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A B S T R A C T

Wind turbine (WT) pitch control is a challenging issue due to the non-linearities of the wind device and its
complex dynamics, the coupling of the variables and the uncertainty of the environment. Reinforcement learn-
ing (RL) based control arises as a promising technique to address these problems. However, its applicability
is still limited due to the slowness of the learning process. To help alleviate this drawback, in this work we
present a hybrid RL-based control that combines a RL-based controller with a proportional–integral–derivative
(PID) regulator, and a learning observer. The PID is beneficial during the first training episodes as the RL based
control does not have any experience to learn from. The learning observer oversees the learning process by
adjusting the exploration rate and the exploration window in order to reduce the oscillations during the training
and improve convergence. Simulation experiments on a small real WT show how the learning significantly
improves with this control architecture, speeding up the learning convergence up to 37%, and increasing the
efficiency of the intelligent control strategy. The best hybrid controller reduces the error of the output power
by around 41% regarding a PID regulator. Moreover, the proposed intelligent hybrid control configuration has
proved more efficient than a fuzzy controller and a neuro-control strategy.
. Introduction

Coal-fired power plants have been identified as one of the significant
auses of climate change. Although CO2 emissions are mainly produced
y thermal power plants, these energy sources are still widely used
owadays. This also impacts not only the environment but also the
ealth of the people. Indeed, each year more than 500,000 asthma
pisodes are estimated to be caused by air pollution worldwide (Green
eace, 2021). As a result, there is a widespread general consensus
hat renewable energy sources such as wind, hydro, and solar must be
onsidered to mitigate climate change and reduce air pollution.

Year after year, wind energy usage is on the rise worldwide. After
ydroelectric, it is currently the second most widely used renewable
nergy source (Our World in Data, 2020). Moreover, this upward trend
ppears to be continued until 2050 when it is expected to become the
rimary source of energy (IRENA, 2019). Consequently, research on
ind energy and, particularly, on the efficiency of Wind Turbine (WT)

ontrol is encouraged to contribute this way to this sustainable trend.
The performance of a WT fully depends upon control systems

pplied on the turbine side and generator side. Different advanced
nd intelligent control strategies have been applied to these strongly
on-linear and multi-input multi-output (MIMO) systems (Yang et al.,

∗ Corresponding author.
E-mail address: jesierra@ubu.es (J.E. Sierra-Garcia).

2016). From the control engineering point of view, several control
actions can be identified in WT. The control of the pitch angle aims
to stabilize the output power when the wind speed overpasses the
rated wind speed. This is carried out by varying the pitch angle that
changes the surface of the blades that the wind faces. The rotor angular
speed is usually controlled by injecting current to the generator to seek
the optimal power curve. Lastly, the yaw angle control modifies the
orientation of the nacelle to match the main wind stream.

The control of the pitch angle of a WT is challenging due to the
non-linearities of the system, the coupling of the variables, and the
uncertainty of the measures. This control can be crucial for floating
offshore wind turbines (FOWT), which are subjected to heavy external
loads from mainly wind and waves that cause fatigue and vibrations.
Even more, the pitch control action may affect the stability of the
turbine (Tomás-Rodríguez and Santos, 2019). This has led to the ap-
plication of artificial intelligent techniques to address this complex
control problem (Sierra-García and Santos, 2021b). Among them, re-
inforcement learning (RL) is starting to be considered in this field.
By the application of RL techniques, the control law can be improved
online, reacting to changes in the system, facing uncertainties and
disturbances. However, the learning process is usually prolonged, and
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this strongly limits its applicability in control applications. Another
drawback of the RL approach is that the controller performance is not
that good during the initial learning phase, and the results may be
pretty random due to it lacking enough experience to learn from.

In this work, a novel approach for WT pitch control based on a
modified and enhanced RL strategy is proposed. On the one hand,
RL architecture is complemented with a conventional proportional–
integral–derivative (PID) controller. This PID regulator helps accelerate
the training of the learning process. Indeed, its contribution has proved
especially important during the first training episodes while the RL
based control does not have any experience to learn from. On the other
hand, the learning process is monitored by a learning observer. If it
detects the system is no longer learning, it increases the exploration
rate and enlarges the new defined exploration window. This allows us
to consider new actions in a supervised way.

The new concept of the exploration window and its utility is intro-
duced. In the RL process, when a random action is explored, instead of
selecting an action among all the possible ones, the action is selected
from a reduced set of activities within an exploration window defined
around the best action. The action selector oversees this exploration
window, and its size is determined by the learning observer. This
method reduces the oscillations during the training and accelerates the
learning performance.

The proposed hybrid control architecture based on RL has been
evaluated and compared with a pure RL controller without the PID and
with a conventional well-tuned PID controller. Besides, other intelli-
gent control methods, such as fuzzy logic and neural networks-based
controllers, have been applied to the same turbine for comparison pur-
poses. The simulation results show that the learning process is speeded
up with this new control configuration, and the oscillations are reduced
during the training. The performance of the learning observer has also
been compared against fixed epsilon and exponential epsilon decay
exploitation strategies providing better results. This also improves the
control of the WT as the controller learns faster to adapt to different
wind profiles and speed operation ranges. Finally, the performance
of the discrete RL (DRL) controller and its combinations with a P-
controller or a PD-controller is better than the fuzzy controller and the
neural controller.

In conclusion, the main contributions of this work can be summa-
rized as follows:

• The development of a hybrid intelligent control architecture that
combines the RL approach and the classical PID controller in a
way that they complement each other. The RL is able to improve
the system control performance as it learns and adapts the control
to face uncertainties and disturbances. On the other hand, the PID
helps accelerate the learning process of the control strategy. Thus,
the hybrid controller results better than the pure RL or the best
tuned PID, especially during the training phase.

• The inclusion of a learning observer in the control architecture.
In RL, if the exploration rate is very large, the learning slows
down; however, the risk of falling into local minima is big if it
is very small. To find an adaptive balance, the learning observer
monitors the learning process and adjusts the exploration rate and
the exploration window in a dynamic way.

• The concepts of action selector, exploration window and their
utility are introduced. In standard RL, the random actions are
selected among all possible actions. However, in this approach
the action is selected from a reduced set of actions within an
exploration window defined around the best action. The action
selector oversees this exploration window. This method helps
reduce the oscillations during the training and accelerate the
learning.

The rest of the paper is organized as follows. Section 2 presents
brief state of the art. In Section 3, the mathematical model of the

T used is described. The design of the improved RL controller and
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its components are presented in Section 4. Simulation results and
comparisons with other intelligent control methods are discussed in
Section 5. The paper ends with the conclusions and future works.

2. Related works

Intelligent control techniques such as fuzzy logic, neural networks,
genetic algorithms, and RL have been successfully used to model and
control engineering complex systems in different fields (Tzafestas,
2012; Sierra-García and Santos, 2021c; Santos, 2011; Trojaola et al.,
2020).

There are some recent papers related to WT control inspired by RL.
To mention some of them, an updated summary of deep RL for power
system applications is given in Zhang et al. (2019). RL is used to reg-
ulate variable-speed WT in Fernandez-Gauna et al. (2017). It adapted
traditional variable speed WT controllers to changing wind conditions
in particular. The same authors used conditioned RL to investigate
this difficult control scenario with vast state–action spaces (Fernandez-
Gauna et al., 2018). A doubly-fed induction generator WT is online
controlled using a policy iteration RL model and an adaptive actor-
critic technique in Abouheaf et al. (2018). An RL-based artificial neural
network for WT yaw control is presented in Saénz-Aguirre et al. (2019).
The authors proposed a performance upgrade of this WT neuro–RL yaw
control in a more recent study (Saenz-Aguirre et al., 2020). Tomin et al.
presented adaptive control strategies in which a trained RL agent is
used to extract the stochastic property of wind speed, and then the op-
timal policy is applied to the WT adaptive control design (Tomin et al.,
2019). Passive RL solved by particle swarm optimization (PSO) policy
was used by Hosseini et al. to control the pitch angle of a real WT using
an adaptive type-2 neuro-fuzzy inference system with unsupervised
clustering (Hosseini et al., 2020). Chen et al. also proposed a resilient
WT controller based on RL and system status data that used adaptive
dynamic programming (Chen et al., 2020). Deep RL and knowledge
assisted learning were used to deal with the wake effect in a cooperative
wind farm control in a related challenge (Zhao et al., 2020). Multi-
agent deep RL has been recently applied to the energy field, mainly
in cogeneration, to address coordinated problems within a multi-area
system (Li et al., 2021a,b, 2022).

The use of hybrid intelligent controllers in WT has given good
results; in many of the cases, the intelligent techniques have been com-
bined with traditional PID regulators or with other conventional control
solutions. An example is found in Iqbal et al. (2020), where the authors
proposed a hybrid control system that merged a fuzzy system and a
traditional model predictive controller. The goal of the fuzzy-based
model-predictive controller of the pitch angle control was to reduce WT
loads while increasing extracted power production. The Fuzzy Logic
Controller (FLC) is particularly effective at dealing with the system
non-linearity, whilst the predictive model controller aids stability and
efficiency. A WT pitch PID-controller with parameters tuned using a
fuzzy logic system was presented in Ngo et al. (2020). A small WT was
used to test the method effectiveness. In addition, Sedighizadeh and
Rezazadeh designed a RL-tuned adaptive PID controller for the same
control objective (Sedighizadeh and Rezazadeh, 2008).

To track the maximum power, Sitharthan et al. proposed a hybrid
maximum power point tracking (MPPT) control technique that predicts
the effective wind speed and the ideal rotor speed of the wind power
system. A radial basis function neural network was used, which was
improved with a PSO algorithm (Sitharthan et al., 2020). Sarkar et al.
2020 developed a robust pitch control system for the rated WT power
using PID controller for a wide range of simulated wind speeds (Sarkar
et al., 2020). In addition, ant colony optimization, PSO, and classic
Ziegler–Nichols algorithms have been applied to tune the PID controller
parameters in order to achieve a steady output power within rated
limits with variable wind speeds.

There are few articles on intelligent pitch management of large-scale

WT. Rubio et al. described a fuzzy-logic-based pitch control system for
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a 5 MW WT built on a semi-submersible platform (Rubio et al., 2019).
The OC4 WT model was used to test it. The instantaneous value of the
wind speed, filtered and normalized according to the nominal speed,
is sent to the fuzzy controller, whose output is the pitch reference.
For a variable speed WT, Abdelbaky et al. suggested restricted fuzzy-
receding horizon pitch control (Abdelbaky et al., 2020). The model is
transformed into a simple online quadratic optimization problem that
requires less computational time to solve, and the controller ensures
nominal stability. To test the mathematical model results, a 5MW
offshore WT is used.

A fuzzy control that considers as only input the wind speed was
designed and simulated in Santoso et al. (2021). The fuzzy output
was the blade angle. It was tested with an input random wind speed
with a range of 7–20 m/s in a 20 kW WT. Jeon et al. presented a
linear quadratic regulator based on fuzzy logic for the control of a
variable-speed variable-pitch WT (Jeon and Paek, 2021). Simulations
and wind tunnel tests were conducted. The main point of this proposal
is that non only this control increases the power performance but
also the structural stability of the WT compared with conventional
PI control. Sahoo et al. also compared a PID, a FLC and fuzzy PID
control to smooth the output power fluctuations of a WT by means
of the pitch angle (Sahoo and Panda, 2022). An incremental PD-type
fuzzy controller to generate the pitch angle reference of a large WT
was designed in Serrano-Barreto et al. (2021). The performance of
this control scheme on the NREL 5 MW floating offshore WT was
compared with the internal GS-PI control that is provided within the
FAST software with satisfactory results.

Neural networks have been also used in wind energy but mainly
applied to fault diagnosis. This may be due to the lack of data that are
necessary to train the network. In any case, some exceptions –though
scarce– can be found in the literature, such as the following. Salem
et al. implemented a pitch angle control system to control the power
output of a small turbine at wind speeds above the rated speed (Salem
et al., 2021). They used the neural network fitting function, using the
relation between the power output from the WT model and the wind
velocity to select the pitch angle. They implemented a feed-forward
network with sigmoid hidden neurons and linear output neurons for
the Power Coefficient (Cp) model at different rated power. An artificial
neural network based settings with only pitch control, only voltage
controllers, and with both pitch and voltage controllers was designed
in Pamuji et al. (2021). The output of the pitch controller was the blade
angle reference and the inputs the Cp and the Tip Speed Ratio (TSR),
obtained from simulated models. Similarly, Reddak et al. designed
an artificial neural network to implement a MPPT-pitch angle control
strategy for controlling the WT (Reddak et al., 2021). Quite interest-
ingly, Fan et al. simulated a new non-linear hybrid control approach
based on the Adaptive Neuro-Fuzzy Inference System (ANFIS) and fuzzy
logic control to regulate the pitch angle and maintain the captured
mechanical energy at the rated value of a WT (Fan et al., 2021). In
the controller, the reference value of the pitch angle was predicted
by ANFIS according to the wind speed and the blade tip speed ratio.
The proposed FLC provided feedback based on the captured power to
modify the pitch angle in real-time. The effectiveness of the proposed
hybrid pitch angle control method was verified on a 5 MW offshore WT
under two different wind conditions. Finally, other ANFIS blade pitch
control was proposed in Elsisi et al. (2021). However, as ANFIS requires
a suitable dataset for training and testing, the paper also suggested an
effective strategy to prepare a sufficient dataset using a new so-called
mayfly optimization algorithm.

As it has been shown in state of the art, the works that use RL
for WT pitch control are very limited. Hybrid controllers also appear
as a possible solution for dealing with the complex challenges of WT
control. The main difference between our proposed intelligent hybrid
method and published methods is the combination of the RL approach
with a PID to improve the performance, especially during the initial
phase of the learning, and the implementation of a learning observer

to handle the exploration rate dynamically.
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Table 1
Parameters of the wind turbine model.

Parameter Description Value/Units

La Inductance of the armature 13.5 mH
Kg Constant of the generator 23.31
K𝜙 Magnetic flow coupling constant 0.264 V/rad/s
𝑅a Resistance of the armature 0.275 Ω
𝑅L Resistance of the load 8 Ω
J Inertia 6.53 kg m2

R Radius of the rotor 3.2 m
𝜌 Density of the air 1.223 kg/m3

Kf Friction coefficient 0.025 N m/rad/s
[c1 , c2 , c3] 𝐶𝑝 constants [0.73, 151, 0.58]
[c4 , c5 , c6] 𝐶𝑝 constants [0.002, 2.14, 13.2, 18.4]
[c7 , c8 , c9] 𝐶𝑝 constants [18.4,−0.02,−0.003]
[K𝜃 ,T𝜃 ] Pitch actuator parameters [0.15, 2]
[𝛼, 𝛽, 𝛾, 𝜏] Blade filter constants [0.55, 0.832, 1.17, 9]

3. Mathematical model of the wind turbine

In this work, a 7 kW WT is used as a basis. The mathematical model
of this small WT is given by Eqs. (1)–(9). Its representation is shown
in Fig. 1. The development of these expressions is further explained in
Mikati et al. (2012), Sierra-García and Santos (2020b).

𝜃̈ = 1
T𝜃

[

K𝜃
(

𝜃ref − 𝜃
)

− 𝜃̇
]

, (1)

𝑓blade(𝑠) =
𝛽 ⋅ 𝑠 +

√

2

𝛽2 ⋅ 𝑠2
(

√

(

2
𝛼

)

+
√

𝛼

)

⋅ 𝛽 ⋅ 𝑠 +
√

2

⋅
𝛾 ⋅ 𝑠 + 1∕𝜏
𝑠 + 1∕𝜏

(2)

𝑣ef = 𝑓blade(𝑣W) (3)

𝜆 = (𝑤 ⋅ R)∕𝑣ef (4)

𝜆𝑖 =
[(

1
𝜆 + c8

)

−
(

c9
𝜃3 + 1

)]−1
(5)

𝐶𝑝(𝜆𝑖, 𝜃) = c1

[

c2
𝜆𝑖

− c3𝜃 − c4𝜃c5 − c6

]

𝑒−
c7
𝜆𝑖 , (6)

𝑤̇ = 1
2 ⋅ J ⋅𝑤

(

𝐶𝑝(𝜆𝑖, 𝜃) ⋅ 𝜌𝜋R2 ⋅ 𝑣3ef
)

− 1
𝐽
(

Kg ⋅ K𝜙 ⋅ 𝐼a + Kf ⋅𝑤
)

, (7)

̇𝑎 =
1
La

(

Kg ⋅ K𝜙 ⋅𝑤 − (𝑅a + 𝑅L)𝐼𝑎
)

, (8)

out = 𝑅L ⋅ 𝐼a
2 (9)

here La is the armature inductance (H), Kg is a dimensionless constant
f the generator, K𝜙 is the magnetic flow coupling constant (V⋅s/rad),
a is the armature resistance (𝛺), 𝑅L is the resistance of the load
𝛺), considered in this study as purely resistive; 𝑤 is the angular rotor
peed (rad/s), 𝐼a is the armature current (A), 𝜆 is the TSR which is
imensionless, and [𝛼, 𝛽, 𝛾, 𝜏] is the set of values of the filter that the
lades implement.

The value 𝐶p depends on the characteristics of the WT; J is the
otational inertia (kg m2), R is the radius or blade length (m), 𝜌 is
he air density (kg/m3), Kf is the friction coefficient (N.m/rad/s), K𝜃

and T𝜃 are dimensionless parameters of the pitch actuator, 𝑣ef is the
effective wind speed in the blades (m/s), and 𝑣W is the wind speed
measured by the anemometer sensor.

The parameters of the WT used in the simulations are shown in
Table 1, extracted from (Mikati et al., 2012). It is a small WT that has
been used in previous works, which allows us to compare the results.

4. Improved RL-based pitch controller

4.1. Architecture of the controller

RL is an artificial intelligence technique that mimics the way hu-
mans learn. It learns to perform tasks through rewards that reinforce
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Fig. 1. Mathematical model representation of a wind turbine.
i
a
t
𝜃
t
i

t
s
e
e
f
l
p
r
i
r
v
t
s
t
a
b
t
p
s
n
w
c

i
t
w
n
w
i
a
b
a
c

f

𝑃

𝑠

some actions (Sutton and Barto, 2018; Perrusquía and Yu, 2021).
Typically, three elements are identified: an environment, an agent, and
an interpreter. The agent, taking into consideration the state of the
environment and the rewards previously obtained, selects the action
with which it estimates a greater reward will be obtained. This action
produces a change in the environment. The interpreter observes the
effect of the action on the environment and provides feedback to the
agent about the new state and the reward for the last action, thus
closing the control loop. The relationship between the current state
and the action to be taken is often called policy. This relationship
may be discrete or continuous. If the policy is discrete, it is usually
implemented by means of a table, and if it is continuous, it is quite
common to use a neural network.

Certain similarities can be observed between this RL process and a
traditional control loop: the environment would be equivalent to the
system, the agent could be the controller, and the actuator and the
interpreter act as sensor and an observer. Some authors consider that
the interpreter is embedded in the agent or in the environment, but, in
either case, the interpreter’s role is always present.

Once the main concepts of the RL have been introduced, it is easy
to identify some of their elements in the architecture of the proposed
controller, shown in Fig. 2. This control architecture has some benefits;
on the one hand, it can be applied to any WT, since the controller
is able to learn online the best policy to control the WT regardless
of its size and type (on-land, offshore), and it also adapts to different
wind profiles; on the other hand, the action of the PID regulator helps
accelerate the training. This is especially interesting during the first
iterations as the learning control system has hardly any experience to
learn from.

The architecture is made up of a state estimator, a reward calcula-
tor, a policy update mechanism, an action selector, a learning observer
and a PID controller (Fig. 2). The state estimator calculates the current
state, 𝑠𝑡 ∈ 𝑆, considering the output power error 𝑃err , and the wind
peed 𝑉W. The output power error 𝑃err is the difference between the
ower reference 𝑃ref (rated or maximum power) and the current output
ower 𝑃out . The reward calculator uses the information at the current
tate 𝑠𝑡 to obtain the reward 𝑟𝑡 ∈ R. The policy update mechanism
odifies the table of the expected rewards 𝑇 ∶ 𝑆 × 𝐴 → R, updating

he reward associated to the previous state 𝑠𝑡−1 and the previous action
𝑡−1 based on the rewards.

The action selector chooses an action 𝑎𝑡 ∈ 𝐴 based on table 𝑇 , and
t transforms this action into a pitch angle 𝜃𝑅 ∈ [0, 𝜋∕2]. At the end of
ach iteration, the learning observer checks if the controller is reducing
he total error. If the error does not decrease, the learning observer
djusts the two input parameters of the action selector, 𝜖 and 𝑒𝑊 . As
he pitch angle proposed by the action selector is not the ideal one,
specially during the first learning iterations, the PID controller helps
educe the power error and stabilizes the output power around its rated
alue during that phase.

In order to study the stability of the controller, we have qualitatively

nalyzed the action of each controller separately. First, let suppose 𝜃𝑅

4

s constant; if the wind speed decreases, the output power goes down
nd the power error 𝑃err = 𝑃ref − 𝑃out grows. Therefore, the output of
he PID controller increases, and the pitch reference decreases, 𝜃ref =
R − 𝜃PID. As the pitch angle is smaller, the blade’s surface exposed to
he wind is bigger and the output power grows. Thus the power error
s compensated, and the power remains stable.

Regarding the RL, in order to simplify the reasoning let us assume
he number of error states is ne = 2 and the number of derivative error
tates is nde = 2, that is, the system is able to discriminate if the power
rror and its derivative are positive or negative. Therefore, the state
stimator knows if the output power is getting closer or moving away
rom the reference, and the state of the system represents this. Now
et suppose that the current state 𝑠𝑡1 indicates that the power error is
ositive (𝑃ref > 𝑃out ), and the output power is getting closer to the
eference (𝑃̇err < 0). If the action selector selects an action 𝑎1 that
ncreases the output power, then the power error decreases, and the
eward mechanism calculates a positive reward. This increases the Q
alue associated with the pair (𝑠𝑡1, 𝑎1), which enlarges the probability
o select this action, 𝑎1. The state keeps being 𝑠𝑡1 as the power error is
till positive. By contrast, if the action 𝑎1 decreases the output power,
he reward would be negative, and the probability of selecting this
ction would decrease, and thus the state would change to 𝑠𝑡2. Iteration
y iteration the frequency of the actions that push the output power
owards the reference keeping the state 𝑠𝑡1 will grow, stabilizing the
ower around its rated value, and the other actions that move the
ystem to 𝑠𝑡2 will tend to be rejected. Finally, if the power error is
egative (𝑃ref < 𝑃out ), the output power gets closer to the reference
hen (𝑃̇err > 0), then the reward is also positive. A similar explanation

an be applied to states 𝑠𝑡3 and 𝑠𝑡4.
In addition, the effect of combining a RL controller and a PID is sim-

lar to the fact of having a lookup table and a PID regulator. The lookup
able proposes a pitch reference accordingly to the wind: the larger the
ind speed, the bigger the pitch angle. As this mapping function is
ot perfect, the PID contributes to reducing the mapping error between
ind and blades angle. Previous works have shown how this approach

mproves the performance of the individual controllers (Sierra-García
nd Santos, 2021a). In this work, the role of the lookup table is played
y the RL, the mapping relationship between the wind and the pitch
ngle is obtained by RL, and the PID helps reduce the errors while the
ontroller is learning.

The operation of this control architecture can be formalized by the
ollowing expressions, Eqs. (10)–(18).

err
(

𝑡𝑖
)

= 𝑃ref
(

𝑡𝑖−1
)

− 𝑃out
(

𝑡𝑖−1
)

, (10)

𝑡 = 𝑓se(𝑃err
(

𝑡𝑖
)

, 𝑃err
(

𝑡𝑖−1
)

, 𝑣w
(

𝑡𝑖−1
)

), (11)

𝑟𝑡 = 𝑓rc(𝑃err
(

𝑡𝑖
)

, 𝑃err
(

𝑡𝑖−1
)

), (12)

𝑇(𝑠𝑡−1 ,𝑎𝑡−1)
(

𝑡𝑖
)

= 𝑓pu
(

𝑟𝑡, 𝑇(𝑠𝑡−1 ,𝑎𝑡−1)
(

𝑡𝑖−1
)

)

(13)

𝜃R(𝑡𝑖) = 𝑓as(𝑇(𝑠𝑡)
(

𝑡𝑖
)

, 𝜖
(

𝑡𝑖
)

, 𝑒𝑊
(

𝑡𝑖
)

), (14)

𝜃PID
(

𝑡𝑖
)

= Kp ⋅ 𝑃err
(

𝑡𝑖
)

+ Kd ⋅
𝑑 𝑃err

(

𝑡𝑖
)

+ KI ⋅ 𝑃err
(

𝑡𝑖
)

𝑑𝑡, (15)

𝑑𝑡 ∫
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Fig. 2. Architecture of the reinforcement learning controller.
t
i

ref
(

𝑡𝑖
)

= 𝜃R
(

𝑡𝑖
)

− 𝜃PID
(

𝑡𝑖
)

, (16)

[𝜖
(

𝑡𝑖
)

, 𝑒𝑊
(

𝑡𝑖
)

] =

{

𝑓LO
(

𝑃err
(

𝑡𝑖
)

, 𝑃err
(

𝑡𝑖−1
)

…𝑃err
(

𝑡𝑖−𝑁
))

𝑡𝑖 ∈ 𝑇ep
[𝜖
(

𝑡𝑖−1
)

, 𝑒𝑊
(

𝑡𝑖−1
)

] 𝑡𝑖 ∉ 𝑇ep,

(17)

[𝑇
(

𝑡𝑖
)

, 𝑏𝑇 (𝑡𝑖)] =

{

𝑓LOT
(

𝑃err
(

𝑡𝑖
)

, 𝑃err
(

𝑡𝑖−1
)

…𝑃err
(

𝑡𝑖−𝑁
))

𝑡𝑖 ∈ 𝑇ep
[

𝑇
(

𝑡𝑖−1
)

, 𝑏𝑇
(

𝑡𝑖−1
)]

𝑡𝑖 ∉ 𝑇ep
,

(18)

where [Kp,KD,KI] are the tuning parameters of the PID, 𝑇ep is the time
when an episode finishes, 𝑓se ∶R3 → 𝑆 is the function implemented
by the state estimator, 𝑓rc ∶R2 → R is the function implemented by
the reward calculator, 𝑓pu ∶ R2 → R is the function implemented by
the policy updater, 𝑓as ∶R|𝐴| × R ∈ [0, 1] × R ∈ [0, 1] → R ∈ [0, 𝜋∕2]
is the action selector function, 𝑓LO ∶ R𝑁 → R ∈ [0, 1] × R ∈ [0, 1]
is the function that the learning observer implements to update the
pair [𝜖, 𝑒𝑊 ], 𝑓LOT ∶R𝑁 → R|𝐴|⋅|𝑆| × R|𝐴|⋅|𝑆| is the function used by the
learning observer to update table 𝑇 , and 𝑁 is the number of iterations.

The main elements of this control architecture are described in the
following sections.

4.2. State estimator

The state of the system at time 𝑡 is represented by a discrete value 𝑠𝑡,
given by the value of the power error 𝑃err

(

𝑡𝑖
)

, its derivative, 𝑑𝑃err
(

𝑡𝑖
)

,
and the wind speed 𝑣w

(

𝑡𝑖
)

(see Fig. 2). These signals are first discretized
and then the state of the system is obtained by the combination of these
discrete values, Eqs. (19)–(25).

𝑑𝑃err
(

𝑡𝑖
)

=
𝑃err

(

𝑡𝑖
)

− 𝑃err
(

𝑡𝑖−1
)

𝑡𝑖 − 𝑡𝑖−1
, (19)

errS

(

𝑡𝑖
)

= 𝑀𝐼𝑁
(

emax,𝑀𝐴𝑋
(

𝑃𝑒𝑟𝑟
(

𝑡𝑖
)

, emin
))

, (20)

𝑃errS

(

𝑡𝑖
)

= 𝑀𝐼𝑁
(

demax,𝑀𝐴𝑋
(

𝑃̇𝑒𝑟𝑟
(

𝑡𝑖
)

, demin
))

, (21)

errD

(

𝑡𝑖
)

= 𝐷𝐼𝑉
(

𝑃errS

(

𝑡𝑖
)

− emin, ne
)

, (22)

𝑃errD

(

𝑡𝑖
)

= 𝐷𝐼𝑉
(

𝑑𝑃errS

(

𝑡𝑖
)

− demin, nde
)

, (23)

wD
(

𝑡𝑖
)

= 𝐷𝐼𝑉
(

𝑣w
(

𝑡𝑖
)

− vwmin, nv
)

, (24)

𝑡 = 𝑃errD

(

𝑡𝑖
)

⋅ nde ⋅ nv + 𝑑𝑃errD

(

𝑡𝑖
)

⋅ nv + 𝑣𝑤D
(

𝑡𝑖
)

, (25)
5

Where DIV denotes the integer division, [emin, emax] is the range of
he output power error, [demin, demax] is the range of its derivative, vwmin
s the minimum wind speed, and [ne, nde, nv] are integer constants to

adjust the number of states.
The selection of the number of states can influence the performance

of the controller. Larger numbers give smaller discretization errors and,
thus, smaller power errors. However, if the number of states is large,
the frequency of repetition of the states is low, and this reduces the
learning speed. To ensure a good balance, in this work, the numbers of
states have been set to

[

ne, nde, nv
]

= [100, 50, 4], obtained after several
simulations.

Estimating the state allows us to implement different actions in
different cases: when the power error is small or large if this error is
growing or decreasing, and considering high and low wind speed. These
elements are key when controlling the pitch angle of a WT to get the
maximum output power.

4.3. Reward calculator

As shown in Fig. 2, the reward calculator module receives the output
power error and calculates the rewards 𝑟𝑡. There are several options to
assign rewards to the actions carried out by the controller. For instance,
a first logic approach would be to assign a reward as a function
of the output power error regarding its nominal value. Thus, bigger
errors, smaller rewards. However, depending on the policy update, the
learning may not converge or does it very slowly (Sierra-García and
Santos, 2020a). For this reason, in this work, we introduce rewards
and penalties. If the output power approaches the nominal value, the
action gets a reward; if it deviates from the right value, the action is
penalized. The size of the reward/penalty is based on the derivative
of the power error, as this value gives information about the speed
at which the output power is approaching or moving away from the
reference.

If both the power error and its derivative are positive or negative,
it means that the output power deviates from the reference, and the
action must be punished. On the other hand, if they have a different
sign, the output power is approaching the reference, and this action
must be rewarded. If the power error is zero, but its derivative is
positive or negative, the output power deviates from the reference, and
thus, it must be punished. These rules are mathematically summarized
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in Eq. (26).

𝑟v
(

𝑡𝑖
)

=

⎧

⎪

⎨

⎪

⎩

−𝑑𝑃errS

(

𝑡𝑖
)

𝑃errS

(

𝑡𝑖
)

> 0
− |

|

|

𝑑𝑃errS

(

𝑡𝑖
)

|

|

|

𝑃errS

(

𝑡𝑖
)

= 0

𝑑𝑃errS

(

𝑡𝑖
)

𝑃errS

(

𝑡𝑖
)

< 0

, (26)

𝑟𝑡 =

⎧

⎪

⎨

⎪

⎩

−𝑟v
(

𝑡𝑖
)

𝑠𝑖𝑔𝑛
(

𝑃errS

(

𝑡𝑖
)

)

≠ 𝑠𝑖𝑔𝑛
(

𝑃errS

(

𝑡𝑖−1
)

)

∧
|

|

|

𝑃errS

(

𝑡𝑖
)

|

|

|

< |

|

|

𝑃errS

(

𝑡𝑖−1
)

|

|

|

𝑟v
(

𝑡𝑖
)

𝑜𝑡ℎ𝑒𝑟𝑐𝑎𝑠𝑒

, (27)

special case may happen when the power error changes its sign.
f Eq. (26) is applied, a penalty will be always assigned because the
ew most recent value of the power error and its derivative have the
ame sign. However, if the latest value is closer to the reference than
he previous one, it would be better to assign a reward. Thus, we use
q. (27) to consider this case and correct the reward assignment. An
uxiliary variable 𝑟v is defined to simplify the equations. First, the
ignal 𝑟𝑣 is obtained and then it is used to calculate the reward 𝑟𝑡, which
s finally considered by the policy update module.

.4. Policy update

The policy update modifies the policy considering the rewards given
y the reward calculator. The policy of the RL is implemented as a
able which associates an estimation of the expected reward 𝑇(𝑠𝑡 ,𝑎𝑡) to
ach pair of state and action (𝑠𝑡, 𝑎𝑡). In this table, there will be so many
ows as states and so many columns as actions. This means that if the
ystem is at state 𝑠𝑡 and the action selector executes 𝑎𝑡, it is expected
o receive the reward/penalty of the associated cell in the table in the
ext iteration. The way to update the values of the policy table must
onsider the previous rewards and combine them with the latest one,
𝑡. Again, there are several options to do this. For instance, it is possible
o consider only the latest one and discard the rest of the previous
nes. This can be useful when the system fluctuates, but it is normally
etter to remember some previous rewards. To do so, an option is
o calculate the average of some previous rewards, i.e., considering a
oving average. Instead of adding the previous rewards it is possible

o obtain it recursively, using the last value of the table according to
quation Eq. (28),

(𝑠𝑡−1 ,𝑎𝑡−1)
(

𝑡𝑖
)

= 𝑇(𝑠𝑡−1 ,𝑎𝑡−1)
(

𝑡𝑖−1
)

+ 𝛼
(

𝑟𝑡 − 𝑇(𝑠𝑡−1 ,𝑎𝑡−1)
(

𝑡𝑖−1
)

)

, (28)

here 𝛼 is the learning rate. This learning rate is equivalent to the
nverse of the number of previous samples that is used to obtain the
verage of the rewards.

.5. Action selector

According to Fig. 2, the action selector receives the current policy
, the exploration probability 𝜖, and the exploration window size 𝑒𝑊 ,
nd it calculates the corresponding pitch reference, 𝜃R. As shown in
ig. 3, the action selector has two paths to obtain the next action: one
ay is to calculate a greedy action, 𝑎𝐺, which considers the previous
xperiences, and another way is to calculate a random exploratory
ction, 𝑎𝐸 . Depending on the position of the switch, one of these paths
s used to choose the action that is finally executed, 𝑎𝑡. The position of
he switch is randomly selected. To do it, a random number between

and 1 is generated. If the result is smaller than 𝜖, the action 𝑎𝐸
s selected. Otherwise, the greedy action 𝑎𝐺 is chosen. Therefore, the
robability of a random exploratory action is 𝜖, and the probability
f an action considering the experience is (1 − 𝜖). The parameter 𝜖 is
djusted by the learning observer.

The greedy action 𝑎𝐺 is obtained based on the values of the policy
able 𝑇 . The state 𝑠𝑡 is used to select the row of the table which
mplements the corresponding policy 𝑇(𝑠𝑡). The content of the row can
e accessed as a lookup table. The input of the table is the action, and
he output is the expected reward. In standard RL, the greedy action
6

s usually selected as the action with the maximum expected reward,
𝑡𝐵𝐸𝑆𝑇 . However, in order to reduce the error due to the discretization
f the actions, in this approach the actions are weighted by the expected
ewards in the table, giving as result 𝑎𝐺. For instance, if the table only
ad two discrete actions, 𝐴 ={1, 2}, and these actions had the same
xpected rewards, the resulting weighted action 1.5 would be selected.
his continuous action would be in the middle of the discrete actions
and 2. This way the discrete set of actions 𝐴 is transformed into a

ontinuous set of actions in the range [0, |𝐴|] ∈ R, where |𝐴| denotes
he size of the discrete set 𝐴.

On the other hand, the exploratory action 𝑎𝐸 is selected using the
xploration window. This is a set of actions around the best action,
tBEST, with size 𝑒𝑊 ⋅ |𝐴|. The parameter 𝑒𝑊 ∈ {R ∈ [0, 1]} is an
nput parameter adjusted by the learning observer. When a random
ction is explored, the action is chosen from a smaller range of options
ithin the exploration window close to the best action, rather than

rom all the possible actions in 𝐴. This strategy facilitates the reduction
f oscillations during the training and accelerates the learning.

In standard RL problems, the actions are not sorted, and there is
ot any relationship between them. However, in WT pitch control and
n other control problems, the actions can be sorted. If the pitch angle
ncreases the power decreases and vice versa. Therefore, if we rank the
ctions by considering the pitch angle, smaller actions provide smaller
itch and higher power. Hence, the actions that are nearly 𝑎tBEST will
ave a larger probability of obtaining the best rewards. Therefore, the
xploration window helps select a random action among the actions
hat a priori will get a better reward.

The operation of the action selector can be formalized by the
ollowing expressions Eqs. (29)–(33).

G = (1∕
∑

𝑖
𝑇(𝑠𝑡 ,𝑖)) ⋅

∑

𝑖
𝑇(𝑠𝑡 ,𝑖) ⋅ 𝑖, (29)

tBEST = 𝑎𝑟𝑔𝑖𝑀𝐴𝑋(𝑇(𝑠𝑡 ,𝑖)), (30)

E = 𝑎tBEST + (𝑟𝑎𝑛𝑑() − 0.5) ⋅ 𝑒𝑊 ⋅ |𝐴| , (31)

𝑡 =

{

𝑎G 𝑟𝑎𝑛𝑑() > 𝜖
𝑎E 𝑟𝑎𝑛𝑑() ≤ 𝜖,

(32)

R = 𝑎𝑡 ⋅ (𝜋∕2)∕ |𝐴| , (33)

.6. Learning observer

The learning observer is a module of the control strategy that
eceives as inputs the output power error and the policy (Fig. 2).
t generates the best policy and adjusts the input parameters that
onfigure the action selector. This module monitors the root mean
quared error (RMSE) of the output power at the end of each training
pisode. If it detects that this error is growing, it modifies the inputs of
he action selector to correct this tendency. This way it contributes to
ake faster the learning and limits the oscillations during the learning
rocess.

As said, the action selector chooses a random action with a proba-
ility 𝜖 and a greedy action with a probability (1 − 𝜖). This is carried
ut to guarantee a proper exploration of the actions and to avoid falling
nto local minima. If 𝜖 is very small the actions are mainly based on the
xperience and the system may fall into a local minimum. However, if
t is too high, the oscillations of the RMSE can be very large and the
earning takes a long time. Thus, it is important to adjust this parameter
roperly. The learning observer oversees this; it checks the RMSE at
he end of every episode; if the RMSE grows, then it increases the
xploration in order to find better actions by enlarging the parameters
and 𝑒𝑊 .

This module also compares the RMSE at the end of every episode
ith the best RMSE found (the smallest), 𝑅𝑀𝑆𝐸MIN. If the current
alue is much greater than the best one, the current policy 𝑇 is replaced
y the best policy 𝑏𝑇 . This allows it to avoid large oscillations of the
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Fig. 3. Architecture of the action selector.
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RMSE. In addition, every time that a best RMSE value is found, the best
policy 𝑏𝑇 is stored.

Regarding the convergence of the learning observer, we must con-
sider that the relationship of the pitch angle with the output power is
inversely proportional. Thus, if the pitch increases the power decreases.
On the other hand, it is well-known that for each state 𝑠𝑡, the RL aims
to find the action that maximizes the expected rewards. In our case,
the rewards are designed to select the actions that push the power
to the reference and to reject those which move it away from it. For
the states in which the power error is positive, large pitch angles tend
to increase the error and provide negative rewards. Conversely, small
pitch angles increase the output power and decrease the error as long
as the reference is not exceeded. In another case, the power error jumps
to negative values, the power moves away from the reference, and the
rewards become negative. Therefore, the power error decreases until
a local minimum is reached, and it grows from thereon. The precise
action with which the minimum is reached depends on the wind speed,
as higher wind speed gives smaller pitch angles. For each state st, this
best action is searched by the RL algorithm.

This explanation may make it easier to understand how the learning
observer works. This component oversees the exploration of the system.
The selection of the exploration rate is a key issue in RL; if the
exploration is low the actions are mainly greedy, and the best actions
may not be explored. However, if the exploration is too high, the results
are too random. In our approach, the system starts with an exploration
rate 𝜖 low, thus almost all actions are greedy. The reward/punishment
strategy tends to reduce the power error at each state and increases
the frequency of the actions which receive positive rewards. This
contributes to reduce the global RMSE episode by episode. However,
this deceleration rate decreases as the power approaches the rated value
because the size of the rewards is then smaller, and the RMSE tends to
converge.

While the exploration rate is still low, the selected actions may
be far from the optimum, and there comes a point at which the
RMSE increases. Then the learning observer detects it and increases
the exploration rate and the exploration window. The action selector
chooses random actions within the exploration window, that is, actions
whose distance to the current best action is less than the half the
exploration window. Enlarging the level of exploration contributes to
find actions closer to the optimum of each state, and this may reduce
the global RMSE and helps the system converge. If the RMSE is reduced,
the learning observer resets the exploration to exploit the new learned
actions that have been found. In another case, if the exploration level

were kept at the same value, the randomness of the results would grow.

7

The previous explanation can be formalized by the following equa-
tions, Eqs. (34)–(39).

𝑅𝑀𝑆𝐸 (𝑒𝑝) =

√

1
𝑁𝑡

∑
(

𝑃𝑜𝑢𝑡
(

𝑡𝑖
)

− 𝑃𝑟𝑒𝑓
(

𝑡𝑖
))2, (34)

[𝑅𝑀𝑆𝐸MIN(𝑒𝑝), 𝑅𝑀𝑆𝐸MIN2
(𝑒𝑝)]

=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

[

𝑅𝑀𝑆𝐸 (𝑒𝑝) , 𝑅𝑀𝑆𝐸MIN (𝑒𝑝 − 1)
]

𝑖𝑓 𝑅𝑀𝑆𝐸 (𝑒𝑝) < 𝑅𝑀𝑆𝐸MIN (𝑒𝑝)
[

𝑅𝑀𝑆𝐸MIN (𝑒𝑝 − 1) , 𝑅𝑀𝑆𝐸 (𝑒𝑝)
]

𝑖𝑓 𝑅𝑀𝑆𝐸MIN (𝑒𝑝) < 𝑅𝑀𝑆𝐸 (𝑒𝑝) < 𝑅𝑀𝑆𝐸MIN2
(𝑒𝑝)

[

𝑅𝑀𝑆𝐸MIN (𝑒𝑝) , 𝑅𝑀𝑆𝐸MIN2
(𝑒𝑝)

]

𝑖𝑓 𝑅𝑀𝑆𝐸MIN2
(𝑒𝑝) < 𝑅𝑀𝑆𝐸 (𝑒𝑝) ,

(35)

(𝑒𝑝) =

{

𝜖 (𝑒𝑝 − 1) + inc𝜖 𝑖𝑓 𝑅𝑀𝑆𝐸 (𝑒𝑝) ≥ 𝑅𝑀𝑆𝐸MIN2

0 𝑖𝑓 𝑅𝑀𝑆𝐸 (𝑒𝑝) < 𝑅𝑀𝑆𝐸MIN2
,

(36)

𝑊 (𝑒𝑝) =

{

𝑒𝑊 (𝑒𝑝 − 1) + inceW 𝑖𝑓 𝑅𝑀𝑆𝐸 (𝑒𝑝) ≥ 𝑅𝑀𝑆𝐸MIN2

0 𝑖𝑓 𝑅𝑀𝑆𝐸 (𝑒𝑝) < 𝑅𝑀𝑆𝐸MIN2
,

(37)

𝑇 (𝑒𝑝) =

{

𝑇 (𝑒𝑝) 𝑖𝑓 𝑅𝑀𝑆𝐸 (𝑒𝑝) < 𝑅𝑀𝑆𝐸MIN

𝑏𝑇 (𝑒𝑝 − 1) 𝑖𝑓 𝑅𝑀𝑆𝐸 (𝑒𝑝) ≥ 𝑅𝑀𝑆𝐸MIN,
(38)

(𝑒𝑝) =

{

𝑏𝑇 (𝑒𝑝) 𝑖𝑓 𝑅𝑀𝑆𝐸 (𝑒𝑝) > kT ⋅ 𝑅𝑀𝑆𝐸MIN

𝑇 (𝑒𝑝 − 1) 𝑖𝑓 𝑅𝑀𝑆𝐸 (𝑒𝑝) ≤ kT ⋅ 𝑅𝑀𝑆𝐸MIN,
(39)

here 𝑒𝑝 is the current training episode, 𝑁𝑡 is the number of training
amples in every episode, [inc𝜖 , inceW] are parameters to adjust how
ast the exploration grows, and kT is a parameter to control when the
olicy must be reset to 𝑏𝑇 .

. Results and discussion

This RL-based control strategy has been applied to the model of
real small WT. Simulation results have been obtained using Mat-

ab/Simulink software. The duration of each simulation is 100 s. The
ample time, 𝑇𝑠, varies in order to reduce the discretization error, its
aximum value is 20 ms. The control period is 250 ms.

To evaluate the performance of this proposed hybrid controller, it
as been compared with a conventional PID regulator, Eq. (40), with a
ontrol system based on pure RL without the PID controller, Eq. (41),
ith a FLC, Eq. (43), and with a neural network controller, Eq. (44).

PID
(

𝑡𝑖
)

= 𝜋 − Kp

[

𝑃err
(

𝑡𝑖
)

+ Kd ⋅
𝑑 𝑃err

(

𝑡𝑖
)

+ Ki ⋅ 𝑃err

]

(40)

4 𝑑𝑡 ∫
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𝜃DRL
(

𝑡𝑖
)

= 𝑓as(𝑇(𝑠𝑡)
(

𝑡𝑖
)

, 𝜖
(

𝑡𝑖
)

, 𝑒𝑊
(

𝑡𝑖
)

), (41)

𝜃DRL−PID
(

𝑡𝑖
)

= 𝑓as
(

𝑇(𝑠𝑡)
(

𝑡𝑖
)

, 𝜖
(

𝑡𝑖
)

, 𝑒𝑊
(

𝑡𝑖
)

)

− 𝜃PID
(

𝑡𝑖
)

, (42)

𝜃FLC
(

𝑡𝑖
)

= 𝜋
4
− 𝑓FLC

(

𝑃err
(

𝑡𝑖
)

, 𝑉w(𝑡𝑖−1)
)

, (43)

NEU
(

𝑡𝑖
)

= 𝜋
4
− 𝑓NEU

(

𝑃err
(

𝑡𝑖
)

, 𝑃̇err
(

𝑡𝑖
))

, (44)

here [Kp,Kd,Ki] are the tuning parameters of the PID that have been
btained by trial and error. Their values are [𝜋∕4000,0.2,01].

The FLC is implemented by a Takagi–Sugeno structure with two
nputs, 𝑃err and 𝑉W, and one output, 𝜃ref . Three Gaussian fuzzy sets are
ssigned to the fuzzy input 𝑃err , namely Negative, Zero and Positive,

uniformly distributed in the range [−500, 500] W, and width 175 W.
The speed 𝑉DL is defined by three uniformly distributed Gaussian fuzzy
sets in the interval [12.25, 13] m/s, the width is 0.132 m/s. Its labels
are Low, Medium and High. The output is a singleton that can take
three values: - 𝜋∕4, 0, and 𝜋∕4 (rad).

On the other hand, the neural controller is implemented by a radial
basis function neural network with two inputs: 𝑃err and 𝑃̇err . The input
range of 𝑃err is adjusted to [−1100,1100] and the input range of 𝑃̇err
is set to [−1000, 1000]. The number of hidden neurons is 25. The
learning algorithm of the neural network is described in Sierra-García
and Santos (2020b).

5.1. Performance of the controller

The performance of the proposed hybrid controller is tested with
different wind speed profiles: a noisy constant wind speed with an
average speed value of 12.625 m/s and a signal-noise ratio of 30 dB; a
sinusoidal signal with an amplitude 0.375 m/s, period of 50 s, and an
average value of 12.625 m/s; and a sawtooth signal, with the same
amplitude, average value, and period. Different controllers obtained
with combinations of the constants [Kp,Kd,Ki] have been combined
with the DRL and tested, particularly, a PID-controller, P-controller,
PD-controller, and a PI-controller.

Figs. 4–6 show the wind speed signal (left) and the output power
obtained with different pitch control strategies (right). The rated value
is represented with a dashed black line. The light blue lines represent
the output power when the pitch reference is 90◦ and the green ones
when the reference is fixed to 0◦. The dark blue lines show the results
obtained with the PID, and the red lines the results given by the PID
with Ki = 0 (PD). The yellow lines show the results of the RL controller
without PID, called DRL, and the purple lines the performance of the
hybrid controller, i.e., RL combined with the PID or PD (DRL-PID or
DRL-PD), depending on which one gives better performance. The RL
controller has been trained during 100 episodes and the figures show
the results of the best values at the end of the training. In these three
figures, 4–6, the green line and the light blue line help identify the
boundaries of the signals since when the pitch reference is 0◦, the
output power is maximum and when it is 90◦, the wind power is
minimum.

In Fig. 4b it is possible to observe how the best performance is
obtained with the DRL controller (yellow) and the DRL-PD controller
(purple) with a noisy constant wind speed (Fig. 4a). In this case, the
best RMSE was obtained with Ki = 0, that is, with a PD regulator. The
four controllers can stabilize the output power around the rated value,
however the PID and the PD reacts slower. In this case the difference
between the DRL and the DRL-PD is not very noticeable.

In Fig. 5a, the sinusoidal shape of the wind speed (Fig. 5b) can be
seen in the power limits (light blue and green lines). The minimum
error is obtained with the DRL-PD followed by the pure DRL. Again, the
best results are obtained with Ki = 0. The biggest differences between
the DRL and the DRL-PD are observed in the signal peaks.
 g

8

Fig. 4a. Noisy constant wind speed.

Fig. 4b. Output power for noisy wind speed.

Fig. 5a. Sinusoidal wind speed.

Fig. 6b presents the same comparison when the wind is a sawtooth
ignal (Fig. 6a). Again, the best performance is obtained by the RL con-
roller combined with the PID, although in this case the improvement
iven by the PID in terms of RMSE is smaller than in the case of the
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Fig. 5b. Output power for sinusoidal wind speed.

Fig. 6a. Sawtooth wind speed.

Fig. 6b. Output power for sawtooth wind speed.

sinusoidal wind. However, it can be seen how the DRL-PID controller
is able to better dampen power fluctuations caused by changes in the
wind than the DRL control.
9

In addition to these figures, numerical results have also been ob-
tained. Table 2 shows the root mean squared error (RMSE) of the output
power. The columns represent the results with the controllers: PID,
P (PID with Ki and Kd equal to 0), PI (PID with Kd = 0), PD (PID
with Ki = 0), DRL, DRL-PID, DRL-P, DRL-PI, and DRL-PD. The last row
indicates the average value of the previous rows. The last columns show
the values obtained for the same turbine and the same wind profiles
with a fuzzy controller (FUZ) and a neuro-control (NEU).

According to Table 2, for every wind speed profile, the RMSE is
smaller when the DRL or any of its variants is applied. The best DRL
variant (DRL-P) provides a mean RMSE that is 26% smaller than the
mean RMSE of the best PID; even more, in the case of the sawtooth
wind profile this reduction is up to 35%. Another interesting result
is that the DRL control, even without PID, gives better results than
the PID regulators. The combination of the PID and DRL improves
the performance with respect to the DRL control for almost all wind
profiles, being the random wind the only exception. The integral term
of the PID only improves the control for the sawtooth wind speed
profile. It seems that this term slows down the learning of the RL
controller.

The results obtained by the DRL controller and its combinations
with P-controller or PD-controller are better than the results given by
the other intelligent control methods tested, the fuzzy controller and
the neural network controller.

The RL controller learns how to adapt the control law online. On
the contrary, the PID is tuned for specific operating conditions and
considering certain system parameters; thus, any changes in the system
affect its performance. To illustrate this, we have changed the resistance
load of the WT. The previous experiments were performed with a
resistance of 8 ohm. We changed the resistance to 7.84 ohm, just a 2%,
and the RMSE for the sawtooth wind increased from 250 W to 272 W,
that is, 8%. Changing the resistance to 7.6 ohm (5% of variation) the
RMSE grows up to 331 W, a 32% increase. Finally, a value of 7.2 ohm
(10% decrease) makes the RMSE grows up to 421 W, that is, a 68%
bigger. However, in all these cases, the performance of the DRL and the
other combinations of control methods can cope with them and keep a
good performance.

These results allow us to conclude that the performance of the WT
pitch control improves when a conventional PID is combined with a
DRL strategy. In the next section, it will be shown how the learning
can also be improved.

5.2. Improvement of the DRL control strategy

The PID improves the control in terms of reducing the RMSE of the
output power, while the RL controller is learning. These experiments
have been carried out combining the DRL with a PID-controller, a
P-controller, a PD-controller, and a PI-controller. The gains of the
controller are the same as in the previous section. The RMSE is obtained
at the end of each episode.

Figs. 7–9 (left) show the evolution of the RMSE while the system is
learning. The figures, on the right, show the RMSE overtime when the
best policy found by the learning observer is applied. The color code is
the same as before.

On the one hand, these figures confirm the results presented in
Table 2. The DRL control gives smaller RMSE than the best PID for
all wind speed profiles. The incorporation of a PID to the DRL control
strategy reduces the RMSE during the first episodes. This improvement
is about 150–200 W for all the wind profiles during the first episode.
For instance, the pure RL starts with an RMSE of 600 W with sinusoidal
wind; when it is combined with a PID, the error starts around 450 W.
This means a 25% RMSE reduction. The DRL combined with the P-
controller or with the PD-controller keeps this difference up to an
episode when it starts to decrease. This makes the controller converge
much faster. However, this difference decreases from the first episode

if the DRL controller is combined with the PI or the PID. In fact, the
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Table 2
Comparison of the RMSE of the output power [W] for different control strategies and wind speed profiles.

Wind profile PID P PI PD DRL DRL-PID DRL-P DRL-PI DRL-PD FUZ NEU

Noisy constant 125,99 104,5 134,15 105,25 71,62 131,25 79,07 149,49 75,88 84,61 232,53
Sinusoidal 339,95 265,29 347,51 263,88 231,29 312,94 199,63 320,26 206,09 214,58 295,13
Sawtooth 250,34 224,45 253,45 223,64 157,81 151,68 144,4 147,71 163,81 186,31 205,33

Mean 238,76 198,08 245,03 197,59 153,57 198,62 141,03 205,82 148,59 161,83 244,32
Fig. 7. Evolution of the RMSE for constant noisy wind, last policy (left), best policy (right).
Fig. 8. Evolution of the RMSE for sinusoidal wind, last policy (left), best policy (right).
erformance of the pure DRL overpasses the DRL-PI or DRL-PID when
he number of episodes is large for random and sinusoidal wind speed
rofiles. It seems that the integral term of the PID controller slows down
he response and the learning.

The most significant and most frequent peaks in the RMSE occur
ith sawtooth wind speed profile. On the contrary, the most regular

earning is observed with constant noisy wind; in this case, the RMSE
onverges at episode 25 for DRL-P and DRL-PD, and at episode 40 for
RL. This represents an acceleration of 37%.

However, during the initial phase of the learning, the performance
f the DRL is not so good because the intelligent controller does not
ave enough experience to learn from. Hence, the combination with
he PID gives better results than on its own. In Fig. 7, the RMSE of the
ure DRL (green line), without PID, starts at 500 W while with the PID
red, purple, orange), the initial error is around 350 W. This reduction
f the error in the first episodes is the main contribution of the PID in
he control scheme. Besides, the DRL without PID crosses the best PID

ine (dashed line) around episode 30. Meanwhile the red and purple

10
lines (DRL with P or PD) cross the best PID line at around episode 10,
that is, three times faster.

Therefore, the PID can improve the performance of the RL controller
and accelerate the learning process. But if the gains of the PID are
not well-tuned, the PID action may be counterproductive. To ensure
its effectiveness, it is necessary to select small Ki values for the PID.
If the Ki gain is too large, the PID may slow down the controller and
decelerate the learning. Indeed, the best results have been obtained by
the combination of RL and P or PD controller.

5.3. Effects of the learning observer

As explained before, the learning observer adjusts 𝜖 and 𝑒𝑊 in
order to increase the actions space if it detects the learning is not
improving from one episode to another. To evaluate the improvement
of this approach, the evolution of the RMSE obtained with the DRL con-
troller with the learning observer is compared with other standard RL

strategies, such as keeping constant 𝜖 or 𝜖-exponential decay. For a fair
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Fig. 9. Evolution of the RMSE for sawtooth wind, last policy (left), best policy (right).
Fig. 10. Comparison of evolution of RMSE with different strategies that update 𝜖.
comparison, in these experiments the DRL is used without combining
it with a PID. The wind speed profile is sinusoidal with the parameters
of the previous sections.

The exponential decay updates 𝜖 by Eq. (45), where 𝑒𝑝 denotes the
episode.

𝜖 (𝑒𝑝) = 𝑒−0.05⋅(𝑒𝑝−1) 1 ≥ 𝑒𝑝 ≥ 100 (45)

Fig. 10 shows the comparison of the evolution of the RMSE when
different strategies to update 𝜖 are used. The parameter 𝜖 (EPS) is set to
0.25 (blue line), 0.5 (red line) and 0.75 (yellow line). The purple line
shows the results when it is updated by the exponential decay (EPS-
DEC), and the green one when it is updated by the learning observer
(LOBS).

In the first episode, the RMSE obtained with the learning observer
is larger than with the other approaches; however, this error decreases
much faster. Indeed, from episode 40 the RMSE is much smaller with
the learning observer. In addition, smoother and more regular learning
is also shown, especially up to episode 40. As expected, during the
first episodes a larger exploration produces better performance as the
controller does not have enough experiences to learn from, and the best
strategy is to explore all possible options. As the number of episodes
increases, the controller gains more experience, and better results are
obtained by lowering the exploration. Thus EPS-0.25 and EPS-DEC give

a lower RMSE.
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However, narrowing the exploration space is not enough to update
the performance of the learning observer. The EPS-DEC reduces the
exploration up to 0.0068 and still the RMSE obtained with LOBS is not
reached. This may be explained by the effect of 𝑒𝑊 ; EPS-DEC selects
an action among all possible actions in the range [0, 𝜋∕2]. However, the
learning observer adjusts the size of the exploration window 𝑒𝑊 , and
the random action is selected among the actions closest to the known
best one, that is, the actions within the exploration window.

That is, the learning observer helps not only improve the conver-
gence of the learning but also to get better results regarding the control,
as the error is smaller.

6. Conclusions and future works

Because of the non-linearities, coupling between variables, and
uncertainty of the environment, controlling the pitch angle of a WT
is a challenging task. This has inspired researchers to investigate on in-
telligent control approaches as a solution to this control problem (Jove
et al., 2021). One of these techniques that has been recently applied to
the control of wind devices is RL, which implements different ways of
learning using rewards that reinforce certain actions.

One of the drawbacks of RL is its slow convergence, which limits
its applicability in real control problems. In this work, a novel control

architecture that seeks to improve the performance of RL-based control
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Table 3
List of abbreviations.

Abbreviation Description

ANFIS Adaptive Neuro-Fuzzy Inference System
Cp Power Coefficient
DRL Discrete Reinforcement Learning
EPS-DEC Epsilon decay
FLC Fuzzy Logic Controller
LOBS Learning Observer
MPPT Maximum Power Point Tracking
PID Proportional–integral–derivative
PSO Particle Swarm Optimization
RL Reinforcement Learning
RMSE Root Mean Squared Error
TSR Tip Speed Ratio
WT Wind Turbine

in WT is presented. The proposal initially applies the standard RL strat-
egy: reward calculation, state estimator, policy updating, etc., that are
here re-defined for the particular control problem. Then, the proposed
intelligent RL control is improved by combining it with a PID regulator
and a learning observer.

This hybrid controller has been shown more effective in terms of
error regarding the rated power output. Even more, the combination of
the DRL with a PID regulator reduces the error of the output power dur-
ing the first episodes of the training. In addition, the learning converge
is accelerated by around 37%. That allows the implementation of the
control strategy in real-time. On the other hand, the hybrid controller,
particularly the combination of the DRL with a proportional controller,
reduces the RMSE of the wind power in about 41% regarding a well-
tuned PID. With the best found configuration of the hybrid controller,
the performance reaches the 98% in terms of power.

Besides, the definition of a learning observer that monitors the
training and adjusts accordingly the exploration rate has been proved
useful to get these improvements. It also smoothers the learning curve
and gives a more accurate output power.

Among other possible future works, we may highlight the applica-
tion of this control configuration to large WT, using the corresponding
models. Another further step would be the extension of this approach
to reduce the vibrations simultaneously to the power error control. This
will be especially interesting for floating WT. Finally, it would also be
desirable to implement the controller in a WT prototype.
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Appendix. List of abbreviations, variables, and control parameters

See Tables 3–5.
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Table 4
List of control parameters.

Parameter Description Value

[Kp ,KD ,KI] ∈ R3 Tuning parameters of the
PID

[𝜋∕4000,0.2,01].

[emin , emax] ∈ R2 Range of the power error [−1000,7000]
[demin , demax] ∈ R2 Range of the derivative of

the power error
[−1000,1000]

vwmin ∈ R Min wind velocity 12
inc𝜖 ∈ R Number of discrete states

for 𝑃errD , 𝑑𝑃errD and 𝑉wD

[100,50,4]

𝛼 ∈ R Learning rate 0.01
inc𝜖 ∈ R Epsilon increment 0.01
inceW ∈ R Exploration window

increment
0.01

kT ∈ R Reset policy threshold 1.2

Table 5
List of variables.

Variable Description Units

𝜃ref ∈ R Pitch angle reference input of WT rad
𝜃 ∈ R Pitch angle output of WT rad
𝜃R ∈ R Pitch angle output of RL

controller
rad

𝜃PID ∈ R Pitch angle output of PID
controller

rad

𝑓blade ∶R → R Function of the blade filter m/s
𝑣𝑒𝑓 ∈ R Effective wind velocity m/s
𝑣W ∈ R Measured wind velocity m/s
𝜆 ∈ R Tip Speed Ratio –
𝐶𝑝 ∶R → R Power coefficient function –
𝑤 ∈ R Angular rotor speed rad/s
𝐼a ∈ R Armature current A
𝑃ref ∈ R Power reference W
𝑃err ∈ R Power error W
𝑃out ∈ R Output power W
𝑃errS ∈ R Bounded 𝑃err W
𝑑𝑃errS ∈ R Bounded 𝑃̇err W/s
𝑃errD ∈ R Discrete 𝑃err W
𝑑𝑃errD ∈ R Discrete 𝑃̇err W/s
𝑉wD ∈ R Discrete 𝑣W m/s
S ⊆ N Set of discrete states –
A⊆ N Set of actions –
𝑠𝑡 ∈ 𝑆 State at time t –
𝑎𝑡 ∈ 𝐴 Action at time t –
𝑟𝑡 ∈ R Reward at time t –
𝑎G ∈ 𝐴 Greedy action
𝑎E ∈ 𝐴 Exploration action
𝑎tBEST

∈ 𝐴 Best action
𝑇ep∈R Time when an episode finish s
𝑓se ∶R3 → 𝑆 Function implemented by the

state estimator
–

𝑓rc: R2 → R Function implemented by the
reward calculator

–

𝑓pu: R2 → R function implemented by the
policy updater

–

𝑓as Action selector function
𝑓as: R|𝐴| × {R ∈ [0, 1]}2 → R
∈ [0, 𝜋∕2]

rad

𝑓LO ∶R𝑁 → {R ∈ [0, 1]}2 Function implemented by the
learning observer to update
[𝜖, 𝑒𝑊 ]

–

𝑓LOT ∶R𝑁 →
{

R|𝐴|⋅|𝑆|}2 Function used by the learning
observer to update tables

–

𝑇(𝑠𝑡 ,𝑎𝑡) ∈ R|𝑠||𝐴| Table which associates an
estimation of the expected reward
to each pair of state and action
(𝑠𝑡 , 𝑎𝑡).

–

𝑏𝑇(𝑠𝑡 ,𝑎𝑡) ∈ R|𝑠||𝐴| Best table 𝑇(𝑠𝑡 ,𝑎𝑡) –
𝑒𝑝 ∈ N Episode –
𝜖 ∈ {R ∈ [0, 1]} Probability to select a random

action
–

𝑒𝑊 ∈ {R ∈ [0, 1]} Exploration window –
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