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a b s t r a c t

The so-called Darboux III oscillator is an exactly solvable N-dimensional nonlinear oscillator defined
on a radially symmetric space with non-constant negative curvature. This oscillator can be interpreted
as a smooth (super)integrable deformation of the usual N-dimensional harmonic oscillator in terms of
a non-negative parameter λ which is directly related to the curvature of the underlying space. In this
paper, a detailed study of the Shannon information entropy for the quantum version of the Darboux
III oscillator is presented, and the interplay between entropy and curvature is analysed. In particular,
analytical results for the Shannon entropy in the position space can be found in the N-dimensional case,
and the known results for the quantum states of the N-dimensional harmonic oscillator are recovered
in the limit of vanishing curvature λ → 0. However, the Fourier transform of the Darboux III wave
functions cannot be computed in exact form, thus preventing the analytical study of the information
entropy in momentum space. Nevertheless, we have computed the latter numerically both in the one
and three-dimensional cases and we have found that by increasing the absolute value of the negative
curvature (through a larger λ parameter) the information entropy in position space increases, while in
momentum space it becomes smaller. This result is indeed consistent with the spreading properties
of the wave functions of this quantum nonlinear oscillator, which are explicitly shown. The sum of
the entropies in position and momentum spaces has been also analysed in terms of the curvature: for
all excited states such total entropy decreases with λ, but for the ground state the total entropy is
minimized when λ vanishes, and the corresponding uncertainty relation is always fulfilled.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The Shannon information entropy [1] of a given probability
ensity ρ(z) is defined as the functional

Sρ = −

∫
ρ(z) log ρ(z) dz . (1)

As it is well-known, this entropy essentially measures the total
spreading of the probability density and becomes the corner-
stone of a huge number of applications of information theory
(see, for instance, [2,3] and references therein). In particular, this
information-theoretic viewpoint can be used in order to analyse
the spreading properties of the probability density ρ(x) = |ψ(x)|2

hat characterizes the stationary states ψ(x) of a given quantum
ystem (see also [4] for a Shannon entropy approach to dynamical
tability in classical systems). Moreover, for generic quantum
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nc-nd/4.0/).
states, Sρ provides a more appropriate measure of the uncer-
tainty in the position for such a quantum state than the usual
Heisenberg uncertainty relation (see [5,6]). In the same manner,
the Shannon entropy Sγ for the associated probability density on
momentum space γ (p) = |ψ̃(p)|

2
can be also computed in terms

of the momentum representation of the state and, as expected,
provides the information concerning the spreading of the mo-
mentum distribution for such an state. Moreover, from these two
entropies a stronger version of the Heisenberg uncertainty rela-
tion was introduced by Bialynicki-Birula and Mycielski [7] (see
also [8]). For a N-dimensional quantum state, this uncertainty
relation reads

Sρ + Sγ ≥ N (1 + logπ ) , (2)

which indeed implies the impossibility of getting completely
precise information of the quantum state in both position and
momentum spaces.

Obviously, the problem of determining in exact form the Shan-
non entropy of the states for a given quantum system can be only
faced provided that system is exactly solvable, i.e. when the phys-
ical solutions of the corresponding Schrödinger equation can be
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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nalytically found. The list of quantum systems that belong to this
lass is a very short one, and their most relevant representatives
n the generic N-dimensional case are the harmonic oscillator and
the Coulomb systems, but we recall that another remarkable class
of exactly solvable systems has been recently presented in [9] and
is given by N-dimensional Dirichlet and Neumann hyperspherical
ots. In particular, the analytical expressions for the Shannon
nformation entropy of the quantum states of the N-dimensional
armonic oscillator have been studied in [6,10–16] (see also ref-
rences therein) where many challenging mathematical problems
ave been solved.
Taking into account the previous considerations, the aim of

his paper is to compute the Shannon entropy for an N-
imensional quantum nonlinear oscillator, whose classical ver-
ion was firstly introduced in [17]. This system can be interpreted
s an exactly solvable deformation (governed by a real and
ositive parameter λ) of the N-dimensional harmonic oscillator
otential that is defined on a very specific space with nonconstant
egative curvature, which is just the N-dimensional spherically
ymmetric generalization [17,18] of the so-called Darboux surface
f type III [19,20]. As a consequence, this nonlinear oscillator is
nown in the literature as the Darboux III oscillator, and its eigen-
unctions and eigenvalues can be analytically obtained as smooth
-deformations of the ones associated to the N-dimensional
armonic oscillator [17,18,21–23].
Therefore, the Darboux III system provides a very distin-

uished example of exactly solvable N-dimensional quantum
onlinear oscillator whose wave functions are amenable to be
tudied from the information-theoretic viewpoint. Moreover, the
eformation approach here presented provides a privileged
enchmark in order to analyse the interplay between information
ntropy and curvature for exactly solvable quantum systems
efined on curved spaces, a subject that – to the best of our
nowledge – cannot be found in the literature so far (we recall
hat in [24], information entropies for some quantum states for
he free motion on the 2D spherical and hyperbolic spaces with
onstant curvature have been computed numerically). Neverthe-
ess, we will find that due to the complexity induced by the
urvature of the manifold where the system is defined, while
he information entropy for the wave functions in the position
epresentation can be analytically computed, this will not be the
ase in the momentum representation, where numerical methods
ill be needed in order to compute Sγ and to check the uncer-
ainty relation (2). Moreover, we stress that the current interest
n multidimensional harmonic oscillators is outstanding in many
ifferent classical and quantum dynamical systems (see [16]
nd references therein) and therefore the Darboux III oscillator
rovides a generalized oscillator model in which λ could be
hought of as an effective parameter that can be used to model
nalytically smooth nonlinear perturbations of all these harmonic
henomena.
The structure of the paper is the following. In the next section

he essential features of the Darboux III oscillator, in both its
lassical and quantum versions, as well as the geometry of its
nderlying curved space will be shortly reviewed (see [17–23] for
detailed account of all the results here sketched). In particular,

t will be emphasized that the quantization of the classical system
s by no means unique, since due to the nonvanishing curvature of
he underlying manifold the kinetic energy term of the Hamilto-
ian contains both momenta and position variables, and a precise
rdering between them has to be prescribed. In Section 3 the in-
ormation entropy for the one-dimensional Darboux III quantum
scillator will be computed. In position space this will be obtained
nalytically, and it will be shown that for a given quantum state
he information entropy Sρ increases with λ, i.e. with the absolute

alue of the (negative) curvature. However, in the momentum

2

pace representation the Fourier transform of the wave functions
annot be obtained in closed form due to the λ-deformation.
his implies that the corresponding information entropy has to
e computed numerically, and now the information entropy Sγ
ecomes smaller for larger values of the deformation parameter
. Moreover, for all the excited states the total entropy Sρ + Sγ
ill be found to decrease when λ increases, while the ground
tate presents the opposite behaviour, and indeed the uncertainty
elation (2) holds in all the cases. Section 4 is devoted to the
eneralization to N-dimensions of the analytical results for the
osition space representation by making use of hyperspherical
oordinates, and special emphasis will be devoted to the analysis
f the three-dimensional case due to its physical significance.
n this case the entropy on momentum space Sγ will be also
omputed numerically, and the dependence of all the entropies
n terms of the curvature parameter λ coincides exactly with the
revious findings for the one-dimensional Darboux III oscillator.
inally, a concluding section pointing out some remarks and open
uestions closes the paper.

. The Darboux III oscillator

.1. The classical system and the Darboux III space

The model that we will consider in this paper is an exactly
olvable ND quantum nonlinear oscillator whose classical ana-
ogue is defined by the Hamiltonian

(q, p) = T (q, p) + U(q) =
p2

2(1 + λq2)
+

ω2q2

2(1 + λq2)
. (3)

with real parameters λ ≥ 0 and ω ≥ 0 and where (q, p) ∈ R2N are
onjugate coordinates and momenta. This system was proven to
e maximally superintegrable in [17], and its (2N−1) functionally
ndependent constants of motion are the ones that encode the
adial symmetry of the system, namely,
(m)

=

∑
1≤i<j≤m

(qipj − qjpi)2, C(m) =

∑
N−m<i<j≤N

(qipj − qjpi)2,

m = 2, . . . ,N, (4)

ogether with the additional λ-dependent integrals

i = p2i −
(
2λH(q, p) − ω2)q2i , i = 1, . . . ,N. (5)

hat contain the Hamiltonian and from which H can be written
s

=
1
2

N∑
i=1

Ii . (6)

Therefore, the system defined by H can be interpreted as a
genuine (maximally superintegrable) λ-deformation of the ND
Euclidean isotropic oscillator with frequency ω, since the limit
λ → 0 of (3) yields

H0 =
1
2
p2

+
1
2
ω2q2. (7)

From a geometric viewpoint, the term

T (q, p) =
p2

2(1 + λq2)
, (8)

can be interpreted as the kinetic energy defining the geodesic
motion of a particle with unit mass on the ND radially symmetric
generalization [18,21] of the Darboux surface of type III (see [19,
20]) whose metric is given by

ds2 = (1 + λq2) dq2, (9)
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n terms of the coordinates q of the configuration space of the
amiltonian system. It can be checked that (9) defines a N-
imensional conformally flat space whose nonconstant scalar
urvature is given by

(q) = −λ
(N − 1)

(
2N + 3(N − 2)λq2

)
(1 + λq2)3

, (10)

hat always takes negative values in any dimension N . Since
im|q|→∞ R vanishes, this space is asymptotically flat, and R(q) has
minimum at the origin

(0) = −2λN(N − 1),

hich is proportional to the scalar curvature of the N-
imensional hyperbolic space.
From the dynamical viewpoint, the central potential

(q) =
ω2

2
q2

1 + λq2 , (11)

as proven in [17,21] to be the natural ‘intrinsic’ oscillator poten-
ial on the N-dimensional Darboux III space. It is worth stressing
hat in order to preserve the complete integrability (and the
xact solvability) of the deformed model, the modification of the
inetic energy T (q, p) has to be complemented with a suitable
-deformation of the oscillator potential given by (11). In doing
o, all bounded trajectories for the classical Hamiltonian system
efined by H turn out to be closed (like in the usual harmonic
scillator) and the Schrödinger equation for the quantum version
f the system can be also analytically solved by making use of the
ell-known solution for the N-dimensional quantum harmonic
scillator [22,23].
Finally, it is worth stressing that H can be also interpreted as a

onlinear oscillator on the flat ND Euclidean space but endowed
ith a position-dependent mass, in which the radially symmetric
ass function

(q) = 1 + λ q2 ,

s just the conformal factor of the metric and grows quadratically
n terms of |q| (see [25,26] for certain semiconductor heterostruc-
ures described through quadratic mass functions). We empha-
ize that these two interpretations of the system (motion on a
pace with variable curvature versus motion of a particle with
osition-dependent mass on the flat Euclidean space) are fully
quivalent, although in this work we will focus on the geometric
ne.

.2. Hyperspherical coordinates and the effective potential

The radial symmetry of the system suggests the use of hy-
erspherical coordinates (r = |q|, θ = {θj}j=1,...,N−1) given by
see [23])

qj = r cos θj
j−1∏
k=1

sin θk, ∀j ∈ {1, . . . ,N − 1}

N = r
N−1∏
k=1

sin θk .

(12)

hese hyperspherical coordinates are defined on the subset of RN

iven by

r, θ1, . . . , θN−2, θN−1) ∈ (0,+∞) × [0, π] × · · · [0, π] × [0, 2π ].

(13)

Their corresponding canonically conjugated momenta (pr , pθj )
2 2
re related with the canonical Euclidean momenta by p = pr + o

3

L2
r2
, where the square of the total angular momenta reads

L2 =

N−1∑
j=1

p2θj

j−1∏
k=1

1
sin2 θk

. (14)

n these coordinates the metric (9) now reads

s2 = (1 + λr2)(dr2 + r2dΩ2
N ) (15)

here dΩ2
N is the metric on the unit (N − 1)D sphere induced by

he usual Euclidean metric on RN .
Therefore, the Hamiltonian (3) in hyperspherical coordinates

s written as

=
p2r

2(1 + λr2)
+

L2

2r2(1 + λr2)
+

ω2r2

2(1 + λr2)
, (16)

nd the nonlinear oscillator potential

(r) :=
ω2r2

2(1 + λr2)
, (17)

ogether with the centrifugal term, defines the effective radial
otential for this system

eff(r) :=
L2

2r2(1 + λr2)
+

ω2r2

2(1 + λr2)
. (18)

oth U(r) and Ueff(r) are plotted in Fig. 1, where it is worth
tressing that

lim
→+∞

U(r) = lim
r→+∞

Ueff(r) =
ω2

2λ
, (19)

which shows that when λ ̸= 0 the effective potential Ueff(r)
saturates for large r , thus indicating the ‘hydrogen-like’ nature
of the effective potential of the λ-deformed oscillator [23].

2.3. The quantum Darboux III oscillator

As it is well known, the quantization problem for Hamilto-
nians like (3) whose kinetic energy term (8) contains position-
dependent functions, admit different solutions which depend on
the ordering prescription chosen for the (non-commuting) posi-
tion and momenta operators. In general, different orderings lead
to quantum Hamiltonians that are related under similarity trans-
formations, therefore their eigenfunctions are related by gauge
transformations and their eigenvalues coincide. For a detailed
discussion on this issue, we refer to [22] and references therein.

In the case of the Darboux III Hamiltonian (3) this problem was
analysed in detail in [22], from where we sketch in the following
the essential results needed for the rest of the paper. Initially,
this system was quantized in [23] by making use of the so-called
‘Schrödinger’ quantization prescription, in which the quantum
Hamiltonian Ĥ is given by

Ĥ =
1

2(1 + λq̂2)
p̂2

+
ω2q̂2

2(1 + λq̂2)
, (20)

here the function depending on the coordinates is located at the
eft within the kinetic energy term. Then it is straightforward to
rove that Ĥ commutes with the following observables,

ˆ (m)
=

∑
1≤i<j≤m

(q̂ip̂j − q̂jp̂i)2, Ĉ(m) =

∑
N−m<i<j≤N

(q̂ip̂j − q̂jp̂i)2,

m = 2, . . . ,N; (21)

Îi = p̂2i − 2λq̂2i Ĥ(q̂, p̂) + ω2q̂2i , i = 1, . . . ,N; (22)

where Ĉ (N)
= Ĉ(N) and Ĥ =

1
2

∑N
i=1 Îi. In this setting, each

f the three sets {Ĥ, Ĉ (m)
}, {Ĥ, Ĉ } (m = 2, . . . ,N) and {Î }
(m) i
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Fig. 1. Left: Nonlinear oscillator potential U (17) and effective nonlinear oscillator potential Ueff (18) for ω = 1, L = 1 and different values of λ.
w

i = 1, . . . ,N) is formed by N commuting observables. Moreover,
it can be proven that Ĥ is (formally) self-adjoint on the Hilbert
space L2(RN , (1 + λq2)dq), endowed with the scalar product

⟨Ψ |Φ⟩λ :=

∫
RN
Ψ (q)Φ(q)(1 + λq2)dq , (23)

in which the conformal factor of the metric (or mass function)
plays an outstanding role.

Generic eigenfunctions were then found in [23], and turn
out to be formally analogous to the ones for the N-dimensional
isotropic oscillator but provided that the frequency of the oscil-
lator transforms into an energy-dependent function. The explicit
expression for the eigenvalues of (3) can be also straightforwardly
obtained and reads

Eλn = −h̄2λ

(
n +

N
2

)2

+ h̄
(
n +

N
2

)√
h̄2λ2

(
n +

N
2

)2

+ ω2 ,

(24)

here we see that the flat limit λ → 0 gives the spectrum of
he flat isotropic oscillator, the limit n → ∞ leads to the upper
nergy limit ω2/2λ for bounded states, and the degeneracy of

the model is exactly the same as in the ND isotropic oscillator, a
eature that is again a signature of its maximal superintegrability.
inally, the continuous spectrum of Ĥ is given by [

ω2

2λ ,∞).
However, as we will see in the following section, in order

o be able to compute the information entropy for this model
oth in the position and in the momentum spaces, a quantization
rescription for which the quantum Darboux III Hamiltonian is
ormally self-adjoint on the space L2(RN ), with the usual inner
product

⟨f , g⟩ =

∫
∞

−∞

f (q)g(q)dq , (25)

would be of the outmost relevance. Remarkably enough, such a
quantization was also given in [22], and is given by a quantum
Hamiltonian of the form [27]

ĤPDM(q̂, p̂) =
1
2
p̂

1
(1 + λq̂2)

p̂ +
ω2q̂2

2(1 + λq̂2)

= −
h̄2

2
∇

1
(1 + λq2)

∇ +
ω2q2

2(1 + λq2)
, (26)

hich is based on the symmetrization of the kinetic energy
erm that is often used in the Condensed Matter literature. After
eordering terms in order to make connection with the Hamil-
onian for the quantization prescription (20) and afterwards by
dding suitable potential terms depending on h, we are lead
¯

4

to the so-called Transformed-Position-Dependent-Mass (TPDM)
Hamiltonian [22]

ĤTPDM =
1

2(1 + λ q̂2)
p̂2

+
ω2q̂2

2(1 + λ q̂2)

+
ih̄λq̂

2(1 + λ q̂2)2
p̂ +

h̄2λ(1 − 2 λ q̂2)
2(1 + λ q̂2)3

. (27)

This Hamiltonian can be shown to be formally self-adjoint with
respect to (25), its eigenvalues coincide with (24), and the cor-
responding eigenfunctions can be found and will be explicitly
given in the following section. It is worth stressing that the two
last terms in (27) do not appear in (20), and are essential in
order to define a self-adjoint operator with respect to (25) that
can be obtained from (20) through a similarity transformation.
Obviously, these two terms vanish in the classical limit h̄ → 0
and reflect the possible multiplicity of quantizations for a given
classical Hamiltonian system that lead to the same spectrum. A
detailed account of all these assertions is provided in [22].

With all these results at hand, the complete analysis of the
Shannon information entropy of this quantum Darboux III oscil-
lator can be fully performed, and its behaviour in terms of the
deformation parameter λ can be studied.

3. Shannon entropy for the one-dimensional Darboux III os-
cillator

Let us start by computing the Shannon information entropy
(1) of the eigenstates corresponding to the system defined by
(27) in the one-dimensional case. We thus need the probability
density associated to each eigenstate of the quantum system, and
therefore to explicitly compute such eigenfunctions.

3.1. Probability density

The one-dimensional version of the Hamiltonian (27) dis-
cussed in Section 2 reads

ĤTPDM =
1

2(1 + λ x̂2)
p̂2 +

ω2x̂2

2(1 + λ x̂2)

+
ih̄λx̂

2(1 + λ x̂2)2
p̂ +

h̄2λ(1 − 2 λ x̂2)
2(1 + λ x̂2)3

(28)

hich is formally self-adjoint on L2(R) endowed with the usual
inner product

⟨f , g⟩ =

∫
∞

f (x)g(x)dx. (29)

−∞
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Fig. 2. Discrete spectrum Eλn (left) and frequencies Ωλ
n (right) for the n = 0, . . . , 15 states and different values of λ.
Table 1
Discrete spectrum Eλn (above) and frequencies Ωλ

n (below) for the n = 0, . . . , 9 states and different values of λ. (Data plotted in
Fig. 2.)
λ n

0 1 2 3 4 5 6 7 8 9

0.000 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5
0.025 0.494 1.445 2.349 3.207 4.022 4.795 5.529 6.224 6.884 7.508
0.050 0.488 1.392 2.207 2.941 3.6 4.192 4.722 5.198 5.623 6.005
0.075 0.482 1.341 2.075 2.7 3.231 3.681 4.063 4.386 4.662 4.896
0.100 0.476 1.292 1.952 2.483 2.91 3.252 3.527 3.75 3.931 4.078

λ n

0 1 2 3 4 5 6 7 8 9

0.000 1 1 1 1 1 1 1 1 1 1
0.025 0.9876 0.9632 0.9395 0.9163 0.8938 0.8719 0.8506 0.8299 0.8098 0.7903
0.050 0.9753 0.9278 0.8828 0.8402 0.8 0.7621 0.7265 0.693 0.6616 0.6321
0.075 0.9632 0.8938 0.8299 0.7714 0.7179 0.6692 0.625 0.5848 0.5484 0.5154
0.100 0.9512 0.8612 0.7808 0.7095 0.6466 0.5913 0.5427 0.5 0.4624 0.4293
(
c

o
t
c

Therefore all eigenvalues Eλn are real, and they take the form [22]

Eλn = −h̄2
(
n +

1
2

)2

+ h̄
(
n +

1
2

)√
h̄2λ2

(
n +

1
2

)2

+ ω2 , (30)

here n = 0, 1, 2, . . . is the only quantum number in this one-
imensional system. These energies are plotted in Fig. 2 (see
able 1 for the corresponding numerical values) for different
alues of λ and in the limit λ → 0 we get the energies for the
ne-dimensional oscillator states E0

n = h̄ω
(
n +

1
2

)
. In [22] the

igenfunctions for (28) were proven to be

λ
n (x) =

(
Ωλ

n

π

) 1
4
√

1
2nn!

√
1

1 +
(
n +

1
2

)
λ

Ωλn

√
1 + λx2

× e−
Ωλn x2

2 Hn

(√
Ωλ

n x
)
, (31)

here the energy-dependent frequencies Ωλ
n of this quantum

onlinear oscillator are given by

λ
n :=

√
ω2 − 2λEλn . (32)

Therefore, eigenstates (31) are essentially the ones for a quan-
tum oscillator with frequency Ωλ

n multiplied by the extra fac-
tor

√
1 + λx2 which encodes the role played by the underlying

urved space. In the limit of vanishing curvature λ → 0 we
ave that Ωλ

n → ω and thus we exactly recover the well-known
igenfunctions of the one-dimensional harmonic oscillator

0(x) = lim ψλ(x) =

(ω) 1
4

√
1

e−
ωx2
2 Hn

(√
ωx

)
. (33)
n

λ→0 n π 2nn! p

5

The probability density associated with these states is straight-
forwardly given by

ρλn (x) = |ψλ
n (x)|

2
=

(
Ωn

π

) 1
2 1
2nn!

1
1 +

(
n +

1
2

)
λ
Ωn

(1 + λx2)

× e−Ωnx2H2
n

(√
Ωλ

n x
)
, (34)

and the limit λ → 0 gives

ρ0
n (x) =

(ω
π

) 1
2 1
2nn!

e−ωx2H2
n

(√
ωx

)
. (35)

Fig. 3 shows this probability density ρλn (x) for the ground and
some excited states by considering several values of the curvature
parameter λ. It can be clearly appreciated that as far as n grows
the curvature λ strongly increases the spreading properties of the
wave functions of the system.

3.2. Shannon entropy in position space

We now compute the information entropy (1) for the one-
dimensional Darboux III oscillator from its probability density
ρ(x) given by (34). Similarly to the case of the harmonic oscillator
see for instance [12]), Sρ can be completely written in terms of
ertain integrals involving Hermite polynomials [28,29].
In our case, in order to be able to obtain a closed expression

f the information entropy for arbitrary values of the quan-
um number n and the curvature parameter λ, we will need to
ompute certain integrals involving the square of the Hermite
olynomials multiplied by certain polynomials. Recall that the
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Fig. 3. Plot of the probability density ρλn (x) for the n = 0, 3, 6, 9 states and different values of λ.
ermite polynomials are orthogonal with respect to the measure
µ(z) = e−z2dz on R, i.e.

∞

−∞

Hn(z)Hm(z)e−z2dz = 0 , (36)

f m ̸= n, and here we will make use of a normalization such that

∞

−∞

H2
n (z) e

−z2dz =
√
π 2n n! , (37)

or all n ∈ N. Since z2m+1 is an odd function, we have that
∞

−∞

z2m+1H2
n (z) e

−z2dz = 0. (38)

ow, by using the previous relations and the well-known recur-
ence formula

n+1(z) = 2 z Hn(z) − 2 nHn−1(z), (39)

t can be shown that
∞

−∞

z2 H2
n (z) e

−z2dz =
√
π 2n n!

(
n +

1
2

)
, (40)

ogether with

∞

−∞

z4 H2
n (z) e

−z2dz =
√
π 2n n!

(
3n2

2
+

3n
2

+
3
4

)
, (41)

or all n ∈ N.
With all these results at hand, the information entropy Sn,λρ on

the position space of the eigenstate ψλ(x) of the one-dimensional
n

6

Fig. 4. Entropies Sn,λρ for the n = 0, . . . , 15 states and different values of λ.

Darboux III oscillator can be written as

Sn,λρ = −
1
2
logΩλ

n + log
(√
π 2n n!

)
+ log

(
1 +

(
n +

1
2

)
λ

Ωλ
n

)
+

1
1 +

(
n +

1
2

)
λ

Ωλn

[(
n +

1
2

+
λ

Ωλ
n

(
3n2

2
+

3n
2

+
3
4

))
−

1
√
π 2n n!

I
λ

Ωλn

]
,

(42)

where the symbol Iα is defined as the following integral

Iα :=

∫
∞ (

1 + α z2
)
e−z2H2

n (z) log
((
1 + α z2

)
H2

n (z)
)
dz . (43)
−∞
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Fig. 5. Plots of the probability density γ λn (p) for the n = 0, 3, 6, 9 states and different values of λ.
Table 2
Entropies Sn,λρ for the n = 0, . . . , 15 states and different values of λ. (Data plotted in Fig. 4.)

λ n

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.000 1.072 1.343 1.499 1.61 1.697 1.768 1.829 1.882 1.929 1.972 2.01 2.046 2.078 2.109 2.137 2.164
0.025 1.091 1.374 1.539 1.658 1.751 1.828 1.894 1.952 2.003 2.049 2.091 2.129 2.164 2.196 2.226 2.254
0.050 1.109 1.403 1.577 1.701 1.799 1.879 1.947 2.006 2.058 2.104 2.145 2.184 2.219 2.251 2.282 2.311
0.075 1.127 1.432 1.612 1.741 1.84 1.922 1.99 2.049 2.101 2.147 2.19 2.229 2.266 2.301 2.334 2.366
0.100 1.145 1.46 1.645 1.776 1.877 1.958 2.026 2.086 2.139 2.187 2.232 2.274 2.314 2.353 2.39 2.425
3

t
w
o
o

ψ

c
r
w

γ

It can be straightforwardly checked that in the limit λ → 0 of
anishing curvature we recover the results obtained in [12] for
he harmonic oscillator, namely

n,0
ρ = −

1
2
logω + log

(√
π 2n n!

)
+ n +

1
2

−
1

√
π 2n n!

I0. (44)

The values of the entropy (42) in position space for the states
ith n = 0, . . . , 15 are contained in Table 2 and have been
lotted in Fig. 4. It can be clearly appreciated that the spreading
nduced by the curvature implies that the information entropy of
given eigenstate grows with the parameter λ. It is interesting

o compare this behaviour to the one shown in Fig. 3, where
he dependence of the probability densities with λ is expressed.
n particular, Fig. 3 shows how differences in ρλn (x) for different
alues of the curvature grow for states with higher n, and this
ehaviour is translated to Fig. 4 where the differences in entropies
or different curvatures also grow as n grows. Summarizing, the
urvature parameter λ has a ‘‘delocalizing’’ effect that is trans-
ated in terms of the information entropies, and this effect is
dditional to the usual one in the harmonic oscillator where the
hannon entropy grows with n.
7

.3. Shannon entropy in momentum space

In order to compute the information entropy on momen-
um space we need to compute the Fourier transform of the
ave-functions (31). In contradistinction to the usual harmonic
scillator in flat space, the Fourier transform for the eigenstates
f the Darboux III oscillator

λ̃
n (p) = F

{
ψλ

n (x)
}
(p) =

1
√
2π

∫
∞

−∞

eipx ψλ
n (x) dx , (45)

annot be expressed as an analytical function. Therefore our
esults will rely on the numerical computation of (45). Indeed,
e have that
λ
n (p) = |ψ̃λ

n (p)|
2
, (46)

and in the limit λ → 0 we do recover the well-known probability
density in momentum space

γ 0
n (p) = lim

λ→0
γ λn (p) = |ψ̃0

n (p)|
2

=

(
1
ωπ

) 1
2 1
2nn!

e−
p2
ω H2

n

(
p

√
ω

)
.

(47)

In Fig. 5 it is shown how the probability density γ λn (p) in mo-
mentum space (46) varies with the curvature λ. It is interesting
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Table 3
Entropies Sn,λγ for the states with n = 0, . . . , 15 and different values of λ. (Data plotted in Fig. 6.)

λ n

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.000 1.072 1.343 1.499 1.61 1.697 1.768 1.829 1.882 1.929 1.972 2.01 2.046 2.078 2.109 2.137 2.164
0.025 1.054 1.311 1.457 1.558 1.636 1.699 1.751 1.795 1.834 1.868 1.898 1.924 1.949 1.971 1.990 2.008
0.050 1.035 1.280 1.414 1.504 1.571 1.623 1.664 1.698 1.725 1.747 1.767 1.783 1.796 1.807 1.817 1.824
0.075 1.017 1.248 1.370 1.449 1.504 1.544 1.574 1.596 1.613 1.626 1.635 1.642 1.647 1.651 1.654 1.656
0.100 0.9998 1.217 1.327 1.394 1.437 1.466 1.486 1.499 1.508 1.513 1.517 1.519 1.520 1.520 1.520 1.519
i

r
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Fig. 6. Entropies Sn,λγ for the states with n = 0, . . . , 15 and different values of
λ.

Fig. 7. Sn,λρ + Sn,λγ for the n = 0, . . . , 15 states and different values of λ.

o note that the qualitative result is the opposite to the one in
osition space, namely, higher values of λ forces the eigenstate
45) to be more localized in momentum space.

This behaviour is clearly appreciated in Fig. 6 (data are pro-
ided in Table 3), where greater values of λ are associated with

smaller values of Sγ for each fixed quantum state ψλ
n (p).

A natural question that immediately arises is the overall bal-
ance between the effects of curvature on the entropy in position
space and in momentum space. As it can be seen from Fig. 7, for
a given λ, the entropy decrease in momentum space outweighs
the raising of entropy in position space, and therefore curvature
leads to a decrease of the sum of both entropies for each state.
Furthermore, it can be seen that this effect increases for large
values of the quantum number n.
 s

8

Fig. 8. Sn,λρ + Sn,λγ for the n = 0, 1, 2 states and large values of λ.

Looking at Fig. 7 (and its corresponding data given in Table 4)
t is not clear whether the ground state with n = 0 saturates
the bound (2) for any value of the curvature parameter λ. While
this is obvious for λ = 0, for other values of λ there is no
eason for this to be the case. In fact, it can be numerically
hecked that significative differences appear when greater values
f the λ parameter are chosen, as it can be appreciated in Fig. 8
which comes from numerical data given in Table 5) where the
otal entropies for the ground, first and second excited states
re plotted. We stress that, in general, smaller values of λ are
aken throughout the paper in order to guarantee the numerical
ccuracy of the results for larger n.
Fig. 8 and Table 5 show how the effect of the curvature

arameter in the total entropy of the system is fundamentally
ifferent for the ground state and for the excited states. Indeed,
or the ground state the total entropy grows (slowly) with λ,
hile for all excited states with n ≥ 1 the total entropy decreases
s a function of λ. This different behaviour can be understood by
onsidering that the probability densities corresponding to the
round state and to the excited states have very different shapes
see Fig. 5), since in the ground state the structure of maxima
nd zeros which is present in the excited states is completely
acking. In fact, for the ground state the probability densities in
omentum space are only slightly different in terms of λ, while

or the excited states the effect of the curvature becomes much
ore striking and localization is strongly increased. In any case,
e stress that all these results are always in full agreement with
he uncertainty relation (2).

. Shannon information entropy in N dimensions

The aim of this section is to compute the Shannon information
ntropy for the N-dimensional Darboux III oscillator. Similarly
o what happens in the usual harmonic oscillator, the radial

ymmetry leads to a wave function with radial and angular parts,
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Table 4
Sn,λρ + Sn,λγ for the n = 0, . . . , 15 states and different values of λ. (Data plotted in Fig. 7.)

λ n

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.000 2.145 2.685 2.997 3.219 3.393 3.536 3.658 3.764 3.858 3.943 4.020 4.091 4.156 4.217 4.274 4.327
0.025 2.145 2.685 2.995 3.216 3.387 3.527 3.645 3.747 3.837 3.917 3.988 4.053 4.113 4.167 4.217 4.262
0.050 2.145 2.683 2.990 3.206 3.370 3.502 3.611 3.703 3.783 3.851 3.913 3.966 4.015 4.058 4.099 4.135
0.075 2.145 2.681 2.982 3.190 3.345 3.466 3.564 3.645 3.714 3.773 3.825 3.871 3.913 3.952 3.988 4.021
0.100 2.145 2.677 2.972 3.170 3.314 3.424 3.512 3.585 3.646 3.700 3.749 3.793 3.834 3.872 3.909 3.944
(

n
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Table 5
Sn,λρ + Sn,λγ for the n = 0, 1, 2 states and large values of λ.
(Data plotted in Fig. 8.)
λ n

0 1 2

0.00 2.145 2.685 2.997
0.25 2.146 2.648 2.887
0.50 2.154 2.604 2.775
0.75 2.173 2.581 2.718
1.00 2.199 2.570 2.689

and since the Darboux III oscillator is also radially symmetric,
results for the angular part can be directly extracted from the
previous literature.

4.1. Eigenstates of the N-dimensional Darboux III oscillator

In particular, the wave function for the eigenstates of the
arboux III oscillator written in hyperspherical coordinates can
e factorized in a radial Rn,l(r) and an angular part Yl,µ(θ), namely

λ
n,l,µ(r) = Rλn,l(r) Yl,µ(θ) , (48)

here the radial part is given by [22]

λ
n,l(r) = Nλn,l

√
1 + λr2 r l e−

Ωλn,lr
2

2 Ll−1+N/2
n

(
Ωλ

n,lr
2) , (49)

ith a normalization constant

λ
n,l =

√
2n!(Ωλ

n,l)l+N/2

Γ (n + l + N
2 )

√ 1
1 +

(
2n + l + N

2

)
λ

Ωλn,l

, (50)

here the eigenvalues and energy-dependent frequencies are
iven by

λ
n,l = −h̄2

(
2n + l +

N
2

)2

+ h̄
(
2n + l +

N
2

)

×

√
h̄2λ2

(
2n + l +

N
2

)2

+ ω2 , (51)

λ
n,l :=

√
ω2 − 2λEλn,l . (52)

ote that in general the N-dimensional wave function ψλ
n,l,µ(r)

depends on N natural numbers (quantum numbers) {n, µ1, . . . ,
µN−1}. To simplify the notation we write µ = {µ1, . . . , µN−1},
and moreover µ1 = l and µN−1 = |m|. These quantum numbers
are non-negative integer numbers constrained by the conditions
l = 0, 1, 2, . . . and µN−1 = |m| ≤ µN−2 ≤ · · · ≤ µ2 ≤ µ1 = l.

The angular part of the wavefunction is given by the hyper-
spherical harmonics (see [30,31] for a detailed description of
hyperspherical harmonics and their properties), which read

Yl,µ(θ) = Ml,µeiµN−1θN−1

N−2∏
Cαk+µk+1
µk−µk+1

(cos θk)(sin θk)µk+1 , (53)

k=1

9

where αj =
1
2 (N − j − 1), Cαn (z) are the Gegenbauer polynomials

α > −
1
2 ) [29,32], and the square of the normalization constant

is given by

M2
l,µ =

1
2π

×

N−2∏
k=1

Γ ( N−k+1
2 + µk+1)(µk − µk+1)!( N−k−1

2 + µk)(N − k + 2µk+1 − 2)!
√
πΓ ( N−k

2 + µk+1)( N−k−1
2 + µk+1)(N − k + µk + µk+1 − 2)!

.

(54)

Therefore the probability density in hyperspherical coordi-
ates reads

λ
n,l,µ(r) =

(
Rλn,l(r)

)2
|Yl,µ(θ)|2

=
2n!(Ωλ

n,l)
l+N/2

Γ (n + l + N
2 )

1
1 +

(
2n + l + N

2

)
λ

Ωλn,l

× (1 + λr2) r2l e−Ωλn,lr
2 (

Ll−1+N/2
n

(
Ωλ

n,lr
2))2

|Yl,µ(θ)|2 .

(55)

nd the radial probability density is defined as

λ
n,l(r) =

(
Rλn,l(r)

)2
. (56)

n the three-dimensional case the function 4πr2ρλn,l(r) for the
round and first excited states by taking different values of λ
s plotted in Fig. 9, where again the spreading influence of the
urvature can be appreciated.
We also recall that the Laguerre polynomials Lαn (z) are orthog-

nal with respect to the measure dµ(z) = zµe−zdz over [0,+∞),
.e.

∞

0
zαLαn (z)L

α
m(z)e

−zdz = 0 . (57)

f m ̸= n. In the following we will need certain integrals involving
aguerre polynomials. In particular, it was shown in [33] (see
lso [34,35]) that∫

∞

0
zµLαn (z)L

β
m(z) e

−zdz = (−1)n+mΓ (µ+ 1)

×

min{n,m}∑
k=0

(
µ− α

n − k

)(
µ− β

m − k

)(
µ+ k

k

)
. (58)

utting m = n and β = α we have

∞

0
zµ

(
Lαn (z)

)2 e−zdz = Γ (µ+ 1)
n∑

k=0

(
µ− α

n − k

)
2
(
µ+ k

k

)
. (59)

ixing in this equation µ = α we obtain the normalization for
he Laguerre polynomials, which reads∫

∞

zα
(
Lαn (z)

)2 e−zdz =
Γ (n + b + 1)

, (60)

0 n!
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n

a

Fig. 9. Plots of the N = 3 probability density of finding the particle at a distance r from the origin, 4πr2ρλn,0(r), for different values of λ and different states with
= 0, 1, 2, 3. Top left: n = 0. Top right: n = 1. Bottom left: n = 2. Bottom right: n = 3.
Fig. 10. Entropies S3,n,0,0,λρ for the states with n = 0, . . . , 9 and different values
of λ.

for all n ∈ N. Moreover, we will be interested in the special cases
when µ = α + 1:∫

∞

0
zα+1 (

Lαn (z)
)2 e−zdz =

Γ (n + α + 1)
n!

(2n + α + 1) , (61)

nd µ = α + 2:

∫
∞

0
zα+2 (

Lαn (z)
)2 e−zdz =

Γ (n + α + 1)
n!

(6n2
+6n+6nα+3α+α2

+2) .

(62)
10
4.2. Shannon entropy in arbitrary dimension

With all the previous results at hand, the Shannon informa-
tion entropy for the N-dimensional Darboux III oscillator can be
computed. The factorization of the wave function in its radial and
angular parts leads to

SN,n,l,µ,λρ = −

∫
RN
ρλn,l,µ(r) log

(
ρλn,l,µ(r)

)
dr =

−

∫
RN

(
Rλn,l(r)

)2
|Yl,µ(θ)|2 log

( (
Rλn,l(r)

)2 )
dr

−

∫
RN

(
Rλn,l(r)

)2
|Yl,µ(θ)|2 log

(
|Yl,µ(θ)|2

)
dr

= −

∫
∞

0

(
rRλn,l(r)

)2 log ( (
Rλn,l(r)

)2 )
dr

∫
SN−1

|Yl,µ(θ)|2dΩN

−

∫
∞

0

(
rRλn,l(r)

)2 dr ∫
SN−1

|Yl,µ(θ)|2 log
(

|Yl,µ(θ)|2
)

dΩN

= −

∫
∞

0

(
rRλn,l(r)

)2 log ( (
Rλn,l(r)

)2 )
dr − JY ,

(63)

where

JY :=

∫
SN−1

|Yl,µ(θ)|2 log
(

|Yl,µ(θ)|2
)

dΩN . (64)

Using the integrals (60), (61) and (62), the integral involving the
radial part of the wave function can be expressed completely in
terms of integrals involving Laguerre polynomials. In this way, the
Shannon entropy on position space of an arbitrary quantum state
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Fig. 11. Plots of the N = 3 probability density 4πp2γ λn,0(r) of finding the particle with a radial momentum p, for different values of λ and different states with
n = 0, 1, 2, 3 and l = 0. Top left: n = 0. Top right: n = 1. Bottom left: n = 2. Bottom right: n = 3.
J

J

w

of the N-dimensional Darboux III oscillator is given by

SN,n,l,µ,λρ = −
N
2

logΩλ
n,l − log

(
2n!

Γ (n + l + N
2 )

)
+ log

(
1+

(
2n + l +

N
2

)
λ

Ωλ
n,l

)
−

n!
Γ (n + l + N

2 )
1

1 +
(
2n + l + N

2

)
λ

Ωλn,l

×

(
J1 +

λ

Ωλ
n,l

J̃1 + J2 +
λ

Ωλ
n,l

J̃2 + J

λ

Ωλn,l
3 +

λ

Ωλ
n,l

J̃

λ

Ωλn,l
3

)
+

1
1 +

(
2n + l + N

2

)
λ

Ωλn,l

( (
2n + l +

N
2

)
+

λ

Ωλ
n,l

(
6 n2

+ 6 l n + 3 nN + l + l2 + l N +
N
2

+
N2

4

) )
−JY ,

(65)
where

J1 =

∫
+∞

0
z l+

N
2 −1e−z

(
L
l+ N

2 −1
n (z)

)
2 log(z l) dz , (66)

J̃1 =

∫
+∞

0
z l+

N
2 e−z

(
L
l+ N

2 −1
n (z)

)
2 log(z l) dz , (67)

J2 =

∫
+∞

0
z l+

N
2 −1e−z

(
L
l+ N

2 −1
n (z)

)2

log
( (

L
l+ N

2 −1
n (z)

)2 )
dz ,

(68)
11
J̃2 =

∫
+∞

0
z l+

N
2 e−z

(
L
l+ N

2 −1
n (z)

)
2 log

((
L
l+ N

2 −1
n (z)

)
2

)
dz ,

(69)

α
3 =

∫
+∞

0
z l+

N
2 −1e−z

(
L
l+ N

2 −1
n (z)

)
2 log

(
1 + α z

)
dz , (70)

˜α
3 =

∫
+∞

0
z l+

N
2 e−z

(
L
l+ N

2 −1
n (z)

)
2 log

(
1 + α z

)
dz . (71)

The well-known Shannon entropy for the harmonic oscillator
is recovered in the limit λ → 0,

SN,n,l,µ,0ρ := lim
λ→0

SN,n,l,µ,λρ , (72)

thus obtaining

SN,n,l,µ,0ρ = −
N
2

logω − log
(

2n!
Γ (n + l + N

2 )

)
−

n!
Γ (n + l + N

2 )
(J1 + J2) + 2 n + l +

N
2
, (73)

hich is exactly the same expression given in [12] since J1 and J2
are independent of the curvature λ.

4.3. The three-dimensional case

Since the angular part of the wave functions defining the
Darboux III eigenstates is the same as in the harmonic oscillator,
the integral JY involving the spherical harmonics is also exactly
the same. For the particular case N = 3, it turns out that J can
Y
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Table 6
Entropies S3,n,0,0,λρ for the states with n = 0, . . . , 9 and different values of λ. (Data plotted in Fig. 10.)

λ n

0 1 2 3 4 5 6 7 8 9

0.00 3.217 4.151 4.709 5.109 5.421 5.676 5.893 6.082 6.248 6.397
0.01 3.255 4.235 4.839 5.284 5.639 5.938 6.198 6.428 6.636 6.826
0.02 3.292 4.319 4.967 5.454 5.850 6.188 6.485 6.750 6.992 7.214
0.03 3.329 4.402 5.093 5.619 6.051 6.422 6.749 7.043 7.309 7.553
0.04 3.366 4.484 5.215 5.777 6.241 6.639 6.990 7.303 7.587 7.845
Table 7
Entropies S3,n,0,0,λγ for the states with n = 0, . . . , 9 and different values of λ. (Data plotted in Fig. 12.)

λ n

0 1 2 3 4 5 6 7 8 9

0.00 3.217 4.151 4.709 5.109 5.421 5.676 5.893 6.082 6.248 6.397
0.01 3.180 4.066 4.577 4.931 5.198 5.408 5.580 5.724 5.846 5.950
0.02 3.142 3.980 4.445 4.753 4.974 5.140 5.268 5.369 5.449 5.514
0.03 3.105 3.895 4.313 4.576 4.753 4.878 4.967 5.031 5.077 5.111
0.04 3.068 3.810 4.182 4.401 4.538 4.626 4.683 4.718 4.740 4.752
w

w

K

I

Fig. 12. Entropies S3,n,0,0,λγ for the states with n = 0, . . . , 9 and different values
of λ.

be expressed in terms of the Gegenbauer polynomials, as it was
shown in [12]. For the sake of completeness we reproduce this
explicit result here and for N = 3 we have that

JY = log
(
(2l + 1)(l − m)!

4π (l + m)!

)
+ log

(
(2l + 1)(l − m)!

(
(2 m)!

)2
22m+1(l + m)!(m!)2

)
× (JY ,1 + JY ,2) + 2 log

(
(2 m)!
m!2m

)
,

(74)

here

Y ,1 =

∫ 1

−1

(
C
m+

1
2

l−m (z)
)

2(1 − z2)m log(1 − z2)mdz, (75)

and

JY ,2 =

∫ 1

−1

(
C
m+

1
2

l−m (z)
)

2(1 − z2)m log
(

C
m+

1
2

l−m (z)
)

2dz. (76)

for m ≥ 0. If m < 0 the previous formulas are still valid
substituting m by −m.

For this three-dimensional case, Fig. 10 contains the plots of
the entropies SN,n,l,µ,λρ for the ground and some low excited states
of the Darboux III oscillator with vanishing l and m quantum
 U

12
numbers (see Table 6 for the numerical data). As a general pat-
tern, the entropy increases with λ for fixed n. On the other hand,
and similarly to what happens in the non-deformed harmonic
oscillator with λ = 0, it can be numerically checked that for fixed
λ and n the entropy in position space grows with l, and for a given
λ and l the entropy increases with n. Therefore, the curvature
increases the spreading of the wave function in position space,
without altering the qualitative effects due to n and l which are
already present in the flat three-dimensional harmonic oscillator
states.

4.4. Shannon entropy in momentum space for N = 3

Similarly to what happens in the one-dimensional case, the
non-constant curvature of the Darboux III space prevents ana-
lytical expressions for the entropies in momentum space. Nev-
ertheless, the radial symmetry of the system makes it possible to
perform a numerical analysis of the behaviour of said entropies
(see [9] for a similar approach applied to spherical quantum dots).
In particular, in order to compute for N = 3 the Fourier transform
of (48), namely

ψ̃λ
n,l,m(p) = F

{
ψλ

n,l,m(r)
}
(p) =

(
1
2π

)3/2 ∫
R3

eip·rψλ
n,l,m(r) dr,

(77)

we use the well known [31] spherical expansion of plane waves
given by

eip·r
= 4π

∑
l′

il
′

jl′ (p r)
∑
m′

Yl′m′ (θp)Y ∗

l′m′ (θr ), (78)

here jl(z) stands for the spherical Bessel function, which is
related to ordinary Bessel function by jl(z) :=

√
π
2 z

−1/2Jl+ 1
2
(z).

Moreover, in the previous expression (78) we have introduced
the notation θr and θp to denote the angular variables in position
and momentum space, respectively. Introducing (78) into (77) we
obtain a similar expression to (48) in momentum space

ψ̃λ
n,l,m(p) = ilKλn,l(p)Ylm(θp), (79)

here

λ
n,l(p) :=

√
2
π

∫
jl(p r)Rλn,l(r)r

2dr. (80)

n the particular case N = 3, the function Rλn,l(r) is given by (49).
sing this factorization of the wavefunction in momentum space,
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Fig. 13. Entropies S3,n,0,0,λtotal for the states with n = 0, 1, . . . , 9 and different values of the curvature λ. The two boxes below are enlarged fragments of the plot where
he variation of the entropy in terms of λ can be more easily appreciated.
Table 8
Entropies S3,n,0,0,λtotal for the states with n = 0, 1, . . . , 9 and different values of the curvature λ. (Data plotted in Fig. 13.)

λ n

0 1 2 3 4 5 6 7 8 9

0.00 6.434 8.301 9.418 10.218 10.841 11.353 11.786 12.163 12.496 12.794
0.01 6.434 8.301 9.417 10.215 10.837 11.346 11.778 12.151 12.481 12.776
0.02 6.434 8.300 9.413 10.207 10.824 11.328 11.753 12.119 12.441 12.728
0.03 6.434 8.297 9.406 10.195 10.804 11.300 11.716 12.073 12.386 12.664
0.04 6.434 8.294 9.397 10.178 10.779 11.265 11.672 12.021 12.326 12.598
all of our previous results (namely (63) and below) could be
easily applied if Kλn,l(p) would admit an analytical expression
ut, similarly to the one-dimensional situation, this is not the
ase. Nevertheless, it is possible to perform all the numerical
omputations needed in order to obtain the radial probability
ensity in momentum space given by

λ
n,l(p) =

(
Kλn,l(p)

)2
. (81)

n fact, Fig. 11 shows the function 4πr2γ λn,l(p) for the n = 0, 1, 2, 3
states and by taking l = 0, where the influence of the curvature in
the compression of the radial probability density in momentum
space is clearly appreciated (note that, again, this effect is much
less significative for the ground state).

In this manner, any of the entropies S3,n,l,m,λγ could be com-
puted numerically. In particular, Fig. 12 (with data shown in
Table 7) plots the entropies in momentum space for the states
13
n = 0, . . . , 9 with l = m = 0 and different values of λ. As it can
be easily seen by comparing this plot with Fig. 6, the trend of the
dependence of Sγ for N = 3 in terms of the curvature parameter λ
is exactly the same as in the one-dimensional system: for a given
λ the entropy Sγ grows with n and for a fixed n it decreases with
λ.

Finally, in Fig. 13 (data in Table 8) the total entropies for the
very same three-dimensional Darboux III states are presented.
We stress that their qualitative behaviour coincides with the
one-dimensional system plotted in Fig. 7. We remark that, as
it happened in Fig. 7, for the chosen values of λ and for the
numerical precision in Table 8, in the ground state n = 0 all
the total entropies seem to coincide. However, it can be checked
numerically that this is no longer the case for larger values of
λ and, once again, only in the ground state the total entropy
grows with λwhile for any excited state it becomes smaller as the
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urvature parameter grows. Therefore, for the three-dimensional
ystem we obtain an analogue of Fig. 8.

. Concluding remarks

In this paper we have computed the Shannon information en-
ropy Sρ for the position representation of an arbitrary eigenstate
of a N-dimensional nonlinear quantum oscillator defined on a
pace whose negative non-constant curvature is governed by a
on-negative parameter λ, and we have expressed Sρ completely
n terms of integrals involving orthogonal polynomials. Our re-
ults indeed reproduce the known ones for the N-dimensional
armonic oscillator when the curvature of the space vanishes, i.e.
n the λ → 0 limit. The computation on position space has been
performed analytically in arbitrary dimension (see (42) for the
one-dimensional case and (65) for dimension N > 1). Moreover,
omputations of the Shannon entropy in momentum space were
erformed numerically in the one and three-dimensional cases,
ince the modification induced by the curvature in the wave func-
ions of the Darboux III oscillator makes it impossible to obtain
n analytical expression for the Fourier transformed eigenstates.
We have found that in the N-dimensional case the effect of a

arger absolute value of the negative curvature (through a bigger
) is to increase the entropy in position space. The effect on
avefunctions defined on momentum space is found to be the
pposite one, and for all excited states with quantum number n ≥

1 the decrement of the entropy in momentum space outweighs
the increment on position space. Therefore, this work can be
thought of as a first step in the study of the interplay between
curvature in quantum mechanical systems and their information
theoretic properties.

Within this perspective, it is worth stressing that the Darboux
III oscillator is an exactly solvable nonlinear quantum model that
presents two remarkably interesting features: firstly, is analyt-
ically solvable in any dimension and, secondly, it includes an
additional parameter λ, which carries a geometrical interpreta-
tion and whose smooth λ → 0 limit leads to the well-known
results for the harmonic oscillator. Moreover, the exact solvability
of the Darboux III quantum oscillator is a structural property
of this nonlinear oscillator which holds for any value of λ. This
means that all the information-theoretic problems that have been
previously studied in the literature for the usual N-dimensional
oscillator can be also faced for the Darboux III oscillator here
presented, and the role of the curvature within them can be
always analysed through the parameter λ.

Among these problems, we can quote the analysis of the
N-dimensional Darboux III oscillator in terms of cartesian coor-
dinates [6] (instead of the hyperspherical ones here used), the
computation of its Renyi and Tsallis information entropies as well
as its radial expectation values [36–38], the study of the Rydberg
states obtained for large values of the quantum number n [11,13,
4,16,37] and also the properties of the large N limit [16,39,40]
f the new nonlinear oscillator model here presented. Finally, the
uestion concerning the possibility of the analytical description
f information-theoretic properties for N-dimensional hydrogenic
ystems on curved spaces raises in a natural way. The answer is
ffirmative, since in [21,41] an exactly solvable (and also maxi-
ally superintegrable) deformation of the Coulomb problem on
space with non-constant curvature was presented. The cor-

esponding Hamiltonian is given by the sum of the kinetic en-
rgy corresponding to a N-dimensional radially symmetric space

which is related to the well-known Taub-NUT space (see [41] and
references therein), together with a smooth deformation of the
Coulomb potential in terms of a real parameter η. In a similar
manner as in the Darboux III case, the Schrödinger equation can
be analytically solved in N-dimensions [41], and therefore the
14
information-theoretic approach to this N-dimensional hydrogenic
system on a curved space is also feasible. This system would
provide a second relevant example in which the role of the
curvature could be again confronted with previous results in the
literature for usual hydrogenic systems in N dimensions, which
are of course interesting from many different viewpoints (see,
for instance [10,12,40] and references therein). Work on all these
lines is in progress and will be presented elsewhere.
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