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The so-called Darboux III oscillator is an exactly solvable N-dimensional nonlinear oscillator defined
on a radially symmetric space with non-constant negative curvature. This oscillator can be interpreted
as a smooth (super)integrable deformation of the usual N-dimensional harmonic oscillator in terms of
a non-negative parameter A which is directly related to the curvature of the underlying space. In this
paper, a detailed study of the Shannon information entropy for the quantum version of the Darboux
IIl oscillator is presented, and the interplay between entropy and curvature is analysed. In particular,
analytical results for the Shannon entropy in the position space can be found in the N-dimensional case,
and the known results for the quantum states of the N-dimensional harmonic oscillator are recovered
in the limit of vanishing curvature A — 0. However, the Fourier transform of the Darboux IIl wave
functions cannot be computed in exact form, thus preventing the analytical study of the information
entropy in momentum space. Nevertheless, we have computed the latter numerically both in the one
and three-dimensional cases and we have found that by increasing the absolute value of the negative
curvature (through a larger A parameter) the information entropy in position space increases, while in
momentum space it becomes smaller. This result is indeed consistent with the spreading properties
of the wave functions of this quantum nonlinear oscillator, which are explicitly shown. The sum of
the entropies in position and momentum spaces has been also analysed in terms of the curvature: for
all excited states such total entropy decreases with A, but for the ground state the total entropy is

minimized when A vanishes, and the corresponding uncertainty relation is always fulfilled.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction states, S, provides a more appropriate measure of the uncer-

tainty in the position for such a quantum state than the usual

The Shannon information entropy [1] of a given probability
density p(z) is defined as the functional

Sp = —/p(Z)logp(Z)dz. (1

As it is well-known, this entropy essentially measures the total
spreading of the probability density and becomes the corner-
stone of a huge number of applications of information theory
(see, for instance, [2,3] and references therein). In particular, this
information-theoretic viewpoint can be used in order to analyse
the spreading properties of the probability density p(x) = |y (x)[?
that characterizes the stationary states i(x) of a given quantum
system (see also [4] for a Shannon entropy approach to dynamical
stability in classical systems). Moreover, for generic quantum
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Heisenberg uncertainty relation (see [5,6]). In the same manner,
the Shannon entropy S, for the associated probability density on
momentum space y(p) = |1/~/(p)|2 can be also computed in terms
of the momentum representation of the state and, as expected,
provides the information concerning the spreading of the mo-
mentum distribution for such an state. Moreover, from these two
entropies a stronger version of the Heisenberg uncertainty rela-
tion was introduced by Bialynicki-Birula and Mycielski [7] (see
also [8]). For a N-dimensional quantum state, this uncertainty
relation reads

Sp+S, = N(1+logm), (2)

which indeed implies the impossibility of getting completely
precise information of the quantum state in both position and
momentum spaces.

Obviously, the problem of determining in exact form the Shan-
non entropy of the states for a given quantum system can be only
faced provided that system is exactly solvable, i.e. when the phys-
ical solutions of the corresponding Schrédinger equation can be
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analytically found. The list of quantum systems that belong to this
class is a very short one, and their most relevant representatives
in the generic N-dimensional case are the harmonic oscillator and
the Coulomb systems, but we recall that another remarkable class
of exactly solvable systems has been recently presented in [9] and
is given by N-dimensional Dirichlet and Neumann hyperspherical
dots. In particular, the analytical expressions for the Shannon
information entropy of the quantum states of the N-dimensional
harmonic oscillator have been studied in [6,10-16] (see also ref-
erences therein) where many challenging mathematical problems
have been solved.

Taking into account the previous considerations, the aim of
this paper is to compute the Shannon entropy for an N-
dimensional quantum nonlinear oscillator, whose classical ver-
sion was firstly introduced in [17]. This system can be interpreted
as an exactly solvable deformation (governed by a real and
positive parameter A) of the N-dimensional harmonic oscillator
potential that is defined on a very specific space with nonconstant
negative curvature, which is just the N-dimensional spherically
symmetric generalization [17,18] of the so-called Darboux surface
of type IIl [19,20]. As a consequence, this nonlinear oscillator is
known in the literature as the Darboux III oscillator, and its eigen-
functions and eigenvalues can be analytically obtained as smooth
A-deformations of the ones associated to the N-dimensional
harmonic oscillator [17,18,21-23].

Therefore, the Darboux IIl system provides a very distin-
guished example of exactly solvable N-dimensional quantum
nonlinear oscillator whose wave functions are amenable to be
studied from the information-theoretic viewpoint. Moreover, the
deformation approach here presented provides a privileged
benchmark in order to analyse the interplay between information
entropy and curvature for exactly solvable quantum systems
defined on curved spaces, a subject that - to the best of our
knowledge - cannot be found in the literature so far (we recall
that in [24], information entropies for some quantum states for
the free motion on the 2D spherical and hyperbolic spaces with
constant curvature have been computed numerically). Neverthe-
less, we will find that due to the complexity induced by the
curvature of the manifold where the system is defined, while
the information entropy for the wave functions in the position
representation can be analytically computed, this will not be the
case in the momentum representation, where numerical methods
will be needed in order to compute S, and to check the uncer-
tainty relation (2). Moreover, we stress that the current interest
in multidimensional harmonic oscillators is outstanding in many
different classical and quantum dynamical systems (see [16]
and references therein) and therefore the Darboux III oscillator
provides a generalized oscillator model in which A could be
thought of as an effective parameter that can be used to model
analytically smooth nonlinear perturbations of all these harmonic
phenomena.

The structure of the paper is the following. In the next section
the essential features of the Darboux III oscillator, in both its
classical and quantum versions, as well as the geometry of its
underlying curved space will be shortly reviewed (see [17-23] for
a detailed account of all the results here sketched). In particular,
it will be emphasized that the quantization of the classical system
is by no means unique, since due to the nonvanishing curvature of
the underlying manifold the kinetic energy term of the Hamilto-
nian contains both momenta and position variables, and a precise
ordering between them has to be prescribed. In Section 3 the in-
formation entropy for the one-dimensional Darboux Il quantum
oscillator will be computed. In position space this will be obtained
analytically, and it will be shown that for a given quantum state
the information entropy S, increases with A, i.e. with the absolute
value of the (negative) curvature. However, in the momentum
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space representation the Fourier transform of the wave functions
cannot be obtained in closed form due to the A-deformation.
This implies that the corresponding information entropy has to
be computed numerically, and now the information entropy S,
becomes smaller for larger values of the deformation parameter
A. Moreover, for all the excited states the total entropy S, + S,
will be found to decrease when A increases, while the ground
state presents the opposite behaviour, and indeed the uncertainty
relation (2) holds in all the cases. Section 4 is devoted to the
generalization to N-dimensions of the analytical results for the
position space representation by making use of hyperspherical
coordinates, and special emphasis will be devoted to the analysis
of the three-dimensional case due to its physical significance.
In this case the entropy on momentum space S, will be also
computed numerically, and the dependence of all the entropies
in terms of the curvature parameter XA coincides exactly with the
previous findings for the one-dimensional Darboux III oscillator.
Finally, a concluding section pointing out some remarks and open
questions closes the paper.

2. The Darboux III oscillator
2.1. The classical system and the Darboux III space

The model that we will consider in this paper is an exactly
solvable ND quantum nonlinear oscillator whose classical ana-
logue is defined by the Hamiltonian
l)2 Cl)ZqZ
2014+ 2q2)  2(1+Arq?)’

with real parameters A > 0 and > 0 and where (q, p) € R?N are
conjugate coordinates and momenta. This system was proven to
be maximally superintegrable in [17], and its (2N — 1) functionally
independent constants of motion are the ones that encode the
radial symmetry of the system, namely,

M= 3" (qgpj— qp)’, Com =

1<i<j<m

m=2,...,N, (4)

H(q,p) =T(q,p) +uU(q) = (3)

Z (aipj — Gipi)’,

N—m<i<j<N

together with the additional A-dependent integrals
I =p? — (2A1(q.p) —0?)q?, i=1,...,N. (5)

that contain the Hamiltonian and from which # can be written
as

1 N
H=521,-. (6)
i=

Therefore, the system defined by # can be interpreted as a
genuine (maximally superintegrable) A-deformation of the ND
Euclidean isotropic oscillator with frequency w, since the limit
A — 0 of (3) yields

12 122
= — ) 7
Ho 2p+2wq (7)

From a geometric viewpoint, the term

p2

21+ 21q?)’
can be interpreted as the kinetic energy defining the geodesic
motion of a particle with unit mass on the ND radially symmetric
generalization [18,21] of the Darboux surface of type III (see [19,
20]) whose metric is given by

ds* = (1+2q*)dq?, (9)

7(q.p) = (8)
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in terms of the coordinates q of the configuration space of the
Hamiltonian system. It can be checked that (9) defines a N-
dimensional conformally flat space whose nonconstant scalar
curvature is given by

(N = 1)(2N + 3(N — 2)rq?)
(1+2rq%)

that always takes negative values in any dimension N. Since
lim,q—. » R vanishes, this space is asymptotically flat, and R(q) has
a minimum at the origin

R(0) = —2AN(N — 1),

R(q) = -2 , (10)

which is proportional to the scalar curvature of the N-
dimensional hyperbolic space.
From the dynamical viewpoint, the central potential

w® q

2 1+2q2°

was proven in [17,21] to be the natural ‘intrinsic’ oscillator poten-
tial on the N-dimensional Darboux III space. It is worth stressing
that in order to preserve the complete integrability (and the
exact solvability) of the deformed model, the modification of the
kinetic energy 7(q, p) has to be complemented with a suitable
A-deformation of the oscillator potential given by (11). In doing
so, all bounded trajectories for the classical Hamiltonian system
defined by H turn out to be closed (like in the usual harmonic
oscillator) and the Schrodinger equation for the quantum version
of the system can be also analytically solved by making use of the
well-known solution for the N-dimensional quantum harmonic
oscillator [22,23].

Finally, it is worth stressing that # can be also interpreted as a
nonlinear oscillator on the flat ND Euclidean space but endowed
with a position-dependent mass, in which the radially symmetric
mass function

2

u(q) = (11)

m(q)=1+xrq’,

is just the conformal factor of the metric and grows quadratically
in terms of |q| (see [25,26] for certain semiconductor heterostruc-
tures described through quadratic mass functions). We empha-
size that these two interpretations of the system (motion on a
space with variable curvature versus motion of a particle with
position-dependent mass on the flat Euclidean space) are fully
equivalent, although in this work we will focus on the geometric
one.

2.2. Hyperspherical coordinates and the effective potential

The radial symmetry of the system suggests the use of hy-
perspherical coordinates (r = |q|,0 = {6j}j=1,..n—1) given by
(see [23])

j-1

q; = rcosb; H sin 6,
k=1

N-1
Qv =T 1_[ sin 6y .
k=1

These hyperspherical coordinates are defined on the subset of RY
given by

Vie{l,...,N—1)

(r,01,...,0n-2,6Nn-1) € (0, +00) x [0, ] X ---[0, ] x [0, 27].
(13)

Their corresponding canonically conjugated momenta (p;, py,)
are related with the canonical Euclidean momenta by p? = pf +
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%, where the square of the total angular momenta reads

N-1 j—1

1
=) nll-5- (14)

. 2 M
e i sin Ok
In these coordinates the metric (9) now reads
ds? = (14 ar?)(dr® + r?ds2}) (15)

where d.Q,%, is the metric on the unit (N — 1)D sphere induced by
the usual Euclidean metric on RN,

Therefore, the Hamiltonian (3) in hyperspherical coordinates
is written as

Y S (16)
T 214 Ar2)  2r2(14Ar2)  2(14Ar?)’
and the nonlinear oscillator potential
W2r2
u(r) = ————, 17
r) 2(14 Ar?) a7

together with the centrifugal term, defines the effective radial
potential for this system

L2 w2r2
= a2+

Both U(r) and Ug(r) are plotted in Fig. 1, where it is worth
stressing that

Ues(1) (18)

(1)2

2
which shows that when A # 0 the effective potential Ueg(r)

saturates for large r, thus indicating the ‘hydrogen-like’ nature
of the effective potential of the A-deformed oscillator [23].

lim U(r) = liT Uett(r) = — , (19)
r—-+4oo

r—+00

2.3. The quantum Darboux III oscillator

As it is well known, the quantization problem for Hamilto-
nians like (3) whose kinetic energy term (8) contains position-
dependent functions, admit different solutions which depend on
the ordering prescription chosen for the (non-commuting) posi-
tion and momenta operators. In general, different orderings lead
to quantum Hamiltonians that are related under similarity trans-
formations, therefore their eigenfunctions are related by gauge
transformations and their eigenvalues coincide. For a detailed
discussion on this issue, we refer to [22] and references therein.

In the case of the Darboux IIl Hamiltonian (3) this problem was
analysed in detail in [22], from where we sketch in the following
the essential results needed for the rest of the paper. Initially,
this system was quantized in [23] by making use of the so-called
‘Schrédinger’ quantization prescription, in which the quantum
Hamiltonian % is given by

1 . wZé‘IZ
200" T 2118
where the function depending on the coordinates is located at the
left within the kinetic energy term. Then it is straightforward to
prove that # commutes with the following observables,

Cm= 3" (@p—ap)’, Cm= Y. @b —ab
1<i<j<m N—m<i<j<N

m=2,...,N; (21)

A= (20)

Ii=p} — 27@.p) + 0’3, i=1,....N: (22)
SV I In this setting, each

where (M) = Cy, and # i1 ki
) (m = 2,...,N) and {I;}

— 1
n 2
of the three sets {#,C™}, {#, Cim
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20 1

Fig. 1. Left: Nonlinear oscillator potential U (17) and effective nonlinear oscillator potential Ueg (18) for @ = 1, L = 1 and different values of A.

(i=1,...,N)is formed by N commuting observables. Moreover,

it can be proven that 7 is (formally) self-adjoint on the Hilbert

space L*(RV, (1 + Aq?)dq), endowed with the scalar product

wiey = [ Taea + i), 23)
R

in which the conformal factor of the metric (or mass function)

plays an outstanding role.

Generic eigenfunctions were then found in [23], and turn
out to be formally analogous to the ones for the N-dimensional
isotropic oscillator but provided that the frequency of the oscil-
lator transforms into an energy-dependent function. The explicit
expression for the eigenvalues of (3) can be also straightforwardly
obtained and reads

N\? N N\?
£ = (1) +h(n+2)/hzxz(n+2)

(24)

where we see that the flat limit . — 0 gives the spectrum of
the flat isotropic oscillator, the limit n — oo leads to the upper
energy limit w?/2A for bounded states, and the degeneracy of
the model is exactly the same as in the ND isotropic oscillator, a
feature that is again a signature of its maximal superintegrability.
Finally, the continuous spectrum of # is given by [‘;—i, o).
However, as we will see in the following section, in order
to be able to compute the information entropy for this model
both in the position and in the momentum spaces, a quantization
prescription for which the quantum Darboux III Hamiltonian is
formally self-adjoint on the space L*(R"), with the usual inner
product
oo —_
0.8 = [ Faeaxa, 25)
—00
would be of the outmost relevance. Remarkably enough, such a
quantization was also given in [22], and is given by a quantum
Hamiltonian of the form [27]
1.1 *§’
Heou(d. P) = 5 P a5 P+ 20 )
R 1 @

=—-——V \% s
2 (g0 201+ )

which is based on the symmetrization of the kinetic energy
term that is often used in the Condensed Matter literature. After
reordering terms in order to make connection with the Hamil-
tonian for the quantization prescription (20) and afterwards by
adding suitable potential terms depending on h, we are lead

(26)

to the so-called Transformed-Position-Dependent-Mass (TPDM)
Hamiltonian [22]

1 ) wZ(’iZ
—Pp° + -
2(1+1q?) 201+ A1 q2)
g . BAM1-216%)
204272 T 20 1@y

This Hamiltonian can be shown to be formally self-adjoint with
respect to (25), its eigenvalues coincide with (24), and the cor-
responding eigenfunctions can be found and will be explicitly
given in the following section. It is worth stressing that the two
last terms in (27) do not appear in (20), and are essential in
order to define a self-adjoint operator with respect to (25) that
can be obtained from (20) through a similarity transformation.
Obviously, these two terms vanish in the classical limit i — 0
and reflect the possible multiplicity of quantizations for a given
classical Hamiltonian system that lead to the same spectrum. A
detailed account of all these assertions is provided in [22].

With all these results at hand, the complete analysis of the
Shannon information entropy of this quantum Darboux III oscil-
lator can be fully performed, and its behaviour in terms of the
deformation parameter A can be studied.

Hreom =

(27)

3. Shannon entropy for the one-dimensional Darboux III os-
cillator

Let us start by computing the Shannon information entropy
(1) of the eigenstates corresponding to the system defined by
(27) in the one-dimensional case. We thus need the probability
density associated to each eigenstate of the quantum system, and
therefore to explicitly compute such eigenfunctions.

3.1. Probability density

The one-dimensional version of the Hamiltonian (27) dis-
cussed in Section 2 reads

4 _ 1 52 4 X%
M = ST T 20+ AR
g . RA(1-213)

(28)

201222 T ARy

which is formally self-adjoint on L?>(R) endowed with the usual
inner product

.8) = / (0. (29)
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Fig. 2. Discrete spectrum E} (left) and frequencies £2} (right) for the n =0, ..., 15 states and different values of A.
Table 1 )
Discrete spectrum E; (above) and frequencies .Q,Q (below) for the n = 0,...,9 states and different values of A. (Data plotted in
Fig. 2.)
A n
0 1 2 3 4 5 6 7 8 9
0.000 0.5 15 25 35 4.5 55 6.5 7.5 8.5 9.5
0.025 0.494 1.445 2.349 3.207 4.022 4.795 5529 6.224 6.884 7.508
0.050 0.488 1.392 2.207 2.941 3.6 4,192 4722 5.198 5.623 6.005
0.075 0.482 1.341 2.075 2.7 3.231 3.681 4.063 4.386 4.662 4.896
0.100 0.476 1.292 1.952 2.483 291 3.252 3.527 3.75 3.931 4.078
A n
0 1 2 3 4 5 6 7 8 9
0.000 1 1 1 1 1 1 1 1 1 1
0.025 0.9876 0.9632 0.9395 0.9163 0.8938 0.8719 0.8506 0.8299 0.8098 0.7903
0.050 0.9753 0.9278 0.8828 0.8402 0.8 0.7621 0.7265 0.693 0.6616 0.6321
0.075 0.9632 0.8938 0.8299 0.7714 0.7179 0.6692 0.625 0.5848 0.5484 0.5154
0.100 0.9512 0.8612 0.7808 0.7095 0.6466 0.5913 0.5427 0.5 0.4624 0.4293

Therefore all eigenvalues E} are real, and they take the form [22]

X 1\’ 1 /., 1\’
—h n+5 +h n+5 hA2 n+5 + w?, (30)

where n = 0, 1, 2, ... is the only quantum number in this one-
dimensional system. These energies are plotted in Fig. 2 (see
Table 1 for the corresponding numerical values) for different
values of A and in the limit A — 0 we get the energies for the
one-dimensional oscillator states ES = hew (n+ 3). In [22] the
eigenfunctions for (28) were proven to be

ok \/
Iﬂn( ( 2nn! 1+ n+

2hx®
x e” "2 Hn< QQx)

where the energy-dependent frequencies 2} of this quantum
nonlinear oscillator are given by

Q) = /w? — 2AE}.

Therefore, eigenstates (31) are essentially the ones for a quan-
tum oscillator with frequency .Q,f multiplied by the extra fac-
tor +/1 4 Ax2 which encodes the role played by the underlying
curved space. In the limit of vanishing curvature . — 0 we
have that 2} — o and thus we exactly recover the well-known
eigenfunctions of the one-dimensional harmonic oscillator

. oNi [ 1 _w?
e

E; =

\/1 + Ax2

(31)

(32)

The probability density associated with these states is straight-
forwardly given by

pr(x) = It = (&)j ! ;(1+Ax2)
T 2”n!1+(n+%)gin

x e—ﬂnX2H5< .Q,}x), (34)
and the limit A — 0 gives
1
o (@\2 1w
p0(x) = (;) S € HE (Vo). (35)

Fig. 3 shows this probability density p}(x) for the ground and
some excited states by considering several values of the curvature
parameter A. It can be clearly appreciated that as far as n grows
the curvature A strongly increases the spreading properties of the
wave functions of the system.

3.2. Shannon entropy in position space

We now compute the information entropy (1) for the one-
dimensional Darboux III oscillator from its probability density
p(x) given by (34). Similarly to the case of the harmonic oscillator
(see for instance [12]), S, can be completely written in terms of
certain integrals involving Hermite polynomials [28,29].

In our case, in order to be able to obtain a closed expression
of the information entropy for arbitrary values of the quan-
tum number n and the curvature parameter A, we will need to
compute certain integrals involving the square of the Hermite
polynomials multiplied by certain polynomials. Recall that the
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Fig. 3. Plot of the probability density p;, *(x) for the n =0, 3, 6, 9 states and different values of A.

Hermite polynomlals are orthogonal with respect to the measure
du(z) =e*dzonR,ie.

/ ~ Ho(2)Hm(z)e % dz = 0, (36)

oo

if m #~ n, and here we will make use of a normalization such that

o0
/ HX(z)e ' dz = /7 2"n!, (37)
—0Q
for all n € N. Since z2™+1 is an odd function, we have that
o 2
/ 2" H2(z)e " dz = 0. (38)
—00

Now, by using the previous relations and the well-known recur-
rence formula

Hy1(2) = 2z Ha(z) — 2n Hp1(2), (39)

it can be shown that
* 2152 —22 n 1
Z°Hy(z)e " dz = /7 2" n! n+5 , (40)
—00
together with

* 3 3n 3
/ PHY ) e P dz = Jya2nl (e + 2, (41)
—00 2 2 4

for all n € N.
With all these results at hand, the information entropy Sg’* on
the position space of the eigenstate wn*(x) of the one-dimensional

z :=/ (1+a22)
6

2.41““ S
i o o o O
r e & S o 2 o
22p g & o o ° o
L : ® ® o o © ]
[ $ o ¢ % o °
20+ § o o , o ]
r § o o
[ e ©° o
T 18f ! s ° g
o} ! H ® A=0 ]
161 g ® ® A=0.025 ]
1ab ' ® A=0.05 1
[ ® A=0.075 ]
12 —| ® =01 :
ol v v
0 2 4 6 8 10 12 14
n
Fig. 4. Entropies 52"\ for then=0,..., 15 states and different values of A.
Darboux III oscillator can be written as
na s n A
St = log.Q +log (v 2"n!) +log ( 1+ n+ o
N 1 [ (n 41 1 N A (3n 3n 3))
T (oL 1\ A or\ o T o5 Ty
T+(n+3) 57 2 2 4
A
L
Jm2nn! ’
(42)

where the symbol Z¢ is defined as the following integral

e H2(z)log (1+aZ?) H2(2))dz.  (43)
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Fig. 5. Plots of the probability density y,*(p) for the n = 0, 3, 6, 9 states and different values of A.

Table 2
Entropies S)* for the n =0

.....

15 states and different values of A. (Data plotted in Fig. 4.)

A n

0 1 2 3 4 5 6

7

8 9 10 11 12 13 14 15

0.000
0.025
0.050
0.075
0.100

1.072
1.091
1.109
1.127
1.145

1.343
1.374
1.403
1.432
1.46

1.499
1.539
1.577
1.612
1.645

1.61

1.658
1.701
1.741
1.776

1.697
1.751
1.799
1.84

1.877

1.768
1.828
1.879
1.922
1.958

1.829
1.894
1.947
1.99

2.026

1.882
1.952
2.006
2.049
2.086

1.929
2.003
2.058
2.101
2.139

1.972
2.049
2.104
2.147
2.187

2.01
2.091
2.145
2.19
2.232

2.046
2.129
2.184
2.229
2274

2.078
2.164
2.219
2.266
2314

2.109
2.196
2.251
2.301
2.353

2.137
2.226
2.282
2.334
2.39

2.164
2.254
2.311
2.366
2.425

It can be straightforwardly checked that in the limit A — 0 of
vanishing curvature we recover the results obtained in [12] for
the harmonic oscillator, namely

= (44)

1 1 1
sno -3 logw + log (v 2"n!) + n+ -

2 Jm2"n! IO

The values of the entropy (42) in position space for the states
with n = 0,..., 15 are contained in Table 2 and have been
plotted in Fig. 4. It can be clearly appreciated that the spreading
induced by the curvature implies that the information entropy of
a given eigenstate grows with the parameter A. It is interesting
to compare this behaviour to the one shown in Fig. 3, where
the dependence of the probability densities with A is expressed.
In particular, Fig. 3 shows how differences in p}(x) for different
values of the curvature grow for states with higher n, and this
behaviour is translated to Fig. 4 where the differences in entropies
for different curvatures also grow as n grows. Summarizing, the
curvature parameter A has a “delocalizing” effect that is trans-
lated in terms of the information entropies, and this effect is
additional to the usual one in the harmonic oscillator where the
Shannon entropy grows with n.

3.3. Shannon entropy in momentum space

In order to compute the information entropy on momen-
tum space we need to compute the Fourier transform of the
wave-functions (31). In contradistinction to the usual harmonic
oscillator in flat space, the Fourier transform for the eigenstates
of the Darboux III oscillator

B0 = 7 (00} ) = = / €7y (x) .

cannot be expressed as an analytical function. Therefore our
results will rely on the numerical computation of (45). Indeed,
we have that

() = V(D) (46)

and in the limit A — 0 we do recover the well-known probability
density in momentum space
(47)

In Fig. 5 it is shown how the probability density yn*(p) in mo-
mentum space (46) varies with the curvature A. It is interesting

(45)

2
s

2

7(p) = lim 3, (p) = 1/2(p)
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Table 3
Entropies S;-* for the states with n =0, ..., 15 and different values of A. (Data plotted in Fig. 6.)
A n
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.000 1.072 1343 1499 161 1697 1768 1.829 1.882 1929 1972 201 2.046 2078 2.109 2.137 2.164
0.025 1054 1311 1457 1558 1636 1699 1751 1795 1834 1.868 1.898 1.924 1.949 1.971 1.990 2.008
0.050 1.035 1280 1414 1504 1571 1623 1664 1698 1725 1747 1767 1783 1796 1.807 1817 1.824
0.075 1.017 1248 1370 1449 1504 1544 1574 1596 1.613 1626 1635 1.642 1647 1.651 1654 1.656
0.100 09998 1.217 1327 1394 1437 1466 1486 1499 1508 1513 1517 1519 1520 1520 1.520 1.519
L T T [ T
22f . o 3.0 #
L ° Y i
20F o ° 4 ]
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i o ° 281 o
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1'2; ® 1=0.05 ] [ ® A=0.50 ]
[}
10[8 A=0.075 ] * ® A=075 |
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n n
Fig. 6. Entropies S;"“ for the states with n =0, ..., 15 and different values of Fig. 8. S;VA + SV for the n = 0, 1, 2 states and large values of A.
A
45T T T T T T Looking at Fig. 7 (and its corresponding data given in Table 4)
i . 8 & it is not clear whether the ground state with n = 0 saturates
aol .8 : « * the bound (2) for any value of the curvature parameter A. While
O [ ] . . . .
t s ¢ H . e S o © this is obvious for A = 0, for other values of A there is no
H - i i $ ¢ ° reason for this to be the case. In fact, it can be numerically
35 i $ ] checked that significative differences appear when greater values
=0 s of the A parameter are chosen, as it can be appreciated in Fig. 8
s | o ® A=0 (which comes from numerical data given in Table 5) where the
3o ° A=0.025 ] total entropies for the ground, first and second excited states
[ o ® A=0.05 are plotted. We stress that, in general, smaller values of A are
250 ® 1=0.075 ] taken throughout the paper in order to guarantee the numerical
r ® =01 accuracy of the results for larger n.
) Fig. 8 and Table 5 show how the effect of the curvature
207 > 4 e s 10 12 " parameter in the total entropy of the system is fundamentally

Fig. 7. S;“‘ + S;"‘ for the n =0, ..., 15 states and different values of A.

to note that the qualitative result is the opposite to the one in
position space, namely, higher values of A forces the eigenstate
(45) to be more localized in momentum space.

This behaviour is clearly appreciated in Fig. 6 (data are pro-
vided in Table 3), where greater values of A are associated with
smaller values of S, for each fixed quantum state v (p).

A natural question that immediately arises is the overall bal-
ance between the effects of curvature on the entropy in position
space and in momentum space. As it can be seen from Fig. 7, for
a given A, the entropy decrease in momentum space outweighs
the raising of entropy in position space, and therefore curvature
leads to a decrease of the sum of both entropies for each state.
Furthermore, it can be seen that this effect increases for large
values of the quantum number n.

different for the ground state and for the excited states. Indeed,
for the ground state the total entropy grows (slowly) with A,
while for all excited states with n > 1 the total entropy decreases
as a function of A. This different behaviour can be understood by
considering that the probability densities corresponding to the
ground state and to the excited states have very different shapes
(see Fig. 5), since in the ground state the structure of maxima
and zeros which is present in the excited states is completely
lacking. In fact, for the ground state the probability densities in
momentum space are only slightly different in terms of A, while
for the excited states the effect of the curvature becomes much
more striking and localization is strongly increased. In any case,
we stress that all these results are always in full agreement with
the uncertainty relation (2).

4. Shannon information entropy in N dimensions

The aim of this section is to compute the Shannon information
entropy for the N-dimensional Darboux III oscillator. Similarly
to what happens in the usual harmonic oscillator, the radial
symmetry leads to a wave function with radial and angular parts,
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Table 4

Sp* +Sp* for the n=0

.....

15 states and different values of A. (Data plotted in Fig. 7.)
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A

n

0

1

2

3

4

5

6

7

8

9

10

11

12

13

15

0.000
0.025
0.050
0.075
0.100

2.145
2.145
2.145
2.145
2.145

2.685
2.685
2.683
2.681
2.677

2.997
2.995
2.990
2.982
2972

3.219
3.216
3.206
3.190
3.170

3.393
3.387
3.370
3.345
3314

3.536
3.527
3.502
3.466
3.424

3.658
3.645
3.611
3.564
3.512

3.764
3.747
3.703
3.645
3.585

3.858
3.837
3.783
3714
3.646

3.943
3.917
3.851
3.773
3.700

4.020
3.988
3.913
3.825
3.749

4.091
4.053
3.966
3.871
3.793

4.156
4.113
4.015
3.913
3.834

4.217
4.167
4.058
3.952
3.872

4.274
4.217
4.099
3.988
3.909

4.327
4.262
4.135
4.021
3.944

Table 5
S;’"A +ng" for the n =0, 1, 2 states and large values of A.
(Data plotted in Fig. 8.)

A n

0 1 2
0.00 2.145 2.685 2.997
0.25 2.146 2.648 2.887
0.50 2.154 2.604 2.775
0.75 2.173 2.581 2.718
1.00 2.199 2.570 2.689

and since the Darboux III oscillator is also radially symmetric,
results for the angular part can be directly extracted from the
previous literature.

4.1. Eigenstates of the N-dimensional Darboux III oscillator
In particular, the wave function for the eigenstates of the

Darboux III oscillator written in hyperspherical coordinates can
be factorized in a radial R, ;(r) and an angular part Y] ,, (@), namely

V(1) = RE(1) Yiu(0), (48)
where the radial part is given by [22]
:27); r2
R (r) = NE /T ar2 rh e 2 102 (@2 ) | (49)
with a normalization constant
N 2n!(.(2r{,)l+N/2 1
Noy = N Ny 2’ (50)
rn+1+3) 1+(2n—|—l+5)@

where the eigenvalues and energy-dependent frequencies are
given by

N\° N
Ey = —1 <2n+1+5> +h<2n+l+5)

N 2
x h2k2<2n+l+5> +?,
Q)= /w? = 2AE},.

Note that in general the N-dimensional wave function 1//&,’ ﬂ(r)
depends on N natural numbers (quantum numbers) {n, u1, ...,
un—1}. To simplify the notation we write u = {1, ..., un_1}
and moreover w1 = | and uy_1 = |m|. These quantum numbers
are non-negative integer numbers constrained by the conditions
1=0,1,2,...and uy1 =M S puy2 < - <2 < 1 =1
The angular part of the wavefunction is given by the hyper-
spherical harmonics (see [30,31] for a detailed description of
hyperspherical harmonics and their properties), which read

(53)

N-2
iUN—16N— ak+ik :
Yi,u(8) = My e =11 [T G (cos By)(sin B+
k=1

where o = %(N —j— 1), CJ(z) are the Gegenbauer polynomials
(@ > —%) [29,32], and the square of the normalization constant
is given by

1

2 _
M,JL = E
5 ”ﬁ PO 4 )k — )OS + (N — k4 2p41 — 2)!
o VETOSE 4 e )+ g )N — k4 e+ pr — 2)!

(54)

Therefore the probability density in hyperspherical coordi-
nates reads

Pk 0) = (Ro (1) Y0
2n)(82} N2 1

B Fn+1+5) 1+ @n+145) o

_0r 2 2
x (14 ar?) r2h e 2nr™ (L 1HN/2 (25,1%)) 1YLu(0))* .
(55)

And the radial probability density is defined as

phi(r) = (R, (1)° .

In the three-dimensional case the function 471r2,o,’1\,(r) for the
ground and first excited states by taking different values of A
is plotted in Fig. 9, where again the spreading influence of the
curvature can be appreciated.

We also recall that the Laguerre polynomials L$(z) are orthog-
onal with respect to the measure du(z) = z*e *dz over [0, +00),
i.e.

(56)

/OO Z°LY(z)LY(z)e?dz = 0. (57)
0

if m # n. In the following we will need certain integrals involving

Laguerre polynomials. In particular, it was shown in [33] (see
also [34,35]) that

o]
f ') (z) e dz = (—1)"™ M (w + 1)
0
y minX{n,:m] w—o\(pn—B\(n+k
n—k)\m—k A
k=0
Putting m = n and 8 = o we have

* (N2 o2y _ - =\, (n+k
/0 2" (12(2))" e dz-I’(u—l—l)Z(n_k)( ‘ ) (59)

k=0

(58)

Fixing in this equation 4 = « we obtain the normalization for
the Laguerre polynomials, which reads

[ 7 ey ea = 022D,
0

(60)
n!
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Fig. 9. Plots of the N = 3 probability density of finding the particle at a distance r from the origin, 4nr2p,’}10(r), for different values of A and different states with
n=0,1,2,3. Top left: n = 0. Top right: n = 1. Bottom left: n = 2. Bottom right: n = 3.
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Fig. 10. Entropies Sj”‘”'* for the states withn =0, ...,
of A.

9 and different values

for all n € N. Moreover, we will be interested in the special cases
when u = «a + 1:

/oozaﬂ (Lg(z))z e ?dz = M(Zn +a+1), (61)
0

n!

and p = o + 2:

o r'(n 1
/ z0+2 (Lﬁ‘(z))2 e ?dz = %(6n2+6n+6na+3a+a2+2).
0 !

(62)

10

4.2. Shannon entropy in arbitrary dimension

With all the previous results at hand, the Shannon informa-
tion entropy for the N-dimensional Darboux III oscillator can be
computed. The factorization of the wave function in its radial and
angular parts leads to

Syt = — /RN Pt (r)log (p,?,z,u(r)) dr =

_ /RN (R:,(1)? 1Y,,4(0)” log ( (R: (1))* ) dr

- /R (R () Yeu(O) log ( Y0u(0) ) dr

- /0 " (1R () og ( (R () ) dr /S M@)oy
/0 T () ar fS  Yi,(0) log ( YO ) de2y
- fo " (1R () 1og ( (Ry(r)* ) dr —Jy,

(63)

where

Jy = / |Y,,,L(0)|zlog<|Yl,u(0)|2>d9N- (64)
SN—1

Using the integrals (60), (61) and (62), the integral involving the
radial part of the wave function can be expressed completely in
terms of integrals involving Laguerre polynomials. In this way, the
Shannon entropy on position space of an arbitrary quantum state
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Fig. 11. Plots of the N = 3 probability density 4np2yrﬁn(r) of finding the particle with a radial momentum p, for different values of A and different states with
n=0,1,2,3 and | = 0. Top left: n = 0. Top right: n = 1. Bottom left: n = 2. Bottom right: n = 3.

of the N-dimensional Darboux III oscillator is given by

+00 N N
N on! T [ 2 -1 2
Sz],n,l,u.)\ =-3 log Q’?‘l ~log ( n ) Jp /0 zZ72e ( L, (2) log L, (2) dz,

rn+1+4%)
1 2 el B
+Og<+(n++2)9§,1> ooy N
n! 1 N =/ ZH2-1e? (Ln 2 (z)) 2log ( 1 +az> dz, (70)
- N NY_x 0
F(n+l+5)1+(2n+l+5)g—ﬁl ) oo L
o o 5= Z2F2e (L2 (2) )2log | 14+az | dz. (71)
A o= Ao~ ok A w0k, 0
x\Vh+—h+h+t h+L" +=k" ] ]
20 20 20 The well-known Shannon entropy for the harmonic oscillator

1 N is recovered in the limit A — 0,
+ NY)_A (2n +1+ 5)
1+ (2n +1+ 7)9—;\1 Sg,n,l.u,o — )lLln’(l) S[I;I,n,l,u,l . (72)
A ) ) N N? .
+QT(6" +6In+3nN+1+1 +1N+5+T) —Jy, thus obtaining
n,l
' N 2n!
(65) Sg””"”"o = ——logw — log ( — )
where 2 r(n+1+7%)
n! N
Foo N_ - +R)+2n+14+ =, (73)
h= / i (LL“ ‘@) ) 2 log(z') dz. (66) rn+i+ 577 2
0
which is exactly the same expression given in [12] since J; and J,
~ +oo0 LN are independent of the curvature A.
Ji= f Ztie? (Ln 2 (2) ) ?log(z')dz, (67)
0 4.3. The three-dimensional case
Hoo LN 2 N 2 Since the angular part of the wave functions defining the
L= f 2212 ( L, 2 (2) ) log < ( L, 2 (2) ) ) dz, Darboux III eigenstates is the same as in the harmonic oscillator,
0 the integral Jy involving the spherical harmonics is also exactly

(68) the same. For the particular case N = 3, it turns out that Jy can

11
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Table 6
Entropies 3004 for the states with n=0,...,9 and different values of A. (Data plotted in Fig. 10.)
A n
0 1 2 3 4 5 6 7 8 9
0.00 3.217 4151 4709 5.109 5.421 5.676 5.893 6.082 6.248 6.397
0.01 3.255 4235 4839 5.284 5.639 5.938 6.198 6.428 6.636 6.826
0.02 3.292 4319 4.967 5.454 5.850 6.188 6.485 6.750 6.992 7.214
0.03 3.329 4.402 5.093 5.619 6.051 6.422 6.749 7.043 7.309 7.553
0.04 3.366 4484 5.215 5.777 6.241 6.639 6.990 7.303 7.587 7.845
Table 7
Entropies $3™%%* for the states with n =0, ...,9 and different values of A. (Data plotted in Fig. 12.)
A n
0 1 2 3 4 5 6 7 8 9
0.00 3217 4151 4,709 5.109 5.421 5.676 5.893 6.082 6.248 6.397
0.01 3.180 4,066 4577 4931 5.198 5.408 5.580 5.724 5.846 5.950
0.02 3.142 3.980 4.445 4753 4974 5.140 5.268 5.369 5.449 5.514
0.03 3.105 3.895 4313 4576 4753 4878 4967 5.031 5.077 5.111
0.04 3.068 3.810 4182 4401 4538 4,626 4683 4718 4740 4752
numbers (see Table 6 for the numerical data). As a general pat-
851 . o tern, the entropy increases with A for fixed n. On the other hand,
6ob ° 1 and similarly to what happens in the non-deformed harmonic
r R ° 1 oscillator with A = 0, it can be numerically checked that for fixed
55F ° R ° o] A and n the entropy in position space grows with [, and for a given
F o o . ol A and | the entropy increases with n. Therefore, the curvature
S 50p ° ° ] increases the spreading of the wave function in position space,
5 ish ° . . . ° ° without altering the qualitative effects due to n and I which are
@At . o ® A=0 already present in the flat three-dimensional harmonic oscillator
[ ] °
40l ! A=0.01 states.
r ® A=0.02
35F ® =003 ] 4.4. Shannon entropy in momentum space for N = 3
'§ ® 1=0.04 o . . .
3.0 w w ‘ w N Similarly to what happens in the one-dimensional case, the
0 2 4 6 8

Fig. 12. Entropies S3™* for the states with n =0, ...,9 and different values

of A.

be expressed in terms of the Gegenbauer polynomials, as it was
shown in [12]. For the sake of completeness we reproduce this
explicit result here and for N = 3 we have that

_ ((21+1)(1— )v) ((21+ m)!((2 ))
Je=log\ = my: B\ 2 my(mIp

2 m)!
< Ura )+ 2og S0,
m!2
(74)
where
1 1
Jva= / (q”i?fm)2(1—z2>mlog(1—z2)"‘dz, (75)
-1

and

1
]y,zZ/ ( " ))2(1—z) log< m+2(z))2dz. (76)
-1

for m > 0.If m < O the previous formulas are still valid
substituting m by —m.

For this three-dimensional case, Fig. 10 contains the plots of
the entropies Sy L for the ground and some low excited states
of the Darboux III oscillator with vanishing | and m quantum

12

non-constant curvature of the Darboux III space prevents ana-
lytical expressions for the entropies in momentum space. Nev-
ertheless, the radial symmetry of the system makes it possible to
perform a numerical analysis of the behaviour of said entropies
(see [9] for a similar approach applied to spherical quantum dots).
In particular, in order to compute for N = 3 the Fourier transform

of (48), namely
1\32 ,
0} (p) = <ﬂ> f €T V() dr
R

(77)

Ui m@) = F{Ui

we use the well known [31] spherical expansion of plane waves
given by

T=dr Y jpr) Y Yom (8p)Y (1),
1/ m/

where ji(z) stands for the spherical Bessel function which is
related to ordinary Bessel function by ji(z \/>,z‘1/2jl+
Moreover, in the previous expression (78) we have mtroduced
the notation 6, and 6 to denote the angular variables in position
and momentum space, respectively. Introducing (78) into (77) we
obtain a similar expression to (48) in momentum space

(78)

Ui 1 m(B) = 1IC, (D)Yin(Bp). (79)
where

2
Kn/(p) = /; f Jip )R, (r)r?dr. (80)

In the particular case N = 3, the function RA (1) is given by (49).
Using this factorization of the wavefunctlon in momentum space,
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the variation of the entropy in terms of A can be more easily appreciated.
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.., 9 and different values of the curvature A. The two boxes below are enlarged fragments of the plot where

Table 8

Entropies 5[30’2‘10’0'"A for the states with n =0, 1, ..., 9 and different values of the curvature A. (Data plotted in Fig. 13.)
A n

0 1 2 3 4 5 6 7 8 9
0.00 6.434 8.301 9.418 10.218 10.841 11.353 11.786 12.163 12.496 12.794
0.01 6.434 8.301 9.417 10.215 10.837 11.346 11.778 12.151 12.481 12.776
0.02 6.434 8.300 9.413 10.207 10.824 11.328 11.753 12.119 12.441 12.728
0.03 6.434 8.297 9.406 10.195 10.804 11.300 11.716 12.073 12.386 12.664
0.04 6.434 8.294 9.397 10.178 10.779 11.265 11.672 12.021 12.326 12.598
all of our previous results (namely (63) and below) could be n=20,...,9 with | = m = 0 and different values of A. As it can

easily applied if lcﬁ (p) would admit an analytical expression
but, similarly to the one-dimensional situation, this is not the
case. Nevertheless, it is possible to perform all the numerical
computations needed in order to obtain the radial probability
density in momentum space given by

Vi) = (KL(p)° -

In fact, Fig. 11 shows the function 47rr2yn*y,(p) forthen=0,1,2,3
states and by taking [ = 0, where the influence of the curvature in
the compression of the radial probability density in momentum
space is clearly appreciated (note that, again, this effect is much
less significative for the ground state).

In this manner, any of the entropies Sﬁ’"’l*"’** could be com-
puted numerically. In particular, Fig. 12 (with data shown in
Table 7) plots the entropies in momentum space for the states

(81)

13

be easily seen by comparing this plot with Fig. 6, the trend of the
dependence of S, for N = 3 in terms of the curvature parameter A
is exactly the same as in the one-dimensional system: for a given
A the entropy S, grows with n and for a fixed n it decreases with
A.

Finally, in Fig. 13 (data in Table 8) the total entropies for the
very same three-dimensional Darboux III states are presented.
We stress that their qualitative behaviour coincides with the
one-dimensional system plotted in Fig. 7. We remark that, as
it happened in Fig. 7, for the chosen values of A and for the
numerical precision in Table 8, in the ground state n = 0 all
the total entropies seem to coincide. However, it can be checked
numerically that this is no longer the case for larger values of
A and, once again, only in the ground state the total entropy
grows with A while for any excited state it becomes smaller as the
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curvature parameter grows. Therefore, for the three-dimensional
system we obtain an analogue of Fig. 8.

5. Concluding remarks

In this paper we have computed the Shannon information en-
tropy S, for the position representation of an arbitrary eigenstate
of a N-dimensional nonlinear quantum oscillator defined on a
space whose negative non-constant curvature is governed by a
non-negative parameter A, and we have expressed S, completely
in terms of integrals involving orthogonal polynomials. Our re-
sults indeed reproduce the known ones for the N-dimensional
harmonic oscillator when the curvature of the space vanishes, i.e.
in the A — 0 limit. The computation on position space has been
performed analytically in arbitrary dimension (see (42) for the
one-dimensional case and (65) for dimension N > 1). Moreover,
computations of the Shannon entropy in momentum space were
performed numerically in the one and three-dimensional cases,
since the modification induced by the curvature in the wave func-
tions of the Darboux III oscillator makes it impossible to obtain
an analytical expression for the Fourier transformed eigenstates.

We have found that in the N-dimensional case the effect of a
larger absolute value of the negative curvature (through a bigger
A) is to increase the entropy in position space. The effect on
wavefunctions defined on momentum space is found to be the
opposite one, and for all excited states with quantum number n >
1 the decrement of the entropy in momentum space outweighs
the increment on position space. Therefore, this work can be
thought of as a first step in the study of the interplay between
curvature in quantum mechanical systems and their information
theoretic properties.

Within this perspective, it is worth stressing that the Darboux
Il oscillator is an exactly solvable nonlinear quantum model that
presents two remarkably interesting features: firstly, is analyt-
ically solvable in any dimension and, secondly, it includes an
additional parameter A, which carries a geometrical interpreta-
tion and whose smooth A — O limit leads to the well-known
results for the harmonic oscillator. Moreover, the exact solvability
of the Darboux III quantum oscillator is a structural property
of this nonlinear oscillator which holds for any value of A. This
means that all the information-theoretic problems that have been
previously studied in the literature for the usual N-dimensional
oscillator can be also faced for the Darboux III oscillator here
presented, and the role of the curvature within them can be
always analysed through the parameter A.

Among these problems, we can quote the analysis of the
N-dimensional Darboux III oscillator in terms of cartesian coor-
dinates [6] (instead of the hyperspherical ones here used), the
computation of its Renyi and Tsallis information entropies as well
as its radial expectation values [36-38], the study of the Rydberg
states obtained for large values of the quantum number n [11,13,
14,16,37] and also the properties of the large N limit [16,39,40]
of the new nonlinear oscillator model here presented. Finally, the
question concerning the possibility of the analytical description
of information-theoretic properties for N-dimensional hydrogenic
systems on curved spaces raises in a natural way. The answer is
affirmative, since in [21,41] an exactly solvable (and also maxi-
mally superintegrable) deformation of the Coulomb problem on
a space with non-constant curvature was presented. The cor-
responding Hamiltonian is given by the sum of the kinetic en-
ergy corresponding to a N-dimensional radially symmetric space
which is related to the well-known Taub-NUT space (see [41] and
references therein), together with a smooth deformation of the
Coulomb potential in terms of a real parameter 7. In a similar
manner as in the Darboux III case, the Schrédinger equation can
be analytically solved in N-dimensions [41], and therefore the
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information-theoretic approach to this N-dimensional hydrogenic
system on a curved space is also feasible. This system would
provide a second relevant example in which the role of the
curvature could be again confronted with previous results in the
literature for usual hydrogenic systems in N dimensions, which
are of course interesting from many different viewpoints (see,
for instance [10,12,40] and references therein). Work on all these
lines is in progress and will be presented elsewhere.
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