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Abstract: In the last few years, much attention has been paid to the exotic properties that graphene
nanostructures exhibit, especially those emerging upon deforming the material. Here we present
a study of the mechanical and electronic properties of bent hexagonal graphene quantum dots
employing density functional theory. We explore three different kinds of surfaces with Gaussian
curvature exhibiting different shapes—spherical, cylindrical, and one-sheet hyperboloid—used to
bend the material, and several boundary conditions regarding what atoms are forced to lay on
the chosen surface. In each case, we study the curvature energy and two quantum regeneration
times (classic and revival) for different values of the curvature radius. A strong correlation between
Gaussian curvature and these regeneration times is found, and a special divergence is observed for
the revival time for the hyperboloid case, probably related to the pseudo-magnetic field generated by
this curvature being capable of causing a phase transition.

Keywords: graphene; Gaussian curvature; quantum revival; DFT; pseudo-magnetic field; phase
transition

1. Introduction

While early stages of graphene research were centered on its theoretical aspects [1–4],
after the successful isolation of a single sheet of graphitic material by Geim and Novoselov
in 2004 [5], there has been a long trend of advancements populated with experimen-
tal confirmation of predicted properties, the discovery of new and exotic phenomena,
and improvements to the synthesis methods for this material. The ever-growing list
of potential applications of graphene spreads across many fields due to its outstanding
properties and exotic behaviors, such as engineering [6–8], medicine [9–12], sensor fab-
rication [13–16], catalysis [17–20], energy storage and management [21–23], and flexible
and high-performance electronic devices [24–29]. Graphene nanostructures have had even
greater potential since the discovery of superconductivity in bilayer graphene [30–32].

Quantum revival—the periodic regeneration of the initial state of a time-dependent
quantum system—on the other hand, is still a subject mainly studied from a theoretical
point of view, though its experimental realization is possible and opens up interesting
research directions for information transmission and the fabrication of quantum devices.
For instance, quantum revivals can be used to measure fidelity in quantum information
technology, and this measurement is crucial in order to understand the effects of deco-
herence, dissipation, and imperfections in quantum information devices [33]. In addition,
revivals have been proposed as a method for transporting information with high efficiency
or generating entanglement [34]. On a wider view, the temporal evolution of a system
has been quite useful for real-time screening of high-speed phenomena, such as chemical
reactions [35–38].

Thus, we aim to study how different factors, such as shape and Gaussian curvature,
change the behavior of a graphene-based system through the simulation of its quantum
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revivals. This is especially relevant, since graphene, which is commonly conceived as
a perfectly flat and pristine sheet of carbon atoms, has naturally a far more complex
structure, with ripples, wrinkles, and many other deviations from its ideal flatness [39–45],
corroborating theoretical predictions done many years before its isolation [46–48]. While the
true origins of these deviations from flatness are still up for debate, their influences on the
material properties, such as charge transport, allow for fine-tuning of its behavior [49–52].

Other carbon nanostructures can be classified based on their Gaussian curvature:
carbon nanotubes [53–56] and nanocones [57–61]—and ideal graphene—have null Gaussian
curvature, as the material stays flat in at least one of its principal directions. Others, such as
fullerenes, form closed structures having positive curvatures. The case of negative Gaussian
curvature has been more elusive, but it has been found in schwarzites [62,63] as open or
even periodic structures in which each point resembles a saddle.

In fact, there have been recent advancements on the synthesis and design of carbon
nanostructures and polycyclic aromatic systems with tunable curvature—via incorporation
of pentagons or heptagons [64–66]—or even modeling of hybrid systems between flat
and curved structures [67], with important applications for batteries development and
engineering. Negatively curved graphene has also been used as an analog for gravita-
tional systems [68,69], allowing direct observation of exotic behaviors in a much more
approachable fashion.

We recently presented results on spherically deformed graphene quantum dots [70].
Those nanostructures have positive Gaussian curvature. We expand our study in this
article to negative and null Gaussian curvatures, presenting a comparative study of cur-
vature effects in energy and electronic structure obtained using density functional theory,
on graphene quantum dots with various Gaussian curvature values.

2. Materials and Methods

From the many possibilities available for the theoretical study of graphene, each of
them with its own advantages, reliability, and range of application, we chose the procedure
described in our previous work [70] and used density functional theory (DFT) [71–73] as
the main tool for simulating the properties of graphene quantum dots through use of the the
Gaussian 16 [74] package. For the exchange-correlation functional, local density approxima-
tion (LDA) [75,76] was used, in virtue of its better performance for graphitic systems and
higher calculation speed compared with general gradient approximations (GGAs) or hybrid
functionals such as B3LYP [77–81], and because it has been successfully used to analyze
interactions in carbon nanostructures [82–87]. The basis set was 6-31G** [88], with d-type
and p-type functions as polarization aids for a better description of the chemical bond.

We studied a hexagonal graphene quantum dot with 10 carbon atoms on each edge
and hydrogen passivated resulting in a C600H60 molecular formula (see Figure 1). All edges
were of the zig-zag type to avoid the appearance of other phenomena, such as asymmetric or
unbalanced magnetic states [89,90] or significant repulsive interactions between passivating
atoms. This system, with a distance between vertices of 46.4 Å, allowed us to achieve a
compromise between the experimental size of graphene natural corrugation [39,41] and
computational cost.

The focus of this paper is on the effects of different Gaussian curvature values (null,
positive and negative) for the material, and for that we employed a family of surfaces
for bending the dot. All these surfaces have a common expression that can be written in
Cartesian coordinates as:

z =
√

R2 − ax2 − by2 . (1)

From Equation (1), different kinds of Gaussian curvature can be obtained: (i) positive,
for the sphere (a = b = 1); (ii) zero, for the cylinder (either a or b being 1, the other being 0);
and (iii) negative, for the one-sheet hyperboloid—referred to simply as hyperboloid from
now on (either a or b being 1, the other being −1). Although the two possible cylinders are
equivalent for a square dot, we simulated both as separate surfaces, as the hexagonal dot’s
final geometry is different; we call them cylinders x and y regarding which component has
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a non-zero coefficient. For the hyperboloid, however, exchanging these coefficient values
only provides a flipped (and thus equivalent) structure, so only one case was considered.
These surfaces can be seen in Figure 2.

Figure 1. Hexagonal, flat graphene quantum dot used as a starting point for deformation. Image
generated with Gaussview 6 [91].

(a) z =
√

R2 − x2 − y2 (b) z =
√

R2 + x2 − y2

(c) z =
√

R2 − x2 (d) z =
√

R2 − y2

Figure 2. The four different geometries considered in this study for the graphene dot with R = 50 Å
and their respective equations: (a) sphere; (b) one-sheet hyperboloid; (c) x-cylinder; (d); y-cylinder.
Images generated with GaussView 6 [91].

The boundary conditions of the dot were a second factor in this study because they are
important for the experimental realization of these systems. The ideal case, where all atoms
are confined to the initial surface, would be impractical to reproduce at this scale; therefore,
we consider two additional possibilities more feasible for an experimental setup. We used
three cases for each surface regarding what atoms were restrained: (i) all 600 carbon atoms
must remain on the surface; (ii) only the 60 edge carbon atoms are fixed; (iii) only the
12 vertex carbon atoms are fixed. Figure 3 shows these possibilities for the spherical case
with R = 40 Å. This set of decreasing restrictions allows the curved dot to relax further in
an attempt to recover far from the edges its initial and optimal flat shape.
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(a) (b) (c)

Figure 3. Boundary conditions’ effects on the optimized geometries of an initially spherical quantum
dot with R = 40 Å. Images generated with Gaussview 6 [91]. (a) Fixed surface; (b) fixed edges;
(c) fixed vertices.

3. Results and Discussion

In this study, we have focused on the analysis of curvature energy and quantum
regeneration times for our hexagonal dot as it is deformed according to the different
surfaces described and considering each set of boundary conditions. The parameter 1/R2

is used in all graphics as a measure of the curvature of the dot. While this is only true
for the perfectly spherical case (having the Gaussian curvature as zero for the cylinder,
and negative, non-constant for the hyperboloid), we use it for comparative purposes for
quantification of the deformation.

3.1. Curvature Energy

Curvature energy, calculated as the difference between the energy of a given dot and
that of the flat one, has been calculated for all available cases and plotted against the 1/R2

parameter. This enables a quick inspection of the stability of the system from a mechanical
point of view, allowing us to check what surfaces and boundary conditions lead to more
stable systems.

In order to analyze the effects of the two factors considered in this study, we first
consider the type of surface used, plotting the curvature energies for all the ideal geometries
(that is, with all carbon atoms lying on the surface) in Figure 4. As expected, curvature
energy for all surfaces increases as curvature does; higher values exist for hyperboloidal
and spherical surfaces than for cylindrical ones, which give nearly identical results (proving
the near equivalence of the two cylindrical structures from a mechanical point of view).
These results are consistent with the fact that for spherical and hyperboloidal surfaces,
the deformation is applied along two spatial axes instead of only one, as in the cylinder.
The slightly higher instability for the hyperboloid case is derived from the inherent general
stretching of the structure that forces a larger deviation from the sp2 hybridization of planar
graphene than in the spherical case.

Figure 4. Curvature energy vs. 1/R2 for all four ideal geometries—all atoms forced to lay on the
surface—with the flat dot taken as energy origin. Both cylindrical cases give almost identical energies.
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The effects of the boundary conditions applied to each dot are plotted in Figure 5 for
each surface so that relative changes in the general behavior can be easily observed. For all
four surfaces considered, the cases where only the vertices were fixed are the most stable
ones, as expected, while the ideal geometries represent a nearly optimal structure only
for small curvature values. In the hyperboloid case, the deviation from the ideal surface
starts from very small curvatures, and the energy gain when relaxing boundary conditions
is bigger. Nevertheless, it was not possible to get results for high values of 1/R2. This is
probably due to the fact that a big deviation from the planar case with opposite signs in
different directions leads to the breaking of the nanostructure. A dynamical (for instance,
molecular dynamics) calculation would be necessary to confirm this hypothesis.

Figure 5. Curvature energy vs. 1/R2 plots for all geometries, with the flat dot taken as energy origin.

While the fixed-surface cylindrical plots are essentially straight lines, as the least-
squares linear fits plotted in Figure 5 prove—showing the linear dependence on 1/R2

characteristic of the continuum model applied to a nanotube [92]—the spherical and
hyperboloidal ones are not. In our previous work [70], it was shown how this discrepancy
with the continuum model could be connected in the spherical case to the small position
changes derived from the use of quantum mechanics in the optimization instead of a
classical force field. However, these new results prove that the continuum model is indeed
valid for the cylindrical cases—that are curved surfaces—even when quantum mechanics is
used to determine geometries, suggesting there are other important contributions besides
the theory used for geometry optimization. It seems that structures with non-zero Gaussian
curvature suffer additional strain that the continuum model cannot take into account.

Since the continuum model is valid for the cylindrical case, it is possible to calculate
the bending modulus of this graphene quantum dot by making use of the least-squares fits
depicted in the lower two panels of Figure 5. The bending energy of a nanotube of radius R
can be written as [93,94]:

E =
Cb

2R2 , (2)

with Cb being the bending modulus (also known as flexural rigidity). Our graphene
quantum dot is not a carbon nanotube, but, taking into account that all atoms on its borders
are passivated, there are no dangling bonds, and the nanostructure can be considered as a
piece of the wall of a nanotube. Looking at Equation (2), Cb is just twice the slope of the
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linear fit. For the x-cylinder, this calculation leads to Cb = 4.00 eV Å2 per C atom, and
for the y-cylinder, it yields Cb = 3.99 eV Å2. Both results are nearly identical, in spite of
the fact that the x-cylinder could be considered as a piece of a zig-zag nanotube, while
the y-cylinder would correspond to a piece of an armchair tube. The bending modulus of
carbon nanotubes being independent of the bending direction is a well-known fact [95] and
a consequence of the hexagonal symmetry of the graphene lattice that makes this material
isotropic in the linear elastic regime [96]. Our results are in excellent agreement with
those obtained for the bending modulus per C atom by Kürti et al. (3.9± 0.1 eV Å2) [97],
Sánchez-Portal et al. (4.00 eV Å2 for armchair tubes) [98] and Kudin et al. (3.9 eV Å2) [93].

An additional piece of information we can extract from the plots corresponding to
both cylindrical cases in Figure 5 is about the accuracy of our calculations. For very low
values of 1/R2 (below 10−4 Å−2), there are some jumps when atoms are allowed to relax
outside the ideal cylindrical surface. Sometimes there is a gain in energy, but other times
there is no gain, showing that the geometry had not fully relaxed because the code had
not detected the additional stabilization due to breaking the exact cylindrical shape. These
jumps are about 2 milliHartree, and this value can be taken as an estimation of the accuracy
of the method.

3.2. Regeneration Times

The study of quantum revival phenomena was carried out using the eigenvalue spectra
obtained for each dot, performing an analysis of the electronic properties of our system by
means of a homemade code built within the Mathematica environment [99]. In order to
calculate these revival phenomena, we define, following Robinett [100], the initial state of a
time-independent wavepacket as a linear combination of eigenstates |un〉 with weights an:

|Ψ(0)〉 =
∞

∑
n=0

an |un〉 , (3)

with its temporal evolution having the following expression:

|Ψ(t)〉 =
∞

∑
n=0

an |un〉 e−
i
h̄ Ent , (4)

where En is the the eigenenergy of |un〉.
Since we are using the energy spectrum calculated with DFT to build the wavepacket,

we can take one single level as a central point and perform a Taylor expansion around it to
get an analytical expression for the spectrum:

En = En0 + E
′
n0
(n− n0) +

1
2!

E
′′
n0
(n− n0)

2 +
1
3!

E
′′′
n0
(n− n0)

3 + . . . . (5)

After substituting this expansion into Equation (4), the final temporal evolution shows
several terms inside the exponential, each of them corresponding to one time scale and
giving rise to different regeneration times (classical, TCl; revival, TRe; superrevival, TSup;
. . . ):

|Ψ(t)〉 =
∞

∑
n=0

an |un〉 e−
i
h̄

[
En0+E

′
n0
(n−n0)+

1
2! E
′′
n0
(n−n0)

2+ 1
3! E
′′′
n0
(n−n0)

3+...
]
t , (6)

TCl =
2πh̄
|E′n0
|

, (7)

TRe =
2πh̄
|E′′n0
|/2!

, (8)

TSup =
2πh̄
|E′′′n0
|/3!

. (9)
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As for the wavepacket itself, the coefficients an will follow a Gaussian distribution,

an =
1

σ
√

π
e
−(n−n0)

2

2σ2 (10)

centered around the fifth unoccupied orbital (LUMO+4), thereby having a value n0 = 5,
and a width σ = 0.7, ensuring a small collection of five states with a significant contribution
(an > 0.001).

Temporal evolution was studied by means of the squared modulus of the autocorrela-
tion function, |A(t)|2, defined as the overlap of the the wavepacket after an arbitrary time t
and its initial state:

|A(t)|2 = | 〈Ψ(0)|Ψ(t)〉 |2 . (11)

Figure 6 shows the plot corresponding to a typical example in which the oscillatory patterns
of |A(t)|2 are evident. The periodicities at different time scales correspond to different
regeneration times, with classic time TCl being the high-frequency one, and revival time TRe
the low-frequency one. While revival times of higher order (such as TSup) are theoretically
possible, none beyond TRe could be observed in any case due to the interference among
different regeneration times.

Figure 6. View of |A(t)|2 as a function of t for a spherical dot with R = 100 Å. Analytical values of
both regeneration times are shown with dotted lines (orange for classical time, yellow for revival time).

Obtaining the values of these two regeneration times is an easy task: TCl corresponds
to the first maximum of |A(t)|2, and TRe comes from the first maximum of the enveloping
curve, which can be calculated using the local maxima of |A(t)|2. There can be some
difficulties in their determination, however, if TRe is not much larger than TCl. In this
case, interference between those times can occur, making the visual observation of both,
especially TCl, harder. For this reason, the analytical expressions of both times, derived
from the Taylor expansion described, have been used as an alternative method and aid in
its determination. We have, then, analytical (from Taylor expansion) and numerical (from
temporal evolution) values for each time. A parabolic curve, fitted to the three central
levels of the wavepacket, has been used as the fitting function for the eigenvalue spectrum
in order to calculate derivatives.

In a similar fashion to the energy analysis, the results of this section are presented in
two steps: first a study of the effects of the kind of surface, and second, an individual view
of each of them upon relaxing boundary conditions.
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3.2.1. Classical Time

The plots for TCl against 1/R2 for all four surfaces considered and all carbon atoms on
the dots confined to them are depicted in Figure 7, showing the numerical values as points
and the analytical ones as dotted lines just for clarity. For the cylindrical cases, not only do
both surfaces give almost identical values—in a similar fashion to what happened with the
curvature energy—but TCl also remains nearly constant for the whole range of R studied.
In contrast, the spherical and hyperboloidal cases exhibit opposite behaviors: TCl increases
with curvature in the former and decreases in the latter. Considering the inverse relation
between TCl and the first derivative of the spectrum, these results reflect that energy levels
get closer as the curvature of the sphere increases, get sparser for the hyperboloid and re-
main almost unchanged for the cylinder. This group of opposite tendencies and constant
behavior aligns with the signs of the Gaussian curvature for the corresponding surfaces.

Figure 7. Classical time plots as functions of 1/R2 for all four ideal geometries, with numerical values
as markers and analytical ones as dotted lines. Both cylinders show near perfect coincidence.

There is a strong deviation in numerical TCl from its analytical counterpart for the
sphere at higher values of 1/R2. This is due, as we commented earlier, to the interference
between classical and revival times. As they approach each other, the enveloping curve
shifts more the position of the first maximum, distorting the numerical value of TCl. Since
the analytical approach considers only the local shape of the spectrum, this interference
cannot be taken into account, and the corresponding plot is nearly a straight line with a
slope opposite to that in the hyperboloid case.

When boundary conditions are relaxed (see Figure 8), a similar phenomenon to the
one observed for the energy can be seen. While fixed-surface quantum dots give smooth
plots with monotonic trends, the changes in the optimal geometry for the other two sets of
conditions introduce breaking points into the values of TCl, resulting in fragmented plots
in which the overall trend is otherwise conserved.

Again, the plots corresponding to both cylindrical cases in Figure 8 can be used to
estimate the accuracy of our calculations. The jumps for values of 1/R2 below 10−4 Å−2 can
be taken as an indication of the accuracy of the classical regeneration times we calculated:
around 1 fs.
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Figure 8. Classical time as a function of 1/R2 for different boundary conditions within each geometry,
with numerical values as points and analytical ones as dotted lines.

3.2.2. Revival Time

A comparison of TRe for the different kinds of ideal surfaces considered can be seen in
Figure 9. While revival time shows again a nearly constant value for the two cylindrical
cases, it decreases nonlinearly for the spherical geometry, and exhibits clearly divergent
behavior in the hyperboloidal case for 1/R2 ' 10−4 Å−2. Again, this contrast of trends has
a one-to-one correspondence with the sign of the Gaussian curvature of each surface.

Figure 9. Revival time as a function of 1/R2 for all four ideal geometries, with numerical values as
points and analytical ones as dotted lines.

TRe being inversely proportional to the second derivative of the spectrum gives infor-
mation about its linearity and relative separation between consecutive levels. The diver-
gence observed in the hyperboloid suggests an ideally infinite value of TRe, due to a null
second derivative caused by the levels being equally spaced in energy for a special value
of R.
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In our previous work, we suggested this kind of behavior could be connected to the
generation of pseudo-magnetic fields on the material, as had been found for flat systems
with electric fields applied, possibly as a sign of a phase transition [101–103]. These pseudo-
magnetic fields have been measured in graphene upon applying a periodic, negative
curvature [104,105], allowing us to link both findings with our results and hypothesize
that negative Gaussian curvature creates pseudo-magnetic fields on the material that could
cause a phase transition, observable through a divergence in the quantum revival time.
Further tests with other negative curvature surfaces are needed to confirm this hypothesis.

The divergence found for the hyperboloid case looks similar to the divergence found
in our previous work [70] for the fixed-surface spherical case with atom displacement from
the configuration corresponding to the quantum-mechanical energy minimum, but it has
nothing to do with it. There, the divergence was an effect of using a non-self-consistent
calculation but a perturbative one. Here, it is the result of a fully self-consistent procedure.
Therefore, while the possible phase transition was then an effect of a small distortion of the
equilibrium geometry, it is now just a bending consequence present in the true minimum
energy configuration.

The effects of the boundary conditions on TRe are presented in Figure 10. In the
spherical case, relaxing these conditions leads to a progressive change from the monotonic
decrease with the appearance first of a shoulder (for the fixed-edges case) and then of a
local minimum (for the fixed-vertices case).

Once again, the plots corresponding to both cylindrical cases in Figure 10 can be used
to make an accuracy estimation. The jumps for very low values of 1/R2 (below 10−4 Å−2)
are an indication of the accuracy of our revival times: around 0.05 ps. It is therefore not
clear if the change in tendency for large values of 1/R2 (i.e., high bendings) from slightly
increasing to slightly decreasing in the two cylindrical cases is real or not.

Finally, in the hyperboloid case, relaxing the boundary conditions does not affect the
global behavior of the calculated revival times. The divergence seems to be a robust feature,
making it a good candidate for experimental confirmation.

Figure 10. Revival time as a function of 1/R2 for different boundary conditions within each geometry,
with the numerical values as markers and the analytical ones as dotted lines.
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4. Conclusions

In a recent work [70], we presented results for mechanical and electronic properties of
spherically-deformed graphene quantum dots. Spheres have positive Gaussian curvature.
In order to better understand curvature effects on these dots, we expanded our study
to hyperboloidal shapes (negative Gaussian curvature) and cylindrical structures (zero
Gaussian curvature).

We studied both mechanical (equilibrium configurations and curvature energies) and
electronic (quantum regeneration times) properties of curved graphene quantum dots.
The results obtained for mechanical properties agree with expected behaviors (curvature
energy grows with the deformation of the dot; hyperboloidal deformations are energetically
less favorable than cylindrical ones, and these are, in turn, less stable than cylindrical shapes;
and within each kind of deformation, lifting constraints translates into lower energies, as
the dot is capable of getting closer to a flat structure). In the cylindrical case, the bending
modulus was calculated, and in spite of being non-closed systems, the result agrees with
that for carbon nanotubes. This shows that a finite cylindrical graphene dot’s mechanical
response to bending is the same as that of infinite carbon nanotubes walls.

Regarding regeneration times, several trends were obtained that link them to Gaussian
curvature. When all atoms are forced to lie on the surface, classical times increase with
1/R2 for spherical shapes (positive curvature), decrease with 1/R2 for hyperboloidal flakes
(negative curvature) and remain nearly constant for cylindrical surfaces (zero curvature).
Revival times decrease with 1/R2 for spherical shapes; increase with 1/R2 until they di-
verge and then decrease for hyperboloidal flakes; and remain nearly constant for cylindrical
surfaces. When only peripheral atoms are kept fixed, the general trends do no change,
except for the revival time, in the spherical deformation case, where a shoulder appears
when only border atoms are fixed, and it changes to a local minimum when only vertex
atoms are kept fixed.

The change by several orders of magnitude in the revival time for hyperboloidal
systems when 1/R2 ' 10−4 Å2 makes them an excellent candidate for experimental
confirmation. This kind of divergence has been previously found for graphene rings [101]
or graphene flakes in perpendicular magnetic fields [102], but never in the absence of
external fields. It has also been found for silicene in a perpendicular electric field [103], and
in this case, the reason is a topological phase transition from a topological insulator to a
band insulator. It is known that bending graphene creates a pseudo-magnetic field [106].
Therefore, the divergence in the revival time for hyperboloidal systems could be due to a
phase transition related to a pseudo-magnetic field created by negative Gaussian curvature
in the quantum dot.
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DFT Density Functional Theory
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LDA Local Density Approximation
LUMO Lower Unoccupied Molecular Orbital
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