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Closed-form equations for the calculation of stress intensity factors for 
embedded cracks in round bars subjected to tensile load 
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A B S T R A C T   

Fatigue crack propagation initiated from internal defects is a typical mechanism observed in high cycle fatigue 
(HCF) and very high cycle fatigue (VHCF) of cylindrical tensile specimens subjected to uniaxial cyclic loads. To 
study the fatigue crack propagation of these embedded cracks by means of a fracture mechanics approach, so-
lutions for the Stress Intensity Factor (SIF) for different crack configurations are needed. In this paper, a set of 
closed-form equations for the calculation of the SIF of embedded cracks in round bars subjected to tensile load is 
presented. Two sets of solutions are provided, which allow for different levels of approach to be considered. The 
first solution provides the SIF for the vertex points of an internal elliptical crack as a function of three dimen-
sionless parameters related to crack size, crack position and crack aspect ratio. The second solution is a 
simplification for eccentric circular cracks located at any position of the cross section. The methodology 
necessary for the application to the study of fatigue crack propagation is also presented, and a comparison with 
those obtained from experimental tests is included, which exhibits a very good capacity for prediction.   

1. Introduction 

Fatigue crack initiation in high cycle fatigue (HCF) and very high 
cycle fatigue (VHCF) regimes of round bars subjected to tensile loads are 
often linked to the presence of internal defects or microstructural fea-
tures (Fig. 1). The fatigue crack propagation of these internal defects in 
round bars tends towards a circular shape, regardless of the irregular 
shape of the initiating defect, forming a characteristic circular crack 
pattern on the fracture surface known as a fish-eye [1–3]. To study the 
fatigue crack propagation of these embedded cracks by means of a 
fracture mechanics approach, the Stress Intensity Factor (SIF) for 
embedded elliptical cracks in round bars is needed. 

From the pioneer studies of Green [4] and Irwin [5,6] for an 
embedded elliptical crack in an infinite solid subjected to uniform uni-
axial stress, a great number of papers can be found in the literature 
dedicated to embedded elliptical cracks in different geometries. For the 
case of embedded elliptical cracks in plates, some papers have been 
included as a reference for most design codes, such as the solution of 
Varfolomeev and Vainshtok [7], Newman and Raju [8] or Isida and 
Noguchi [9], among others. 

For the case of internal flaws in round bars, only a few solutions for 
the SIF can be found in the literature [10–14], and most of them focused 

on centered, penny-shaped cracks. Nishioka and Atluri [13] evaluate a 
round bar with an embedded circular crack located at the center of the 
bar and subjected to pure tension or pure bending at the ends of the bar. 
Benthem et al [14] also provide the stress-intensity factor solution for a 
circular embedded crack (centered) in a round bar and subjected to 
tensile, bending and torsion loads. This last solution is given in the 
FITNET code of practice [15] and in the FKM guideline [16]. 

In a previous paper by the authors [17], a tabulated solution for the 
SIF of embedded elliptical cracks in round bars subjected to tensile load 
was presented. The solutions were obtained from a 3D finite element 
analysis and enable the ability to obtain the SIF as a function of three 
dimensionless parameters (crack size, crack aspect ratio and crack po-
sition in the cross section), covering ranges for most internal crack 
shapes in practice to be analyzed. However, these tabulated solutions 
are quite laborious to use for evaluation purposes due to the necessity to 
carry out complex interpolations that require the development of pro-
gramming tools. 

In this way, the novelty of this paper lies in the development of a set 
of closed-form solutions for the calculation of the SIF of embedded 
cracks in round bars subjected to uniaxial tensile load, which allow re-
searchers and designers to be able to use these SIF solutions without the 
necessity to carry out laborious and complex interpolations of the 
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tabulated solutions. This is a highly desirable practice for SIF solutions. 
The proposed solution is based on a combination of a nonlinear three- 
parameter equation and polynomial equations, that allows to 
adequately fit the evolution of the geometry correction factors over the 
whole range of application. The accuracy obtained is very good 
compared to the previous tabulated solutions. 

Two different types of solutions are provided, which are useful for 
different levels of analysis. The first solution provides the SIF for the 
vertex points of an internal elliptical crack as a function of three 
dimensionless parameters related to the crack size, crack position, and 
crack aspect ratio. The second solution is a simplification for eccentric 
circular cracks located at any position of the cross section. 

Moreover, a typical sequential methodology for fatigue crack growth 
simulation is presented, one that considers an elliptical crack shape 
evolution during fatigue process using the SIF values at the vertices of 
the elliptical crack. Some examples of its use for the simulation of fatigue 
crack propagation are also included in the last section of this paper. 

2. Geometry definition and sif tabulated solutions 

The geometry and main dimensions of the embedded elliptical crack 
in a round bar considered in this study are presented in Fig. 2, where R is 
the radius of the bar and σ0 the tensile applied stress. The elliptical crack 
size and crack position are defined by the semi-axis of the ellipse (a and 
c) and the position of the center of the crack (a + h). Three dimen-
sionless parameters are defined that consider the relative position of the 

crack (a + h)/R, the ratio of crack size versus the distance from the 
center of the ellipse to the surface a/(a+h) and the crack aspect ratio of 
the elliptical crack a/c. 

The stress-intensity factors for this geometry were obtained from a 
3D finite element model using Abaqus software. Due to the symmetry of 
the problem, only one-fourth of the round bar was modelled by 
employing 20-node quadratic elements with reduced integration 
(C3D20R). Quarter-point wedge finite elements were used around the 
crack front to model the stress field singularity. A mesh density of 8 
elements for the semi-rosette of the crack tip was chosen, and the crack 
front was constructed with 100 elements. Specific details and a valida-
tion of this model can be found in a previous paper by the authors [17]. 

The SIF at the vertices of the elliptical crack (Fig. 2) can be calculated 
as: 

Ka1 = Fa1⋅σ0⋅
̅̅̅̅̅
πa

√

Ka2 = Fa2⋅σ0⋅
̅̅̅̅̅
πa

√

Kc = Fc⋅σ0⋅
̅̅̅̅̅
πa

√
(1)  

where Fa1, Fa2 and Fc are the geometry correction factors. 
In order to cover most situations in practice, these geometry 

correction factors were calculated as a function of three dimensionless 
parameters: a/(a+h) ranging from 0.05 to 0.95, (a+h)/R ranging from 
1 to 0.05 and a/c ranging from 0.2 to 1.0. The calculated values are 
collected on Tables 1–3 respectively. Non tabulated values correspond to 
situations that are not geometrically possible for the crack geometry 
within the section. 

3. Closed-form equations for embedded elliptical cracks 

In this section, the closed-form equations are presented for the most 
general case, i.e. an elliptical crack located at any position of the circular 
cross section. The closed-form equations provide the geometry correc-
tion factors with which the SIF can be obtained by applying the previous 
equation (1). A non-linear growth curve with 3 parameters (Bi,Ci,mi) has 
been chosen to reproduce the observed trend of the geometry correction 
factors for each set of values as a function of a/(a + h). This sort of 
equation shows the general form presented in equation (2) and makes it 
possible to appropriately reproduce the initial horizontal asymptote for 
values of a/(a+h)→0 controlled by B1, the growth shape controlled by 
the exponent m1 and the upper value for a/(a+h)→1 controlled by 
B1/(1 − C1). An example of the effect of each of the three parameters on 
the curve shape is shown in Fig. 3. 

The geometry correction factor Fa1 can be then obtained as: 

Fa1 =
B1

1 − C1⋅
(

a
a+h

)m1 (2) 

Fig. 1. Fish-eye examples initiated by fatigue in a round bar: (a) from an in-
ternal defect, lack-of-fusion type, on a Ti-6Al4V alloy fabricated by selective 
laser melting, and (b) from microstructural facets formed in a wrought pro-
cessed Ti-6Al-4V. 

Fig. 2. Geometry definition of the embedded elliptical crack in a round bar for 
a general case. 
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m1 = 1.74
(a

c

)
+(2.0979⋅λ3 − 2.4414⋅λ2 − 1.1883⋅λ + 3.7175)

B1 = 0.0691⋅
(a

c

)2
− 0.4728⋅

(a
c

)
+ 1.0416  

C1 = M2⋅
(a

c

)2
+M1⋅

(a
c

)
+M0  

M2 = − 1.6458⋅λ4 + 4.7320⋅λ3 − 4.9173⋅λ2 + 3.1147⋅λ − 0.03859  

M1 = − 1.6880⋅λ4 + 1.2160⋅ON  

λ3 + 1.7455⋅λ2 − 4.3137⋅λ − 0.2057  

M0 = 3.1480⋅λ4 − 6.1104⋅λ3 + 3.8745⋅λ2 + 1.2555⋅λ+ 0.6319  

λ =
a + h

R 

The geometry correction factor Fa2 can be obtained as: 

Fa2 =
B2

1 − C2⋅
(

a
a+h

)m2 (3)  

m2 = 1.8919⋅λ+ 2.0296  

B2 = 0.0707⋅
(a

c

)2
− 0.4742⋅

(a
c

)
+ 1.0414  

C2 = H2⋅
(a

c

)2
+H1⋅

(a
c

)
+H0  

H2 = − 38.5367⋅λ5 + 121.5224⋅λ4 − 104.8934⋅λ3 + 37.2244⋅λ2

− 4.2940⋅λ+ 0.2228  

H1 = 36.8200⋅λ5 − 158.9202⋅λ4 + 152.4389⋅λ3 − 59.5097⋅λ2

+ 6.9928⋅λ − 0.4675H0 = 12.0938⋅λ5 + 17.2795⋅λ4 − 33.8472⋅λ3

+ 18.6236⋅λ2 − 2.2129⋅λ+ 0.2624 

And finally, the geometry correction factor Fc can be obtained as: 

Fc =
B3

1 − C3⋅
(

a
a+h

)m3 (4)  

m3 = 1.6287⋅λ3 − 2.8580⋅λ2 + 2.7763⋅λ+ 2.3625  

B3 = 0.5135⋅
(a

c

)3
− 1.4051⋅

(a
c

)2
+ 1.3199⋅

(a
c

)
+ 0.2105  

C3 = G2⋅
(a

c

)2
+G1⋅

(a
c

)
+G0  

G2 = 32.9938⋅λ4 − 43.1064⋅λ3 + 16.8509⋅λ2 + 1.3102⋅λ − 0.0249  

G1 = − 81.7186⋅λ4 + 118.4910⋅λ3 − 57.1224⋅λ2 + 2.9721⋅λ − 0.1924  

G0 = 51.3498⋅λ4 − 79.5268⋅λ3 + 42.7400⋅λ2 − 4.5145⋅λ+ 0.2993 

The accuracy of the fit comparing the tabulated solutions obtained 
from 3D finite element analysis to the closed-form equations is shown in 
Fig. 4. In general, a very good agreement is obtained, with a difference 
less than 1%, except for some particular values corresponding to 
extreme situations (such as cracks very close to the surface or with an 

Table 1 
Geometry correction factor, Fa1.  

a/c a
(a + h)

0.05 0.2 (a+h)/R 0.4 0.6 0.8 1.0 

0.2  0.05  0.9481  0.9481  0.9481  0.9481  0.9481  0.9481  
0.2  0.9531  0.9543  0.9582  0.9636  0.9695  –  
0.4  0.9834  0.9967  –  –  –  –  
0.6  1.0649  –  –  –  –  –  
0.8  1.2756  –  –  –  –  –  
0.95  1.9484  –  –  –  –  –  

0.4  0.05  0.8665  0.8665  0.8665  0.8665  0.8665  0.8665  
0.2  0.8689  0.8694  0.8704  0.8722  0.8744  0.8784  
0.4  0.8871  0.8918  0.9068  0.9285  0.9521  –  
0.6  0.9422  0.9635  1.0347  –  –  –  
0.8  1.0790  1.1586  –  –  –  –  
0.95  1.5754  –  –  –  –  –  

0.6  0.05  0.7812  0.7812  0.7812  0.7812  0.7812  0.7812  
0.2  0.7823  0.7825  0.7828  0.7835  0.7844  0.7862  
0.4  0.7942  0.7966  0.8029  0.8136  0.8250  0.841  
0.6  0.8317  0.8421  0.8753  0.9262  0.9822  –  
0.8  0.9405  0.9765  1.1007  1.3091  –  –  
0.95  1.2667  1.3855  1.8561  –  –  –  

0.8  0.05  0.7058  0.7058  0.7058  0.7058  0.7058  0.7058  
0.2  0.7067  0.7068  0.7069  0.7072  0.7076  0.7082  
0.4  0.7146  0.7159  0.7191  0.7246  0.731  0.7396  
0.6  0.7413  0.7474  0.7645  0.7927  0.8216  0.8532  
0.8  0.8216  0.8419  0.9063  1.0135  1.1406  –  
0.95  1.0669  1.1293  1.3360  1.7603  –  –  

1  0.05  0.6386  0.6386  0.6386  0.6386  0.6386  0.6386  
0.2  0.6388  0.6388  0.6389  0.6391  0.6394  0.6398  
0.4  0.6437  0.6446  0.6463  0.6492  0.6529  0.6582  
0.6  0.6631  0.6671  0.6769  0.6936  0.7108  0.7274  
0.8  0.7239  0.7368  0.7731  0.8347  0.8998  0.9525  
0.95  0.9143  0.9520  1.0637  1.2671  1.5391  1.8441  
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elongated geometry) where the difference is still always less than 3%. 

4. Closed-form equations for eccentric circular cracks 

The particular case of an embedded circular crack located at any 
position of the cross section is of great interest due to its simplicity and 
applicability. A scheme of the crack geometry for this particular case is 
shown in Fig. 5. It has been experimentally observed that, for this ge-
ometry, an initial internal flaw tends towards a circular shape during its 
growth forming a characteristic pattern known as a fish-eye (Fig. 1). 
Furthermore, the irregular shape of the initiating defect can be con-
verted into an equivalent circular one, using the √area parameter model 
of Murakami [18], which produces the same fatigue life [19]. Conse-
quently, an analysis of fatigue crack propagation in this geometry can be 
performed with a very good approximation, assuming a circular initial 
crack and a circular fatigue crack growth. In this case, only the SIF for 
the two opposite endpoints of the crack in the radial direction are 
needed (i.e. Ka1 and Ka2). 

The closed-form equations for this case can be derived using the 
general closed-form equations for Fa1 and Fa2, presented in Eqs. (2) and 
(3) respectively, particularized for a/c = 1. In this way, the next set of 
closed-form equations can be derived: 

Fa1 =
B1

1 − C1⋅
( a

a + h

)m1

B1 = 0.6379

m1 = 2.0979⋅λ3 − 2.4414⋅λ2 − 1.1883⋅λ + 5.4575

C1 = − 0.1859⋅λ4 − 0.1624⋅λ3 + 0.7027⋅λ2 + 0.0566⋅λ + 0.3876

(5)  

Fa2 =
B2

1 − C2⋅
( a

a + h

)m2

B2 = 0.6379

m2 = 1.8919⋅λ + 2.0296

C2 =
10.3772⋅λ5 − 20.1183⋅λ4 + 13.6983⋅λ3

− 3.6619⋅λ2 + 0.4858⋅λ + 0.0178

(6)  

5. Fatigue crack growth methodology 

The simulation of the fatigue crack growth can be carried out using 
the previous closed-form equations and a sequential methodology. For a 
general case, the crack is continuously updated during fatigue, assuming 
an elliptical growth and, consequently, calculating the SIFs at the 
vertices of the semi-axis of the elliptical crack. 

The first step is to define the initial crack size (a and c) and its po-
sition in the cross section (a + h). The three dimensionless parameters 
(a/(a + h), (a+h)/R and a/c) can be obtained and then the three ge-
ometry correction factors (Fa1, Fa2, Fc) can be calculated using the 
closed-form equations. Next, for a defined stress range Δσ the stress- 
intensity factor ranges at the vertices of the elliptical crack are ob-
tained as: 

ΔKa1 = Fa1⋅Δσ⋅
̅̅̅̅̅
πa

√

ΔKa2 = Fa2⋅Δσ⋅
̅̅̅̅̅
πa

√

ΔKc = Fc⋅Δσ⋅
̅̅̅̅̅
πa

√
(7) 

Assuming a fatigue crack growth law (e.g. Paris law, da/dN =

C⋅ΔKm), the crack advance of the vertices of the ellipse is predicted after 
a user-defined block of cycles as: 

Table 2 
Geometry correction factor, Fa2.  

a/c a
(a + h)

0.05 0.2 (a+h)/R 0.4 0.6 0.8 1.0 

0.2  0.05  0.9481  0.9481  0.9481  0.9481  0.9481  0.9481  
0.2  0.9521  0.9531  0.9564  0.9608  0.9663  –  
0.4  0.9692  0.9796  –  –  –  –  
0.6  1.0025  –  –  –  –  –  
0.8  1.0436  –  –  –  –  –  
0.95  1.0870  –  –  –  –  –  

0.4  0.05  0.8663  0.8663  0.8663  0.8663  0.8663  0.8664  
0.2  0.8679  0.8683  0.8692  0.8705  0.8726  0.8781  
0.4  0.8775  0.8808  0.8917  0.9058  0.9256  –  
0.6  0.8951  0.9101  0.9539  –  –  –  
0.8  0.9214  0.9615  –  –  –  –  
0.95  0.9662  –  –  –  –  –  

0.6  0.05  0.7804  0.7804  0.7804  0.7804  0.7804  0.7804  
0.2  0.7815  0.7813  0.7816  0.7823  0.7839  0.7866  
0.4  0.7882  0.7897  0.7941  0.7995  0.8102  0.8414  
0.6  0.8001  0.8059  0.8241  0.8499  0.8890  –  
0.8  0.8191  0.8354  0.8915  0.9675  –  –  
0.95  0.8357  0.8698  1.0040  –  –  –  

0.8  0.05  0.7067  0.7067  0.7067  0.7067  0.7067  0.7067  
0.2  0.7071  0.7071  0.7072  0.7074  0.7078  0.7087  
0.4  0.7104  0.7112  0.7131  0.7163  0.7217  0.7402  
0.6  0.7182  0.7213  0.7306  0.7421  0.7637  0.8538  
0.8  0.7304  0.7385  0.7657  0.8001  0.8611  –  
0.95  0.7409  0.7568  0.8129  0.8929  –  –  

1  0.05  0.6387  0.6386  0.6386  0.6386  0.6386  0.6386  
0.2  0.6392  0.6392  0.6393  0.6395  0.6398  0.6398  
0.4  0.6409  0.6413  0.6422  0.6439  0.6467  0.6582  
0.6  0.6462  0.6479  0.6527  0.6598  0.6719  0.7274  
0.8  0.6543  0.6589  0.6732  0.6913  0.7237  0.9525  
0.95  0.6584  0.6669  0.6959  0.7296  0.7912  1.8441  

J.M. Alegre et al.                                                                                                                                                                                                                                



Theoretical and Applied Fracture Mechanics 121 (2022) 103438

5

Δa1 = ΔN⋅C⋅(ΔKa1)
m

Δa2 = ΔN⋅C⋅(ΔKa2)
m

Δc = ΔN⋅C⋅(ΔKc)
m

(8) 

Where C and m are the Paris law coefficients and ΔN is the number of 
cycles per block chosen by the analysts. Accordingly, the selected value 
for ΔN makes it possible to control the number of calculated crack paths 
of the solution. Finally, the new crack size and crack position are 
updated by means of: 

2anew = 2a + (Δa1 + Δa2)

2cnew = 2c + 2Δc
hnew = h − Δa1

(9) 

Using the calculated values from Eq. (9), a new crack front is con-
structed, which is assumed as a new elliptical shape of dimensions (2anew 

and 2cnew) and the position of the center defined by (hnew + anew). 
As an alternative to the presented procedure, the crack advance at a 

certain point (e.g. Δa1) can be used as the control parameter for crack 
propagation. In this way, the value of the number of cycles required for 
this advance (ΔN) is obtained from the first expression included in Eq. 
(8). Once this value of ΔN is obtained for this step, the advance of the 
rest of the points of interest of the crack front (Δa2 and Δc) are calcu-
lated by means of the second and third expressions of Eq. (8) 
respectively. 

The two approaches discussed above, based on Δa1 or ΔN as control 
parameters, can be used to integrate the propagation law. There is no a 
predefined value that can be considered as a standard for selecting the 
interval size of Δa1 or ΔN. A good practice is to perform a sensitivity 
analysis, setting an initial value (initial integration interval) and 
decreasing this value until no significant variation is observed between 
the solutions obtained. 

Fig. 6 shows the propagation procedure explained before, where the 
new position of the elliptical crack vertices is obtained, allowing one to 
define a new elliptical crack front for the next analysis step. The whole 
procedure is repeated, updating the crack shape for each block of cycles 
(or crack point advance), until the failure condition is reached or the 
desired number of cycles is completed. 

Assuming a circular crack shape during propagation a simplified 
analysis could be done. In this way, only the values of Ka1 and Ka2 are 

Table 3 
Geometry correction factor, Fc.  

a/c a
(a + h)

0.05 0.2 (a+h)/R 0.4 0.6 0.8 1.0 

0.2  0.05  0.4221  0.4221  0.4221  0.4221  0.4221  0.4221  
0.2  0.4236  0.4242  0.4260  0.4291  0.4353  –  
0.4  0.4284  0.4363  –  –  –  –  
0.6  0.4377  –  –  –  –  –  
0.8  0.4545  –  –  –  –  –  
0.95  0.4720  –  –  –  –  –  

0.4  0.05  0.5477  0.5476  0.5478  0.5478  0.5478  0.5479  
0.2  0.5489  0.5492  0.5499  0.5510  0.5525  0.5559  
0.4  0.5550  0.5578  0.5669  0.5816  0.6100  –  
0.6  0.5666  0.5789  0.6281  –  –  –  
0.8  0.5833  0.6221  –  –  –  –  
0.95  0.6009  –  –  –  –  –  

0.6  0.05  0.6057  0.6055  0.6057  0.6057  0.6058  0.6058  
0.2  0.6064  0.6065  0.6068  0.6072  0.6079  0.6098  
0.4  0.6120  0.6135  0.6179  0.6252  0.6349  0.6582  
0.6  0.6235  0.6299  0.6514  0.6870  0.7529  –  
0.8  0.6429  0.6624  0.7376  0.9221  –  –  
0.95  0.6567  0.7067  0.9238  –  –  –  

0.8  0.05  0.6314  0.6314  0.6315  0.6315  0.6315  0.6315  
0.2  0.6318  0.6319  0.6320  0.6322  0.6325  0.6333  
0.4  0.6360  0.6370  0.6393  0.6434  0.6492  0.6623  
0.6  0.6464  0.6504  0.6623  0.6820  0.7090  0.7793  
0.8  0.6642  0.6756  0.7153  0.7835  0.9081  –  
0.95  0.6798  0.7099  0.8018  1.0052  –  –  

1  0.05  0.6386  0.6386  0.6386  0.6386  0.6386  0.6386  
0.2  0.6389  0.6389  0.6390  0.6392  0.6395  0.6398  
0.4  0.6417  0.6423  0.6436  0.6459  0.6495  0.6582  
0.6  0.6504  0.6531  0.6602  0.6725  0.6889  0.7274  
0.8  0.6660  0.6736  0.6972  0.7367  0.7926  0.9525  
0.95  0.6861  0.6965  0.7487  0.8423  1.0031  1.8441  

Fig. 3. Effect of the three parameters on the shape of the selected non-linear 
growth curve. 
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calculated, using the geometry correction factors (Fa1, Fa2) from the 
simplified closed-form equations presented on (5) and (6). The values of 
Δa1 and Δa2 are calculated, and the new crack size and position is 
updated by 2anew and hnew. 

6. Application examples 

This section contains some examples of application of the proposed 
closed-form equations for the prediction of fatigue propagation paths 
initiated from internal defects, with the objective to show its robustness 
for the fatigue crack growth prediction. 

The first example is presented Fig. 7, which correspond to the same 
specimen shown in Fig. 1(a). The proposed closed-form equations for the 
SIF calculation, combined with the sequential methodology for fatigue 
crack growth presented in the earlier section, allows for a good pre-
diction of the fatigue crack propagation during the fatigue process until 
the final crack shape is reached. The specimen displayed corresponds to 
a uniaxial fatigue test of a Ti-6Al-4V alloy fabricated by Selective Laser 
Melting (SLM). This Additive Manufacturing technique is generally 

Fig. 4. Agreement between closed-form equations and tabulated values for the 
three geometry correction factors. 

Fig. 5. Eccentric circular crack geometry.  

Fig. 6. Diagram of the procedure followed for the prediction of the new 
crack front. 
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characterized by the presence of internal defects (lack-of-fusion) which 
are the origin of the fatigue crack propagation. The radius of the spec-
imen was R = 2.25 mm, the uniaxial applied stress was Δσ = 400 MPa 
with a stress ratio of σmin/σmax = 0. The initial crack considered was 
defined by a0 = 0.03 mm and c0 = 0.06 mm, and its position in the cir-
cular cross section was defined by h0 = 1.75 mm. The fatigue crack 
propagation law for this material was assumed to be a Paris type 
equation (C = 3.5⋅10− 8 and m = 2.1, being ΔK in MPa⋅m1/2 and da/dN 
in mm/cycle) according to the experimental results obtained by de Jesus 
et al [20]. The control parameter for crack advance calculations was Δa1 
= 0.005 mm. Only a few paths are presented for clarity. 

Fig. 8 shows a detail of the first steps of propagation from the initial 
irregularly shaped defect. For this case the radius of the specimen was 
also R = 2.25 mm, and the uniaxial applied stress was Δσ = 400 MPa 
with a stress ratio of σmin/σmax = 0. The initial crack size considered in 
this example was a0 = 0.03 mm and c0 = 0.09 mm. Its position in the 
circular cross section was defined by h0 = 1.32 mm. One path is dis-
played for every ten calculated with Δa1 = 0.0025 mm for clarity. The 
fatigue crack propagation law for this example was assumed to be the 
same as the first example. It can be observed as the SIF solutions pre-
sented in this paper are able to adequately reproduce the quick tendency 

of the crack to growth from an initial defect with a high aspect ratio to a 
near circular crack. This feature is typical for the growth of a crack in 
this geometry. The crack front during propagation can be estimated 
from beach marks or from radial striations emanating from the initiating 
defects, which, although not true crack front marks, can be considered 
indications of the direction of crack front propagation. 

Finally, Figs. 9 and 10 reproduce the fatigue tests conducted by de 
Jesus et at. [20]. The circular specimens were fabricated by SLM of Ti- 
6Al-4V alloy, and a centered penny-shaped initial defect was gener-
ated during printing. The fatigue tests were carried out under two 
different propagation conditions, (1) with a small channel linking the 
inner penny-shaped defect with the outer surface, which the authors 
termed as in-air conditions, and (2) with the embedded penny-shaped 
defect, which they call in-vacuum conditions. Included in these Figs. 9 
and 10 are the corresponding fractographies and the evolution of the 
number of cycles versus crack size. The radius of the specimen was R =

5 mm, the uniaxial applied stress was Δσ = 382 MPa with a stress ratio of 
σmin/σmax = 0. The initial crack size was a0 = c0 = 0.25 mm, and the 
Paris law coefficients assumed for both conditions, were C = 8.2⋅10− 8 

and m = 2.0 for in-air conditions, and C = 3.5⋅10− 8 and m = 2.1 for in- 
vacuum conditions, being ΔK in MPa⋅m1/2 and da/dN in mm/cycle. The 
control parameter for crack advance calculations was Δa1 = 0.005 mm. 

Fig. 7. Crack paths evolution, calculated from an internal initial defect (only a 
few paths are presented for clarity). 

Fig. 8. First crack paths calculated from an initial defect with a large crack 
aspect ratio. 

Fig. 9. Simulation using the present closed-form equations of the crack prop-
agation path for a central crack specimens tested by Jesus et al. [20]. 
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7. Conclusions 

This paper presents a set of closed-form equations for the calculation 
of the SIF of elliptical embedded cracks in round bars subjected to tensile 
loads. Geometry correction factors are presented as a function of three 
dimensionless parameters, representative of the crack size, crack aspect 
ratio and crack position. A good fit is obtained when comparing the 
closed-form equations with the numerical tabulated values obtained 
from a 3D finite element calculation. 

The simplified closed-form solution for an eccentric circular crack is 
also included, due to its practical application. Any irregular flaw in this 
geometry quickly develops a circular crack. This is a typical feature 
observed for the fatigue crack propagation emanating from internal 
defects in this geometry, and as a consequence, a simplified calculation 
of the crack propagation assuming a circular crack during propagation 
could be considered. 

The present closed-form equations can be used for the simulation of 
the fatigue crack growth using a sequential methodology. This meth-
odology allows the crack shape evolution to be updated during the fa-
tigue process, assuming an elliptical crack shape evolution during 
propagation or a circular crack propagation for the simplified approach. 
A good estimation of fatigue crack growth can be carried out using the 
proposed SIF solutions, and the predictions are in good agreement with 
experiments conducted in fatigue specimens. 
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