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A B S T R A C T   

There is a strong need to reduce food waste while maintaining the quality of packaged food. Thus, we have 
prepared a new fully organic and metal-free antimicrobial polymer, with the aim of increasing both the shelf life 
and safety of packaged meat. This antimicrobial polymer is based on widely available commercial acrylic 
monomers with covalently linked vanillin motifs, which are naturally occurring essential oils with antimicrobial 
characteristics. The film-shaped antibacterial polymeric material shows antibacterial activity for Escherichia coli, 
Staphylococcus aureus, and Listeria monocytogenes with an R parameter of up to 3.18, 3.37 and 2.00 and inhibition 
% of up to 99.95%, 99.96%, and 99.02%, respectively. To show the potential of these materials, we conducted a 
proof of concept experiment in which the antimicrobial polymer film was used as an absorbent food pad. The 
results show that the use of the antimicrobial polymer film can increase the shelf life of a packaged meat product 
by 50%. Since the antimicrobial activity is based on a covalently anchored group, there is no antimicrobial agent 
diffusion, and the antimicrobial activity persists beyond the first use because it is easily washable and reusable 
for at least 10 cycles.   

1. Introduction 

A biocide is defined in European legislation as a chemical substance 
or microorganism intended to destroy, deter, render harmless or exert a 
control effect on any harmful organism. In Europe, biocides are divided 
into different types of products, depending on their intended use, as 
stated in the Biocidal Products Regulation (BPR) of the EU No. 528/2012 
(European Chemicals Agency, 2012): "Biocidal products are necessary 
for the control of organisms that are harmful to human or animal health 
and for the control of organisms that cause damage to natural or man-
ufactured materials". However, it is necessary to consider some of the 
disadvantages of the actual antimicrobial and biocidal products. This 
need is stressed today due to the current pandemic, where the contin-
uous cleaning of surfaces to eliminate SARS-CoV-2 has become 
mandatory (Mallakpour et al., 2021). 

Antimicrobial products can pose risks to humans, animals, and the 
environment as a result of their intrinsic properties and associated use 
patterns (Sharma et al., 2021). Our first objective in this work was to 
prepare inherently antimicrobial materials that do not cause the 

migration of antimicrobial agents towards living beings, eliminating the 
dangers referred to in the aforementioned regulations. 

Although there are some reviews concerning antimicrobial polymers 
as advanced materials, only a few are relevant in the field (Borjihan & 
Dong, 2020; Krishnamoorthy et al., 2014; Olmos et al., 2021). In fact, 
these reviews are mostly related to the antimicrobial activity exhibited 
by hybrid structures containing metals (Braun et al., 2020; Otoni et al., 
2016; Shao et al., 2015; Tang et al., 2013; Wang et al., 2014), which 
makes these studies interesting from a scientific viewpoint but irrelevant 
to real-life applications due to both their high production costs and the 
health and environmental concerns related to the use of metal cations 
(Carraher & Roner, 2014; Ding et al., 2019; Fernández et al., 2009; Luo 
et al., 2021; Tamayo et al., 2016; Zhang et al., 2014). The advantages of 
the antimicrobial activity of polymers over conventional antimicrobial 
agents against microorganisms (such as bacteria, fungi, and protozoans) 
include their nonvolatility, chemical stability, nontoxicity (difficulty in 
permeating through the skin of animals), ability to prolong product shelf 
life, increased efficiency, and selectivity while minimizing their envi-
ronmental impact (Norrrahim et al., 2021; Sharma et al., 2021). 
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Although the preparation of materials with antibacterial properties is 
a topic that is booming (Cheng et al., 2021; Liu et al., 2020; Su et al., 
2020), there is an urgent need to develop a scalable synthetic strategy 
involving different kinds of polymers whose potency against specific 
microorganisms is accompanied by less hazardous effects (Otoni et al., 
2016). The second objective of our work involves more than just these 
advantages, proposing fully organic antimicrobial polymers (i.e., 
metal-free) that have a biocompatible main chain and pendant chemi-
cally anchored vanillin derivative motifs. At this point, the use of 
vanillin is significant because it is a natural product that is also a widely 
used and accepted flavouring food additive (U.S. Food & Drug Admin-
istration, 2021). 

The preparation of new polymers with antimicrobial activities re-
quires the synthesis, purification, and characterization of new com-
pounds to be used as monomers, comonomers, or simple reagents for 
dispersion into the polymer matrix. This process is complex and time- 
consuming, and the resulting materials are not economically viable, so 
our third objective was to prepare these materials in a simple and easily 
scalable way for future applications. For this reason, we propose an 
antimicrobial polymer based on the antimicrobial activity of phenols 
(Park et al., 2001), specifically essential oils containing phenol struc-
tures (Fiore et al., 2021; Gañán & Brignole, 2011; He et al., 2021; Javed 
et al., 2011; Reyes et al., 2021; Syafiq et al., 2020), and even more 
specifically vanillin (Cerrutti et al., 1997; Fitzgerald et al., 2004). 
Furthermore, we designed a very easily prepared film-shaped polymer 
that is 100% based on inexpensive and widely available commercial 
monomers (such as N-vinyl-2-pyrrolidone, methyl methacrylate, and 
4-aminostyrene) and can be easily modified by simply dipping the dense 
membrane in two solutions. 4-Aminostyrene acts as a functional motif in 
the polymer’s main chain to anchor the vanillin motifs (phenol deriva-
tive) through an azo-coupling reaction (Bustamante et al., 2019). The 
proportion of this anchoring monomer is very low (mol 1%), so the 
polymers can be easily scaled up for industrial production (i.e., there is 
no need for costly modification of the current production processes for 
prepared goods that contain polymers), and, at the same time, are safe 
for the environment and living beings. 

Additionally, in this work, we have carried out a proof of concept 
experiment for the designed polymers as absorbents for packaged meat 
products (Han et al., 2018) to demonstrate the possible applications of 
these new polymers in one of the expected real-life scenarios. The cur-
rent common absorbents are single-use products composed of silica gel 
or cellulose coated in plastic (Han et al., 2018) and generally do not have 
antimicrobial functionality or their antimicrobial activity ceases when 
all antimicrobial agents are delivered (Oral et al., 2009). These pads are 
not accepted for recycling or composting in the United States at this 
time, so they pose an environmental problem (Gaspar et al., 2019). 
Furthermore, their reusability is economically and environmentally 
impossible due to their porous nature. Microorganisms, such as bacteria, 
highly contaminate the absorbent pad, which necessitates the use of 
advanced washing processes in such a way that it is not profitable. 

In short, the novelty of our proposal lies in the combination of the 
following characteristics: (1) the dense nature of the material allows it to 
be washable and reusable; (2) the antimicrobial agent is covalently 
anchored to the polymer chains, so the polymers do not lose antimi-
crobial activity after use and do not deliver any substance; (3) metal-free 
composition; (4) easy preparation procedure; (5) materials contain a 
high amount of a hydrophilic monomer (N-vinyl-2-pyrrolidone, mol 
49.5%), which ensures the absorbent properties of the material, and a 
hydrophobic monomer (methylmethacrylate, mol 49.5%), which en-
sures that the material can withstand washing processes. 

2. Experimental 

2.1. Materials 

All materials and solvents used were commercially available and 

used as received unless otherwise indicated. The following materials and 
solvents were used: methylmethacrylate (MMA, 99%, Merck, Darm-
stadt, Germany), N-vinyl-2-pyrrolidone (VP, 99%, Acros Organics, Geel, 
Belgium), 4-aminostyrene (SNH2, 98%, TCI, Zwijndrecht, Belgium), 
ethylene glycol dimethacrylate (97.5%, Merck, Darmstadt, Germany), 
hydrochloric acid (37%, VWR International, Leuven, Belgium), sodium 
hydroxide (99%, VWR International, Leuven, Belgium), peracetic acid 
(35%, Acros Organics, Geel, Belgium), sodium nitrite (99%, Applichem 
Panreac, Darmstadt, Germany), pork meat (Carrefour, Burgos, Spain), 
streptomycin thallous acetate agar (OXOID LTD, Basingstoke, England), 
STA selective supplement (OXOID LTD, Basingstoke, England), MRS 
agar (OXOID LTD, Basingstoke, England), Pseudomonas agar base 
(OXOID LTD, Basingstoke, England), ringer solution (OXOID LTD, 
Basingstoke, England), plate count agar (PCA, Condalab, Torrejón de 
Ardoz, Spain), Listeria agar base (Scharlau, Barcelona, Spain), glycerol 
(VWR International, Leuven, Belgium), tryptone bile x-glucuronide agar 
(TBX, Scharlau, Barcelona, Spain), Baird Parker agar base (Condalab, 
Torrejón de Ardoz, Spain), violet red bile lactose agar (VRBL, VWR In-
ternational, Leuven, Belgium), brain heart infusion (BHI, OXOID LTD, 
Basingstoke, England), Listeria chromogenic agar base Acc. Ottaviani & 
Agosti (ALOA, OXOID LTD, Basingstoke, England), tellurite egg yolk 
emulsion (Condalab, Torrejón de Ardoz, Spain), Staphyloccocus aureus 
ATCC 29923 (American Type Culture Collection, Manassas, USA), 
Escherichia coli CECT 50 (Colección Española de Cultivos Tipo, Valencia, 
Spain), Listeria monocytogenes ILSI 9 (University of Burgos, Burgos, 
Spain), propidium iodide (1 mg/mL solution in water, Invitrogen, 
Waltham, USA), and stock solution of phosphate buffered saline (PBS 
10X, Merck, Darmstadt, Germany). Azo-bis-isobutyronitrile (AIBN, 
98%, Merck, Darmstadt, Germany) was recrystallized twice from 
methanol. 

2.2. Instrumentation 

Infrared spectra (FTIR) were recorded with an infrared spectrometer 
(FT/IR-4200, Jasco, Tokyo, Japan) equipped with an ATR-PRO410-S 
single reflection accessory. High-resolution electron-impact mass spec-
trometry (EI-HRMS) was carried out using a spectrometer (Micromass 
AutoSpec Waters mass, Micromass Holdings Ltd., Cary, USA) with an 
ionization energy of 70 eV and a mass resolving power > 10,000. 1H and 
13C{1H} NMR spectra (Avance III HD spectrometer, Bruker Corporation, 
Billerica, USA) were recorded at 300 MHz for 1H and 75 MHz for 13C 
using deuterated solvents such as dimethyl sulfoxide (DMSO-d6) or 
deuterated chloroform (CDCl3) at 25 ◦C. 

The thermal and mechanical properties of the material were 
measured using thermogravimetric analysis, with 10–15 mg of the 
sample exposed to synthetic air and a nitrogen atmosphere at a heating 
rate of 10 ◦C/min (Q50 TGA analyser, TA Instruments, New Castle, 
USA); differential scanning calorimetry, with 10–15 mg of the sample 
exposed to a nitrogen atmosphere at a heating rate of 10 ◦C/min (Q200 
DSC analyser, TA Instruments, New Castle, USA); and the tensile prop-
erties were analysed with 5 × 30 × 0.103 mm samples tested at 5 mm/ 
min, dried at 60 ◦C for 1 h, with an inter-jaw distance of 9.44 mm (EZ 
Test Compact Table-Top Universal Tester, Shimadzu, Kyoto, Japan). 

The weight percentage of the water taken up by the films upon 
soaking in pure water at 20 ◦C until equilibrium (water-swelling per-
centage, WSP) was obtained from the weight of a dry sample film (ωd) 
and its water-swelled weight (ωs) using the following expression: WSP 
= 100 × [(ωs×ωd)/ωd]. 

AFM-RAMAN spectra were recorded with an Alpha300R – 
Alpha300A AFM (WITec, Ulm, Germany) using laser radiation at 
wavelengths of 532 nm and 785 nm at 100 × magnification. RAMAN 
spectra were obtained at room temperature at 5 µm intervals on the Z- 
axis (thickness) to check the homogeneity of the material. Scanning 
electron microscopy (SEM) experiments were carried out for the mate-
rial’s surface and the cross-section using an electron microscope (FEI 
Quanta 600, FELMI-ZFE, Graz, Austria). Films were dried in air, 
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fractured and gold sputtered in vacuum to assure the electrical con-
ductivity of the films. 

Images of bacterial cells stained with propidium iodide (PI) were 
acquired using a microscope (CTR6000, Leica Microsystems, Wetzlar, 
Germany) equipped with an N21 (red) filter cube using the following 
settings: excitation wavelengths of 515–560 nm and an emission 
wavelength of 590 nm. Meat packaging was carried out with a modified 
atmosphere packaging (MAP) machine (Efabind, Murcia, Spain) coupled 
with an OxyBaby 6.0 gas analyser (Witt-Gasetechnik GmbH & Co KG, 
Witten, Germany). 

The powder X-ray diffraction (PXRD) patterns were obtained using a 
diffractometer (D8 Discover Davinci design, Bruker Corporation, Bill-
erica, Massachusetts, USA) operating at 40 kV with a Cu(Kα) radiation 
source and a scan step time of 2 s. Each spectrum was acquired from 5◦

to 70◦ using a step size of 0.05◦ (2θ). The wavelength of the X-ray ra-
diation was 1.54060 nm with an intensity of 30 mA. 

2.3. Antimicrobial polymeric film preparation 

The starting material was prepared by the bulk radical polymeriza-
tion of three commercial monomers (VP, MMA, and SNH2) in different 
molar ratios with 0.1% mol of a crosslinker (ethylene glycol dimetha-
crylate) and 1% by weight of AIBN as a radical thermal initiator (see  
Scheme 1). The polymerization was carried out at 60 ◦C overnight in a 
mould (width, length, and thickness of 90 ×120 ×0.1 mm, respectively) 
comprised of two silanized glasses in an oxygen-free atmosphere. The 
films were removed from the mould and washed once with methanol 
and twice with water. The films were then dipped in a sodium nitrite 
acid solution (125 mL water, 12 mL HCl (37%), 0.5 g NaNO2) for 90 min 
into which a benzene diazonium salt was formed. Finally, the films were 
dipped into a basic vanillin solution (60 mL NaOH 1 M, 40 mL methanol, 
1 g vanillin) to facilitate an azo-coupling reaction. The obtained anti-
microbial polymeric films were washed exhaustively with basic water 
and water, dried at 60 ◦C, and then sterilized with a UV lamp (365 nm) 
for 24 h. 

Given the low proportion of aniline side groups in the starting ma-
terials (0.2, 1 and 2 mol%), as well as the low ratio of groups derived 
from vanillin in the antimicrobial polymeric films, we prepared an 
additional polymer with a higher molar ratio of vanillin motifs (mol 
10%) to enable characterization by FT-IR spectroscopy. 

2.4. Bacterial strains and inoculum preparation 

In this study, Staphylococcus aureus ATCC 29923, Escherichia coli 
CECT, and different strains of Listeria monocytogenes were used: Lis-
teria monocytogenes ILSI 29 (International Life Sciences Institute North 
America), Listeria monocytogenes ILSI 9, and Listeria monocytogenes 

C6 1449 isolated from a mincing machine in a poultry processing plant 
(Department of Biotechnology and Food Science Collection, Burgos, 
Spain). Staphylococcus aureus ATCC 29923 was grown onto plate count 
agar (Oxoid), Escherichia coli on tryptone bile X-glucuronide agar 
(Scharlau), and Listeria strains on agar listeria ALOA (Oxoid). One col-
ony of each strain was transferred into BHI broth (Oxoid) and grown at 
37 ◦C for 24 h to achieve a viable cell population of 8 log CFU/mL. 
Decimal dilutions were performed in Ringer solution (Oxoid) to achieve 
the proper inoculum concentration (5 log CFU/mL). 

2.5. Experimental procedure used for the evaluation of antimicrobial 
capacity and efficacy 

The study aimed to evaluate the antimicrobial capacity of the pre-
pared material against different bacteria, such as E. coli, S. aureus, and L. 
monocytogenes, following established procedures (ISO Standard 
22196:2011 and JIS Standard Z 2801:2010 +A:2012). 

The tested materials were cut into square shapes (4 ×4 cm). After 
sterilization with ethanol (70%), 300 µL of the bacterial inoculum (E. 
coli, S. aureus, or L. monocytogenes) was streaked onto the square pieces, 
and the inoculum was covered with another square piece (4 ×4 cm) of 
sterile polyethylene. The samples were incubated for 24–48 h at 35 ◦C 
± 1 ◦C, and the bacteria were collected by sterile homogenization with 
10 mL of culture broth (Ringer solution). One hundred microlitres of the 
homogenate was taken, inoculated in the corresponding culture 

Scheme 1. Preparation of the antimicrobial polymer films from the starting materials. The scheme shows the molar ratios used for each polymer, and real images 
(adapted as circular shapes) of the films taken with a camera to illustrate the colours of the materials. 

Fig. 1. Graphical abstract of the experimental procedure according to the ISO 
22196: 2011 & JIS Z 2801 standards. 
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medium, and allowed to incubate for the necessary time for each bac-
terium (Fig. 1). The count of viable bacteria was performed by counting 
the colonies on the incubated plates and comparing this with the initial 
inoculum concentration. The antibacterial activities of the antimicrobial 
polymeric films were compared to the starting materials and calculated 
using the final counts of viable bacteria that were incubated with the 
antimicrobial polymeric films. Both the inhibition % and R parameter 
were calculated using the following formulae:  

• Inhibition (%) = 100-((Final count (CFU/cm2)* 100)/(Initial count 
(CFU/cm2))  

• R (antibacterial activity) = Ut – At  
• Ut = average of the logarithmic number of viable bacteria after 

inoculation on starting materials after 24 h. 

At = average of the logarithmic number of viable bacteria after 
inoculation on antimicrobial polymeric films after 24 h. 

2.6. Migration study 

The migration study was carried out both qualitatively (Kirby-Bauer 
method) and quantitatively (European Commission, 2011). For the 
former, an 8 mm diameter disc of starting material SM1 was first 
immersed in a vanillin solution (3 mL NaOH 1 M, 2 mL MeOH and 
50 mg vanillin) to obtain a material with dispersed vanillin, i.e., non-
covalent binding). The material was incubated at 37 ◦C for 24 h in petri 
dishes containing TBX culture medium with E. coli. The same procedure 
was followed for the antimicrobial polymer film APF1. For the latter, 
migration was studied as described in EU No. 10/2011 (European 
Commission, 2011) and amendments, which relates to plastic materials 
and articles oriented towards food contact applications. The standard 
test methods were carried out at high temperatures (100 ◦C or reflux 
temperature) with aqueous solutions of acetic acid (3%) and ethanol 
(10%), and olive oil (UNE-EN 1186–1, 2002, and UNE-EN 1186–3, 
2002). 

2.7. Determination of the bacterial cell membrane integrity 

The bacterial cell membrane integrity was studied by using propi-
dium iodide (PI) and further optical microscopy analysis. Bacteria 
(E. coli and S. aureus) were collected from the surface of the materials 
used in Section 3.5 after 24 h of contact with starting material SM1 and 
antimicrobial polymeric film APF1 using 1X phosphate-buffered saline 
(PBS). Cells were diluted 1/100 with 1X PBS and incubated for 5 min at 
room temperature with 5 µg/mL PI. As a negative control, bacterial cells 
were grown at 37 ◦C for 24 h, and, as a positive control, bacteria were 
treated with heat at 80 ◦C for 4 min 

2.8. Preparation of meat packages for the proof of concept 

All packages were prepared the same day and with the same piece of 
meat to minimize experimental errors. First, 200–220 g of fresh pork 
loin meat was placed in hermetically sealed packages with a modified 
atmosphere (75% N2 - 25% CO2). In total, 21 meat packages were pre-
pared, 7 CONTROLs, 7 with starting material SM1, and 7 with antimi-
crobial polymeric film APF1, and these packages were stored at 4 ◦C. 

Samples were removed vertically with a scalpel so that the sample 
could be visualized as a sandwich that contained the outer Part 1 (in 
contact with the atmosphere), the internal part of the meat, and the 
outer Part 2 (in contact with APF1). The microbiota for these samples 
were evaluated at different times (0, 2, 4, 7, 9, 11, and 15 days) and for 
each type of packaging. This evaluation was carried out by using con-
ventional experimental procedures in microbiology (Pascual Anderson 
& Calderón y Pascual, 2000; ISO Standard 7218:2007; ISO Standard 
6887–1:2017). 

2.9. APF1 washing process 

We carried out different antimicrobial polymeric film APF1 washing 
procedures to ensure that this process is cheap as possible for future 
applications and to achieve an environmentally sustainable washing 
process. Specifically, we carried out four different washing processes 
(WP) for the antimicrobial polymeric film APF1 used in the proof of 
concept described in Section 3.7 after 15 days.  

• WP-A: Antimicrobial polymeric film APF1 was dipped in water, 
which was renewed four times every 30 min, and finally dried with a 
sterile gauze.  

• WP-B: After WPA, antimicrobial polymeric film APF1 was dipped in 
ethanol, which was renewed four times every 30 min. The material 
was finally rinsed with water.  

• WP-C: After WPB, antimicrobial polymeric film APF1 was exposed to 
365 nm UV radiation for 15 min.  

• WP-D: After WPA, antimicrobial polymeric film APF1 was dipped in 
an aqueous peracetic acid solution (5%) for 30 min at 55 ◦C. The 
material was finally rinsed with water. 

Washed materials were incubated in peptone water at 25 ◦C (since it 
is a high nutrient culture broth) overnight with orbital shaking in such a 
way that any residual bacteria on the material surface could grow. Then, 
100 µL of the culture broth was taken and distributed on PCA culture 
media and incubated in aerobic and anaerobic conditions at 30 ◦C 
before the final bacterial count. These culture media are general and 
nonspecific, and they give an idea of the general microbial population. 

2.10. Statistical analyses 

Statistical analyses were performed using GraphPad Prism v8. First, 
the normality and homoscedasticity of the data were analysed. When the 
data fulfilled both assumptions, one-way or two-way ANOVA followed 
by Tukey’s multiple comparisons test (p < 0.05) was run. When the data 
fulfilled the assumption of normality but not homoscedasticity, Welch’s 
ANOVA followed by Unpaired t with Welch’s correction (p < 0.05) was 
performed. When the data did not fulfil the assumption of normality, a 
parametric Kruskal–Wallis test (p < 0.05) was performed followed by 
the two-stage linear step-up procedure of Benjamini, Krieger and 
Yekutieli to correct for multiple comparisons by controlling the False 
Discovery Rate. 

3. Results and discussion 

3.1. Chemical characterization of the materials 

As a crosslinked material, the characterization of the newly formed 
motifs is impossible due to the requirement of polymer solubilisation, so 
we studied the polymer with the higher molar ratio of vanillin motifs 
(mol 10%) by FT-IR spectroscopy. Thus, this film is valid as a model for 
understanding the changes in the material’s chemical structure 
measured using FT-IR (Fig. S1, ESI-Section 1). Bands at 2270 cm− 1 and 
1577 cm− 1 confirm the formation of both the benzene diazonium salt 
and azo compound in the polymer (Bustamante et al., 2019). 

Our material is a 100 µm thick dense membrane for which we have 
made chemical changes, so it is necessary to show that the material is 
homogeneous after the reaction, i.e., that the reaction does not occur 
only in the outer part but also in the inner part of the material. RAMAN 
spectra confirmed the homogeneity of the material since no difference in 
the data was observed at different depths, as shown in Fig. S1 (ESI- 
Section 1). 

3.2. Physical characterization of the materials 

Scanning electron microscopy (SEM) tests were performed for the 
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starting materials and antimicrobial polymeric films. The results all 
showed the same dense structure, which is crucial to prevent the bac-
teria from entering the material and to demonstrate not only the anti-
microbial effect of the antimicrobial polymeric film surface but also that 
such films are easily cleanable, washable and reusable. 

Additionally, PXRD measurements for the starting materials and 
antimicrobial polymeric films were carried out (Fig. S1, ESI-Section 1). 
These measurements show typical amorphous haloes, which give the 
mean distance between the polymer chains and allow for the elucidation 
of the effect of the azo-coupling reaction on the mean distance (<R> =

5/8(λ/sin θmax). In other words, the higher the θmax, the lower the dis-
tance between the chains. This angle is increased from starting material 
SM02 to SM2, meaning that <R> is decreased with increasing content 
of amino groups, indicating an increase in the interchain interactions 
promoted by this polar group; whereas <R> is increased from antimi-
crobial polymeric film APF02 to APF2, showing the influence of the 
bulky lateral groups in increasing the distance between polymer chains. 

3.3. Thermal and mechanical characterization 

We consider a material to be manageable when it has suitable 
properties and can be easily manually manipulated without special care. 
In our case, given that one of the possible applications of the prepared 
material is as an absorbent food pad, this manageability must also be 
adequate when the material exists in a swollen state. Therefore, we 
optimized the monomer and crosslinker molar ratios to obtain materials 
with not only an appropriate WSP (see Table 1) but also good 
manageability. 

The mechanical properties of the prepared materials were more 
objectively studied, and the resulting Young’s modulus was determined 
to be 730 MPa. These data confirm the manageability that was visually 
observed upon film handling. The dimensions of the samples were 
chosen based on our experience with generic polyacrylic materials 
(Guembe-García et al., 2020, 2021). 

Additionally, we carried out TGA and DSC experiments with all 
starting materials and antimicrobial polymeric films. Table 1 shows T5 
and T10 (temperatures at which 5% and 10% weight loss is observed, 
respectively) obtained from the thermogravimetric analysis and the 
glass transition temperature (Tg) obtained from DSC measurement. Both 
the TGA and DSC patterns are shown in Fig. S1 (ESI-Section 1). 

3.4. Migration tests 

First, as one of the potential applications of these materials is related 
to food packaging, we checked that no migration of any substance oc-
curs through a study of the antimicrobial polymeric film APF1 and 
starting material SM1 by the Kirby-Bauer method (Dunkelberg, 1981). 
This qualitative and simple test allows for the examination of the 
anchoring of the antimicrobial substances that we have covalently 
anchored to the material, i.e., to determine if these substances are 
anchored, or, on the contrary, simply remain dispersed in the material. 
Over time, the vanillin contained in the material migrates to the solu-
tion, and a halo is observed around the disc, as shown in Fig. 2. How-
ever, when the same assay was performed with the antimicrobial 
polymeric film APF1, no halo was observed, confirming the lack of 
migration of the antimicrobial substances towards the culture media. 

Additionally, a migration study following the EU No. 10/2011 reg-
ulations (European Commission, 2011) and amendments shows that the 
antimicrobial polymeric film APF1 complies with the restriction for the 
overall migration limit (<10 mg dm− 2), as defined in the aforemen-
tioned European regulation. Specifically, the migration results obtained 
for antimicrobial polymeric film APF1 in 3% acetic acid, 10% ethanol 
and olive oil were 0.7, 5.9, and 4.8 mg dm− 2, respectively. 

The chemical formulation of the antimicrobial polymeric film APF1 
mainly comprises N-vinyl-2-pyrrolidone and methylmethacrylate. 
Regarding the former, both the monomer (N-vinyl-2-pyrrolidone) and 
polymer (polyvinylpyrrolidone) are authorized food contact materials 
(FCMs), with FCM numbers of 376 and 552, respectively, according to 
EU No. 10/2011. Regarding the latter, crosslinked methyl methacrylate 
copolymers are authorized food contact materials (FCM number: 664). 
Moreover, methyl methacrylate copolymers with maximum level per-
centages for other polymers are also authorized FCMs with FCM 
numbers of 865–869. However, due to the material’s smart antimicro-
bial behaviour, the EU No. 450/2009 regulation (European Commission, 
2009) for active and intelligent materials and articles that are intended 
to come into contact with food is applied, so the material should be 
further optimized prior to commercialization. 

3.5. Antimicrobial capacity and efficacy 

The assays were performed with E. coli (gram-negative) and S. aureus 
(gram-positive) for the different antimicrobial polymeric films. Table 2 
shows the results obtained for the initial/final count of bacteria, inhi-
bition percentage, and antibacterial efficiency of the material expressed 
as "R", which should be higher than 2, as expressed in the standards. 

As explained in the standards, antimicrobial polymeric film APF02 
cannot be considered an antimicrobial material since its R parameter is 
lower than 2, and it is worth noting that antimicrobial polymeric film 
APF2 contains twice the amount of 4-aminostyrene, which is the most 
expensive reagent used in the polymer synthesis. Thus, we selected 
antimicrobial polymeric film APF1 as the polymer with the best anti-
microbial activity/cost ratio, and we chose it as an absorbent food pad 
for the proof of concept experiment discussed below. Due to this 
application, we also analysed this material’s antimicrobial capacity with 
Listeria monocytogenes, since these bacteria can cause very severe 

Table 1 
Water swelling percentage (WSP), glass transition temperature (Tg), T5 and T10 
for different starting materials and antimicrobial polymer films.   

SM02 SM1 SM2 APF02 APF1 APF2 

T5 (◦C)  335  332  334  327  329  330 
T10 (◦C)  349  347  350  343  345  346 
Tg (◦C)  140  143  145  139  144  143 

WSP  35  50  35  40  65  45  

Fig. 2. Migration test for both covalently and noncovalently anchored vanillin 
based on the Kirby-Bauer method. The presence of a halo in the test for the 
starting material SM1 with dispersed vanillin indicates the migration of vanillin 
towards the media. 
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problems in the food industry (European Commission, 2005; EFSA and 
ECDC, 2019). For this assay, the antimicrobial polymeric film APF1 
showed 99.05 ± 0.06% inhibition and an R parameter of 2.00 ± 0.01. 

3.6. Study of the antimicrobial effect on bacterial cells 

The objective of this study carried out with propidium iodide (PI) 
was to characterize the effect of antimicrobial polymeric films on bac-
terial cells. PI is a nonmembrane permeable intercalating agent that 

binds DNA. Therefore, PI cannot penetrate healthy cells, resulting in low 
fluorescence, but can penetrate cells with damaged membranes and bind 
DNA, leading to a 20- to 30-fold increase in the fluorescence intensity of 
the cells. 

As shown in Fig. 3, the fluorescence enhancement observed in the 
bacterial cells in contact with antimicrobial polymeric film APF1 dem-
onstrates that the cell membrane integrity is compromised. These results 
agree with previous studies in which the antimicrobial effect of vanillin 
was produced by destabilization of cell membrane integrity, resulting in 
a loss of pH homeostasis and ionic balance (Fitzgerald et al., 2004; 
Saibabu et al., 2020). Therefore, the covalent immobilization of vanillin 
does not alter the mode of action of this essential oil. 

3.7. Proof of concept: antimicrobial polymeric films as absorbent food 
pads with biocidal activity 

In this work, we wanted to demonstrate the potential of these new 
materials with a proof of concept experiment that is pertinent to real life 
applications. Undoubtedly, these materials will be tested soon as surface 
coatings, sanitary material coatings, fibre coatings, etc. However, the 
proof of concept experiment herein involves the use of the prepared 
material as an absorbent food pad. For this, we chose packaged pork loin 
steaks as an example and prepared 3 types of packaging: without an 
absorbent food pad (CONTROL), with starting material SM1, and with 
the antimicrobial polymeric film APF1. 

All data can be found in ESI-Section 2, but as a summary, as shown 
in Fig. 4, we show the meat packages with starting material SM1 and 
antimicrobial polymeric film APF1 on Day 15 and the inhibition % for 
both materials at different times. 

The analysed samples contain the outer Part 1 (in contact with the 
75% N2 - 25% CO2 modified atmosphere), the internal part of the meat, 
and the outer Part 2 (in contact with APF1). Considering that bacterial 
proliferation occurs mainly in the external parts of meat (outer Parts 1 
and 2) to colonize the internal part, our interpretation is that APF1 
exerts great bacterial inhibition in outer Part 2 but never in outer Part 1 
because no antimicrobial substance is released. However, as shown by 

Table 2 
Evaluation of the antimicrobial capacity and efficacy of APFs (ISO 22196:2011; 
JIS Z 2801:2010 +A: 2012).    

Antimicrobial polymeric film   

APF02 APF1 APF2 

E. coli 
CECT 50* 

Initial count (log 
CFU/cm2) 

5.46 
± 0.00 b 

6.41 
± 0.00 a 

5.46 
± 0.00 b 

Final count (log 
CFU/cm2) 

4.85 
± 0.02c 

3.58 
± 0.02 d 

2.19 
± 0.11 e 

Inhibition (%) 75.86 
± 0.69 a 

99.85 
± 0.01 b 

99.95 
± 0.02 b 

Antibacterial activity 
(R) 

0.55 
± 0.03 a 

2.77 
± 0.03 b 

3.18 
± 0.08c 

S. aureus 
ATCC 
29923* 

Initial count (log 
CFU/cm2) 

5.41 
± 0.00 b 

6.56 
± 0.00 a 

5.41 
± 0.00 b 

Final count (log 
CFU/cm2) 

4.77 
± 0.02 c 

3.44 
± 0.04 d 

1.97 
± 0.03 e 

Inhibition (%) 77.05 
± 0.80 a 

99.92 
± 0.01 b 

99.96 
± 0.01 b 

Antibacterial activity 
(R) 

0.58 
± 0.03 a 

3.06 
± 0.03 b 

3.37 
± 0.02 c  

* CECT (Colección Española de Cultivos Tipo); ATCC (American Type Culture 
Collection), ILSI (International Life Sciences Institute North America). Data are 
the means of the ± SD for three replicates. Different letters indicate significant 
differences within the bacterial counts (p < 0.05, Two-way ANOVA followed by 
Tukey’s multiple comparisons test), inhibition and antibacterial activity 
(p < 0.05, One-way ANOVA followed by Tukey’s multiple comparisons test) 
data. 

Fig. 3. Fluorescence images of E. coli and S. aureus cells after treatment with propidium iodide. Microscope images of the control and starting material SM1 show a 
very low number of damaged cells (red points), while many damaged cells (red points) can be observed both in the antimicrobial polymeric film APF1 and heated 
samples. Scale bars in the images correspond to 25 µm. 
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the experimental results, the antibacterial effect exerted on outer Part 2 
greatly impacts the bacterial proliferation for the entire sample, prob-
ably due to the combination of the antimicrobial effect with the gel 
behaviour of APF1, which absorbs meat exudates, further delaying the 
formation of bacterial colonies. 

As shown in Fig. 4a, after 15 days, meat́s appearance remarkably 
changes, which correlates with the inhibition % results obtained for the 
studied bacteria. However, the most important result for these assays is 
the estimation of the shelf life for the packaged pork meat. Thus, the 
shelf life of the packaged meat both without packaging food pads 
(CONTROL) and using starting material SM1 is estimated to be 10 days 
(considering that meat is not suitable for consumption when the count of 
total aerobic mesophilic bacteria is greater than 7 log CFU/g, as indi-
cated in the literature (Chouliara et al., 2007; ICMSF, 2005; Kanatt et al., 
2013; Mouafo et al., 2020). Nevertheless, by using our antimicrobial 
polymeric film APF1 as the packaging food pad, the shelf life is 
increased to 15 days. In other words, the shelf life of the same product is 
increased by 50%. 

A few months later, the proof of concept was repeated, following 
exactly the same steps. Despite different bacterial counts on Day 0, the 
same results for increased shelf-life were obtained. The data for this 
second proof of concept are shown in ESI-Section S2. 

The obtained results have enormous impact, since the extension of 
the expiration date reduces food waste, generates social and environ-
mental benefits, and increases competitiveness, profit, and employment 
for the companies that market this packaging. 

3.8. Reusing antimicrobial polymeric film APF1 

First, we studied the antimicrobial polymeric film APF1 used in 
Section 3.7 by SEM after 15 days in contact with pork meat. Fig. 5 shows 
SEM images of the surface and cross-section of the material. This pre-
liminary characterization is crucial to understanding the antimicrobial 
mechanism for antimicrobial polymeric films, since the dense structure 
of the material makes it impossible for bacteria to enter the material’s 
interior. Therefore, antimicrobial activity occurs only via contact with 
the materiaĺs surface. Additionally, this dense structure makes the 
washing (reusability) of the material much easier, totally effective, and 
more pertinent to real-life applications since bacteria only contaminate 
the exterior of the antimicrobial polymeric films; thus, we different 
washing processes were developed. 

Second, the antimicrobial polymeric film APF1 was "used & washed" 
up to 10 times. The subsequent antimicrobial activity was studied with 
E. coli as described in Section 3.5, and the washing process was carried 
out by the simplest method described in Section 2.8 (washing process 
WP-A) since the final bacterial count for all the WPs was 0 CFU/cm2. 
This means that all the washing processes were effective, even for the 
simple process using only water. The inhibition % and the “R” parameter 
for the original material were determined to be 99.85 and 2.77, 
respectively. After 8 “use & wash” cycles, no statistically significant 
difference was observed in these data, as shown in Table S5 (ESI-Section 
S3). In addition, for the case of the material after 10 “use & wash” cycles, 
the inhibition % and the “R” parameter were determined to be 99.76 and 
2.52, respectively, so the material maintained high antimicrobial 

Fig. 4. (a) Image of packaged meat after 15 days with starting material SM1 and antimicrobial polymeric film APF1. (b) Inhibition % for both the starting material 
SM1 and antimicrobial polymeric film APF1 at Day 15 for the studied bacteria: aerobic mesophilic bacteria (AMB), anaerobic mesophilic bacteria (AnMB), lactic acid 
bacteria (LAB), E. coli, and coliforms. 

Fig. 5. SEM images of antimicrobial polymeric film APF1: materiaĺs surface containing bacteria (green); cross-section after fracture showing no bacteria contam-
ination in the material’s interior (red). 
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activity. This fact is a direct consequence of the covalent anchoring of 
vanillin motifs to the polymer. According to these results, the antimi-
crobial polymeric film APF1 is easily washable, and, therefore, reusable 
(full data for all “use & wash” cycles can be found in ESI-Section 3).  
Table 3 depicts a selection of polymeric materials used in food packaging 
as antimicrobial materials, with which we compare our development in 
terms of antimicrobial agent, antimicrobial activity, and especially in 
terms of material reusability, since we have not found any publications 
reporting this advantage. 

4. Conclusions 

There is a strong need to increase the safety and shelf life of packaged 
food to maintain food quality and reduce food waste. Within this frame, 
we designed and prepared an innocuous polymeric material with anti-
microbial characteristics and exploited it to increase the shelf life of 
packaged meat products by 50%. The antimicrobial polymer is prepared 
with commercially available monomers having pendant vanillin motifs, 
with this phenol-based essential oil acting as an antimicrobial agent. The 
polymer can be prepared as an absorbent food pad for packaged meat 
and has the following characteristics: a) it is safe, with no migration into 
the meat; b) antimicrobial activity occurs without the need for micro-
organisms to assimilate the antimicrobial agent; and c) the environ-
mental impact of the developed film and its products is very low, since 
they can be reused at least 10 times by simply washing with water. The 
methodology used can be extended to the study of other types of phenol 
derivative-based essential oils, such as eugenol, thymol, and carvacrol. 
Additionally, the polymer nature of the antimicrobial material and its 
persistent antimicrobial characteristic envisage its use in other fields, 
such as antimicrobial coatings, fibres, nanofibres, and composites. 
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