
A Soft Computing System for Modelling the
Manufacture of Steel Components

Andres Bustillo, Javier Sedano, Leticia Curiel, José R. Villar and Emilio Corchado

Abstract In this paper we present a soft computing system developed to optimize
the laser milling manufacture of high value steel components, a relatively new and
interesting industrial technique. This multidisciplinary study is based on the applica-
tion of neural projection models in conjunction with identification systems, in order
to find the optimal operating conditions in this industrial issue. Sensors on a laser
milling centre capture the data used in this industrial case study defined under the
frame of a machine-tool that manufactures steel components like high value molds
and dies. The presented model is based on a two-phase application. The first phase
uses a neural projection model capable of determine if the data collected is informa-
tive enough based on the existence of internal patterns. The second phase is focus on
identifying a model for the laser-milling process based on low-order models such as
Black Box ones. The whole system is capable of approximating the optimal form of
the model. Finally, it is shown that the Box-Jenkins algorithm, which calculates the
function of a linear system from its input and output samples, is the most appropriate
model to control such industrial task for the case of steel components.

1 Introduction

Laser milling, in general, consists on the controlled evaporation of waste material
due to its interaction with high-energy pulsed laser beams. The operator of a con-
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ventional milling machine is aware at all times of the amount of waste material
removed, but the same can not be said of a laser milling machine. Then a soft com-
puting model that could predict the exact amount of material that each laser pulse
is able to remove would contribute to the industrial use and development of this
new technology. In this case we are focus on laser milling of steel components. It
is an especially interesting industrial process, due to the broad use of steel as base
material for different kind of manufacture tools, like molds and dies. One of the ap-
plications of this technology to these industrial tools is the deep indelible engraving
of serial numbers or barcodes for quality control and security reasons for automotive
industry [1]. The soft computing model proposed in this paper is able to optimize
the manufacturing process and to control laser milling to the level of accuracy, pro-
ductivity and surface quality that are required for the manufacture of deep indelible
engravings.

The rest of the paper is organized as follows. Following the introduction, a two-
phase process is described to identify the optimal conditions for the industrial laser
milling of steel components. The case study that outlines the practical application
of the model is then presented. Finally, some different modelling systems are ap-
plied and compared, in order to select the optimal model, before ending with some
conclusions and future work.

2 An Industrial Process for Steel Components Modelling

2.1 Analyse the Internal Structure of the Data Set

Cooperative Maximum-Likelihood Hebbian Learning (CMLHL) [2] is used in or-
der to analyse the internal structure of the data set, which describe a steel manu-
factured component to establish whether it is sufficiently informative. CMLHL is a
Exploratory Projection Pursuit (EPP) method [3, 4, 5]. EPP provides a linear pro-
jection of a data set, but it projects the data onto a set of basic vectors which help
to reveal the most interesting data structures; interestingness is usually defined in
terms of how far is the distribution from the Gaussian distribution [6]. Maximum-
Likelihood Hebbian Learning (MLHL) [5, 7] identifies interestingness by maximis-
ing the probability of the residuals under specific probability density functions that
are non-Gaussian. An extended version is the CMLHL [2] model, which is based
on MLHL [5, 7] but adds lateral connections [8, 2] that have been derived from the
Rectified Gaussian Distribution [6]. Considering an N-dimensional input vector (x̄),
and an M-dimensional output vector ( ȳ), with W̄i j being the weight (linking input j
to output i), then CMLHL can be expressed [9, 10] as:

Feed− f orward step : yi =
N

∑
j=1

Wi j× x j, ∀i, (1)
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Lateral activation passing : yi(t +1) = [yi(t)+δ (b−A× y)] (2)

Feedback step : e j = x j−
M

∑
i=1

Wi j× yi, ∀ j, (3)

Weight change : ∆Wi j = η× yi× sign(e j)×|e j|p−1 (4)

Where η is the learning rate, τ is the strength of the lateral connections, b the bias
parameter, p a parameter related to the energy function [2, 5, 7] and A a symmetric
matrix used to modify the response to the data [2]. The effect of this matrix is based
on the relation between the distances separating the output neurons.

2.2 The identification criterion

The identification criterion evaluates which of the group of candidate models is best
adapted to and which best describes the data sets collected in the experiment; i.e.,
given a model M(θ∗) its prediction error may be defined by equation (5); and a
good model [9] will be that which makes the best predictions, and which produces
the smallest errors when compared against the observed data. In other words, for
any given data group Zt , the ideal model will calculate the prediction error ε(t,θN),
equation (5), in such a way that for any one t = N, a particular θ̂∗(estimated para-
metrical vector) is selected so that the prediction error ε(t, θ̂N) in t = 1, 2,. . ., N, is
made as small as possible.

ε(t,θ∗) = y(t)− ŷ(t|θ∗). (5)

The estimated parametrical vector θ̂ that minimizes the error, equation (8), is ob-
tained from the minimization of the error function (6). This is obtained by applying
the least-squares criterion for the linear regression, i.e., by applying the quadratic
norm ` = 1

2 ε2, equation (7).

VN(θ ,ZN) =
1
N

N

∑
i=1

`(εF(t,θ)) (6)

VN(θ ,ZN) =
1
N

N

∑
t=1

1
2
(y(t)− ŷ(t|θ))2 (7)

θ̂ = θ̂N(ZN) = argminθ∈DMVN(θ ,ZN) (8)

The methodology of black-box structures has the advantage of only requiring
very few explicit assumptions regarding the pattern to be identified, but that in turn
makes it difficult to quantify the model that is obtained. The discrete linear models
may be represented through the union between a deterministic and a stochastic part,
equation (9); the term e(t) (white noise signal) includes the modelling errors and is
associated with a series of random variables, of mean null value and variance λ .
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y(t) = G(q−1)×u(t)+H(q−1)× e(t) (9)

The structure of a black-box model depends on the way in which the noise is
modelled H(q−1); thus, if this value is 1, then the OE (Output Error) model is appli-
cable; whereas, if it is different from zero a great range of models may be applicable;
one of the most common being the BJ (Box Jenkins) algorithm. This structure may
be represented in the form of a general model, where B(q−1) is a polynomial of
grade nb, which can incorporate pure delay nk in the inputs, and A(q−1), C(q−1),
D(q−1) and F(q−1) are autoregressive polynomials ordered as na, nc, nd , n f , re-
spectively (10). Likewise, it is possible to use a predictor expression, for the on-step
prediction ahead of the output y(t|θ)(11). Polynomials used in (10) are B, F and B,
F, C and D for OE and BJ models, respectively.

A(q−1)× y(t) = q−nk × B(q−1)
F(q−1)

×u(t)+
C(q−1)
D(q−1)

× e(t) (10)

ŷ(t|θ) =
D(q−1)×B(q−1)
C(q−1)×F(q−1)

×u(t)+

[
1− D(q−1)×A(q−1)

C(q−1)

]
× y(t) (11)

Procedure for Modelling the Laser Milling Process. The identification procedure
is carried out in accordance with two fundamental patterns: a first pre-analytical
and then an analytical stage that assists with the determination of the parameters
in the identification process and the model estimation. The pre-analysis test is run
to establish the identification techniques [9, 10, 11, 12], the selection of the model
structure and its order estimation [13, 14], the identification criterion and search
methods that minimize it and the specific parametrical selection for each type of
model structure. A second validation stage ensures that the selected model meets
the necessary conditions for estimation and prediction. Three tests were performed
to validate the model: residual analysis ε(t, θ̂(t)), by means of a correlation test
between inputs, residuals and their combinations; final prediction error (FPE) esti-
mate, as explained by Akaike [15]; and the graphical comparison between desired
outputs and the outcome of the models through simulation one (or k) steps before.

3 Modelling Steel Components: An Industrial Task

This research is interested on the study and identification of the optimal conditions
for laser milling of deep indelible engraving of serial numbers or barcodes on steel
components using a commercial Nd:YAG laser with a pulse length of 10µs. Three
parameters of the laser process can be controlled: laser power (u1), laser milling
speed (u2) and laser pulse frequency (u3). The laser is integrated in a laser milling
centre (DMG Lasertec 40).
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To simplify this industrial problem a test piece was designed and used in all of
the laser milling experiments. It consisted on an inverted, truncated, pyramid profile
that had to be laser milled on a flat metallic piece of steel. The truncated pyramid
had angles of 135o, and a depth of 1 mm, but as the optimized parameters for the
laser milling of steel were not known at that point in time, both parameters showed
errors, which are referred as angle error (y1) and depth error (y2). A third parameter
to be considered is the removal rate, that is, the volume of steel removed by the
laser per minute (y3). A last parameter is the surface roughness of the milled piece
(y4), measured on the flat surface of the truncated pyramid. These four variables
have to be optimized, because the industrial process required a precise geometrical
shape, the shorter manufacturing time and a good surface roughness of the piece. We
applied different modelling systems to achieve the optimal conditions of these four
parameters, although for demonstration we only show one of these four parameters.

Table 1 Variables, units and values used during the experiments. Output y(t), Input u(t).

Variable (Units) Range

Angle error of the test piece, y1(t) -1 to 1
Depth error of the test piece, y2(t) -1 to 1
Material removal rate (mm3/min), y3(t) 0.02 to 0,75
Surface roughness of the test piece (µm), y4(t) 0.32 4.38
Laser power in percent of the maximum power performed by the laser (%),
u1(t)

20 to 100

Laser milling speed (mm/s), u2(t) 200 to 800
Laser pulse frequency (kHz), u3(t) 20 to 100

The experimental design was performed on a Taguchi L25 with 3 input param-
eters and 5 levels, so as to include the entire range of laser milling settings that are
controllable by the operator. Table 1 summarizes the input and output variables of
the experiment which define the case of study. After the laser milling, actual inverted
pyramid depth, walls angle and surface roughness (y3) of the bottom surface were
measured using optical devices. The material removal rate (y4) was calculated from
the whole time required for the manufacture of each sample and the actual volume
of removed material . The measured walls angle and the pyramid depth were com-
pared with the nominal values in the CAD model, thereby obtaining the two errors
(y1 and y2). The test piece and the prototype were described in detail beforehand
[16].

3.1 Application of the two phases of the modelling system

The study has been organized into two phases or steps:
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1. Analysis of the internal structure of the data set based on the application of sev-
eral unsupervised connectionist models, CMLHL projections are used.

2. Application of several identification models in order to find the one that best
defines the dynamic of the laser milling process.

Step 1. The CMLHL projections: Fig. 1 shows the results obtained by means
of CMLHL projections. This model is able to identify five different clusters order
mainly by power. After studying each cluster it can be noted a second classification
based on the speed and frequency as it is shown in Fig. 1. All this indicates that the
data analysed is sufficiently informative.

Step 2. Modelling the laser milling process: Fig. 2, shows the result of output
y1(t), angle error, for the different models. They show the graphic representations
of the results, for OE and BJ models, in relation to the polynomial order and the
delay in the inputs; various delays for all inputs and various polynomial orders [nb1
nb2 nb3 nc nd n f nk1 nk2 nk3] were considered to arrive at the highest degree of
precision, in accordance with the structure of the models that have been used; see
Table 1. In Fig. 2, the X-axis shows the number of samples used in the validation of
the model, while the Y-axis represents the range of output variables.

Table 2 shows a comparison of the qualities of estimation and prediction of the
best models obtained, as a function of the model, the estimation method, and the
indexes, which are defined as follows:

• The percentage representation of the estimated model (expressed as so many per-
cent %) in relation to the true system: the normalized mean error that is computed
with one-step, ten-steps prediction (FIT1 and FT10, respectively) or by means of
simulation (FIT). The one-step and ten-steps predictions ( ŷ1(t|m) and ŷ10(t|m))
and the model simulation ŷ∞(t|m) are also shown.

Fig. 1 The first of the two projections obtained by CMLHL
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Fig. 2 Output response of two different models: the OE -upper row- and BJ -the lower row- meth-
ods. Left column figures represents the angle error output y1(t) simulation, while the right column
figures correspond with the one step ahead prediction of the angle error output y1(t). The valida-
tion data set was not used for the estimation of the model. The order of the structure of the model
is [1 1 1 2 2 2 1 1 1]. The solid line represents true measurements and the dotted line represents
estimated output.

• The loss or the error function (V): the numeric value of the mean square error
that is calculated from the estimation data set.

• The generalization error value (NSSE): the mean square error calculated with the
validation data set.

• The average generalization error value (FPE): the FPE criterion calculated from
the estimation data set.

From the graphical representation (Fig. 2) it can be concluded that the BJ model
is capable of simulating and predicting the behaviour of the laser milled piece for
angle error, as they meet the indicators and is capable of modelling more than 95%
of the true measurements. The tests were performed using Matlab and the System
Identification Toolbox. Table 3 shows the final BJ model.
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Table 2 Indicator values for several proposed models of the angle error

Model Indexes

Black-box OE model with nb1 = 2, nb2 = 1, nb3 = 1, nc = 2, nd = 2,
n f = 2, nk1 = 1, nk2 = 1, nk3 = 1. The model is estimated using the
prediction error method, the degree of the model selection is carried
out from the best AIC criterion (the structure that minimizes AIC).

FIT:44.04%, FIT1:44.04%
FIT10:44.04%, V: 0.02
FPE:0.23, NSSE:7.71e-4

Black-box OE model nb1 = 1, nb2 = 1, nb3 = 1, nc = 2, nd = 2,
n f = 2, nk1 = 1, nk2 = 1, nk3 = 1.The model is estimated using the
prediction error method, the degree of the model selection is carried
out with the best AIC criterion (the structure that minimizes AIC).

FIT:21.2%, FIT1: 21.2%
FIT10: 21.2%, V: 0.023
FPE:0.162, NSSE:0.0015

Black-box BJ model with nb1 = 2, nb2 = 1, nb3 = 1, nc = 2, nd = 2,
n f = 2, nk1 = 1, nk2 = 1, nk3 = 1. The model is estimated using the
prediction error method, the degree of the model selection is carried
out with the best AIC criterion (the structure that minimizes AIC).

FIT:100%, FIT1:100%
FIT10:100%, V: 0.12
FPE:0.27, NSSE:2.73e-31

Black-box BJ model withnb1 = 1, nb2 = 1, nb3 = 1, nc = 2, nd = 2,
n f = 2, nk1 = 1, nk2 = 1, nk3 = 1. The model is estimated using the
prediction error method, the degree of the model selection is carried
out with the best AIC criterion (the structure that minimizes AIC).

FIT:100%, FIT1:100%
FIT10:100%, V: 0.97
FPE:1,75, NSSE:4.17e-30

Table 3 Function and parameters that represent the behaviour of the laser milled piece for the
angle error. The degree of the BJ model polynomials are nb1 = 1, nb2 = 1, nb3 = 1, nc = 2, nd =
2, n f = 2, nk1 = 1, nk2 = 1, nk3 = 1. [ 1 1 1 2 2 2 1 1 1].

Final polynomials.

B1(q) = 0.01269×q−1 D(q) = 1+1.208×q−1 +0.3098×q−2

B2(q) = 0.0004895×q−1 F1(q) = 1+0.4094q−1−0.16×q−2

B3(q) = 0.01366×q−1 F2(q) = 1−1.678×q−1 +0.7838×q−2

C(q) = 1+1.541×q−1 +1.02×q−2 F3(q) = 1−1.1×q−1 +0.7671×q−2

e(t) is white noise signal whit variance 0.08

4 Conclusions and Futures lines of Work

We have done an investigation to study and identify the most appropriate modelling
system for laser milling of steel components. Several methods were investigated
to achieve the best practical solution to this interesting problem. The study shows
that the Box-Jenkins algorithm is best adapted to this case, in terms of identifying
the best conditions and predicting future circumstances. It is important to empha-
size that a relevant aspect of this research lies in the use of a two-step model when
modelling the laser milling process for steel components: a first step, which applies
projection methods to establish whether the data describing the case study is suffi-
ciently informative. As a consequence, the first phase eliminates one of the problems
associated with these identification systems, which is that of having no prior knowl-
edge of whether the experiment that generated the data group may be considered
acceptable and will present sufficient information in order to identify the overall
nature of the problem.
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Future work will be focus on the study and application of this model to other
kinds of materials of industrial interest, such as cast single-crystal nickel superal-
loys for high-pressure turbine blades and also the application of this model to the
optimization of different but similar industrial problems, like laser cladding, laser
super-polishing and laser drilling.
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