type of slab. As an exam-
ple, two orders of coils are compatible with respect to the type
of steel if the types of steel required are of the same family
(steels are divided into families, and within each family, they
are ordered from lower quality to higher quality). In this case,
the coils could be produced from slabs of the higher-quality
steel type between the two initially needed. To check the com-
patibility between orders, other aspects, such as coil weights
and widths, must be considered in addition to the type of steel.
Grouping reduces the number of slab types that have to be
manufactured: 1 type is needed per group or “cluster” instead
of 1 per order. Thus, grouping has advantages such as greater
continuity in the production process, cost reduction (in indus-
trial processes with large equipment, the cost of stopping and
restarting is very high), less chance of accidents and break-
downs, and improvement in storage and inventory manage-
ment. This problem can be modeled as a graph in which the
nodes are the orders and the edges link compatible nodes
(orders). Cliques represent groups of compatible orders (and
can therefore be produced by identical slabs). The objective is
to minimize the number of groups and thus the number of
types of slabs to be produced. It is also necessary to consider
the costs that the grouping incurs (for example, by considering
the cost of producing coils with steel of the same family but of
a higher quality than that initially required). In this way, be-
tween two solutions with the same number of cliques, we can
choose the one with the lowest cost.

The literature regarding theoretical and methodological as-
pects related to the CPP is less abundant than that related to
other clique problems (especially the MCP). For example,
Bhasker and Samad [2] formulated a new upper bound for
the number of cliques, and they demonstrated that there is an
optimal partitioning that includes a maximal clique (although
not necessarily a maximum clique). The more recent publica-
tion of Sundar and Singh [19] developed two metaheuristic
techniques based on evolutionary computation to solve the
CPP. The proposed approaches were tested on 37 publicly
available DI-MACS graph instances. More recently, Casado
et al. [4] designed a method based on tabu search for an ex-
tension of the CPP to the field of manufacturing. This method
was adapted to the CPP and tested on the same 37 DI-MACS
instances.

Fig. 1 Network G with 9 vertices
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The main contribution of this work is the design of a new
heuristic method for the CPP. This method combines
multistart strategies with tabu search. The most interesting
characteristic of our method is the type of solution explora-
tion that is used in the tabu search procedure. As described
in more detail in the next section, the method allows infea-
sible solutions to be visited, which will in turn make the
search more flexible. In this way, the method will be able
to reach feasible solutions with fewer cliques and shorter
computation times than previous methods, as shown in
Section 3.

The rest of the article is organized as follows: Section 2
shows a mathematical formulation of the CPP, Section 3 de-
scribes the resolution method in detail, Section 4 presents
different computational tests and Section 5 details the
conclusions.

2 Mathematical formulation

LetG = (V, E) be a graph with n vertices (i.e., V = {1, 2, …,
n}). Let kmax be an upper bound of the optimum number of
cliques, and let Ck, k = 1…kmax denote each of the cliques.
The problem can be formulated as a mathematical program
with the following three sets of variables:

xik A binary variable that equals one if product i belongs to
clique Ck.

yk A binary variable that equals one if clique Ck is not
empty

nk The number of vertices assigned to clique Ck

The problem can be formulated as follows:

Minimize ∑kmax
k¼1yk ð1Þ

Subject to

xik ≤yk ∀i∈V ;∀k ¼ 1…kmax ð2Þ
∑kmax

k¼1xik ¼ 1 ∀i∈V ð3Þ
∑n

i¼1xik ≤nk ∀k ¼ 1…kmax ð4Þ
∑ i; jð Þ∈Exjk− xik−1ð Þn≥nk−1 ∀i∈V ;∀k ¼ 1…kmax ð5Þ
nk ≥0 ∀k ¼ 1…kmax ð6Þ
xik ¼ 0; 1f g and yk ¼ 0; 1f g∀i∈V ; ∀k ¼ 1…kmax ð7Þ

In this formulation, each variable yk indicates whether
clique k has an element or is empty; each variable xik indicates
whether vertex i is assigned to cluster k; and each variable nk
indicates the number of elements of clique k. Target function
(1) indicates the number of nonempty cliques. Restrictions (2)
force yk = 1 if any vertex i is assigned to clique k, restrictions
(3) force the assignment of each vertex to a clique, restrictions

(4) are cardinality restrictions on each clique, and restrictions
(5) force each clique to be constituted by adjacent vertices.
Last, an obvious value for kmax would be to take kmax = n.
However, to avoid excessively long formulations of the in-
stances, the value obtained by the Constructive procedure (de-
scribed in Pseudocode 2 with α = 1) was used as the value of
kmax.

3 Resolution method

Let S represent a generic solution of the corresponding CPP,K
be the number of nonempty cliques that constitute it, and C1,
C2…CK represent these cliques (in some cases, as an abbrevi-
ation, S = {C1, C2…CK}). Therefore, K is the target function
to minimize.

The proposed method is a multistart procedure. Thus, it is
an iterative process in which a solution is created in each
iteration, which is then improved by a tabu search (TS) pro-
cedure. The novelty of this work is this TS procedure, which
allows unfeasible solutions to be visited, thereby making the
search more flexible. As described in Section 4, this strategy
will allow the results obtained by previous procedures for this
problem to be improved considerably. This TS procedure is
described in detail below, as well as the entire proposed
multistart method.

Specifically, subsection 3.1 explains the basic idea of the
tabu search procedure and, more specifically, the moves it
uses. Subsection 3.2 shows the flowchart of the tabu search
and how moves are chosen. In subsection 3.3, some aspects
of the tabu search procedure are explained in more detail
and described in pseudocode. In subsection 3.4, the
multistart procedure into which the tabu search procedure
is integrated is described. Finally, in subsection 3.5, the
differences from other heuristic methods for the CPP are
explained.

3.1 Basic idea of the tabu search method: Movements

We begin with an initial feasible solution S, constituted by K
nonempty cliques C1, C2…CK. K groups Gr1, Gr2…GrK are
formed, which are initially identified with each clique; i.e.,
Grk = Ck, k = 1, . . , K. A group is “removed” or
“deactivated”, and its components are reassigned to other
groups. This can lead to an unfeasible solution, since some
of the groups may not be cliques; that is, there may be groups
with unlinked pairs of vertices. Hereafter, for simplicity, each
pair of unlinked vertices in the same group will be called an
“incompatibility”.

In the following steps, modifications or movements are
made in the solution with the aim of reducing the number of
incompatibilities. If the number of incompatibilities is reduced
to zero, a feasible solution will be obtained (all groups are
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cliques) with one fewer clique (K − 1). The movement con-
sidered in each step is to change a vertex of one group to
another group (considering only active groups).

To illustrate this process, an example is shown. Figure 1
shows an undirected network G with 9 vertices, and Fig. 2
presents an initial feasible solution, constituted by cliques C1

= {1}, C2 = {2, 3},C3 = {4, 5, 6} and C4 = {7, 8, 9}. Next, we
define the initial groups Grk = Ck, k = 1, . . , 4.

In the next step (Fig. 3), group Gr1 is removed
(“deactivated”), and its elements are reassigned among
the other groups. Specifically, vertex 1 is reassigned to
group Gr2. As shown in Fig. 4, there is an incompatibility
in this group corresponding to vertices 1 and 3 (marked in
red). Then, the movement that most reduces (or least in-
creases) the number of incompatibilities is searched for and
executed. Specifically, vertex 3 is moved to group Gr3.
This eliminates the incompatibility between vertices 1
and 3, but a new incompatibility appears between vertices
3 and 6 in group Gr3 (Fig. 5). Last, vertex 6 is moved to
group Gr4, which removes all incompatibilities (Fig. 6).
Thus, a new feasible solution is obtained, constituted by
three cliques: {1, 2}, {3, 4, 5} and {6, 7, 8, 9}.

With this new feasible solution, this sequence or block of
steps is repeated (removing a group, reassigning its elements,
and performing movements to eliminate incompatibilities).
Therefore, this is an iterative process in which the number of
cliques is reduced by one unit in each block of steps. The
entire process ends when it is not possible to remove the in-
compatibilities in one block.

3.2 Flowchart of the tabu search method

As mentioned above, this method consists of executing a se-
quence of blocks, where in each block, the number of clicks is
reduced by one unit. The process ends when it is not possible

to reduce the number of cliques in a block. The process for
each block is to choose a group and “empty” it, i.e., assign the
elements to other groups. This can lead to incompatibilities. In
the next steps, moves are made to reduce these incompatibil-
ities until they are eliminated, if possible. These moves consist
of changing a vertex from one group to another. A block ends
when a stop criterion is reached. This criterion is reached
when all incompatibilities have been eliminated or when a
certain number of iterations have elapsed without reducing
the incompatibilities. If all incompatibilities have been elimi-
nated, a feasible solution is found with one fewer clique (all
groups are cliques), and a new block is started; otherwise, the
process ends with the output being the best feasible solution
found. Figure 7 shows the flowchart of this process.

In the flowchart of Fig. 7, Ck, k = 1, . . , K, are the cliques
that define the initial solution;Ck

∗, k = 1, . . ,K, are the cliques

Fig. 2 Initial solution with 4 cliques

Fig. 3 Group Gr1 is removed

Fig. 4 Vertex 1 is reassigned to group Gr2
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in which the best solution is found and therefore in which the
output of the method is stored. Note that some of these cliques
can be empty. In this case, it is necessary to eliminate them
and renumber the rest. NInc is the variable in which the num-
ber of incompatibilities is stored. The set of criteria or method
by which to select a move in each step follows a basic tabu
search strategy [7]. Initially, the best move is chosen, i.e., the
one that reduces NInc the most or increases it the least; addi-
tionally, to prevent the algorithm from cycling, some moves
are declared “tabu” and are not considered. In this case,
returning a vertex to a group from which it was moved in
recent iterations is declared tabu. The tabu status can be ig-
nored if it results in a lower NInc value than that found in
previous iterations of the block. The next subsection will

explain the details of the tabu search method (which we name
the SteppedTabu procedure) and describe its full pseudocode.

3.3 The SteppedTabu procedure: Details and
pseudocode

Next, some aspects of the previous process are explained in
more detail. The first aspect to explain is which criterion is
used to select the group that is initially removed and the
groups to which its vertices are reassigned. The idea is to
select the group and perform the corresponding reassignments
so that the number of “incompatibilities” increases as little as
possible.

Let S be a solution (feasible or not) constituted by K
groups, Gr1, Gr2…GrK; we define:

– Active = set of active groups
– Grp(i) = index of the group to which vertex i belongs (i.e.,

i ∈ GrGrp(i)), ∀i ∈ V
– Inc(i, k) = number of vertices of group Grk to which

vertex i is not linked; more formally, Inc(i, k) = |{j ∈
Grk : j ≠ i, (i, j) ∉ E}|, ∀i ∈ V, ∀ k = 1. . K;

Similarly, we define:

– km(i) = argmin{Inc(i, k) : Grk ∈ Active, i ∉ Grk}, ∀i
∈ V

– -SInc kð Þ ¼ ∑i∈Grk Inc i; km ið Þð Þ
– -k1 = argmin{SInc(k) : k = 1. . K}

Therefore, km(i) indicates, for each vertex i ∈ V, the index
of the “active” group (without considering the group it be-
longs to) with fewer vertices that are “incompatible” with i
(i.e., vertices j such that (i, j) ∉ E). Thus, it is the index of the
group that would produce the smallest number of incompati-
bilities if i were “reassigned” to that group. SInc(k) indicates
the number of incompatibilities if group Grk is removed and
each of its members i is reassigned to group Grkmin(i). Last, k1
is the index of the group that would produce the smallest
number of incompatibilities if it were removed and each of
its elements i were reassigned to the corresponding groups
Grkm(i). Consequently, group Grk1 is eliminated.

As an example, the following table shows the initial
values of Inc(i, j), which correspond to the initial solution
of Fig. 2. The lines correspond to the vertices, and the
columns correspond to the groups. For each vertex i, the
group that corresponds to km(i) is highlighted in gray
(Table 1).

Table 2 shows the values of SInc.
Therefore, the “best” group to be removed (j1) could be

group.

Fig. 5 Vertex 3 is moved to group Gr3

Fig. 6 Vertex 6 is moved to group Gr4
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Gr1, Gr2 or Gr3. The draws are resolved in lexicographic
order, although other criteria can be considered. Thus, in this
case, we set k1 = Gr1; we “deactivate” this group and reassign
its only element, vertex 1, to group Gr2. In the subsequent
steps, group Gr1 is no longer considered in the possible
movements.

Next, for the following steps, we search for the “best”
movement of a vertex i to a different group – that is, the
movement that most reduces the number of incompatibilities

in the solution. Specifically, ∀i ∈ V, ∀ k = 1. . K i ∉ Grk.
This increase dif (if it is positive) or reduction (if it is negative)
is calculated as:

dif ¼ Inc i; kð Þ−Inc i;Grp ið Þð Þ ð8Þ

(This is the increase in incompatibilities in group k minus
the decrease in incompatibilities in group Grp(i) if the move-
ment were to be executed.) Consequently, we continue to
make use of auxiliary variables Inc(i, j), which are conve-
niently updated. Table 3 shows the values of Inc and dif for
the solution of Fig. 4.

The lowest value of dif is dif = 0, and the corresponding
movement is to move vertex 3 to group Gr3 (in this case, we
use the lexicographic order of the draws). We execute this
movement, obtaining the solution shown in Fig. 5. For the
next step, Table 4 presents the values of Inc and dif for the
solution of Fig. 5.

Fig. 7 Flowchart of the tabu
search method

Table 1 Values of
Inc(i, j) for the solution
of Fig. 2

Vertex Inc

Gr1 Gr2 Gr3 Gr4

1 0 1 2 3

2 0 0 2 3

3 1 0 1 3

4 1 1 0 3

5 0 0 0 3

6 1 2 0 0

7 1 2 2 0

8 1 2 2 0

9 1 2 2 0

Table 2 Values of SInc
for the solution of Fig. 2 Group→ Gr1 Gr2 Gr3 Gr4

SInc 1 1 1 3

J. A. Pacheco and S. Casado



The lowest value of dif (−1) corresponds to moving vertex
6 to group Gr4. The execution of this movement removes all
incompatibilities, resulting in a feasible solution (Fig. 6).

As observed in the previous example, in some cases, it is
convenient to admit movements that do not improve the solu-
tion (i.e., movements that do not reduce the number of incom-
patibilities) to prevent the blockage and termination of the
process. Thus, as shown in Table 3, in the solution presented
in Fig. 4, it is not possible to find any movement that reduces
the number of incompatibilities. However, we do not end the
process at this point, and we perform the best possible move
(moving vertex 3 to groupGr3), although it does not improve
the solution. Then, vertex 6 of group Gr3 is moved to Gr4,

obtaining a solution without incompatibilities. On the other
hand, if we admit movements that do not improve the solution
(and evenmovements that may worsen it), the process must be
equipped with mechanisms that prevent it from cycling.
Specifically, if a vertex has just left a group, the aim is to
prevent it from returning to the group in subsequent iterations.
To this end, we define tabumatrix(i, k) ∀ i ∈ V, ∀ k = 1. .K,
as follows:

tabumatrix(i, k) Number of iterations or steps (within each
block) in which vertex i exits group Grk

Therefore, the movement defined by vertex i and groupGrk
is declared “tabu” (and its execution is prevented) if:

iter≤ tabumatrix i; kð Þ þ tenure; ð9Þ
where iter is the number of the current iteration within each
block. The parameter tenure indicates the number of iterations
in which the return of i to group Grk is declared tabu after the
moment at which it leaves it. Excessively high values of
tenuremay lead the algorithm to be greatly hindered, and very
low values can make it cycle. Consequently, the selection of
this parameter is critical for the satisfactory functioning of the
process. On the other hand, the tabu state of a movement can
be ignored if this movement produces a solution with fewer
incompatibilities than any solution visited during that block
(“aspiration criterion”).

In summary, the entire process is a sequence of blocks.
Each block searches for a solution with one fewer clique than
the previous block. Therefore, this is a descending “stepped”
process (each block is a “step” with one fewer clique than the
previous block). Each block follows a tabu search strategy to
obtain a feasible solution (without incompatibilities). We call
this process or algorithm TabuStepped, and it is thoroughly
described in Pseudocode 1. In this pseudocode, the main var-
iables are:

– S: a feasible initial solution, where K is the number of
cliques that constitute it. These cliques are represented
as C1, C2…CK.

– S∗: the final solution, that is, the best feasible solution
found, where K∗ is the number of cliques that constitute

it (represented as C*
1;C

*
2…C*

K* ).

– Grk, k = 1, . . , K: the groups that make up the solutions
(feasible or not) visited during the process.

– Kf: number of active groups at each moment.

Table 3 Values of Inc and dif for the solution of Fig. 4

Vertex↓Group→ Inc dif

Gr2 Gr3 Gr4 Gr2 Gr3 Gr4

1 1 2 3 1 2

2 0 2 3 2 3

3 1 1 3 0 2

4 2 0 3 2 3

5 0 0 3 0 3

6 3 0 0 3 0

7 3 2 0 3 2

8 3 2 0 3 2

9 3 2 0 3 2

Table 4 Values of Inc and dif for the solution of Fig. 5

Vertex Inc dif

Gr2 Gr3 Gr4 Gr2 Gr3 Gr4

1 0 3 3 3 3

2 0 2 3 2 3

3 1 1 3 0 2

4 2 0 3 2 3

5 0 0 3 0 3

6 2 1 0 1 −1
7 2 3 0 2 3

8 2 3 0 2 3

9 2 3 0 2 3

A stepped tabu search method for the clique partitioning problem



Pseudocode 1 SteppedTabu Procedure

In Pseudocode 1, steps 1–4 represent the beginning of the
entire process (initiate S∗, Gr, Inc, Kf). The repeat-until loop
(steps 5–17) represents the execution of each block. Thus,
steps 5–9 determine which group k1 is to be deactivated, re-
assign its elements to other groups and determine the number

of incompatibilities (NInc). Steps 10–12 initiate the variables
that will be used in the NInc reduction phase (iter, iterbest,
tabumatrix, Niterbest). The do-while loop (steps 13–16)

J. A. Pacheco and S. Casado



represents each of the iterations of this phase. Thus, step 15
explores the entire set of movements, and step 16 executes the
best movement and updates the different variables. Once this
do-while loop ends, step 17 verifies whether the number of
incompatibilities was reduced to 0. If this is the case, the
obtained solution is saved in S∗, and a new block is executed.
Otherwise, the algorithm ends.

The auxiliary variable NIncbest indicates the minimum
number of incompatibilities during the NInc reduction phase;
NIncbest is used in the “aspiration criterion” (step 15b, which
verifies whether (NInc + dif < NIncbest)). The variable
iterbest indicates the iteration in whichNIncbestwas modified
(step 16b). maxiter is the parameter of the algorithm that in-
dicates the maximum number of iterations of the do-while
loop after the modification of NIncbest. Therefore, maxiter
and NIncbest determine the stopping criterion for this loop.

In the search for the best movement (step 15), a movement
is considered if it improves Nincbest (NInc + dif < NIncbest)
or if it is not tabu (iter > tabumatrix(i, k) + tenure). The
values of the best movement found are saved in the variables
difb (variation in the number of incompatibilities), ib (vertex)
and kb (group).

3.4 MultiStartStepped (procedure)

This SteppedTabu procedure is inserted into the multistart
procedure, as previously stated. The initial solutions that are
subsequently improved by the SteppedTabu procedure are
built with the constructive method proposed in Casado et al.
[4], which is briefly described in Pseudocode 2.

Pseudocode 2 Constructive (procedure)

The “guide” function g(i) measures the suitability of each
candidate vertex to be chosen. The parameter α takes values
between 0 and 1 and regulates the degree of randomness of the
method. If α = 1, the process always produces the same solu-
tion (except in cases in which there is an iteration with more

than one vertex i ∈ U′ corresponding to gmax). If α = 0, the
values of g(i) are irrelevant, and the process is totally random. A
more detailed explanation of this method is provided in Casado
et al. [4]. The multistart procedure (which we name
MultiStartStepped or MSS) is described in Pseudocode 3.

A stepped tabu search method for the clique partitioning problem



Pseudocode 3 MultiStartStepped (procedure)

As can be observed, the final solution obtained is Sbest, with
the corresponding number of cliques Kbest. Therefore, this
procedure depends on the following parameters: α (from the
constructive procedure), tenure, maxiter (from the
SteppedTabu procedure) and maxiterMSS. The next section
analyses the different computational tests used to measure
the performance of this procedure.

3.5 Differences with other recent heuristics

To the best of our knowledge, there are 3 recent heuristic
methods for the CPP: two methods proposed by Sundar and
Singh [19] and one method proposed in Casado et al. [4]. The
two methods proposed by Sundar and Singh [19] are evolu-
tionary methods that work on a population of solutions that
can interact with each other. These two evolutionary methods
are based on the genetic algorithm and an artificial bee colony.
In the case of the genetic algorithm, the Selection, Crossover,
Repair, Mutation and Replacement operators/procedures are
described in detail. In the case of the artificial bee colony
method, the procedure for building the neighboring solutions,
selecting solutions for an onlooker bee, etc., are described. In

both methods, the same procedure is used to build the initial
population, and only feasible solutions are considered.

Our MSS method, as explained above, is a multistart meth-
od in which at each iteration, a solution is constructed that is
improved by a tabu search procedure. At each step, it operates
on a single solution that continually changes. Therefore, there
is no interaction between different solutions, and the above-
mentioned operators are not used. It also allows infeasible
solutions to be visited.

The method proposed in Casado et al. [4] has a similar
strategy to ours: it is a multistart method that uses a tabu search
procedure in the improvement phase. The difference between
this tabu search procedure and the one proposed in our work is
that the procedure of Casado et al. [4] does not allow moves to
infeasible solutions. Neighboring solutions must be feasible;
i.e., the sets must be cliques (no “incompatibilities” are
allowed). To determine which solutions are better, two hier-
archical criteria are used: the number of cliques and the “im-
balance” in the number of elements in the cliques. As a mea-
sure of “imbalance”, the sum of the squares of the number of
elements in each clique is taken. Solutions with fewer cliques
are preferred, and in the case of equality in the number of
cliques, the solution with the highest “imbalance” is chosen.

Thus, among the 3 solutions

S1 ¼ 1; 2; 3; 4; 5; 6f g; 7; 8; 9; 10f gf g
S2 ¼ 1; 2; 3; 4; 5; 6f g; 7; 8f g; 9; 10f gf g
S3 ¼ 1; 2; 3; 4f g; 5; 6; 7f g; 8; 9; 10f gf g
solution S1 is preferred over S2 and S3 since S1 consists of two
cliques while S2 and S3 consist of 3. On the other hand, S2 is
preferred over S3 since the “imbalance” of S2 is 44 (36 + 4 +
4) and that of S2 is 34 (16 + 9 + 9). The idea of using the
imbalance criterion is to force empty clusters with fewer
elements.

Our tabu search procedure is more aggressive: starting
from a feasible solution, a clique is eliminated, and its ele-
ments are distributed among the other cliques, which produces
“incompatibilities”, i.e., infeasible solutions. In the next steps,
the procedure searches for solutions with fewer incompatibil-
ities until it reaches a solution without incompatibilities, that

Table 5 Instances for parameter fitting

Instance

Name n density

C125.9 125 0.8985

C1000.9 1000 0.9011

C2000.5 2000 0.5002

brock200_2 200 0.4963

keller6 3361 0.8182

p_hat300–1 300 0.2438

p_hat700–1 700 0.2493

p_hat1500–1 1500 0.2534

DSJC500_5 500 0.5020
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is, a feasible solution with one fewer clique than the previous
feasible solution. This process is repeated with the new feasi-
ble solution. Allowing infeasible solutions to be visited gives
more flexibility to the search, and as will be seen below, the
resulting MSS method produces better solutions than the 3
methods above.

4 Computational tests

This section describes a series of computational tests used to
compare the performance of our multistart algorithm. The
algorithm was implemented in Delphi (Object Pascal) with
the development environments Rad Studio 10.3 and 11. The
tests with this code were conducted using a workstation with
an AMD 3990X 2.9 GHz processor with 256 Gb RAM. We
also used CPLEX 20.1 in our tests. This section is divided into
the following parts: Subsection 4.1 describes the parameter
fitting carried out in our method, Subsection 4.2 compares
our method with the commercial software CPLEX, and
Subsection 4.3 compares the results with other recent heuristic
results for this problem.

4.1 Parameter fine-tuning

Parameter fitting was carried out using a set of 9 instances of
the DIMACS library. Table 5 shows this set and its character-
istics. Specifically, it indicates the names, sizes (n), and den-
sities (percentages of links in the network over the total pos-
sible number of links) of the instances.

The choice of instances has been made in such a way as to
combine instances of different size and density. Note that
there are 3 instances of small size (C125.9, brock200_2 and
p_hat300–1), 3 instances of medium size (DSJC500_5,
p_hat700–1 and C1000.9) and 3 instances of large size
(p_hat1500–1, C2000.5 and keller6). On the other hand, there
are 3 low density instances (p_hat300–1, p_hat700–1 and
p_hat1500–1), 3 medium density instances (C2000.5,
brock200_2 and DSJC500_5) and 3 high density instances
(C125.9, C1000.9 and keller6).

As previously stated, ourMSSmethod has 4 parameters:α,
tenure, maxiter and maxiterMSS. The parameter α indicates
the degree of randomness of the constructive procedure, and
the parameter tenure regulates the number of “tabu” move-
ments in the SteppedTabu procedure. The parameters maxiter
and maxiterMSS are used as stopping criteria in the tabu pro-
cedure and in the general MSS procedure. To fit the other two
parameters (α and tenure), we fixed the valuesmaxiter = 10 ·
n and maxiterMSS = 20. For α, the values considered were α
= 0, 0.1, 0.5, 0.9, 0.99 and 1. The values of tenure considered
were tenure ¼ n=2; n; 2 � n and 5 · n. Of all the combinations,
the one that yielded the best results was α = 0.99 and

tenure ¼ n=2. With these values, we analyzed the parameters
maxiter andmaxiterMSS. It was determined that there were no
significant improvements with values abovemaxiter = 10 · n
and maxiterMSS = 100. Therefore, these values were used in
the rest of the tests. Finally, it should be noted that the stop-
ping criterion used by the MultiStartStepped procedure is to
achieve maxiterMSS consecutive starts without improvement
in solution quality subject to a maximum of 3600 seconds.

Table 6 Results obtained by CPLEX and MSS

Instance Cplex MSS

n density Lower Bound val C.T. val C.T.

10 0.2667 5 5 0.11 5 < 0.001

10 0.6000 4 4 0.08 4 < 0.001

10 0.6222 4 4 0.06 4 < 0.001

20 0.3211 8 8 0.53 8 < 0.001

20 0.4842 6 6 0.27 6 < 0.001

20 0.7579 4 4 0.17 4 < 0.001

30 0.3172 10 10 22.94 10 < 0.001

30 0.4621 8 8 1.53 8 < 0.001

30 0.7287 5 5 0.47 5 < 0.001

40 0.2910 9 12 > 3600 12 < 0.001

40 0.4872 9 9 39.53 9 < 0.001

40 0.7000 6 6 0.61 6 < 0.001

50 0.2873 13 14 > 3600 14 < 0.001

50 0.4743 8 10 > 3600 10 0.001

50 0.7086 7 7 7.56 7 0.001

60 0.3158 11 16 > 3600 15 0.051

60 0.5051 9 11 > 3600 11 0.001

60 0.7209 7 7 110.52 7 0.001

70 0.3072 9 19 > 3600 17 0.386

70 0.5064 7 14 > 3600 12 0.006

70 0.6894 8 8 804.00 8 0.002

80 0.3108 8 24 > 3600 18 0.121

80 0.5013 7 16 > 3600 13 0.003

80 0.7022 6 9 > 3600 8 0.331

90 0.3051 9 23 > 3600 20 0.213

90 0.4901 7 18 > 3600 15 0.002

90 0.6994 7 9 > 3600 9 0.007

100 0.2974 10 26 > 3600 23 0.006

100 0.4998 8 19 > 3600 15 0.036

100 0.6927 7 10 > 3600 10 0.002

110 0.3076 10 28 > 3600 23 0.821

110 0.4952 7 20 > 3600 16 2.079

110 0.7061 6 12 > 3600 10 0.200

120 0.2992 11 31 > 3600 26 0.509

120 0.5091 8 23 > 3600 17 0.244

120 0.6971 6 13 > 3600 11 0.045

A stepped tabu search method for the clique partitioning problem



4.2 Tests with CPLEX

Since the CPP is an NP-hard problem, it is reasonable to
expect an excessive computation time to be needed to solve
large instances exactly. However, it would be interesting to
determine the evolution of these computation times as a func-
tion of the size of the instances and determine the maximum
size of the instances that can be solved exactly within a

reasonable time. If this size is small, it would justify the use
of heuristic strategies, such as the one proposed in this work. It
would also be interesting to know whether our strategy can
find the optimum solution in instances in which such an opti-
mal solution is known and, if so, determine the deviation from
this optimal solution. In this section, the commercial software
CPLEX is used to solve small instances exactly. The results
obtained by CPLEX are compared with those obtained by our

Table 7 Results of SSGGA, GABC and MSST (10 runs)

Instance SSGGA GABC MSS

name n den. Best Avg. Time Best Avg. Time Best Avg. Time

C125.9 125 0.898 6 6.1 1.25 6 6.0 0.08 6 6.0 1.63

C250.9 250 0.899 10 10.0 2.93 10 10.0 0.5 9 9.0 2.54

C500.9 500 0.900 16 16.5 13.44 15 15.7 5.44 14 14.0 1.73

C1000.9 1000 0.901 26 27.1 63.52 25 25.0 59.95 23 23.0 10.55

C2000.9 2000 0.900 45 45.9 345.56 42 42.0 527.8 40 40.0 365.25

C2000.5 2000 0.500 173 174.1 710.09 178 178.9 1167.49 178 178.8 3228.18

C4000.5 4000 0.500 315 315.8 5227.38 321 322.7 8627.66 325 326.3 3600.00

MANN_a27 378 0.990 4 4.0 2.12 4 4.0 2.59 4 4.0 0.55

MANN_a45 1035 0.996 4 4.0 11.82 4 4.0 60.89 4 4.0 2.28

MANN_a81 3321 0.999 4 4.0 108.96 4 4.0 2726.52 4 4.0 56.04

brock200_2 200 0.496 25 25.9 2.47 27 27.4 1.29 26 26.0 11.73

brock200_4 200 0.658 18 18.5 2.52 19 19.4 1.04 18 18.1 3.45

brock400_2 400 0.749 25 25.5 10.99 25 25.4 7.54 24 24.0 74.09

brock400_4 400 0.749 25 25.9 11.44 25 25.4 7.07 23 23.8 16.83

brock800_2 800 0.651 57 57.7 51.59 58 58.4 72.11 56 56.8 141.12

brock800_4 800 0.650 57 58.0 46.59 58 58.3 74.51 56 56.8 140.00

gen200_p0.9_44 200 0.900 9 9.0 1.41 8 8.6 0.29 7 7.3 1.38

gen200_p0.9_55 200 0.900 7 7.6 1.63 7 7.5 0.23 7 7.0 1.28

gen400_p0.9_55 400 0.900 14 14.2 7.03 14 14.0 3.41 12 12.3 11.46

gen400_p0.9_65 400 0.900 13 13.9 6.88 13 13.9 2.74 11 11.4 12.90

gen400_p0.9_75 400 0.900 13 13.8 5.83 13 13.1 3.03 10 10.7 15.30

hamming8–4 256 0.639 16 16.0 7.03 16 16.0 1.18 16 16.0 3.86

hamming10–4 1024 0.829 38 38.0 62.89 37 37.2 107.48 34 34.1 89.12

keller4 171 0.649 20 20.2 2.14 21 21.3 0.82 19 19.7 30.38

keller5 776 0.752 44 45.5 39.98 47 47.1 68.85 42 43.0 1822.29

keller6 3361 0.818 100 101.5 1537.98 103 103.1 4459.84 91 93.4 3491.51

p_hat300–1 300 0.244 66 66.5 3.61 70 70.8 2.56 64 65.1 19.38

p_hat300–2 300 0.489 45 45.6 4.07 45 46.4 3.1 42 42.4 179.68

p_hat300–3 300 0.744 22 22.5 4.21 22 22.7 3.11 19 19.7 139.81

p_hat700–1 700 0.249 135 137.4 19.93 146 147.4 36.63 131 132.9 3600.00

p_hat700–2 700 0.498 93 94.1 19.29 93 94.0 35.44 85 87.4 1477.47

p_hat700–3 700 0.748 44 44.3 25.31 43 44.2 32.86 37 38.1 109.82

p_hat1500–1 1500 0.253 271 271.8 120.12 284 285.4 263.04 253 256.1 3474.96

p_hat1500–2 1500 0.506 175 176.4 103.60 176 177.7 254.52 157 162.8 3216.74

p_hat1500–3 1500 0.754 80 81.2 160.47 79 79.9 290.49 67 69.0 3481.54

DSJC500_5 500 0.502 54 54.4 14.72 56 56.7 20.16 55 55.0 543.81

DSJC1000_5 1000 0.500 96 97.3 76.08 100 101.0 143.92 99 99.0 1946.58
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MSS. Specifically, instances of sizes n = 10, 20, 30, …, 120
were randomly generated. For each value of n, three values of
different densities were considered: low (approximately 0.3),
medium (approximately 0.5) and high (approximately 0.7).
To avoid excessive computation times, the time used per in-
stance and method was limited to 3600 seconds. Table 6
shows the obtained results. For each method, the value of
the best solution found (val) is indicated, and the computation
time is shown in seconds (C.T.). In the case of CPLEX, the
value of the lower bound obtained is added. If this lower
bound coincides with val, then the solution obtained by
CPLEX is optimal, and the process ends (if the process did
not end within 3600 seconds, this is indicated by “> 3600” in
the C.T. column). For each instance, the value of the best
solution obtained is indicated in bold.

In Table 6, the following can be observed:

– CPLEX was able to finish, thereby obtaining the optimal
solution, for instances up to size n = 30. In the instances of
sizes n = 40, 50, 60 and 70, CPLEX was able to finish in
some cases (those of greater density) and not in others.
After n = 80, CPLEX was not able to finish in any
instance.

– It seems that CPLEX behaves better for instances of
greater density than those of lower density: among the
small instances (n ≤ 30), the computation time was
shorter for instances of greater density; among the
medium-sized instances (40 ≤ n ≤ 70), CPLEXwas able
to finish for instances of greater density; and among the
large instances (n ≥ 80), the gap between the lower
bound and the value obtained was smaller for the in-
stances of greater density.

– MSS was able to obtain the best result in all instances: in
20 instances, MSS and CPLEX obtained solutions with
the same value, and in 16 instances (in most of the larger
instances), MSS obtained strictly better solutions.
Moreover, the computation time was very short (it
exceeded one second in only one instance). Therefore,
in the instances in which the optimal solution was known
(those where CPLEX finished), MSS reached the optimal
solution with very short calculation times.

In summary, only small instances were resolved exactly (n
≤ 30, and in some instances of 40 ≤ n ≤ 70). Larger instances

seem to require the use of heuristic techniques, such as the
MSS method proposed. In all the instances in which the opti-
mal solution is known, our MSS method reached the optimal
solution.

4.3 Computational tests against recent heuristics

As shown in the previous subsection, this problem can only be
solved exactly in small instances. This justifies the develop-
ment of heuristic methods such as our MSS method. In this
subsection, we compare our method with other recent heuris-
tics in the literature for this problem. Specifically, we consider
the two methods proposed in Sundar and Singh [19]: the
method based on genetic algorithms (SSGGA) and the meth-
od based on the artificial bee colony (GABC). To check the
performance of these methods, the authors used a set of 37
instances from the well-known DIMACS library (http://
dimacs.rutgers.edu/programs/challenge/). These instances
were selected due to their difficulty (the presence of
overlapping cliques). Then, Casado et al. [4] designed a
method based on tabu search (MSTS) for an extension of the
CPP to a manufacturing problem. This method was adapted to
the CPP and tested in these 37 DIMACS instances. To com-
pare our MSS method with these heuristics, we executed it in
these same instances.

In the first set of tests, MSS was run 10 times (as were
SSGGA and GABC), and the results obtained are shown in
Table 7 together with those of SSGGA and GABC reported in
Sundar and Singh [19]. Specifically, Table 7 shows the name,
size (n) and density (“den.”) of each instance; for each method
and instance, the best result of the 10 runs (“Best”), the aver-
age of the results of the 10 runs (“Avg.”) and the average
execution time over the 10 runs (“Time”) are shown. For each
instance, the best solution is marked in bold.

Regarding the best values obtained (“Best” columns) by
each method, our MSS method finds the best solution in 32
out of 37 instances, the SSGGAmethod finds the best solution
in 11 instances, and the GABC method finds the best solution
in 6 instances. On the other hand, the MSS method is strictly
better than SSGGA in 25 out of 37 instances and strictly worse
in 5. The MSS method is strictly better than GABC in 29 out
of 37 instances and strictly worse in 1. Regarding the mean
values (“Avg.” columns), our MSS finds the best mean value
in 32 out of 37 instances, the SSGGA method finds the best

Table 8 Results of the Wilcoxon
signed rank tests n∗ W+ W− minW p-tail Z score p-tail z

Best SSGGA-MSS 30 390.5 74.5 74.5 < 0.001 12.8598 < 0.00001

GABC-MSS 30 444 21 21 < 0.001 8.6248 < 0.00001

Avg. SSGGA-MSS 33 486.5 74.5 74.5 < 0.001 3.8925 0.00005

GABC-MSS 32 506 22 22 < 0.001 4.8531 < 0.00001

A stepped tabu search method for the clique partitioning problem
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mean value in 9 instances, and the GABC method finds the
best mean value in 5 instances. On the other hand, the MSS
method obtains strictly better mean values than SSGGA in 28
out of 37 instances and strictly worse in 5. The MSS method
obtains strictly better mean values than GABC in 31 out of 37
instances and strictly worse in 1.

To reinforce the conclusions that can be drawn from
Table 7, the following Wilcoxon signed rank tests with the
corresponding null and alternative hypotheses are proposed:

−H0 : μSSGGA≤μMSS;H1 : μSSGGA > μMSS ð10Þ
−H0 : μGABC ≤μMSS ;H1 : μGABC > μMSS ð11Þ

These two tests are performed both for the best values (“Best”
columns in Table 7) and for the average values (“Avg.” columns).
Therefore, 4 tests are performed. The results of these tests are
shown in Table 8. Each table of this test shows the number of
instances in which there is no tie (n∗); the sum of ranks with a
positive difference (i.e., where the values of the solutions of
SSGGA and GABC are higher than those of MSST), denoted
by W+; the sum of ranks with a negative difference (W−); the
lowest values ofW+ andW− (minW) and the corresponding prob-
ability tail (p-tail); and the z value obtained (Z score) and the
corresponding probability tail (p-tail z).

As seen in Table 8, considering both the minW values and
the Z score values, the corresponding probability tails are in-
significant: the null hypothesis is rejected in all 4 tests, and
therefore, it can be concluded that MSST obtains significantly
better values than SSGGA and GABC (both in terms of the
best solution found and in terms of mean values).

In a second set of tests, our MSS is run once, and its
results are shown in Table 9 together with those obtained
from MSTS (reported in Casado et al. [4]). Table 9 shows
the data for each instance (as in Table 7), and for each
method and instance, the value of the solution obtained
(“Val”) and the elapsed computation time to obtain that
solution (“Time-Best”) are shown. The best solution of
each instance is marked in bold.

As seen in Table 9, in the comparison with MSTS, our
MSS obtains the best solution in all instances (37), while
MSTS obtains the best solution in 7. Therefore, MSS strictly
outperforms MSTS in 30 instances, while in the other 7 in-
stances, both methods obtain solutions of equal quality.
Applying theWilcoxon signed rank test, there are 30 instances
with strictly positive differences and no negative differences.
Therefore, following the notation of Table 8, n∗= 30, W+=
465,W−= 0 and minW=0. Therefore, our MSS is significantly
better than MSTS.

Therefore, our MSS method considerably improves the
results of the previous methods. Regarding the computation
times, in some instances where MSS exceeds the other
methods, the computation time of MSS is much longer than

those of the other methods. This happens in instances keller4,
keller5, p_hat300–2, p_hat300–3, p_hat700–1, p_hat700–2,
p_hat700–3, p_hat1500–1, p_hat1500–2 and p_hat1500–3.
However, observing the evolution of the results with respect
to the computation times in these instances, it can be conclud-
ed that our method achieves better results than the previous
methods in a similar or shorter computation time.

Table 9 Results of MSTS and MSS (1 run)

Instance MSTS MSS

Name n den. Val. Time-Best Val. Time-Best

C125.9 125 0.898 6 0.063 6 0.141

C250.9 250 0.899 9 1.714 9 0.016

C500.9 500 0.900 15 1.605 14 0.188

C1000.9 1000 0.901 24 110.032 23 20.589

C2000.9 2000 0.900 41 1890.31 40 7.938

C2000.5 2000 0.500 182 1794.738 178 3413.501

C4000.5 4000 0.500 329 3198.524 326 37.46

MANN_a27 378 0.990 4 0.031 4 0.001

MANN_a45 1035 0.996 4 0.512 4 0.001

MANN_a81 3321 0.999 4 21.331 4 0.001

brock200_2 200 0.496 27 5.537 26 2.11

brock200_4 200 0.658 19 5.133 18 0.89

brock400_2 400 0.749 25 7.453 24 1.063

brock400_4 400 0.749 25 10.314 24 1.156

brock800_2 800 0.651 58 1621.504 57 1.843

brock800_4 800 0.650 59 118.132 57 13.365

gen200_p0.9_44 200 0.900 8 0.14 7 0.339

gen200_p0.9_55 200 0.900 7 1.048 7 0.016

gen400_p0.9_55 400 0.900 13 5.743 12 1.507

gen400_p0.9_65 400 0.900 12 2.405 11 0.6

gen400_p0.9_75 400 0.900 12 41.068 11 0.266

hamming8–4 256 0.639 16 12.969 16 0.141

hamming10–4 1024 0.829 35 83.906 34 8.912

keller4 171 0.649 20 10.041 19 27.201

keller5 776 0.752 44 1584.427 42 1296.893

keller6 3361 0.818 95 614.315 92 540.414

p_hat300–1 300 0.244 65 266.354 65 6.423

p_hat300–2 300 0.489 44 320.752 42 93.33

p_hat300–3 300 0.744 21 124.531 19 30.942

p_hat700–1 700 0.249 133 467.269 132 2454.861

p_hat700–2 700 0.498 90 965.563 89 115.964

p_hat700–3 700 0.748 41 654.411 37 30.106

p_hat1500–1 1500 0.253 257 1601.787 254 1629.413

p_hat1500–2 1500 0.506 169 1490.548 168 979.925

p_hat1500–3 1500 0.754 76 182.043 67 2332.43

DSJC500_5 500 0.502 57 18.346 55 59.062

DSJC1000_5 1000 0.500 100 3294.702 99 950.923
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Tables 10 and 11 show the evolution of the value of the
best solution found by MSS (column “Val.”) and the compu-
tation time used to obtain it (column “Time”) for each of these
instances. These values were obtained in the execution corre-
sponding to Table 9. Specifically, Table 10 shows the evolu-
tion corresponding to the instances keller4, keller5, p_hat300–
2, p_hat300–3 and p_hat700–1. Table 11 shows the evolution
corresponding to the instances p_hat700–2 p_hat700–3,
p_hat1500–1, p_hat1500–2 and p_hat1500–3.

As an example, Figs. 8 and 9 show the graphs correspond-
ing to the evolution of the keller5 and p_hat700–2 instances.

In Tables 10 and 11 and Figs. 8 and 9, the following can be
observed:

– In instance keller4, MSS reaches a solution with 21
cliques in 0.156 seconds and with 20 cliques in 0.25 sec-
onds. Meanwhile, GABC obtains the best solution with
21 cliques (over the 10 runs) in 0.82 seconds (the average

Table 10 Evolution of the best solution obtained by MSS (in the execution corresponding to Table 9) in the instances keller4,
keller5, p_hat300–2, p_hat300–3 and p_hat700–1

keller4 keller5 p_hat300–2 p_hat300–3 p_hat700–1

Val. Time Val. Time Val. Time Val. Time Val. Time Val. Time

22 0.140 51 0.187 48 0.156 23 0.141 172 0.343 141 1.39

21 0.156 48 0.202 47 0.219 22 0.157 155 0.359 140 1.656

20 0.250 47 0.28 46 0.48 21 0.172 154 0.375 139 2.585

19 27.201 46 0.343 45 0.496 20 0.282 153 0.375 138 2.881

45 0.781 44 0.824 19 30.942 150 0.5 137 4.741

44 1.945 43 79.390 147 0.625 136 5.991

43 9.352 42 93.300 146 0.859 135 16.581

42 1296.893 145 0.922 134 17.487

143 1.328 133 331.035

142 1.375 132 2454.861

Table 11 Evolution of the best solution obtained by MSS (in the execution corresponding to Table 9) in the instances p_hat700–2, p_hat700–3, p_
hat1500–1, p_hat1500–2 and p_hat1500–3

p_hat700–2 p_hat700–3 p_hat1500–1 p_hat1500–2 p_hat1500–3

Val. Time Val. Time Val. Time Val. Time Val. Time Val. Time

104 0.313 42 0.906 284 1.015 268 15.238 223 0.781 80 0.637

97 0.328 41 1.062 283 1.015 267 22.072 218 0.797 79 0.701

96 0.672 40 2.237 282 1.031 266 22.087 210 0.812 78 0.737

95 0.735 39 4.299 281 1.187 265 28.808 203 0.828 77 1.003

94 1.844 38 7.503 280 1.187 264 31.69 199 0.843 76 2.378

93 9.902 37 30.106 279 2.437 263 34.66 192 0.859 75 4.206

92 13.095 278 2.922 262 38.165 184 0.875 74 8.847

91 46.167 277 3.234 261 39.399 176 0.89 73 10.769

90 115.293 276 3.25 260 77.743 175 1.062 72 24.396

89 115.964 275 4.815 259 121.491 174 1.062 71 35.917

274 4.831 258 125.157 173 1.89 70 54.668

273 5.159 257 128.244 172 13.976 69 106.732

272 8.956 256 571.912 171 14.148 68 156.818

271 10.019 255 575.079 170 175.211 67 2332.43

270 12.894 254 1629.413 169 438.979

269 14.519 168 979.925
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execution time), and SSGGA and MSTS reach solutions
with 20 cliques in 2.14 and 10.041 seconds, respectively.

– In instance keller5, MSS reaches a solution with 47
cliques in 0.28 seconds and with 44 cliques in 1.945 sec-
onds. Meanwhile, GABC reaches a solution with 47
cliques in 68.85 seconds, and SSGGA and MSTS reach
solutions with 44 cliques in 39.98 and 1584.427 seconds,
respectively.

– In instance p_hat300–2, MSS reaches a solution with 45
cliques in 0.496 seconds and with 44 cliques in 0.824 sec-
onds. Meanwhile, SSGGA and GABC reach solutions
with 45 cliques in 4.04 and 3.1 seconds, respectively,
and MSTS reaches a solution with 44 cliques in
320.752 seconds.

– In instance p_hat300–3, MSS reaches a solution with 22
cliques in 0.157 seconds and with 21 cliques in 0.172 sec-
onds. Meanwhile, SSGGA and GABC reach solutions
with 22 cliques in 4.21 and 3.11 seconds, respectively,

and MSTS reaches a solution with 21 cliques in
124.351 seconds.

– In instance p_hat700–1, MSS reaches a solution with 146
cliques in 0.859 seconds, with 135 cliques in 16.581 sec-
onds and with 133 cliques in 331.035 seconds.
Meanwhile, GABC reaches a solution with 146 cliques
in 36.63 seconds, SSGGA reaches a solution with 135
cliques in 19.93 seconds, and MSTS reaches a solution
with 133 cliques in 467.269 seconds.

– In instance p_hat700–2, MSS reaches a solution with 93
cliques in 9.902 seconds and with 90 cliques in
115.293 seconds. Meanwhile, SSGGA and GABC reach
solutions with 93 cliques in 19.29 and 35.44 seconds,
respectively, and MSTS reaches a solution with 90
cliques in 965.563 seconds.

– In instance p_hat700–3, MSS reaches a solution with 44
cliques in 0.437 seconds, with 43 cliques in 0.468 seconds
and with 41 cliques in 1.062 seconds. Meanwhile,

Fig. 8 Evolution of MSS in
keller5

Fig. 9 Evolution of MSS in p_
hat700–2
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SSGGA reaches a solution with 44 cliques in 25.31 sec-
onds, GABC reaches a solution with 43 cliques in
32.86 seconds, and MSTS reaches a solution with 41
cliques in 654.411 seconds.

– In instance p_hat1500–1, MSS reaches a solution with
284 cliques in 1.015 seconds, with 271 cliques in
10.019 seconds and with 257 cliques in 128.244 seconds.
Meanwhile, GABC reaches a solution with 284 cliques in
263.04 seconds, SSGGA reaches a solution with 271
cliques in 120.12 seconds, and MSTS reaches a solution
with 257 cliques in 1601.787 seconds.

– In instance p_hat1500–2, MSS reaches a solution with
176 cliques in 0.89 seconds,with 175 cliques in 1.062 sec-
onds and with 169 cliques in 438.979 seconds.
Meanwhile, GABC reaches a solution with 176 cliques
in 254.52 seconds, SSGGA reaches a solution with 175
cliques in 103.6 seconds, and MSTS reaches a solution
with 169 cliques in 1490.548 seconds.

– In instance p_hat1500–3, MSS reaches a solution with 80
cliques in 0.637 seconds, with 79 cliques in 0.701 seconds
and with 76 cliques in 2.378 seconds. Meanwhile,
SSGGA reaches a solution with 80 cliques in 160.47 sec-
onds, GABC reaches a solution with 79 cliques in
290.49 seconds, and MSTS reaches a solution with 76
cliques in 182.043 seconds.

It should be noted, however, that the SSGGA and GABC
times refer to the average times of the 10 complete runs cor-
responding to Table 7, and the solution value refers to the best
solution obtained in these 10 runs. For MSTS, the solution
value refers to the best solution obtained in the run corre-
sponding to Table 9, and the time refers to the time needed
to reach this solution.

In summary, from the above, it can be concluded that a) in
most of the cases, our method obtains similar or strictly better
solutions than the previous methods; b) in most of the cases,
our method can reach solutions of the same quality as the final
solutions obtained by the previous methods while using less
total time than those methods (in some cases, two orders of
magnitude less); and c) our method shows that it has the ca-
pacity to evolve, as it not only obtains good solutions quickly
but is also able to improve them during their execution.

All the solutions obtained by MSS corresponding to
Tables 7 and 9 can be found at the following link: www.
ubu.es/metaheuristicos-grinubumet/ejemplos-y-datos-de-
problemas. However, for a more rigorous comparison of the
computation times, we provide Table 12 showing the CPUs
used to run SSGGA, GABC, MSTS and our MSS, as well as
their relative speeds. Also, we include some benchmarks that
can be found at cpu.userbenchmark.com, (specifically those
corresponding to the Gaming, Desktop and Workstation tests,
as well as the average result).

5 Conclusions

Clique problems in graphs are interesting because they are
attractive from a theoretical perspective and they have a wide
range of applications. One of these problems is the so-called
Clique Partitioning Problem, which has great applicability in
different areas, such as timetabling, manufacturing, schedul-
ing, and telecommunications. This is an NP-hard problem,
and as described in this work, it can only be solved exactly
in relatively small instances. Despite its practical importance,
few resolution methods have been proposed for this problem
in the recent literature. This work proposes a heuristic method
that uses a tabu search procedure within a multistart strategy.
An interesting characteristic of our method is that it allows
unfeasible solutions to be visited. This gives flexibility to the
exploration of the solution space, and in this way, the method
achieves a dramatic improvement in both quality and compu-
tational time over the results of previous methods.
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MSTS [4] Intel i7 (7700) 4.2 79 83 66 79.2

MSS AMD 3990X 2.9 81 81 146 81.3
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