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Preface 

This doctoral dissertation is presented as compendium of publications, and 
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Abstract 

Searching and selecting an adequate methodology for daylight modeling 

is essential in the design of energy efficient buildings that guarantee the 

visual, physical and psychological comfort of their occupants. The first step 

in determining the indoor building illuminance lies in knowing the outdoor 

illuminance. This dissertation addresses this key aspect through different 

strategies such as luminous efficacy models and the determination of the 

angular distribution of the sky's luminance. 

Daylight is strongly determined by sky conditions. The CIE/ISO standard 

provides a good general framework to represent the real conditions of the 

sky, covering the entire probable spectrum of skies, and has been used as 

a reference throughout this work. The characterization of the skies 

according to the CIE standard requires experimental measurements of the 

luminance distribution of the sky, scarcely recorded in terrestrial 

meteorological facilities. The thesis proposes, as alternatives for the 

classification of skies according to the CIE taxonomy, the use of 

meteorological indices, sky images and algorithms based on artificial 

intelligence. The structure and efficiency of the machine learning 

algorithms used, both neural networks and decision trees, have been 

optimized through feature selection procedures in the case of the use of 

meteorological indices and through image pre-processing techniques, as a 

step prior to using the classification algorithm. The thesis has also 

developed a new locally calibrated luminous efficacy model, with excellent 

results both when used for all-sky types and for clear, overcast and 

partially overcast sky conditions. 

Keywords: CIE standard sky classification, illuminance, daylight, 

meteorological indices, machine learning 
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Resumen 

La búsqueda y elección de una metodología adecuada para el modelado 

de la iluminación natural es fundamental en el diseño de edificios 

energéticamente eficientes y que garanticen el confort visual, físico y 

psicológico de sus ocupantes. El primer paso para la determinación de la 

iluminación en el interior de un edificio reside en el conocimiento de la 

iluminación exterior. La tesis doctoral aborda este aspecto fundamental a 

través de diferentes estrategias como son los modelos de eficacia luminosa 

y la determinación de la distribución angular de la luminancia del cielo. 

La iluminación natural está fuertemente determinada por las 

condiciones de cielo. El estándar CIE/ISO proporciona un buen marco 

general para representar las condiciones reales del cielo cubriendo todo el 

espectro probable de cielos, por lo que se ha seleccionado como referencia a 

lo largo de este trabajo. La caracterización de los cielos según el estándar 

CIE requiere de medidas experimentales de la distribución de luminancia 

del cielo, escasamente registradas en las instalaciones meteorológicas 

terrestres. La tesis propone como alternativas para la clasificación de cielos 

según la taxonomía CIE, la utilización de índices meteorológicos, imágenes 

del cielo y algoritmos basados en inteligencia artificial. La estructura y la 

eficacia de los algoritmos de aprendizaje automático empleados, redes 

neuronales y árboles de decisión, se han optimizado mediante 

procedimientos de selección de variables en el caso de la utilización de 

índices meteorológicos y mediante técnicas de pre-procesamiento de 

imágenes, como paso previo a la utilización del algoritmo de clasificación. 

La tesis ha desarrollado también un nuevo modelo de eficacia luminosa, 

calibrado localmente, con excelentes resultados tanto al utilizarlo para 

todos los tipos de cielo como para condiciones de cielo claro, cubierto y 

parcialmente cubierto. 

Palabras clave: iluminancia, iluminación natural, clasificación de cielos 

estándar CIE, inteligencia artificial, índices meteorológicos. 
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Chapter 1: Introduction and objectives 

1.1. Introduction 

The exploitation of as many natural energy sources as possible has 

never been so relevant as nowadays. Climate change is getting more impact 

every year on ecosystems and biodiversity. Being aware of the dimensions 

of the problem, several international entities like the European Union (EU) 

through the European Green Deal show their ambition to develop a climate 

adaptation as a new international mission [1]. Their agenda aims to protect 

living beings, the Earth planet, and its sustainability. The European 

Parliament established an action plan in which the implementation of 

renewable sources constitutes important necessary measures, as it reduces 

the greenhouse gas emissions and the Union’s energy dependency [2].  

Solar radiation (SR) is the main driver of the planetary energy balance, 

and it is essential in various areas of human activity (Figure  1). Due to the 

filtering effect of the atmosphere, the solar radiation that reaches the 

Earth's surface is composed largely for the frequencies within the infrared 

(IR) and the visible light (VIS) that constitute respectively 45% and 50% of 

the SR electromagnetic spectrum. The remaining 5% corresponds to 

ultraviolet radiation (UVR). 

 

Figure  1. Spectral distribution of the SR and main phenomena related to its 

energy. (Source: own elaboration). 
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Photosynthetically Active Radiation (PAR, 400-700 nm) is the energy 

source to trigger photosynthesis which makes possible the production of 

food and biomass through leaf photosynthesis [3], and has become central 

to determination of the impact of deforestation and climate change on 

agriculture [4]. Atmospheric downwelling longwave radiation, or near-

infrared (NIR, 780 nm-3000 nm), is an important component of the 

terrestrial energy budget since it is strongly related with the greenhouse 

effect and affects the climate remarkably [5]. NIR is beneficial to building 

energy savings in winter but undesirable in summer [6]. UVR (UV-A, 315-

400 nm; UV-B, 280-215 nm) is responsible for a variety of photochemical 

reactions [7] and, especially its shorter wavelengths, has deleterious effects 

in many biological systems. 

In the energy context, particularly in renewable energies, the 

broadband solar radiation is converted into useful heat or electricity, 

through solar thermal, photovoltaic (PV) or thermal (PT) installations. The 

interaction of the wavelengths of the visible spectrum of SR (daylighting or 

illuminance, L, 400-780 nm) with the photoreceptors of the human eye, 

allows to perceive the world and its colours, and it influences on mood and 

circadian rhythms [8]. The knowledge and management of daylight is 

essential to improve the energy efficiency of buildings and visual comfort 

[9].  

The global radiation reaching the Earth's surface can be divided into 

two components according to their different nature, i.e., direct radiation 

and diffuse radiation. While direct radiation does not undergo any 

attenuation on its journey through the atmosphere, diffuse radiation is 

caused by the interaction of SR with the molecules and particles of the 

atmosphere. Simple and multiple scattering and absorption phenomena 

take place, simultaneously or not, at every wavelength. These effects 

modify the intensity and the spectral distribution of the incident radiation 

and redistribute the energy in different directions. As a result, diffuse 

radiation is highly non-uniform and anisotropic [10]. 
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Accurate knowledge of the angular distribution of radiance and 

luminance in the sky vault is essential when determining the diffuse 

component received by a given tilted surface, particularly if this surface is 

in a complex or obstructed environment, such as a city. That is why the 

modeling of the angular distribution of radiance and luminance in the sky 

has been the subject of study since the first half of the 20th century.  

In general, the first step in approaching such modeling is the 

knowledge of the sky conditions and their classification into different 

clusters with similar characteristics that facilitate their independent 

treatment. Some of the commonly used meteorological indices (MIs) for 

characterizing the sky condition are the sky’s clearness ( 𝜖) and sky’s 

brightness (Δ) proposed by Perez et al. [11] or the sky index used by Igawa 

et al. [12], (𝑆𝑖).  

However, sky classification is not a trivial task, due in part to the 

abstract conceptual definitions as clear, intermediate, and overcast 

conditions, as well as other intermediate ranges. In the case of 

homogeneous skies, overcast and clear conditions have similar 

characteristics easily modeled. Thus, the first models of angular 

distribution of luminance in the sky vault were dedicated to a single sky 

type. This is the case of the Moon and Spencer [13], model for overcast 

skies, and the Kittler [14], model for clear skies, that resulted in two 

standards adopted by the International Commission on Illumination (CIE, 

Commission internationale de l'éclairage) [15, 16].  

However, clear and overcast skies represent only the extremes of a 

wide range of variability of the real skies. In order to deal with this reality, 

a second group of angular distribution models for all sky conditions 

emerged, including the models developed by Perraudeau [17], Matsura and 

Iwata [18], Perez et al. [11], Brunger and Hooper [19], Perez et al. [20], 

Igawa et al. [12] and Igawa [21]. 

For their part, Kittler et al. [22, 23] proposed a set of 15 sky standards 

whose luminance distributions, called standard sky luminance 

distributions (SSLD), were described in the SSLD catalog. In 2004, this 
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proposal was consolidated as CIE Standard: CIE S 011/E:2003, and 

recognized by the ISO Council: ISO 15469:2004 [24] that incorporated the 

existing CIE standard skies. 

Sky classification according to the 15 types established in the ISO/CIE 

standard has consumed a great deal of research effort. In fact, more than 

400 research articles have been published on this subject so far. In this 

regard, several authors had proposed different methodologies for the 

characterization of the sky according to the ISO/CIE standard [25]. In this 

sense, machine learning for meteorological and atmospheric applications 

has already advanced significantly [26]. According to the goal, researchers 

should decide the most potentially effective model among a wide variety. 

Feature selection (FS) relies on statistics and machine learning to identify 

redundant information and detect the input variables most related to the 

desired output [27]. The capacity of supervised machine learning tools to 

identify patterns and classified data allows computers to perform specific 

tasks autonomously. This science has gained relevance in recent years due 

to the increase in computing capacity and the data boom, and it is 

presented as new alternative for sky classification. Artificial neural 

network (ANN) highlights for sky classification from sky images [28] or 

thought MIs [29]. 

It should be noted that the angular distribution of luminance model 

proposed by the ISO/CIE standard, as well as other widely used angular 

distribution models such as the All-weather [20] or the All-sky [12, 21], 

consider a homogeneous distribution of luminance in the sky vault and 

symmetrical with respect to the solar meridian. However, the natural sky 

luminance is neither monotonic nor smooth function of zenith/azimuth 

angle, primarily due to the presence of broken cloud arrays or single clouds 

scattered over the whole sky vault [30]. 

The most used and precise way to obtain the angular luminance 

distribution in the sky is its direct measurement using the sky scanner 

devices. Some of these devices are prototypes built to be used in other 

specific studies, as it is the case of the work by Perez et al. [11] and adapted 
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for their use as sky-scanner. Also, in the field of experimental devices, it is 

worth mentioning the portable sky scanner for measuring extremely low 

night-sky brightness (PePSS) described by Kocifaj et al. [30]. However, 

commercial sky scanners, such as the EKO MS-321L, are the most widely 

used. This device measure the radiance and luminance corresponding to 

the 145 patches of sky hemisphere, according to the CIE Guide [31]. 

In general, commercial sky scanners have relatively low temporal and 

spatial resolutions. On the one hand, they last more than four minutes to 

make a complete scan of the sky. This time is considerable in relation to 

the possible variability in sky conditions. On the other hand, sky scanners 

generally provide the radiance and/or luminance measurements of the 

aforementioned 145 sky patches that cover only approximately 2/3 of the 

sky vault, with a very limited spatial resolution determined by the 

relatively large field of view (FOV) of their radiance and luminance sensors. 

In addition, the number of routinely operating sky scanners in the world is 

very small [31–34].  

Currently, the use of luminance-calibrated sky cameras has become 

one of the most promising techniques for the accurate measurement of the 

angular distribution of luminance in the sky [35, 36]. In this sense, the use 

of hemispherical sky images overcomes the main drawbacks of commercial 

sky scanners. The spatial resolution increases considerably. In this case, it 

depends on the resolution of the sensor itself. In addition, the measurement 

time is significantly reduced as well their cost. Thus, the use of hemispheric 

images of the sky is emerging as one of the most accurate methods for the 

characterization of sky conditions. 

1.2. General and partial objectives 

As presented above, the importance of modeling luminance and 

radiance patterns for taking advantage of renewable energy is a global 

concern. Thus, the main objective of this doctoral dissertation is Modeling 

daylighting for visual comfort and energy efficiency in buildings. 

This purpose covers several fields of knowledge: machine learning, 
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statistics, photometric, and geometry. The dissertation pursues these 

partial objectives: 

1. Obtaining of CIE standard sky classification using different 

strategies. 

2. Developing new models for global and diffuse illuminance. 

3. Establishment of alternative methods to sky scanner for CIE 

standard sky classification from the use of meteorological indices 

(MIs) and sky images. 

The dissertation develops the three partial objectives in six papers, 

four main papers and two complementary papers, published in JCR 

indexed journals, included in Q1 or Q2 of the Energy&Fuels, Applied 

Physics, or Multidisciplinary Mathematics categories. Each paper 

describes the theoretical basis, the experimental data acquisition, the data 

processing, and the procedure to carry out the partial objective. The quality 

control applied to the experimental data follows the international 

recommendations [37], and it is consistent along the six publications. 

Figure  2 represents the relationship among the partial and general 

objectives.  

The first objective of the thesis, the characterization of skies according 

to the CIE standard, is addressed in the first paper, based on the study of 

the skies in Burgos, Spain. To do this, the standard procedure is followed 

using a sky scanner. Two different luminance normalization methods, the 

Tregenza and the NR, were compared. This paper stablished the 

methodology to obtain de CIE standard sky classification used as reference 

for the following works included in this thesis.  

Once proposed alternative to the use of sky scanner to obtain the CIE 

standard sky classification is the calculation of vertical sky component, 

VSC (Paper II), which directly refers to the daylight availability in façades 

of buildings, and the luminous efficacy, and allows obtaining illuminance 

values from irradiance data (CP-I).  
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Figure  2. Relation of the General and partial objectives with the publications.  

Although the information on the angular distribution of luminance in 

the sky is valuable, its measurement is not very common. Therefore, this 

work focused on alternative methods to obtain the CIE standard sky 

classification that avoid the use of a sky scanner. One of the suggested 

                  

             
          

             
        

        

     

                    

                                     

                                    

                               

                                     

         

                                          

                                    

          
       

              
        

   
        
        

         

                    

                      

                       

            

         

            

      

                       

                         

          

                   

 

 odeling daylighting for  isual comfort 

and energy efficiency in buildings 

                    

                              

                               

            

                

          



 

-8- 

method is the use of Meteorological Indices (MIs), and machine learning 

algorithms. The MIs are meteorological variables, directly measured or 

calculated through well-known mathematical expressions that can 

represent, individually or by combination of some of them, the sky 

conditions. However, the great number and diversity of these indicators, 

defined by different authors along time, together with the frequent 

unavailability of the CIE sky classification, has led to a marked 

heterogeneity of criteria and definition of concepts of clear, partial, and 

cloudy skies. Papers III and CP-II compare a sample of the sky cloudiness 

classification through classic MIs with the CIE standard sky classification 

to establish correlations between them. Specifically, CP-II uses 

benchmarking to evaluate each author's original criteria against the 

standard CIE. Paper III compares an extended the MIs set to analyse their 

contribution to the derived classification cloudiness of the skies as overcast, 

partial, and clear.  Finally, Paper IV directly faces the problem of not 

having a sky scanner by using artificial intelligence image processing as a 

procedure to obtain sky classifications without using any meteorological 

index or sky scanner. 

The dissertation structure is as follows. Chapter 1: Introduction and 

Objectives, sets the general description of the dissertation and introduces 

the social and scientific interest of this work. Chapter 2: Results by 

objectives, describes each of the partial objectives and provides a detailed 

description of the achieved results, summarizing the articles that develop 

the related research. Chapter 3: Conclusions, summarizes and describes 

the most significant conclusions and scientific advances achieved by this 

dissertation. Finally, the Future Lines of Research are proposed.  

As Annexe 1, the six published papers, ordered by date of publication, 

are included. Other works, related to a greater or lesser extent to the work 

and presented at different scientific congresses are also included in the 

Annexe 2.  
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1.3. Experimental Data 

All experimental data used in this work have been obtained in the 

meteorological and radiative station of the research group Solar and Wind 

Feasibility Technologies (SWIFT) at the University of Burgos. The facility 

is located on the roof at the Escuela Politécnica Superior building. 

(42°21′04″N; 3°41′20″O; abo e mean sea le el 856 m). The installation, 

shown in Figure  3, measures the following meteorological variables: 

pressure (𝑃), ambient temperature (𝑇), relative humidity (𝑅𝐻), and wind 

speed (𝑊𝑆), and direction (𝑊𝐷). Regarding the SR spectral components, the 

facility records irradiance, illuminance, PAR, UV (A,B,E), and net IR. For 

irradiance and illuminance global and diffuse components are measured on 

the horizontal plane and on the vertical one, north, south, east, and west 

orientations. Beam component is also measured for all spectral 

components. Each data is measured every 30 seconds and the average 

value is recorded every ten minutes. Experimental data were analyzed and 

then filtered using conventional quality criteria [37]. Indeed, the 

installation has a sky scanner that measures the angular distribution of 

radiance and luminance in the 145 sectors of the sky recommended by the 

CIE standard [24], and a sky camera (All Sky-camera). The sky scanner 

takes 4 minutes to record the complete skydome, and the timing is every 

10 minutes. The sky-camera takes a picture of the sky every 15 seconds in 

RAW, png, and jpg format.  
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Figure  3. Radiometric variables recorded at the SWIFT experimental facility. 

Table 1. Radiometric variables recorded at the SWIFT experimental facility. The 

table includes each sensor model, and the commissioning date. Table includes 

reference of the Paper in which the recorded data were used. 

Variable 

(Units/Format) 
Type Sensor 

From 

Date 

Paper CP 

I II III IV I II 

Horizontal 

Irradiance 

(𝑊 ∙ 𝑚−2) 

Diffuse Hukseflux 

SR12-T205 Jan. 

(2014) 

- - x - x x 

Global - - x - x x 

Direct 
Hukseflux 

DR01-05 
- - x - x x 

Horizontal 

Illuminance (𝑙𝑥) 

Diffuse 

EKO  

ML-020S-O 

Apr. 

(2016) 

- x x - x x 

Global - x x - x x 

Direct - x x - x x 

Vertical 

Illuminance (𝑙𝑥) 

Global:N - x - - - - 

Global:S - x - - - - 

Global:E - x - - - - 

Global:W - x - - - - 

Luminance pattern       

(𝑘𝑐𝑑 ∙ 𝑚−2) 
- 

EKO  

MS-321LR 

Jun. 

(2016) 
x x x x x - 

Cloud Cover (%) - 

SONA202U 
Sept. 

(2016) 

- - x x - - 

Sky images 

(𝑅𝐴𝑊, 𝑝𝑛𝑔, 𝐽𝑝𝑔) 
- - - - x - - 

Temperature (º𝐶) - Campbell 

Scientific 

CS215 Apr. 

(2016) 

- - x - x - 

Relative Humidity 

(%) 
- - - x - - - 

Wind Speed  

  (𝑚 ∙ 𝑠−1) 
- 

Campbell 

Scientific 

03002 Wind 

- - x - - - 
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1.4. Summary of papers 

Next, a short summary of the publications that support this thesis is 

presented. The publications appear according to the position of the partial 

objectives to which they correspond. 

• PAPER-I: Suárez-García, A., Granados-López, D., González-Peña, D., 

Díez-Mediavilla, M. and Alonso-Tristán, C., 2018. Seasonal 

characterization of CIE standard sky types above Burgos, northwestern 

Spain. Sol. Energy 169, 24–33. DOI: 10.1016/j.solener.2019.11.060. 

This paper compared two methodologies for sky classification in 

Burgos, Spain. Both methods used the international standard ISO 

15469:2004 of the Commission International of illumination (CIE) for 

the sky classification and differ in the luminance normalization 

method. 

• PAPER-II. Granados-López, D., Díez-Mediavilla, M., Dieste-Velasco, 

M.I., Suárez-García, A. and Alonso-Tristán, C, 2020. Evaluation of the 

vertical sky component without obstructions for daylighting in Burgos, 

Spain. Appl. Sci. 10 (9), 3095. DOI: 10.3390/app10093095. The second 

paper in the dissertation used the standard ISO 15469:2004 (CIE) to 

obtain the sky luminance pattern and obtained through numerical 

integration, the horizontal and vertical diffuse illuminance. The VSC, 

defined as the ratio of the vertical and diffuse illuminance, was used 

to estimate daylight availability for lighting studies in buildings. 

• PAPER-III. Granados-López, D., Suárez-García, A., Díez-Mediavilla, 

M. and Alonso-Tristán, C., 2021. Feature selection for CIE standard 

sky classification. Sol. Energy 218, 95-107. DOI: 

10.1016/j.solener.2019.11.060. This paper deepened in the use of MIs 

for cloudiness sky classification, using feature selection (FS) to analyse 

the relationship of an extended set of MIs (43 traditional used MIs for 

sky conditions classification). The FS process avoided redundant 

information and highlighted the MIs that are strongly related to sky 

conditions using the CIE standard taxonomy as reference.  
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• PAPER-IV. Granados-López, D., García-Rodríguez, A., García-

Rodríguez, S., Suárez-García, A., Díez-Mediavilla, M., Alonso-Tristán, 

C., 2021. Pixel-based image processing for CIE standard sky 

classification through ANN. Complexity 2021, 1-15. DOI: 

10.1155/2021/2636157. Paper IV dealt with the CIE standard sky 

classification through sky images using artificial neural networks 

(ANN) as alternative to the use of sky scanner devices. In addition, it 

compared several image processing methods to optimize the ANN 

model. 

Additionally, the following two publications complement actively the 

thesis. 

• CP-I. Dieste-Velasco, M.I., Díez-Mediavilla, M., Granados-López, D., 

González-Peña, D., Alonso-Tristán, C., 2019. Performance of global 

luminous efficacy models and proposal of a new model for daylighting 

in Burgos, Spain. Renewable Energy 133, 1000-1010. DOI: 

10.1016/j.renene.2018.10.085. This paper aimed to estimate global 

illuminance through the global luminous efficacy. It compared 

eighteen classic global illuminance models, which are applicable 

exclusively for certain sky conditions (clear, partial, overcast, or all-

sky conditions). Besides, it proposed a new model of global luminous 

efficacy, that resulted very effective for all-sky conditions. 

• CP-II. Suárez-García, A., Díez-Mediavilla, M., Granados-López, D., 

González-Peña, D., Alonso-Tristán, C.2020. Benchmarking of 

meteorological indices for sky cloudiness classification. Sol. Energy 

195, 499–513. DOI: 10.1016/j.solener.2019.11.060. CP-II paid 

attention to the lack of criteria for determining the cloudiness of skies 

using individually the traditional MIs. The original criteria used by 

the MIs to define the number and the sky conditions depends on the 

author and no uniform criteria exist. This work analysed and 

compared the sky classification capability of the most relevant MIs 

using ISO/CIE standard (ISO 15469: 2004), as reference. 
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Chapter 2: Results by objectives 

2.1 Obtaining the CIE standard sky classification using 

different strategies: Seasonal characterization of 

CIE standard sky types (Paper I)  

The availability of natural light is highly recommended for reasons of 

energy efficiency, visual comfort, and the physical and mental well-being 

of building occupants. Architects and engineers need quantitative 

information on illumination levels and solar irradiance absorbed on 

surfaces at different inclinations for the incorporation of daylighting in the 

design of energy-efficient buildings and for suitable dimensioning of both 

the cooling and the heating systems. It requires an accurate estimation of 

the amount of available outdoor illuminance and, of course, the availability 

of daylight is mainly influenced by the levels and the patterns of luminance 

in the sky. To obtain sky luminance distribution, empirical models of 

homogeneous skies represent a low-cost approach. Many of these methods 

[38] aim at estimating daylight availability. 

In 2003, the ISO/CIE standard defined 15 sky types [24] each of them 

with the same well-defined sky luminance pattern. Once the sky type is 

identified, the solar irradiance and daylight illuminance on the surfaces of 

interest can be obtained through simple mathematical expressions [39]. 

The luminance distribution for each standard sky type can help arrive at 

accurate determinations of daylight illuminance [22]. 

In this regard, Paper I aims at defining the daylight conditions in 

Burgos according to the ISO/CIE categorization. The ISO/CIE standard 

describes the relative luminance of a sky point (𝑙𝑝), normalized by the sky's 

zenith luminance (𝐿𝑧 ), as the product of the relative gradation function 

𝜑(𝑍𝑝)/𝜑(0) and the indicatrix function 𝑓(𝜒)/𝑓(𝑍𝑠), (Eq.  1). 

𝑙𝑝 =
𝐿𝑝

𝐿𝑧
=

𝜑(𝑍𝑝)

𝜑(0)

𝑓(𝜒)

𝑓(𝑍𝑠)
  (Eq.  1) 
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where 𝐿𝑝 is the absolute luminance of the sky point, 𝑍𝑝 is its zenith 

angle of the sky point and 𝜒 is the scattering angle, that is, the angular 

distance between the sun and the sky vault point (see Figure  4). 𝑍𝑠 is the 

angle of elevation of the sun. 

 

Figure  4. Angles defining the position of the sun and a sky element p [43]. 

The gradation function, 𝜑(𝑍𝑝), describes the luminance variation in 

the sky dome from the horizon to the zenith. (Eq.  2) defines the relative 

gradation function as the quotient of the gradation corresponding to a given 

zenith angle, 𝜑(𝑍𝑝), to the one corresponding to zenith, 𝜑(0). 

𝜑(𝑍𝑝)

𝜑(0)
=  

1 + 𝑎 · 𝑒𝑥𝑝(𝑏 𝑐𝑜𝑠 𝑍𝑝⁄ )

1 + 𝑎 · 𝑒𝑥𝑝(𝑏)
 (Eq.  2) 

The indicatrix function, 𝑓(𝜒), models how the luminance changes from 

the sun position to the sky point. (Eq.  3) describes the relative indicatrix 

function. 

𝑓(𝜒)

𝑓(𝑍𝑠)
=

1 + 𝑐 · [𝑒𝑥𝑝(𝑑𝜒) − 𝑒𝑥𝑝(𝑑𝜋 2⁄ )] + 𝑒 · 𝑐𝑜𝑠2 𝜒

1 + 𝑐 · [𝑒𝑥𝑝(𝑑𝑍𝑠) − 𝑒𝑥𝑝(𝑑𝜋 2⁄ )] + 𝑒 · 𝑐𝑜𝑠2 𝑍𝑠
 (Eq.  3) 

Coefficients a, b, c, d, and e adopt different values according to the sky 

conditions, as Table 2 shows. A graphical representation of the relative 

gradation function, 𝜑(𝑍𝑝) 𝜑(0),⁄  and the indicatrix function, f(χ), are 

presented in Figure  5.   
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Table 2. Parameters of CIE standard Sky types [40]. 

Type a b c d e Description 

I.1 4.0 -0.70 0 -1.0 0.00 
Overcast with a steep gradation and 

azimuthal uniformity 

I.2 4.0 -0.70 2 -1.5 0.15 
Overcast with a steep gradation and 

slight brightening toward sun 

II.1 1.1 -0.80 0 -1.0 0.00 
Overcast with a moderate gradation 

and azimuthal uniformity 

II.2 1.1 -0.80 2 -1.5 0.15 
Overcast with a moderate gradation 

and slight brightening toward sun 

III.1 0.0 -1.00 0 -1.0 0.00 
Overcast, foggy or cloudy, with 

overall uniformity 

III.2 0.0 -1.00 2 -1.5 0.15 

Partly cloudy with a uniform 

gradation and slight brightening 

toward sun 

III.3 0.0 -1.00 5 -2.5 0.30 

Partly cloudy with a uniform 

gradation and a brighter circumsolar 

effect 

III.4 0.0 -1.00 10 -3.0 0.45 
Partly cloudy, rather uniform with a 

clear solar corona 

IV.2 -1.0 -0.55 2 -1.5 0.15 
Partly cloudy with a shaded sun 

position 

IV.3 -1.0 -0.55 5 -2.5 0.30 
Partly cloudy with brighter 

circumsolar effect 

IV.4 -1.0 -0.55 10 -3.0 0.45 
White-blue sky with a clear solar 

corona 

V.4 -1.0 -0.32 10 -3.0 0.45 
Very clear / unturbid with a clear 

solar corona 

V.5 -1.0 -0.32 16 -3.0 0.30 
Cloudless polluted with a broader 

solar corona 

VI.5 -1.0 -0.15 16 -3.0 0.30 
Cloudless turbid with a broader solar 

corona 

VI.6 -1.0 -0.15 24 -2.8 0.15 
White-blue turbid sky with a wide 

solar corona effect 

 

Figure  5. Relative gradation and indicatrix function for the CIE sky-

classification[40]. 
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Figure  6. Comparison of the modeled CIE luminance distribution with the real 

one obtained by the sky-scanner. (Source: own elaboration) 

Figure  6 shows the horizontal projection of the angular distribution of 

relative luminance normalized to zenith for each of the 15 CIE sky types. 

The corresponding real luminance maps obtained from the processing of 
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hemispherical sky images are shown next to each of the theoretical 

luminance distributions. These images were acquired at the UBU 

meteorological station by a EKO sky-scanner (Table 1).  

The first proposed criterion for sky classification according to the CIE 

was the Standard Sky Luminance Distribution method (SSLD) [22]. Here, 

the sky classification derives from a family of 15 curves, one for each 

standard sky, parameterized by the ratio of the zenith luminance to the 

horizontal diffuse illuminance. Nonetheless, this method is not valid when 

the solar altitude exceeds 35° [39]. Unfortunately, these solar altitudes are 

very common in middle latitudes, such as Spain, especially during the 

summertime. The solution to this non-negligible problem was addressed by 

later proposals that based the sky type selection on the comparison of 

standard and real angular distribution of normalized sky luminances. 

Paper I compares two widely used classification approaches: 

• The Tregenza method [41] that normalizes the sky patch luminance 

(𝐿𝑝𝑟,𝑠𝑐) with the horizontal diffuse illuminance (𝐿𝑥𝐷𝐻), according to 

(Eq.  4). 

𝐿𝑝𝑟,𝑠𝑐 =
𝐿𝑝

𝐿𝑥𝐷𝐻
 (Eq.  4) 

𝐿𝑥𝐷𝐻 integrates the luminance contribution of all patches (𝐿𝑝) over 

the sky dome. Patches adjacent to the sun position are excluded since 

the sky scanner sensor, used to measure the sky luminance 

distribution, saturates above 50 𝑘𝑐𝑑/𝑚2. This value is several orders 

of magnitude lower than the luminance of the sun. 

• The Littlefair normalization ratio (NR) method [42] implements a 

factor for normalizing the luminance of each sky patch modelled from 

the ISO/CIE with the experimental luminance pattern, (Eq.  5). 

𝑁𝑅 =  
∑ 𝐿𝑝 𝑐𝑜𝑠 𝜙𝑝  𝑠𝑖𝑛 𝜙𝑝  𝑑𝜙𝑝 𝑑𝛼𝑝

∑ 𝑙𝑝 𝑐𝑜𝑠 𝜙𝑝  𝑠𝑖𝑛 𝜙𝑝  𝑑𝜙𝑝 𝑑𝛼𝑝
 (Eq.  5) 
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where ϕp and αp are the elevation angle and the azimuth of the sky 

patch 𝑝, respectively. Hence, the normalized sky luminance results 

from the product of the relative theoretical luminance (𝑙𝑝) and NR, as 

follows, (Eq.  6): 

𝐿𝑝𝑟𝑒𝑑𝑝,𝑠𝑐
= 𝑙𝑝 𝑁𝑅 (Eq.  6) 

Both methods follow the same procedure to classify the sky condition 

according to the ISO/CIE standard, except for the parameter used for 

luminance normalization. The comparison between the normalized 

luminances, measured and modelled, for each CIE sky type is done by 

means of a goodness indicator. The used indicator differs depending on the 

classification method considered, Root-mean-square error (𝑟𝑚𝑠𝑠𝑐,𝑠𝑡) in the 

Tregenza method (Eq.  7), and Relative Root Mean Square Error (𝑟𝑅𝑀𝑆𝐸) 

in the NR method (Eq.  8). Fifteen values of the indicator are obtained 

according to the fifteen ISO/CIE standard sky types. Finally, the sky 

category whose indicator performs best is selected. 

𝑟𝑚𝑠𝑠𝑐,𝑠𝑡 =  √∑(𝐿𝑝𝑟,𝑠𝑐 − 𝐿𝑝𝑟,𝑠𝑡)
2

𝑁
 

(Eq.  7) 

𝐿𝑝𝑟,𝑠𝑡 , is the normalized luminance of a sky patch by the Tregenza 

Method, corresponding to a (CIE) standard sky, 𝐿𝑝𝑟,𝑠𝑐, is the normalized 

luminance of a sky patch by the Tregenza Method, corresponding to an 

experimental measurement (Eq.  4) 𝑁  is the number of measurements, 

excluding the empty patches. Finally, 𝑠𝑐 refers to an experimental type and 

𝑠𝑡  is the particular standard sky type that is tested. 𝐿𝑝𝑟𝑒𝑑𝑝,𝑠𝑐
is the 

normalized luminance obtained using the 𝑁𝑅  factor (Eq.  6), 𝐿𝑝  is the 

luminance measured in 𝑘𝑐𝑑/𝑚2  by the Sky scanner, and 𝑝 refers to the 

path of the sky. 

𝑟𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (

𝐿𝑝𝑟𝑒𝑑𝑝,𝑠𝑐
− 𝐿𝑝

𝐿𝑝
)

2

 (Eq.  8) 
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The data used in Paper I for the comparison of the two classification 

methods came from the sky scanner EKO MS-321 Luminance 

measurements recorded between June 2016 and May 2017 at the UBU 

meteorological station, described in Table 1. 

Regarding the seasonal classification of skies in Burgos, results in 

Figure  7 show the relative frequency of occurrency (FOC, %) of each sky 

type over the period of study, calculated using both the Tregenza and the 

NR method. As can be seen, all CIE sky types can be found in Burgos. The 

lowest frequency is for type I.2, corresponding to overcast with the steep 

gradation and slight brightening toward the sun, and the highest frequency 

is for type V.5 (cloudless polluted with a broader solar corona). Both 

methods present very few differences and are almost equivalent in the II.2, 

IV.3, and V.5 sky types, as shown in Figure  7. The biggest differences in 

the classification were found in types IV.2 and VI.5. 

 

Figure  7. Comparative characterizations of the skies over Burgos [44]. 

The seasonal classification obtained by both methods is shown in 

Figure  8 and Figure  9. Sky types I.1, I.2, V.5. and V.6 are predominant in 

winter (almost 10% frequency each). Clear sky types (IV.4, V.5., V.6, and 
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VI.5) prevail in spring and summer time. In summer, type IV.2, 

corresponding to a partly cloudy sky is also frequent. Autumn is a clear sky 

season too. Grouping the CIE types by seasons clearly profiles the switch 

between the IV.2 and VI.5 sky types. As can be seen in Figure  8, the NR 

method classifies 15% of the skies in summer as IV.2 and almost 22% as 

VI.5. In contrast, the Tregenza method classified 25% of the skies as VI.5, 

in the same season, as shown in Figure  9. It also labelled 6% of the 

recorded skies as IV.2. Sky type VI.5. appeared in 23% of cases when using 

the Tregenza method. It is evident that the mismatch is limited to 9% of all 

records. The differences between both methods in the other seasons of the 

year are insignificant. 

 

 

 

Figure  8. Seasonal CIE sky types histogram over Burgos calculated using the NR 

method [44]. 
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Figure  9. Seasonal CIE sky types histogram over Burgos calculated using the 

Tregenza Method [44].  

Sky type matches obtained by both the Tregenza and the NR methods 

were compared in a confusion matrix (Figure  10). Each cell of the matrix 

shows the number of coincidences and their corresponding percentages. 

The upper-left 3×3 matrix corresponds to the raw comparison, coding the 

cells either in green, if Tregenza and NR agree, or in red, if otherwise. The 

gray cells are the percentages that count the total cases in each row or 

column. Finally, the blueish cell to the lower-right shows the extent of 

global matching. As it can be seen, the global coincidences for the 

classification amount to 94.3%. 

As explained, both analyzed methods define the type of sky based on a 

slightly different goodness indicator. So, the relative Root Mean Square 

Error (𝑟𝑅𝑀𝑆𝐸 ) and the relative Mean Bias Error (𝑟𝑀𝐵𝐸 ) were used to 

compare the goodness of fit between measured and modeled luminance 

values. As can be seen in Table 3, both statistical indicators yielded similar 

results. The low obtained 𝑟𝑅𝑀𝑆𝐸 values show that both methods tend to 

get a very acceptable agreement between predictions and measured values, 
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so both methods can be used with high confidence at the latitude of Burgos. 

However, this confidence decreases at the highest solar altitudes. 

 

Figure  10. Confusion matrix comparing the Tregenza and the NR cloudiness 

classifications [44]. 

Table 3. Statistical indicators RMSE and MBE [40]. 

- 𝜶𝒔 ∈ (𝟎, 𝝅/𝟐) 𝜶𝒔 < 𝟑𝟓° 𝜶𝒔 > 𝟑𝟓° 

Method rRMSE rMBE rRMSE rMBE rRMSE rMBE 

Tregenza 36.7% 14.1% 34.9% 13.1% 40.1% 16.0% 

NR 36.0% 13.3% 33.4% 11.4% 40.8% 17.0% 

Therefore, the results obtained in the Paper I have met the Partial 

Objective 1, that is, obtaining the CIE sky classification. The methodology 

followed in Paper I will be used henceforth for obtaining the CIE standard 

sky classification, as reference for stablishing the sky conditions.  
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2.2. Development of models for global and diffuse 

illuminance (I): Vertical Sky Component (VSC) for 

Daylight availability (Paper II) 

As result of the current renovation and sustainability wave, European 

countries expressed their strategies to reduce energy consumption and 

enhance building renovation [1, 43]. According to the International Energy 

Agency (IEA) electrical lighting in buildings makes up 14% of electrical 

consumption in the European Union and 19% worldwide [44]. The use of 

natural light can reduce significantly the energy consumption in buildings 

offering the occupants comfort and health benefits [45]. 

A fundamental step towards studying the lighting profile of a building 

for energy-effective design is compiling information of outdoor conditions 

[46]. Recording the illuminance on vertically oriented surfaces is relevant 

for daylight availability, particularly in a high-rise building where the 

glazed surfaces are large extensions [47]. In addition, the vertical 

component of solar radiation serves to model the performance of Building 

Integrated Photovoltaics (BIPV), because the vertical facades of modern 

cities occupy larger areas than roof surfaces and usually present better 

maintenance conditions for photovoltaic panels [48].  

Nevertheless, despite having very high interest, both diffuse outdoor 

solar irradiance and illuminance data for the surfaces of interest are not 

likely to be available in numerous locations around the world [13]. In 

particular, Paper II studies the outdoor daylight availability through the 

Vertical Sky Component (VSC) [49]. VSC is defined as the ratio of the 

vertical diffuse illuminance (𝐿𝑥𝐷𝑉) to the unobstructed horizontal diffuse 

illuminance (𝐿𝑥𝐷𝐻), in  (Eq.  9). 

𝑉𝑆𝐶 =
𝐿𝑥𝐷𝑉

𝐿𝑥𝐷𝐻
  (Eq.  9) 

VSC offers an overall knowledge about the external conditions to make 

decisions about room design factors, such as the dimensions and shape of 

the glazing and rooms or the uses of the indoor spaces. High VSC values 
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usually head to further illumination in interior spaces. In addition, several 

entities concerning building construction establish minimum VSC levels 

for more effective daylighting [46, 49, 50]. Roughly, VSC values that exceed 

27% indicate good daylight availability. Furthermore, VSC levels lower 

than 10% do not guarantee the availability of direct light from the sky. It 

is noteworthy that this VSC target works on low-density suburban housing 

models. Thus, the daylight and sunlight review states that, in an inner-city 

urban environment, 20% of VSC values are reasonably good. Knowledge of 

Vertical Sky Component (VSC) allows the calculation of daylighting 

availability for buildings at any cardinal orientation for energetic and 

visually efficient building and city design. This work describes different 

alternatives for VSC calculation using a complete experimental 

characterization of the VSC in an extensive case study carried out in 

Burgos, Spain. 

When experimental values of 𝐿𝑥𝐷𝐻 and 𝐿𝑥𝐷𝑉 are available, VSC can 

be calculated directly. As 𝐿𝑥𝐷𝑉 data were not available at the experimental 

facility during the experimental campaign, from September 2016 to 

January 2019, these data were obtained, considering the similar 

characteristics of both solar irradiance and illuminance using the well 

know transposition model, as (Eq.  10) shows: 

𝐿𝑥𝐷𝑉 = 𝐿𝑥𝐺𝑉 −
𝜌

2
· 𝐿𝑥𝐺𝐻 − (

𝐿𝑥𝐵𝐻 

𝑠𝑖𝑛 𝛼𝑠
) ∙ 𝑐𝑜𝑠 𝛼𝑠 ∙ 𝑐𝑜𝑠(𝜙𝑠 − 𝜙𝑁𝑟) (Eq.  10) 

Where 𝐿𝑥𝐺𝑉 and 𝐿𝑥𝐺𝐻 are vertical, and horizontal global illuminance, 

respectively, and 𝐿𝑥𝐵𝐻  is the horizontal beam illuminance; 𝜌 is the albedo; 

𝜙𝑁𝑟
is the azimuth vertical surface angle; 𝛼𝑠 the solar elevation, and 𝜙𝑠 is 

the azimuth of the sun as Figure  11 shows. 
𝜌

2
𝐿𝑥𝐺𝐻 refers to the reflected 

illuminance. Therefore, VSC was calculated using (Eq.  11): 

𝑉𝑆𝐶 =
𝐿𝑥𝐺𝑉 −

𝜌
2 𝐿𝑥𝐺𝐻 − (

𝐿𝑥𝐵𝐻 
𝑠𝑖𝑛 𝛼𝑠

) · 𝑐𝑜𝑠 𝛼𝑠 ∙ 𝑐𝑜𝑠(𝜙𝑠 − 𝜙𝑁𝑟)

𝐿𝑥𝐷𝐻
 

(Eq.  11) 
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Figure  11. Geometry description: Angles of the Sun and the sky element p. 

With a well-defined luminance distribution, the daylight on any 

surface can be estimated, instead the experimental determination, by 

integrating the luminance distribution of the sky dome over each surface. 

Two alternatives to obtain the sky luminance distribution were used in this 

work: its direct measurement using a sky scanner and the theoretical 

luminance pattern that the ISO/CIE assigns univocally to each of the sky 

type.  

The sky scanner measures the luminance on a limited number of sky 

elements (patches) of finite angular size, typically 145, and continuously 

scan the luminance data corresponding to each patch, 𝐿𝑝. Figure  12 shows 

the traditional split into 145 patches of the skydome and the geometric 

components. 

 

Figure  12. Sky patch’s projection [51].  
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If the CIE standard sky classification is known, the luminance in each 

sky patch, 𝐿𝑝, can be obtained using (Eq.  12). 

𝐿𝑝 = (1 + 𝑐 ∙ [𝑒𝑑𝜒 − 𝑒
𝑑∙𝜋

2 ] + 𝑒 ∙ 𝑐𝑜𝑠2 𝜒) (1 + 𝑎 ∙  𝑒
𝑏

𝑐𝑜𝑠 𝑍𝑃 ) (Eq.  12) 

Coefficients 𝑎, 𝑏, 𝑐, 𝑑, and e, are defined by CIE [24] as functions of the 

sky type, as shown in Table 2. 𝑍𝑃  is the sky element zenith angle and 𝜒 is 

the dispersion angle, calculated from (Eq.  13): 

𝜒 = 𝑎𝑟𝑐𝑜𝑠(𝑐𝑜𝑠 𝑍𝑠 𝑐𝑜𝑠 𝑍𝑃 + 𝑠𝑖𝑛 𝑍𝑠 𝑠𝑖𝑛 𝑍𝑃 𝑐𝑜𝑠|𝜙𝑃 − 𝜙𝑠|) (Eq.  13) 

Where 𝜙𝑃 is the azimuth angle of the sky element, 𝑝, and 𝑍𝑠 and 𝜙𝑠 are 

the zenith and azimuth angles of the sun. The 𝜒 represents the shortest 

angular length between the sky element, 𝑝, and the sun, as is shown in 

Figure  11. Once the luminance in each sky element is known, equations 

(Eq.  14) to (Eq.  16) can be applied to calculate 𝐿𝑥𝐷𝐻, 𝐿𝑥𝐷𝑉 and, therefore, 

VSC. 

𝐿𝑥𝐷𝐻 =  ∑ 𝐿𝑝 𝑠𝑖𝑛 𝛼𝑝 𝑐𝑜𝑠 𝛼𝑝  𝛿𝛼𝑝𝛿𝜙𝑝

145

𝑝=1

     (Eq.  14) 

𝐿𝑥𝐷𝑉 =  ∑ 𝐷𝑝𝐿𝑝  𝑐𝑜𝑠 𝛼𝑝 𝛿𝛼𝑝𝛿𝜙𝑝 

145

𝑝=1

 (Eq.  15) 

𝐷𝑝  is a geometrical factor which projects only the sky patches that 

apport illuminance to the vertical surface [52], (Eq.  16): 

𝐷𝑝 =  {
𝑐𝑜𝑠 𝛼𝑝 𝑐𝑜𝑠(𝜙𝑝 − 𝜙𝑁𝑟

)     𝑖𝑓 0 ≤  |𝜙𝑝| ≤ 90°

0                             𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
       (Eq.  16) 

As can be seen, sky types 1, 3, and 5 present constant VSC values, 

regardless of 𝜒  Therefore, the orientation of the vertical surface has no 

effect on the level of illumination. The predicted VSC values for these sky 

types (1, 3, and 5) were 38.5%, 45% and 50%, respectively, see Figure  13. 
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Figure  13. VSC dependence with the scattering angle for all CIE skies. The labels 

one (overcast) to fifteen (clear) design a specifical CIE sky typology [51]. 

The experimental data of 𝐿𝑥𝐷𝑉  obtained from (Eq.  10) on the four 

cardinal facing surfaces, were compared to those calculated as projections 

on the same surface using the sky-scanner luminance pattern. Both the 

𝑟𝑅𝑀𝑆𝐸  and the 𝑟𝑀𝐵𝐸  values are recorded in Table 4 and, as can be 

appreciated, are comparable to those obtained for horizontal diffuse 

illuminance. It can, therefore, be concluded from this study that the use of 

the sky-scanner measurements, to determine the diffuse illuminance on 

any horizontal or tilted surface, had an intrinsic 𝑟𝑅𝑀𝑆𝐸 due, mainly, to the 

technical specifications of the experimental device, near 30%, agreeing 

with other work [47].  
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Table 4. 𝑟𝑅𝑀𝑆𝐸 and 𝑟𝑀𝐵𝐸 calculated for the vertical diffuse illuminance, 𝐿𝑑𝑣 , and 

the horizontal diffuse illuminance, 𝐿𝑥𝐷𝐻. The reference values of 𝐿𝑥𝐷𝑉 were 

calculated from (Eq.  10). The reference values of 𝐿𝑥𝐷𝐻 were measured in the 

experimental facility, described in Table 1 [51]. 

Orientation 𝑟𝑅𝑀𝑆𝐸 (%) 𝑟𝑀𝐵𝐸 (%)  

Vertical 

South surface 27.31 −3.55 

North surface 21.46 −0.31 

East Surface 31.19 −11.87 

West Surface 27.69 4.63 

Horizontal  27.14 −3.80 

VSC values calculated from the different procedures were compared, 

taking the VSC values obtained by (Eq.  11) as a reference. Both the 𝑟𝑅𝑀𝑆𝐸 

and the 𝑟𝑀𝐵𝐸 parameters are shown in Table 5. As can be seen, for the 

different vertical surfaces facing the cardinal orientations, the statistical 

indices ranged between 23% and 32% for the 𝑟𝑅𝑀𝑆𝐸 and between −1% and 

16% for the 𝑟𝑀𝐵𝐸. Both procedures underestimated the VSC, as shown by 

the negative 𝑟𝑀𝐵𝐸 values. The highest discrepancies between the different 

approaches were for the east orientation. This observation agreed other 

works, where the results of different approaches for VSC calculation varied 

with the different surface orientations [52]. 

Table 5. 𝑟𝑅𝑀𝑆𝐸 and 𝑟𝑀𝐵𝐸 results from the comparison between the VSC values 

calculated with the different approaches [51]. 

VSC 
𝑟𝑅𝑀𝑆𝐸 (%) 𝑟𝑀𝐵𝐸 (%) 𝑟𝑅𝑀𝑆𝐸 (%) 𝑟𝑀𝐵𝐸 (%) 

Sky-Scanner CIE 

South surface 24.46 −8.47 25.56 −11.25 

North surface 23.46 −4.48 23.53 −5.56 

East Surface 31.93 −15.51 29.85 −15.38 

West Surface 22.99 −1.14 24.84 −2.90 

The experimental values of the VSC calculated from (Eq.  11) were 

obtained for the city of Burgos. Figure  14 shows the VSC values, classified 

by intervals, and for the four vertical cardinal orientations. As can be seen 
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from Figure  14, VSC values lower than 20% were practically non-existent 

on surfaces facing the four cardinal orientations. During the campaign, 

VSC was unlikely to have a lower value than 20% in all orientations, the 

range 20–40% was a little more likely. Range 40-60% has a frequency of 

occurrence (FOC) that reaches the 30% in almost every cardinal direction. 

Besides, the south and east orientation highlighted over the rest 

orientations in the interval 60–100% with FOC equal to 20% and 10%, 

respectively. Values higher than 100% were present in all directions. 

On the other hand, international recommendations [46, 49] refer to the 

interval VSC >27%, as the representative value for acceptable daylight 

levels. During the experimental campaign, FOC of VSC >27% varies from 

89-90%. North orientation yields good results and, therefore, its energetic 

and luminous profile should not be underestimated. 

 

Figure  14. Distribution of VSC values by intervals calculated in Burgos, Spain, 

between September 2016 and January 2019 [51]. 

Therfore, values of diffuse illuminance on horizontal, vertical, and VSC 

cardinal-oriented surfaces, from the luminance pattern of the sky scanner 

and CIE standard classification for homogeneous skies, showed comparable 

results. Hence, Paper II contributes to the General Objective of the thesis: 

Development of models for global and diffuse illuminance.  
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2.3. Development of models for global and diffuse 

illuminance (II): Luminous efficacy model (CP I) 

 Several approaches and international regulations consider the 

integration of daylight into the building design [53, 54]. However, 

sometimes finding suitable illuminance measures can be difficult [55]. As 

a result, daylight prediction often starts from the derivation of solar 

irradiance measurements [56], since this variable is more frequently 

recorded at ground meteorological stations.  

The luminous efficacy is defined as the ratio between solar irradiance 

and illuminance. Then, if 𝐿𝑥𝐺𝐻 is the horizontal global illuminance (𝑙𝑥) and 

𝑅𝑎𝐺𝐻  (W/𝑚2 ) is the horizontal global irradiance, the global luminous 

efficacy is given in lm/𝑊 by (Eq.  17). 

𝐾 =
𝐿𝑥𝐺𝐻

𝑅𝑎𝐺𝐻
 (Eq.  17) 

Numerous proposals in the literature aim at modeling luminous 

efficacy. Whereas some model it as a function of different variables, others 

consider it a constant. Also, these models specify or not into sky typologies. 

CP-I reviewed and compared eighteen classic models of global luminous 

efficacy: six for all skies, five for clear, three for partly cloudy, and four for 

the overcast skies. A summary of these models and its main specifications 

can be seen in Table 6.  

In this work, the reviewed models were locally adapted and a new 

luminous efficacy model, described by (Eq.  18), was developed for both, all-

sky conditions, and clear, partial, and overcast skies. The experimental 

data for this study were gathered at the meteorological and radiometric 

facility of the research group SWIFT, described in Chapter 1, Table 1. The 

experimental campaign extended from 1st October, 2016 to 31st May, 2018. 

The original dataset was divided into two subsets: subset 1 (01/10/16 to 

31/03/18) fitted the coefficients of each model, and period 2 (01/04/18 to 

31/05/18) validated the calibrated models. The sky classification was done 

using the Perez’s clearness index,  𝜖 , and Perez sky’s brightness, 𝛥,  as 
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follows: Clear skies (𝜖 > 5, and 𝛥 < 0 12), Partial skies – (1 2 < 𝜖 < 5), and 

Overcast skies (𝜖 < 1 2) [57].  

Table 6.Summary of the global luminous efficacy models reviewed in this work. 

Literature reference of the original model, year, sky type classification, input 

parameters used in the models and the original place of development of the 

model[9]. 

Ref. Year Authors 
Sky 

types 

Model 

parameters 
Location 

[11] 1990 Perez et al. All 𝛥, 𝑍𝑆, 𝑊 
USA and 

Europe 

[58] 1992 Chung 

Clear 𝛼𝑆 

China Overcast 𝛼𝑆, 𝛺 

Partial 𝛼𝑆, 𝑘𝑑 

[59] 1996 Lam and Li 

Clear 𝛼𝑆, 𝑘𝑑 

China Overcast 116 2 𝑙𝑚/𝑊 

Partial 𝛼𝑆, 𝐶𝐶, 𝑘𝑑 

[60] 1998 
Munner and 

Kinghorn 
All 𝑘𝑡 UK 

[61] 2000 

Robledo and Soler 

(Model A), and 

Robledo and Soler 

(Model B) 

Clear 𝛼𝑆 Spain 

[62] 2001 Ruiz et al. All 𝛼𝑆, 𝑘𝑡 Spain 

[57] 2001 Robledo et al. Partial 𝛼𝑆, 𝛥 Spain 

  

Robledo et al. (model 

A) and Robledo et al. 

(Model B) 

Overcast   

[63] 2006 De Souza et al. Clear 𝛼𝑆 Brazil 

[64] 2011 Fraka et al. All 121 5 𝑙𝑚/𝑊 
Reunion 

Island 

[65] 2011 
Mahdavi and 

Dervishi 
All 𝑘𝑡 , 𝑇 Austria 

[66] 2013 

Chaiwiwatworakul 

and 

Chirarattananon 

All 𝑍𝑆, 𝜖 Thailand 
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The new model depends on the clearness index ( 𝑘𝑡 ) and the solar 

altitude (𝛼𝑠). The model coefficients (𝑝𝑜, 𝑝1, 𝑝2) fitted for and All-types of 

skies, and for clear, partial, and overcast skies, are shown in Table 7.  

𝐾 = 𝑝𝑜𝑒𝑥𝑝𝑝1·𝑘𝑡·sin(𝑝2· 𝛼𝑠
2)   (𝑙𝑚/𝑊)      (Eq.  18) 

Table 7. List of coefficients of the proposed model. 

Sky type Interval 𝒑𝟎 (𝒍𝒎/𝑾) 𝒑𝟏 (𝑫𝒊𝒎) 𝒑𝟑 (𝒓𝒂𝒅−𝟐) 

Clear 𝜖 > 5 and 𝛥 < 0 12 108.591 -0.111 1.031 

Partial 1 2 < 𝜖 < 5 109.152 -0.100 1.013 

Overcast 𝜖 < 1 2 111.693 -0.103 1.241 

CPO - 111.616 -0.127 1.232 

The goodness-of-fit of the models was calculated by means of the 

statistical indicators 𝑀𝐵𝐸  (%) (Mean Bias Error), and 𝑅𝑀𝑆𝐸  (%) (Root 

Mean Square Error) [64, 67], using experimental data of two additional 

months (01/10/16 and 31/03/18).  

Table 8 shows the results obtained with the testing data for the 

reviewed and proposed models. In the case of all sky conditions, the lower 

value of 𝑅𝑀𝑆𝐸  was obtained by Ruiz et al. model followed by the new 

proposal. However, the 𝑀𝐵𝐸  obtained with the proposed model was ten 

times lower than the one obtained with the Ruiz et al. model.  

 

 

 

 

 

 

 

 

 

 



Chapter 2: Results by objectives 

- 33 - 

Table 8. Summary of the results obtained with the testing data for the reviewed 

and proposed models. The reviewed model with the lowest RMSE  has been 

underlined. 

 Model 𝑹𝑴𝑺𝑬 (%) 𝑴𝑩𝑬 (%) 

A
ll

 s
k

y
 m

o
d

e
ls

 

Ruiz et al. 2.57 -0.10 

Proposed model - CPO 2.66 -0.01 

Chaiwiwatworakul and Chirarattananon 2.81 1.23 

Mahdavi and Dervishi 2.94 0.94 

Perez et al. 2.98 1.31 

Muneer and Kinghorn 3.22 0.36 

Fakra et al. 3.64 -2.52 

C
le

a
r 

S
k

y
 m

o
d

e
ls

 

Proposed model - CPO 0.66 -0.26 

Proposed model - Clear 1.40 -1.21 

Robledo and Soler (Model A) 1.53 -1.25 

Robledo and Soler (Model B) 1.65 -1.32 

Lam and Li 2.07 -0.2 

Chung 2.30 -1.84 

De Souza et al. 3.43 -3.07 

P
a

rt
ia

l 
cl

o
u

d
y
 

sk
y
 m

o
d

e
ls

 

Robledo et al. 2.43 0.51 

Proposed model - Partial 2.46 -0.09 

Chung 2.67 0.93 

Proposed model - CPO 2.80 0.27 

Lam and Li 3.44 2.25 

O
v
e
rc

a
st

 s
k

y
 m

o
d

e
ls

 

Proposed model - Overcast 2.30 0.65 

Proposed model - CPO 2.48 -0.21 

Robledo and Soler (Model A) 2.52 0.71 

Robledo and Soler (Model B) 2.65 0.86 

Chung 2.76 1.27 

Lam and Li 4.16 2.56 
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Figure  15. RMSE variation (%): Best score of the reviewed model (underlined 

model) versus the proposed model in each category, described in Table 8. 

As can be appreciated in Table 8 and Figure  15, the new model of 

global luminous efficacy adequately fitted the illuminance data, both if the 

data were clustering according to the cloudiness of skies as for all sky 

conditions. Even the all-sky proposed model fitted well when has been used 

for clear, overcast, and partial skies. Regarding the 𝑅𝑀𝑆𝐸 value, the new 

proposed model is in the first positions in the ranking for all studied cases. 

The calculated 𝑅𝑀𝑆𝐸 values are comparable to the rest of the models and, 

sometimes, including the 𝑀𝐵𝐸  value, significantly improved the 

prediction. In addition, it is observed that the 𝑀𝐵𝐸 of all models in clear 

category underestimated the global illuminance values. As conclusion, the 

proposed model proved to be effective for modeling the global illuminance 

in all-sky conditions. Therefore, CP I contributes to the partial Objective 

II: Developing new models for global and diffuse illuminance. 
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2.4. Establishment of alternative methods to sky 

scanner for CIE standard sky classification from 

the use of meteorological indices (MIs) and sky 

images (I): Benchmarking of Meteorological Indices 

(CP II) 

As it has been highlighted previously, the determination of the sky 

conditions using the CIE/ISO standard sky classification requires the use 

of sky scanner devices for obtaining the radiance and luminance pattern of 

the sky. The scarcity of these devices in the meteorological ground stations, 

encourages searching for alternative methods. A complete review of the 

proposed alternatives can be found in the work of Li et al [25]. 

A classic alternative may be the use of the meteorological indices (MIs). 

The meteorological indices are variables, usually recorded at ground 

meteorological stations or easily derivable from such variables, which 

collect characteristics of the atmosphere that can be related, to a greater or 

lesser extent, with the distribution of luminance and radiance of the sky. 

Complementary Paper II carries out an extensive review of these variables, 

defined and used, alone or in groups, by different authors to establish sky 

conditions, generally, but not exclusively, in three categories, clear, partial 

and overcast, with different objectives. Among these objectives, the most 

common is the definition of new models of illuminance and irradiance. The 

definition of the MI is carried out either through direct measurement, or it 

is calculated through mathematical expressions that use these magnitudes 

directly measured at the meteorological facilities. The interpretation of sky 

conditions, in three or more categories, is determined by numerical 

intervals of the MI. In the literature review carried out in the work, 

discrepancies were observed between different authors both in the number 

of intervals proposed for the same index, and in the numerical values of 

these intervals. In this work, the ability for sky classification of 10 

traditionally used meteorological indices has been analyzed, taking as 
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reference the CIE standard classification in a period of a complete year, 

from June 2016 to May 2017. 

One of the problems addressed in the Complementary Paper II is the 

homogenization of the sky categories in the same number of classes without 

changing the original limits established by their authors. This follows a 

similar approach to that in the work of Gueymard et al. [68] where the 

authors compared different MI models in an attempt to classify clear skies. 

Different intervals were tested, in order to mitigate the semantic effects 

and to maximize MI performance, keeping the class limits that the 

respective authors set in their original works. Figure  16 shows the possible 

combinations of the limits of the intervals for the different MIs studied, 

keeping the ordinal relationship between cloudy, partial, and clear-sky 

conditions. For some of the MIs, no adaptation was needed. 

 

Figure  16. Interval adaptation procedure of the original MIs [69]. 

When more than three intervals were defined in the original work, all 

possible combinations for merging the intervals were tested. The adapted 

interval is the one that maximized the classification metrics for each MI. 

The original and the adapted values of the intervals selected by each index 



Chapter 2: Results by objectives 

- 37 - 

are summarized in Table 9. The MIs are calculated using global horizontal 

irradiance, 𝑅𝑎𝐺𝐻, diffuse horizontal irradiance, 𝑅𝑎𝐷𝐻, and direct normal 

irradiance, 𝑅𝑎𝐵𝑁.  

Table 9. Summary of the MIs used to classify the skies, the original intervals used 

to define the clear, partial and cloudy sky conditions and the adapted ones used in 

this work [69]. 

Symbol MI Original Adapted 

𝑘𝑑 
Diffuse 

fraction 

[70] 

(0.00, 0.33]      clear 

(0.33, 0.8)        partial 

[0.8, 1)             cloudy 

 

(0.00, 0.33]    clear 

(0.33, 0.8)      partial 

[0.8, 1)           cloudy 

 

𝑘𝑏 
Direct 

fraction 
 

[0.66, 1)         clear 

(0.33, 0.66)    partial 

(0, 0.33]         cloudy 

𝑘𝑡 
Clearness 

Index 

[71] 

[0.65, 1)          clear 

(0.35, 0.65)     partial 

(0, 0.35]          cloudy 

 

[0.65, 1)          clear 

(0.65, 0.35)     partial 

(0, 0.35]          cloudy 

𝐹 
Clearness 

Function 

[72] 

[0.61, 1.00)     completely clear 

[0.51, 0.61)     clear 

[0.18, 0.51)     partial 

[0.00, 0,18)     completely cloudy 

 

[0.51, 1.00)     clear 

[0.18, 0.51)     partial 

(0.00, 0.18)     cloudy 

𝑘𝑘 
Batlles 

Clearness 

Index [73] 

𝑘𝑡 > 𝑘𝑡𝑡

𝑘𝑑 < 𝑘𝑘
           clear 

𝑘𝑡 > 𝑘𝑡𝑡

𝑘𝑑 < 𝑘𝑘
           clear 

𝐹𝐾 

Klucher 

Clearness 

Index [74] 

 

 

[0.61, 1.00)     completely clear 

[0.51, 0.61)     clear 

[0.18, 0.51)     partial 

[0.00, 0,18)     completely cloudy 

 

[0.51, 1.00)     clear 

[0.18, 0.51)     partial 

(0.00, 0.18)     cloudy 

𝜖 

Perez 

sky’s 

brightness 

[11, 75] 

 

[6.20, )          completely clear 

[2.80, 6.20)      clear 

[1.50, 2.80)      partial 

[1.065, 1.50)    cloudy 

[1.00,1.065)     completely cloudy 

 

[2.4, )           clear 

[1.50, 2.4)       partial 

[1.00, 1.50)     cloudy 

𝛥 

Perez 

sky’s 

brightness 

[11, 75] 

 

[0.48, )           very bright 

[0.30, 0.48)       bright 

[0.10, 0.30)       partial 

[0.00, 0.10)       very dark 

 

[0.30, )          clear 

[0.10, 0.30)     partial 

[0.00, 0.10)     cloudly 

𝑂𝐹𝑃 

Original 

Nebulosity 

Index 

[76] 

[0.90, 1.00]       blue sky 

[0.70, 0.90)       partial 

[0.20, 0.70)       partially blue 

[0.05, 0.20)       partially cloudy 

[0.00, 0.05)       totally cloudy 

[0.70, 1.00]      clear 

[0.05, 0.70)      partial 

[0.00, 0.05)      cloudy 

𝑆𝑖 

 

 

Igawa 

Sky Index 

[12] 

 

[1.70, )            clear 

[1.50, 1.70)        almost clear 

[0.60, 1.50)        partially clear 

[0.30, 0.60)        partially cloudy 

[-, 0.30]           totally cloudy 

[1.70, )          clear 

(0.30, 1.70)      partial 

[-, 0.30]         cloudy 



 

-38- 

Confusion matrices were used for measuring the performance of 

classification algorithms. Comparing the prediction with reality, there are 

four possible scenarios: the predicted positive will agree with the actual one 

(True Positive or TP), the predicted positive will not agree with the actual 

one (False Positive or FP), the predicted negative will agree with the actual 

one (True Negative or TN) and the predicted negative will not agree with 

the real one (False Negative or FN). Each row of the matrix represents the 

instances of the predicted class, while each column represents instances of 

the reference class [77]. The matrix was so-named because it easily 

visualizes whether the algorithm is confusing or mislabeling two classes. 

In the present work, the reference labels are established by the CIE 

methodology for sky classification and the predicted labels by the MIs. 

Hence, the latter are the algorithms or predictive models under analysis.  

As mentioned above, the CIE defines fifteen types of sky that can be 

grouped into three types of cloudiness: clear, partial, or cloudy. The MIs 

distinguish between the features in an attempt to define these three 

classes. This task can be analyzed as a multiclass problem decomposed in 

a multiple dichotomous classification where each cloudiness categorization 

is predicted against the other remaining ones (Figure  17). At the end of 

the process, the dichotomous classification of the MIs is evaluated using 

several performance ratings, Accuracy, Jaccard Index, Cohen Kappa, and 

Matthews, whose brief description are shown in Table 10. 
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Figure  17. Multiclass to dichotomous transformation [69]. 

Table 10. Brief description of the goodness indicators. 

Goodness 

indicator 
Description Formulation 

Accuracy 

Ratio of correct 

predictions amongst 

all the cases 

evaluated. 

𝐴 =
𝑇𝑃 + 𝑇𝑁

𝑁 
 

Jaccard 

Index 

Ratio of correct 

predictions amongst 

all the cases 

evaluated. 

𝐽𝐼 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 
 

Cohen 

Kappa 

It reflects the 

possibility that the 

algorithm agrees with 

the reference by 

chance. 

𝜅 =
𝐴 −  𝑝𝑒

1 − 𝑝𝑒
 

𝑝𝑒 is the expected agreement by chance. 𝑁 is the 

total number of cases (𝑁 =  𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 +

𝐹𝑁), and 𝑝𝑒 =  
(𝑇𝑃+𝐹𝑁)( 𝑇𝑃+𝐹𝑁)+ (𝑇𝑁+𝐹𝑃)( 𝑇𝑁+𝐹𝑁)

𝑁2  

Matthews 

Correlation coefficient 

between the reference 

and the predicted 

classification. 

𝑀 =
𝑇𝑃 · 𝑇𝑁 −  𝐹𝑃 · 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑁)( 𝑇𝑃 + 𝐹𝑃) (𝑇𝑁 + 𝐹𝑃)( 𝑇𝑁 + 𝐹𝑁)
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All of the metrics are attempts to sum up the confusion matrix 

associated with the algorithm using only one number. Inevitably, the 

process is associated with a loss of information, because a four dimensional 

matrix is collapsed into one number. Each dimension attempts to highlight 

one aspect of interest. However, they are correlated in some way because 

the starting data are all the same. In fact, the ranking offered by each one 

is very similar. 

The different rankings produced by all the metrics are combined to 

arrive at the best MI for classifying sky cloudiness. At the end of the 

process, four rankings are thus obtained, one per confusion matrix. The one 

designated as best model holds the best positions in all of them. So, by using 

all of them simultaneously, the deficiencies of the metric and its biases are 

avoided. 

Individual analysis of sky classification with the MIs shows that 

practically no index is able to identify the high percentage of clear skies 

indicated by the CIE classification. The Klucher clearness index (𝐹𝐾) is the 

one that identifies a higher percentage of clear skies, and on the opposite 

extreme, the Batlles clearness index identifies practically all cases as 

overcast. , 𝑆𝑖, 𝑂𝐹𝑃, and 𝐹, identify most of the cases as partial cloudiness. 

Table 11 summarizes the average ranking obtained by the MIs. 𝜖 was 

in first place in the Jaccard Index, 𝜅 and Matthews evaluations. It was only 

surpassed by the 𝐹𝐾 index in the accuracy ranking. Bearing in mind the 

similarity of the numerical values obtained by 𝜖, 𝐹𝐾  and 𝑂𝐹𝑃  in the 

evaluation indices, these three MIs may be identified as the best classifiers 

of sky cloudiness. When studying only the capacity of the MIs to identify 

clear skies, 𝐹𝐾 obtained the first position in all the indicators. None of the 

MIs under analysis have simultaneously shown good results in the rating 

variables, for the identification of either partial or cloudy skies. 
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Table 11. Ranking average summary [69]. 

- 𝒌𝒅 𝒌𝒃 𝒌𝒕 𝑭 𝒌𝒌 𝑭𝑲 𝝐 𝜟 𝑶𝑭𝑷 𝑺𝒊 

Accuracy 5 7 4 9 10 1 2 8 3 6 

Jaccard 5 7 4 9 10 2 1 8 3 6 

Cohen Kappa 5 7 4 8 9 2 1 10 3 6 

Matthews 5 7 6 9 10 3 1 8 2 4 

Total 5 7 4 9 10 2 1 8 3 6 

As main conclusions of the work, the metrics for the cloudiness 

classification have shown that the performance of the MIs may, at best, be 

considered as “fair”. Classification accuracy reached  alues of o er 70% for 

cloudy skies. However, this metric can lead to misunderstandings, as it 

accounts for the correct classification of true positives and true negatives. 

As Table 11 shows, the best MI for the sky classification was 𝜖 followed 

closely by 𝐹𝐾 and 𝑂𝐹𝑃 indices. 𝑘𝑘  and 𝐹 showed the worst results for the 

classification of cloudiness of the skies into three categories. No correlation 

was observed between the mathematical complexity of the MIs or the 

number of input parameters and the classification result of the MIs. As can 

be observed, the original definition of the intervals is one of the main 

factors that justifies the difference in the performance of the MIs. The 

experimental data of the present study were taken from a different location 

other than the one used in the original studies for the definition of each MI. 

However, if subtle language differences are neglected, the definition of 

"clear" or "cloudy" sky should be independent of location. Attending to the 

metrics, regardless of the accuracy, the results were quite similar. The 

average accuracy almost reached 70 % in 𝐹𝐾, and was above 50 % in all the 

MIs. However, this result is overoptimistic because of the accuracy 

paradox. The average value was below 33% for the Jaccard Index and below 

25% for Cohen’s Kappa and  atthews correlation coefficient.  

As demonstrated, the isolated use of the MIs would not be advisable 

for the cloudiness skies classification. 
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2.5. Establishment of alternative methods to sky 

scanner for CIE standard sky classification from 

the use of meteorological indices (MIs) and sky 

images (II): Feature Selection for CIE standard sky 

classification (Paper III) 

CP-II focused on the lack of homogeneity in the definition of sky 

categories by MI ranges and concluded that the performance of the MIs, 

each individually, for sky classification using CIE standard as reference, 

may, at best, be considered as “fair”, e en in a reduced classification with 

only three sky types: the clear-partial-overcast (CPO) classification. Paper 

III studies the possibility to combine various MIs to improve the sky 

classification through meteorological indices. For that, a previous and 

detailed study on comparing and analyzing the information that each MI 

offers, was mandatory to remove irrelevant and redundant information for 

the task of sky types of definition [78].  

Machine learning algorithms were used for this task. If the dataset has 

enough samples, supervised machine learning (SML) tools can identify 

patterns and relationships between inputs and outputs. So far, SML 

techniques have shown great success by the scientific community for sky 

classification, as Artificial Neural Networks (ANNs) [38] or classification 

trees [79]. 

The workflow of the SML tools is described in Figure  18. Firstly, the 

quality control follows a process of filtering and analysis. Secondly, a 

Feature Selection (FS) procedure detects irrelevant or less important 

features. Its objective is to remove the inputs that contribute little or 

nothing to the SML task. Following acceptable FS, the algorithm is trained 

using part of the input data set (training set), typically 80% of the total, 

using the remaining 20% for validation tests. Training set data and test set 

data are exchanged as many times as necessary, until the algorithm is 

considered validated. 
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FS is one of the core concepts of ML that will impact on the 

performance of the developed model, improving its precision and reducing 

its complexity and overfitting as well as its runtime. 

 

Figure  18. Workflow of Supervised Machine-Learning tool [27]. 

The main objective of this study is to determine, through a FS 

procedure, the most suitable MIs and their precise number for the 

optimization of the sky classification algorithms. Forty-three MIs were 

included (Table 12), and calculated from half-hourly experimental data 

records collected at Burgos, Spain, between September 2016 and December 

2019. The following FS criteria were selected: Pearson [80], Permutation 

Importance [81], Recursive Feature Elimination [82], and Boruta [83]. 

The study reports an extensive review of the MIs that define different 

sky conditions and features that are suitable for sky classification. 

Structured and rigorous FS procedures can determine the usefulness of the 

information in these indices, with a high degree of success, for the problem 

of sky classification, the informative equivalence between some of the MIs, 

and the number of MIs that may be needed for sky classification in line 

with the CIE standard. The classification tree algorithm was selected, 

above other ML classification algorithms, due to the transparency of the 

results it can obtain. The classification tree produces a diagram that can 

be more easily understood than those produced by other ML techniques 

such as, Support Vector Machines, Neural Networks, Random Forest, and 

Gradient Boosting, traditionally known as “black boxes”. 
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Table 12. Definition of the 43 MIs reviewed as candidates for sky classification. 𝐿0 

is the Luminous solar constant (133.8 klx) and 𝐼𝑆𝐶  is the solar constant (1361.1 

W/m2) [27]. 

Ratio Zenith 

Illuminance 

to horizontal 

diffuse 

Illuminance 

Ratio Global 

Illuminance 

Ratio Diffuse 

Illuminance 

Luminous 

Turbidity 

index 

Vertical Sky 

Component 

𝐿𝐸𝑅𝑇 =
𝐿𝑍

𝐿𝑥𝐷𝐻
 𝐶1 =

𝐿𝑥𝐺𝐻

𝐿𝑂ℎ

 𝐶2 =
𝐿𝑥𝐷𝐻

𝐿𝑂ℎ

 

𝑡𝑣

=
𝐿𝑛 (

𝐿𝑂ℎ

𝐿𝑥𝐵𝐻
)

𝐴𝑉𝑀𝑉

 
𝑉𝑆𝐶 =  

𝐿𝑥𝐷𝑉

𝐿𝑥𝐷𝐻
 

Normalized 
Global 
Illuminance 

Normalized 
Beam 
Illuminance 

Normalized 
Diffuse 
Illuminance 

Cloudless Index Igawa’s Sky Index 

𝐸𝑉𝐺𝑀

= 𝑀𝑉  
𝐿𝑥𝐺𝐻

𝐿0

 

𝐸𝑉𝑆𝑀

= 𝑀𝑉  
𝐿𝑥𝐵𝐻

𝐿0

 

𝐸𝑉𝐷𝑀

= 𝑀𝑉  
𝐿𝑥𝐷𝐻

𝐿0

 

𝐶𝑙𝑒

=
1 − 𝑘𝑑

1 − 𝐶𝑒𝑠(𝑀)
 

𝑆𝑖

=
𝑅𝑎𝐺𝐻

0 84
𝐼𝑆𝐶

𝑀𝑣
 𝑒−0 0675 𝑀𝑣

+ √𝐶𝑙𝑒 

Direct Fraction Cloud Cover 
Illuminance Cloud 
Ratio 

Irradiance 
Cloud Ratio 

Standard Cloud Ratio 

𝑘𝑏 =  
𝑅𝑎𝐵𝐻

𝑅𝑎𝐺𝐻
 𝐶𝐶(% 𝐶𝑙𝑜𝑢𝑑𝑠) 

𝐶𝑉

=
𝐿𝑥𝐷𝐻

𝐿𝑥𝐷𝐻 + 𝐿𝑥𝐵𝐻
 

𝐶𝑒

=
𝑅𝑎𝐷𝐻

𝑅𝑎𝐷𝐻 + 𝑅𝑎𝐵𝐻
 

𝐶𝑒𝑠 =  0 01299 
+ 0 07698 𝑀𝑉

−  0 003857 𝑀𝑉
2

+ 0 0001054  𝑀𝑉
3

− 0 000001031 𝑀𝑉
4 

Umemiya’s 
Cloud Ratio 

Relative 
Heaviness 

Clear Sky Index Clearness Index 
Zenith Angle 
Independent 
Clearness Index 

𝐶𝐿𝐷𝑉 =
𝐿𝑥𝐷𝐻

𝐿𝑥𝐺𝐻
 𝛺 =  

𝐿𝑥𝐺𝐻

𝑆𝑖𝑛 𝛼𝑠

 

𝑘𝐶 = 
𝐿𝑥𝐺𝐻

0 84
𝐼𝑆𝐶

𝑀𝑣
 𝑒−0 0675 𝑀𝑣

 𝑘𝑡 =  
𝑅𝑎𝐺𝐻

𝐼𝑂 𝑆𝑖𝑛 𝛼𝑠

 

𝑘𝑡2

=  𝑘𝑡(1 031 𝑒
−

1 4
0 9+9 4𝑀𝑉 

+0 1)−1 

Luminous 
Efficacy 

Perez sky’s 
brightness 

Perez’s Clear sky 
index 

Original 
Perraudeau’s 
Nebulosity 
Index 

Perraudeau’s 
Nebulosity Index 

𝐾 =  
𝐿𝑥𝐺𝐻

𝑅𝑎𝐺𝐻
 

𝛥

=  
𝑅𝑎𝐷𝐻 𝑀𝑣

𝐼𝑠𝑐𝜀𝑜 𝑠𝑖𝑛 𝛼𝑠

 

𝜖 = 

(
(𝑅𝑎𝐷𝐻 + 𝑅𝑎𝐵𝐻 )

𝑅𝑎𝐷𝐻
 

+ 1 04 𝑍3)/(1
+ 1 04 𝑍3) 

 

𝑂𝐹𝑃
= (1 − 𝑘𝐷)/  

(1
− 𝐸𝑐𝑙𝑒𝑎𝑟/(𝐸𝑐𝑙𝑒𝑎𝑟

+ 𝑅𝑎𝐵𝑁)) 
 

𝐹𝑃 = 
(1 − 𝑘𝐷)/    

(1 − 0 12037
· (𝑆𝑖𝑛 𝑍𝑆 )−0 82 ) 

 

Klucher’s 
Clearness Index 

𝑹𝒂𝑩𝑯, 𝑹𝒂𝑫𝑯, 
𝑹𝒂𝑮𝑯 

𝑹𝒂𝑮𝑽𝑺, 𝑳𝒙𝑮𝑯 
Optical Mass 

Scattering 
Angle 

Turbidity 

𝐹𝐾 = 1 − 𝑘𝐷
2  -  

𝑀𝑣

= (𝑠𝑖𝑛 𝛼𝑠 
+ 0 50572( 𝛼𝑠

+ 6 07995)−1 6364 

𝜒 = 
𝑎𝑟𝑐𝑜𝑠(𝑐𝑜𝑠 𝑍𝑠 

𝑐𝑜𝑠 𝑍𝑃

+ 𝑠𝑖𝑛 𝑍𝑠 𝑠𝑖𝑛 𝑍𝑃 
𝑐𝑜𝑠|𝜙𝑃 − 𝜙𝑠|)  

𝑇𝑈𝑅𝑉

=  
1 + 0 0045 𝑀𝑉

0 1 𝑀𝑉

 

 𝐿𝑛 (
𝐿0

𝐿𝑥𝐵𝐻
) 

𝑻, 𝑹𝑯, 𝑾𝑺,  𝑳𝒛, 𝜶𝒔 Diffuse fraction Clearness Function 
Modelled direct 
solar irradiance 

Permeability 

- 𝑘𝑑 =
𝑅𝑎𝐷𝐻

𝑅𝑎𝐺𝐻
 

𝐹

=  
𝑅𝑎𝐺𝐻 − 𝑅𝑎𝐵𝐻

𝐼𝑠𝑐𝜀𝑜 sin 𝛼𝑠

 

𝑃𝑒 = 
𝑅𝑎𝐺𝐻 − 𝑅𝑎𝐷𝐻

𝑠𝑖𝑛 (𝛼𝑠)
 𝑃𝐸𝑅𝑉 = 𝑀𝑉√

𝐿𝑥𝐵𝐻

𝐿0
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There are two different types of FS algorithms. If the FS works without 

any clustering algorithms, that means, only with a statistical index, the FS 

typology is known as Filter Methods (FM). Otherwise, when the process 

relies on clustering algorithms, the FS is a Wrapper Method (WM). 

Consequently, FM is independent of the SML afterward [84, 85]. On the 

other hand, WM executes machine learning to generate a ranking and 

perform a global evaluation of the entire set. Therefore, the score is not 

universal and does not suit any other ML algorithm [86]. It means that 

WM will generate for each ML algorithm a different ranking. A brief 

description of the implemented FS methods is shown in Table 13. 

Table 13. Summary of several FS by category. (UR: Universal results). 

 Method Short Description UR 

FM 

Pearson 

correlation 

criterion 

(P) 

A statistical score, a near 0 value implies 

a weak or null correlation between two 

variables: 𝑋𝑖  and 𝑋𝑗 . In contrast, a near 

value to 1 or -1 implies a strong 

correlation: 𝑟(𝑋𝑖 , 𝑋𝑗)  

Yes 

WM 

Permutation 

importance 

(PI) 

It analyzes how the score of the prediction 

model decreases when the data of a single 

variable is randomly permuted 

(generating random noise). 

No 

Recursive 

feature 

elimination 

(RFE) 

It removes the weakest features until a 

specified number of variables is reached. 
No 

Boruta 

(BOR) 

It determines if a feature is a truly 

important attribute but does not aim to 

avoid redundant information. 

No 

Using the FS methods described above, the MIs to be included in the 

classification algorithm have been selected from the variables summarized 

in Table 14. After this, one decision tree with each of the set of  I’s selected 

by each of the FS methods was programmed. The analysis of the 
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performance of the decision tree is carried out through confusion matrices, 

using the goodness indices Precision (𝑃𝑟), Recall (𝑅𝑒), and 𝑓1 factor (𝑓1), 

defined in equations (Eq.19) to  (Eq.21), to analyze the performance of 

algorithm in the classification task. 𝑃𝑟 is the probability that a positive 

prediction was correct. 𝑅𝑒 is the percentage of correctly detected positive 

cases. Both indices are independent, and 𝑓1 factor merges them. 

𝑃𝑟 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
     (Eq.19) 

𝑅𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
   (Eq.20) 

𝑓1 =
2

1/𝑃𝑟 + 1/𝑅𝑒
     (Eq.21) 

Table 14. Summary of the MIs selected by each one of the FS algorithms [27]. 

Feature 

Selection 
MI selected Number 

P 𝐹𝑃, 𝐶𝐶 2 

PI 𝐶𝐶, 𝐶𝐿𝐷𝑉, 𝐹𝑃, 𝐿𝑧, 𝑃𝐸𝑅𝑉, 𝑅𝑎𝐺𝑉𝑆, 𝑇𝑈𝑅𝑉, 𝑉𝑆𝐶, 𝑘𝑑 , 𝑘𝑡 , 𝑡𝑣 11 

RFE 𝐶𝐶, 𝐿𝑥𝐺𝐻, 𝑉𝑆𝐶, 𝑊𝑆, 𝑂𝐹𝑃, 𝐶𝑙𝑒 , 𝑘𝑡 , 𝐾, 𝜒 9 

BOR 

𝐶1, 𝐶2, 𝐶𝐶, 𝐶𝐿𝐷𝑉, 𝐶𝑒 , 𝜒, 𝐶𝑙𝑒, 𝐶𝑣, 𝜖, 𝐸𝑉𝐷𝑀, 𝐸𝑉𝐺𝑀, 𝐸𝑉𝑆𝑀 

𝐹, 𝐹𝐾, 𝐹𝑃, 𝐿𝐸𝑅𝑇, 𝐿𝑧, 𝑂𝐹𝑃, 𝛺, 𝑃𝐸𝑅𝑉, 𝑃𝑒 , 𝑅𝑎𝐵𝐻, 𝑅𝑎𝐷𝐻 

𝑅𝑎𝐺𝑉𝑆, 𝛥, 𝑆𝑖 , 𝑇𝑈𝑅𝑉, 𝑉𝑆𝐶, 𝑘𝑏 , 𝑘𝑐 , 𝑘𝑑 , 𝑘𝑡 , 𝑘𝑡2, 𝑡𝑣 

34 

The classification trees for CIE Standard Sky Classification from the 

MIs selected by Pearson, Permutation Importance, RFE and Boruta FS 

procedures are shown in Figures: Figure  19-Figure  22. Starting in the 

main left node, if the condition is met, the path of the upper branch is 

followed and, if not, the path followed is the one indicated by the lower 

branch. Evaluating each node consecutively, the sky conditions are 

obtained. The number inside the nodes represents the number of samples 

inside each partition. The number of binary partitions or levels of the 

classification tree is a previously set parameter. In this work all the 

classification trees have four levels. An increased number of levels might 
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increase the precision of the classification algorithm in the same way as 

complexity. The starting MI and the number of levels of the classification 

tree were selected following the Gini [87] and the Entropy [88] criteria.  

  

  

Figure  19. CIE standard sky classification 

tree (MIs selected with the Pearson FS 

method) [27]. 

Figure  20. CIE standard sky classification 

tree (MIs selected with the PI FS method) 

[27]. 

Figure  21. CIE standard sky classification 

tree (MIs selected with the RFE FS 

method) [28]. 

Figure  22. CIE standard sky classification 

tree. (MIs selected with the Boruta FS 

method) [27]. 
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𝐹𝑃  and 𝐶𝐶  are MIs selected by the Pearson FS method for the 

classification tree (Figure  19). Both MIs are related to the cloud conditions, 

through the diffuse horizontal fraction (ratio diffuse horizontal irradiation 

to global horizontal irradiation) and the percentage of sky covered by 

clouds, respectively. The CIE Standard decision tree obtained from the 

variables selected by the Pearson FS method identifies the clear sky type 

by one of these cases: 𝑎) 𝐹𝑃 > 0 51 , and 𝐶𝐶 ≥ 0 53;  𝑏) 𝐹𝑃 > 0 78; 𝑐) 𝐹𝑃 ≤

0 51 and 𝐶𝐶 ≤ 0 66   

Although the PI FS methods selected 11 MIs for the CIE sky 

classification (Figure  20), only three were used in the four-level 

classification tree: 𝐹𝑃, 𝐶𝐶,  and 𝑉𝑆𝐶  The Vertical Sky Component,  𝑉𝑆𝐶, 

linked the classification to the daylighting. The classification tree obtained 

with the MIs selected by the RFE FS method (Figure  21) started with the 

𝐶𝐶, a variable which directly classified the skies as clear if < 61.7%. On the 

second and third le els of the classification tree, original Perraudeau’s 

Index, 𝑂𝐹𝑃, and 𝑉𝑆𝐶, were evaluated. At the last level, the MI selected to 

fit the classification was luminous efficacy, 𝐾. Again, two of the MIs were 

related to daylighting ( 𝑉𝑆𝐶, 𝐾)  and 𝑂𝐹𝑃 and 𝐶𝐶  were related to cloud 

coverage. Boruta FS methods selected 34 MIs for the CIE standard sky 

classification (Figure  22), but four were necessary to build the four-level 

classification tree. The sky classification started by evaluating 

Perraudeau’s nebulosity index, 𝐹𝑃. At the second level, cloud cover, 𝐶𝐶, and 

the vertical sky component, 𝑉𝑆𝐶, were introduced. Finally, the scattering 

angle, 𝜒, a geometrical variable, was investigated. 

Figure  23 shows the results of the 𝑃𝑟, 𝑅𝑒, and 𝑓1 metrics obtained for 

each of the decision trees shown in figures (Figure  19-Figure  22) for CIE 

standard cloudiness classification. The dispersion of the value of the 

metrics varies with the sky conditions. For clear conditions, 𝑓1 ranged from 

65% to 87% from Pearson and Boruta method, respectively, but all indices 

exceeded 65%. The case of partial skies identification was the worst overall 

as the values of all indices felt between 55-70%. The irregularity of partial 

skies causes high variability in the MIs valued, and the dependency of 
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cloud cover with respect to the Sun might explain this fact for partially 

covered conditions. Specifically, the RFE method yielded the closest values 

of the three metrics. In addition, the weighted-average 𝑓1  of the four 

classification trees yielded results in the range 74-77%, in which the 

highest score corresponds to the RFE method, quite close to the BOR and 

PI FS procedure with similar 𝑓1. The Pearson method, which only selected 

2 MIs, showed the lowest 𝑓1 value. Nevertheless, the results highlighted 

no significant advantages to the proposal of the others FS models. The best 

results for all metrics were obtained in overcast sky conditions, with 𝑃𝑟 and 

𝑅𝑒 above 85% and reaching 90% in the case of the classification tree that 

applied the four MIs selected for the RFE method (𝐶𝐶, 𝑂𝐹𝑃, 𝑉𝑆𝐶, 𝐾). The 

classification trees that used the MIs selected by both PI (𝐹𝑃, 𝑉𝑆𝐶, 𝐶𝐶), and 

BOR (𝐹𝑃, 𝑉𝑆𝐶, 𝐶𝐶, 𝜒) obtained the same results. The simplest classification 

tree, from the two MIs selected by the P method, (𝐶𝐶, 𝐹𝑃), yielded worse 𝑓1 

metrics.  

 

Figure  23. Precision, Recall, and f1 indices calculated for Clear-Partial-Overcast 

classification each classification tree versus CIE standard. 

This study has highlighted the usefulness of the FS procedure for 

adequate determination of MIs for sky classification in accordance with the 

CIE Standard classification, as an alternative to the use of sky-scanner 
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devices. The maximum number of MIs can be identified with FS for use as 

an input for the ML algorithm, avoiding the introduction of redundant and 

useless information. The FS results, processed in a classification tree to 

test their validity, confirmed that the intervals of definition of the MIs for 

each sky type were close to the intervals that were established in each 

study for the individual use of each MI. 
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2.6. Establishment of alternative methods to sky 

scanner for CIE standard sky classification from 

the use of meteorological indices (MIs) and sky 

images (III): Pixel-Based Image Processing for CIE 

Standard Sky Classification through ANN 

A new alternative to sky scanner devices is proposed in Paper IV: the 

use of sky images and Artificial Neural Networks (ANNs). Currently, high 

interest has been expressed in calibrated sky luminance maps for sky 

classification and cloud detection [89–92]. A digital camera equipped with 

a fisheye lens can map at a higher resolution than commercial sky 

scanners, and High Dynamic Range (HDR) images can capture the full sky 

luminance range [93]. Paper IV studies the use of digital sky images for the 

classification of sky conditions in accordance with the CIE Standard 

General Sky Guide and analyzes adequate image-processing methods that 

highlight key image information before applying ANN classification 

algorithms.  

Image-processing methods can help to improve the efficiency of ANN 

for sky classification, overcoming misclassification due to cloud cover and 

simplifying the ANN structure. Some studies have focused on color space, 

i.e., the RGB (red, green, and blue), as basic standard for computer images, 

and the Hue Saturation Value (HSV), which adapts the image to the color 

perception of the human eye. The focus of others has been on the 

modification and combination of the original monochromatic channels, 

known as the spectral features. A third alternative, texture filters, uses the 

gray distribution of pixels and their spatial neighborhoods to identify 

objects and regions. Table 15 classifies, into the categories Color Space, 

Spectral and Texture feature, all the reviewed image-processing methods. 

Figure  24 contextualizes these methods of image processing and shows an 

example of the results of the application of these methods applied to images 

of sky conditions classified as clear, partial, and overcast, following the CIE 

taxonomy. 
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Table 15. Summary of pixel image-processing methods [28]. 

Type Name Purpose Formulation Ref. 
C

o
lo

r 
S

p
a
ce

 

RGB 
Image visualization based on 

primary colors 

R: Red channel. 

G: Green channel. 

B: Blue channel. [94] 

R, G, B* R: Red channel; G: Green channel; B: Blue channel. 

GS 

Gray Scale. Gray-Scale 

intensity image (calculated 

from the RGB image) 

rgb2gray1 [95] 

HSV 

Image visualization based on 

the perceptions of the human 

eye  

H: Hue channel. 

S: Saturation channel. 

V: Value channel. 
[89] 

H, S, V* H: Hue channel; S: Saturation channel; V: Value channel. 

S
p

e
ct

ra
l 

fe
a
tu

re
 

RAS 
Image processing for removing 

atmospheric scattering 

𝑅𝐴𝑆 =  𝑌 − (𝐿 − 𝐷) 

𝐿 = max(𝑅, 𝐺, 𝐵) 

bright. 

𝐷 =  min (𝑅, 𝐺, 𝐵) dark 

of the channel; 

𝑌 =  0 299 ∙ 𝑅 + 

0 587 ∙ 𝐺 +  0 114 ∙ 𝐵 

[96, 97] 

Y, L, D* 
Y: Panchromatic channel; L: Bright channel; D: Dark 

channel 

RBR 
Background due to atmospheric 

scattering (Red Blue Ratio). 
𝑅𝐵𝑅 = 𝑅/𝐵 [97] 

RBD 
Difference between Red and 

Blue channels. 
𝑅𝐵𝐷 =  𝑅 − 𝐵 [98] 

NRBR 

Blueness of the sky. High 

robustness to noise 

(Normalized Red-Blue Ratio). 

𝑁𝑅𝐵𝑅 =
𝑅 − 𝐵

𝐵 + 𝑅
 [98] 

C1 
Combination of RBR, RBD and 

NRBR channels. 
𝑅𝐵𝑅 − 𝑅𝐵𝐷 − 𝑁𝑅𝐵𝑅 [90] 

ARGD 

Reduce sunlight interference. 

(Adjusted Red Green 

Difference) 

𝐴𝑅𝐺𝐷 = 𝑘 · 𝑅 − 𝐺 

𝑘 = 1 7  (weight of the 

red channel) 

[99] 

C2 
Combination of RBR, ARGD 

and NRBR channels. 
𝑅𝐵𝑅 − 𝑅𝐵𝐷 − 𝐴𝑅𝐺𝐷 [99] 

T
e
x
tu

re
 f

e
a
tu

re
 LR 

For distinguishing edges and 

contours (Local Range) 
Rangefilt1 

[100] 
STD Obtained from the standard 

deviation in each neighborhood.  
Stdfilt1 

EM Randomness of the image 

(Entropy Matrix). 
Entropyfilt1 

1 Matlab function ([100]), * Subchanels 
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Figure  24. Results of the image-processing methods applied to clear, partial, and 

overcast CIE standard sky types [28]. 

The workflow followed for the analysis of image-processing algorithms 

for CIE standard sky classification is described in Figure  25. Firstly, 

experimental data acquisition took place at the meteorological station 

described in Table 1, from November 1, 2016, to March 31, 2020. 1,500 

images were selected from the experimental dataset (more than 80,000 sky 

images), 100 from each CIE sky category, which were characterized by 

greater concordance with the CIE pattern for that category. The 

experimental dataset was therefore composed of one hundred sky images 

cataloged as CIE standard sky categories using the methodology described 

in Paper I. This sky classification was used as a reference for the sky 

conditions. Secondly, in the step of Data Processing, the original sky 

images were processed using the twenty-two different image processing 

methods chosen for the study and summarized in Table 15. Finally, in the 

step of ANN, the image set modified by each image-processing algorithm, 

was introduced in ANN for CIE Standard Sky Classification. 
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Figure  25. Workflow for image processing. Example with RGB space [28]. 

ANNs classification models serve to classify input information into 

certain categories or targets. A Supervised Machine Learning (SML) 

neural network is required for CIE standard sky classification when the 

sky types are previously known [29]. The model works efficiently when the 

prediction matches the target. Modelled on the biological concept of 

neurons, ANN is a very powerful technique for classification problems. 

Figure  26 shows a conventional ANN structure, which consists of an the 

input layer, a set of several hidden layers, and the output layer. 

 

Figure  26. ANN system architecture [28]. 
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The information from the neurons of the input layer (𝑋𝑖
0) crosses the 

hidden layers (one in this work), following unidirectional connections, to 

the output layer that has one neuron (𝑋𝑖
2′ ) per target. Each processing 

center or neuron is adjusted to the other neurons through an interactive 

process, using (Eq.  22). The Scaled Conjugate Gradient method (SCG) 

[101] fits the weights for each iteration. 

𝑋𝑖
𝑛 = 𝑊𝑛𝑋𝑛−1 + 𝐵 (Eq.  22) 

Where 𝑊𝑛 is the weighting matrix, 𝑋𝑛−1 are the input variables, and 𝐵 

is the Bias. 𝑋𝑖
𝑛 is the input of the activation function. The neuron generates 

the output, 𝑋𝑖
𝑛′, through the activation function, 𝑓(𝑋𝑖

𝑛), (Eq.  23), given by 

the hyperbolic tangent sigmoid transfer function in this study, as shown in 

[102]. 

𝑋𝑖
𝑛′ =  𝑓(𝑋𝑖

𝑛) =
2

1 + exp (−2 · 𝑋𝑖
𝑛)

− 1 (Eq.  23) 

SML requires three datasets: training, validation, and test datasets. 

The training group is used to determine the weighted matrix and the bias 

in an iterative process. The training is over when the results of the 

performance of the resulting model, calculated using the validation set, 

reach the desired quality. The test data group is used to calculate the 

performance of the model. Random dataset division is crucial to achieve a 

reliable performance. A conventional training dataset is randomly selected 

and consists of 70% of the total data, while the validation set and the test 

set each represent 15%, respectively. 

There is no standardized procedure for establishing the most effective 

number of neurons and hidden layers [103], so experimentation or tuning 

is needed. In this study, several trials were performed in which the number 

of neurons (1–100) was varied, searching for the best accuracy of the ANN. 

The accuracy index, 𝐴, is defined as (Eq.  24). 

𝐴 =
𝑇𝑃 + 𝑇𝑁

𝑁 
 (Eq.  24) 
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Figure  27 shows the improvement in ANN accuracy, 𝛥 (𝐴), for CIE 

standard sky classification, using the results of each image-processing 

method as input, as summarized in Table 16, over ANN accuracy obtained 

with the original RGB images as input. Figure  27 illustrates that HSV is 

a slightly better color space than RGB for CIE standard sky classification 

using images, with a small improvement in accuracy (0.66%) over RGB 

image processing. The GS color space and the RGB space were equally 

accurate. The use of the R, G, and B monochromatic channels also improved 

the accuracy of the ANN for CIE standard sky classification, being the G 

channel the most suitable for this task. The accuracy of the ANN fitted 

using the individual channels, H and S, worsened over the RGB color space, 

while the V channel significantly improved ANN accuracy. In the spectral 

feature category, the RAS processing method worsened the sky 

classification accuracy of the ANN. However, channels Y and L showed 

better behavior for sky classification, although they used more neurons in 

the hidden layer. Among the rest of spectral feature channels, only RBD 

and C1 significantly improved ANN accuracy. With regard to the texture 

filters, EM showed little or no advantages over the use of the RGB color 

space and the other two filters, LR and STD, impaired the accuracy of the 

resulting neural network. 

Table 16 shows the accuracy and structure (number of neurons in the 

hidden layer) of the selected ANN for each image-processing method. As 

can be observed from Table 16, the number of neurons in the hidden layer, 

never increased the accuracy of the ANN, as can be seen from the use of 

image-processing methods Y and V. 
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Figure  27. Improvement in ANN accuracy, ∆(𝐴), for CIE standard sky 

classification, using the results of each image-processing method as input, over 

ANN accuracy obtained with the original RGB images as input [28]. 

Table 16. Accuracy and structure (number of neurons in the hidden layer) of the 

selected ANN for each image-processing method [28]. 

Method A (%) Number of Neurons Method A (%) Number of Neurons 

RGB 66.67 84 D 65.78 21 

R 68.44 66 L 68.89 74 

G 69.33 58 RBR 60 45 

B 68 36 RBD 68 98 

GS 66.67 58 NRBR 60.44 27 

HSV 67.11 40 C1 68.44 73 

H 55.11 23 ARGD 64.89 17 

S 60.89 27 C2 58.67 68 

V 70.22 58 LR 57.33 39 

RAS 62.22 25 STD 61.78 52 

Y 70.22 95 EM 66.67 58 
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Figure  27  shows the results of each ANN classifying the skies into the 

fifteen CIE standard sky categories. A simpler classification into three 

categories (clear, overcast, and partial conditions) is often enough for many 

applications, such as luminous efficacy calculations [9] and lighting design 

in buildings [104]. The fitted results of the ANN sky classification for three 

categories are shown in Figure  28 and Table 17. Differences in accuracy 

are lower and only the G, the B, and the GS monochromatic channels and 

the spectral features L and C1 improved ANN accuracy. In all these 

classification cases, the number of neurons in the hidden layer was lower. 

 

Figure  28. Improvement in ANN accuracy, ∆(𝐴), for CIE standard sky 

classification in three sky categories: overcast, partial, and clear conditions, using 

as input the image processed by each image-processing method, over ANN accuracy 

obtained with the RGB images as input [28]. 
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Table 17. Accuracy and structure (number of neurons in the hidden layer) of the 

ANN selected for each image-processing method [28]. 

Method 𝑨 (%) Number of Neurons Method 𝑨 (%) Number of Neurons 

RGB 93.33 71 D 92.89 15 

R 92.89 48 L 93.78 15 

G 94.67 52 RBR 90.22 23 

B 93.78 52 RBD 91.11 43 

GS 94.67 52 NRBR 89.33 23 

HSV 92 11 C1 94.67 18 

H 89.78 23 ARGD 92.89 19 

S 88.89 73 C2 92 41 

V 93.33 15 LR 90.67 81 

RAS 92.89 90 STD 91.56 7 

Y 93.78 21 EM 92.89 68 

The accuracy index was used to group the goodness of fit of the ANN 

in all categories, although the fitted quality in each individual category was 

not processed. Figures: (Figure  29 – Figure  32) represent the confusion 

matrices corresponding to the 15 types of CIE standard skies. Figure  29 

shows the confusion matrix of the ANN, calculated RGB-CIE sky 

classification for the test set (15% of the total dataset). It can be seen that 

the RGB-CIE classification with machine learning misclassified cloudy and 

partial skies: few matches are visible in the boxes along the diagonal line. 

In Figure  29, the CIE standard sky classification into three categories 

(clear, partial, and overcast sky conditions) is also presented. Those cases 

classified outside the corresponding category were designated as critical, 

i.e., clear skies were classified as either partial or overcast or vice versa. 
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Figure  29. Confusion matrix for ANN-calculated RGB-CIE sky classification into 

fifteen categories and into three categories: Overcast (CIE standard sky types 1 to 

5); Partial (CIE standard sky types 6 to 10); Clear (CIE standard sky types 1 to 5). 

Critical refers to cases classified out of category. The color scale shows the number 

of coincidences in each category [28]. 

The same information is shown in Figure  30 for CIE standard sky 

classification corresponding to the other color space processing methods 

under analysis. The red, the green, and the blue channels showed a similar 

behavior to the RGB color space. The red channel adequately classified CIE 

standard sky types 7 to 15, in other words, all clear skies and some partial 

sky types. The HSV color space showed a similar performance in all 

categories, in contrast to the RGB color space, in which the classification of 

clear sky types may be highlighted. Hue and saturation channels 

introduced too much noise, but the value channel showed good 

performance. 
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Figure  30. Confusion matrices color space image processing methods-CIE 

standard sky classification [28]. 

In Figure  31, the confusion matrices are shown for the CIE standard 

sky classification according to the spectral feature image-processing 

methods. The RBR and NRBR spectral features introduced noise, but the 

resultant combination, C1, reduced misclassification, improving the 

traditional RGB color space. Therefore, it appears to be an adequate 

alternative image-processing method for CIE standard sky classification 

using sky camera images. The RAS channel theoretically removed 

atmospheric scattering, but the confusion matrix never reflected a better 

performance than the RGB color space. The confusion matrix has 

demonstrated that it cannot distinguish the CIE sky types 1, 3, and 5. The 

RAS method also introduced too much noise in cloudy-to-partial sky types. 
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Figure  31. Confusion matrices spectral feature image processing methods-CIE 

standard sky classification [28]. 

Finally, the confusion matrices are shown in Figure  32 for texture 

filter processing methods-CIE standard sky classification with ANN. As 

can be seen, all texture channels performed well, especially the EM 

channel, while LR largely failed for CIE standard sky classifications partial 

and overcast. 

 

Figure  32. Confusion matrices for texture filter image processing methods-CIE 

standard sky classification [28]. 
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A detailed study for the CIE standard sky classification into three 

categories is presented in Figure  33, where the confusion matrices 

presented in Figure  29 to Figure  32 are divided into four submatrices: 

overcast (CIE standard sky types 1 to 5), partial (CIE standard sky types 6 

to 10), clear (CIE standard sky types 1 to 5), and critical, that refers to 

cases classified out of category. The red line indicates the RGB result, taken 

as a baseline for accuracy improvements, ∆(𝐴). RBD, D, and B showed the 

best performance for the detection of overcast skies, increasing the 

performance of each respective ANN. G, S, and GS achieved better results 

for the detection of partial skies and clear skies were also in the same 

category in which the conventional RGB color space achieved its best 

performance. Some channels highlighted certain sky types but drastically 

failed to classify other types. The blue channel saturated in clear skies, to 

such a point that its performance was almost the worst for clear skies 

detection. This behavior was also noted for the D channel.  

Unfortunately, no image preprocessing method drastically improved 

the RGB classification in the three subcategories simultaneously (clear, 

partial, and overcast conditions), as Table 17 showed. However, Y, green, 

red, RBD, V, and EM processing methods were prominent in one or two 

categories and their results were acceptable in all other categories, as 

shown in Table 18. 

 

Table 18. Summary of the results [28]. 

CIE 

categories 
One category 

Two 

categories  

Three 

categories 

Clear R, C1, Y, EM, and V 

R, G, C1, Y, 

S, V, and 

EM 

R, G, Y, V, 

and EM 

Partial G, S, HSV, and GS 

Overcast 
R, G, B, RBD, NRBR, C1, ARGD, Y, 

D, L, S, V, and EM 

Critical 
R, G, B, C1, C2, Y, D, L, RAS, V, 

HSV, GS, STD, LR, and EM 
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Figure  33. Accuracy for the CIE standard sky classification through sky  images 

and ANN, using the different image-processing methods recorded in Table 15 [28]. 

Regarding the partial objective “Establishment of alternative methods 

to sky scanner for CIE standard sky classification from the use of 

meteorological indices (MIs) and sky images”, digital cameras equipped 

with fisheye lens can be used as alternatives to sky scanner devices for 

ANN-assisted CIE standard sky classification. The accuracy of the 

classification algorithm can be improved with adequate preliminary image 

processing that highlights the sky image information and optimizes the 

algorithmic structure. 
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Chapter 3: Conclusions and further 

work 

Daylighting is a design concept of buildings recognized as a key 

strategy in reducing the energy consumption and improving visual comfort 

and well-being of their occupants [105]. In addition to improve the energy 

efficiency of buildings, it has been demonstrated that daylighting has 

positive effects on human health and productivity [106]. Energy standards 

strongly recommend incorporating daylighting strategies into building 

design [53, 54, 107, 108]. However, daylighting design is complex due to its 

changing nature. Likewise improving the occupants' life, daylight 

implementation is also related to technical and architectural solutions such 

as heating and cooling. Therefore, it is necessary to balance the positive 

health effects and energy savings in artificial lighting with the possible 

thermal and visual discomfort caused by excessive sunlight penetrations 

and glare [109].  

The first step to model the interior illuminance in a building lies in the 

characterization of the exterior illuminance. This doctoral thesis addresses 

this key aspect through different strategies, such as luminous efficacy 

models and the determination of the luminance distribution of the sky. 

The doctoral thesis "Daylight modeling for energy efficiency and visual 

comfort in buildings”, was carried out through a compendium of articles. 

These publications actively contribute to the knowledge of daylight 

modeling and incorporate novel techniques that apply artificial intelligence 

for sky conditions characterization. Each paper carried out one specific 

objective of the doctoral thesis. 

Paper I compared two different methods for sky classification 

according to the international standard ISO 15469:2004  (CIE). Several 

works have reported that the CIE standard provides a good overall 

framework to represent the actual sky conditions and covers the whole 

probable spectrum of skies found in nature [32, 41, 56, 110–113]. The CIE 
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classification has served throughout the doctoral thesis as the reference for 

sky conditions. It was demonstrated that the sky conditions in Burgos were 

predominantly clear along the year in several experimental campaigns. 

This result is highly relevant because traditional daylight modeling for 

indoor estimation would consider overcast conditions [46].  

The sky luminance pattern, accessible throughout the CIE standard, 

allows obtaining both the vertical diffuse illuminance and the horizontal 

diffuse illuminance [114]. Their ratio, known as VSC, is used by city 

planners and developers to assess the impact of early-stage built 

constructions on the access to daylighting [52]. Paper II highlighted 

the good daylighting conditions in Burgos, in terms of VSC. VSC values 

higher than 100% were found in all cardinal orientations, more probably 

on east, and south-facing vertical surfaces, showing the high energetic and 

daylight potential of those orientations without underestimating the 

potential of the north and west facades, usually less considered for an 

energy-efficient design of buildings.  

Complementary Paper I suggested a more considered traditional 

method for global illuminance characterization by luminous efficacy 

models. Thus, it evaluated eighteen classic models and, proposed a new 

one. This new model was fitted for either all sky types or particular sky 

type (clear, partly cloudy, and overcast). It employed the solar altitude, 𝛼𝑠,  

and the clearness index, 𝑘𝑡 , as independent variables. 𝑅𝑀𝑆𝐸  values 

calculated for the proposed luminous efficacy model were comparable to 

other literature models and sometimes, including the 𝑀𝐵𝐸  value, 

significantly improved the prediction, both for all sky types and for clear, 

partial, and overcast skies. 

The problem of CIE standard sky classification through alternative 

methods to the sky scanner was addressed in the rest of the papers. The 

first alternative proposal focused on modeling from meteorological indices, 

MIs. Complementary Paper II (CP II) analyzed the capacity of 43 

traditional MIs to classify skies according to the CIE standard and 

implemented machine learning algorithms for the classification using MIs 
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as inputs. The main result was the actual inability of the meteorological 

indices when used independently to perform a sky classification according 

to the CIE taxonomy, even if it only considers three categories for 

cloudiness classification. Therefore, Paper III addressed the possibility of 

combining several traditional MIs using artificial intelligence techniques 

for sky classification. In this regard, using feature selection 

(FS) procedures, the original set of 43 MIs was notably reduced, allowing 

the construction of different classification trees with high performance for 

the CIE standard sky conditions classification. Hence, FS found the most 

relevant variables and rejected the redundant ones. The MIs selected by 

the FS algorithms can be classified into three types: variables related to 

the cloud conditions, (𝐹𝑃, 𝐶𝐶, 𝑂𝐹𝑃) , others related to daylighting, 

brightness, or clearness conditions of the skies (𝑉𝑆𝐶, 𝐾), and geometrical 

variables, such as 𝛼𝑠 and 𝜒. 

As a second alternative to sky scanner for CIE standard sky 

classification, Paper IV addressed the use of digital sky images for the 

classification of sky conditions in accordance with the CIE Standard 

General Sky Guide. It also analyzed adequate image-processing methods 

that highlight key image information before applying ANN classification 

algorithms.  As main result, Paper IV demonstrated that the accuracy of 

the classification algorithm can be improved with adequate preliminary 

image processing that highlights the sky image information and optimizes 

the algorithmic structure. For classifying the skies based on the images 

into the fifteen CIE standard sky types HSV and the monochromatic 

channels R, G, and B color spaces stood out over the traditional RGB. Only 

the V individual channel of HSV worked better than both HSV and RGB. 

Spectral feature channels Y and L showed better behavior for sky 

classification than the RGB color space, but they used more neurons in the 

hidden layer. Among the rest of the spectral feature channels, only RBD 

and C1 significantly improved ANN accuracy. Texture filters added no 

significant advantages over the RGB color space. 
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The results obtained in this doctoral thesis open a series of new work 

lines related to the sky classification using machine-learning algorithms, 

modeling illuminance, and irradiance and improved daylight calculations 

for visual comfort and energy efficiency in buildings, some of these lines 

already in course. These lines include the following: 

• Line 1: Modeling indoor illuminance and analyzing the 

relationship between SR on energy efficiency and visual comfort 

through dynamic metrics.  Average Daylight Factor (ADF) has been, 

traditionally, used for stablished the relationship between the indoor and 

outdoor illuminance [46, 49, 115]. Daylight factor, DF, is the ratio between 

indoor illuminance and outdoor illuminance, measured for a specific point 

or for an average of a space. By definition, DF should be calculated only 

under the CIE overcast sky condition. Therefore, ADF allows a stable 

characterization of the luminous environment by eliminating the 

dependence of the temporal variable and the orientation of the study. 

However, the annual average number of sunny days in Europe varies 

enormously. Other studies [105, 116] aims to consider the variability of 

natural lighting, using dynamic metrics, like the Annual Sunlight 

Exposure (ASE) or the spatial Daylight Autonomy (sDA). ASE is defined as 

the FOC at a point on the working plane that  receives sunlight greater 

than a threshold value.  SDA is the FOC  at a point on the working plane 

where  a minimum illuminance threshold can be maintained by daylight. 

 The procedures for indoor illumination calculations are traditionally 

classified into two types  [117]: (a) radiosity calculation algorithms, which 

characterize each surface by its reflection coefficient and vision factors with 

respect to the rest of the surfaces and the working plane. SUPERLITE 

[118], INLUX [119], DIALUX [120], and RELUX [121] software tools 

implement this aproximation; (b) ray-tracing algorithms, which develop 

the light trayectory that reaches a point giving each ray an intensity or 

weight that depends on the reflexions on every surface up to the 

measurement point. RADIANCE [122], and ECOTEC [123] are the most 

known ray-tracing algorithms.  
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DeLight is a compact daylight simulation tool [124], categorized as a 

radiosity calculation system [125, 126]. This tool calculates the indoor 

illuminance on the surfaces of interest, e.g. on the horizontal surface at a 

desk level. DeLight needs the sky luminance pattern, directly measured by 

a sky-scanner device  or modeled by a sky luminance model, like Perez all-

weather sky model [20, 127] or directly derived from the CIE standard sky 

[24].    

A first work, already developed, analyzes the efficacy of the  DeLight 

algorithm. An experimental campaign extended from 01 July 2021 to 21 

August 2021 has been used for recording experimental indoor illuminance 

data in five points inside a scaled building.  Figure  34 (left) shows the FOC 

(%) of the illuminance greater than 300 lux, that links with the 

recommended illuminance levels for human activity [53]. Figure  34 (right) 

is the FOC (%) of the illuminance values greater than 1000 lux, thresrold 

linked to glare and  the visual discomfort [53].  The inner circle refers to 

experimental data, the middle one to DeLight predictions from the 

experimental sky luminance pattern recorded by the sky scanner, and 

finally, the outer one refers to DeLight predictions from CIE luminance 

pattern . 

 

Figure  34. FOC of the illuminance level higher than 1000 lux and 300 lux, 

respectively, in the measurement points 
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This paper has been already accepted at the international congress: 

International Conference on Engineering Thermodynamics (12CNIT), in 

Madrid, Spain from June 29 to July 1, 2022, as an oral communication. 

Further details of the full paper are shown in Annex 2. 

• Line 2: Visual comfort characterization and energy 

efficiency in Buildings using Design-Builder. As a result of the 

research stay carried out at the University of Malta, a case study based on 

a residential building under renovation in the European project  Interreg 

Europe ZeroCO2 [128, 129] has been done. A calibrated model of the 

building has been developed for analysing the visual comfort and energy 

efficiency following the international standards and improvement 

measures have been proposed.  This project was carried out by a ray-tracing 

calculation system (Radiance), throught the commercial software 

DesignBuilder [130]. The annual daylight modelling option of 

DesignBuilder runs through the Daysim simulation tool [122], a validated 

software for daylight analysis [130]. 

The following dynamic metrics are applied to improve visual comfort 

characterization: Useful Daylight Illuminance (UDI) [131] to evaluate the 

effectiveness of natural light that enters the building for different human 

activities; UDI autonomous (UDI-A) [131] to analyze the possibility of 

avoiding the use of artificial lighting; Annual Sunlight Exposure (ASE) 

[132] to analyze the intensity of lighting levels causing visual discomfort, 

and Daylight Autonomy (sDA) to summarize the frequency in which an 

illuminance threshold can be maintained by natural light on its own. 

Figure  35 shows the number of hours that the luminance reaches 1000 lux 

at each point of the area on the top floor of the building under study. If this 

occurrence exceeds 250 hours, the affected area can have visual discomfort 

by glare [133].  
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Figure  35. Left side: ASE annual hours distribution on the top floor, right side: 

picture of the housing under renovation. 

Besides, the additional effects that the lighting optimization produces, 

heating and cooling loads, are also analyzed. This publication is currently 

under review. 

Line 3: New proposals of CIE Standard sky characterization 

using MIs and Machine Learning algorithms. The work in progress in 

this field focuses on a new clustering of sky types using the dependence of 

VSC on solar altitude, as Figure  36 shows. ANN with the Scaled conjugate 

gradient backpropagation, and decision trees are used. The preliminary 

results are shown in Figure  37.  

This paper has been accepted at the XVIII Congreso Ibérico y XIV 

Congreso Iberoamericano de Energía Solar (CIES2022), that will be 

developed in Mallorca, Spain from June 20 to June 22, 2022, as an oral 

communication. Further details of the full paper are shown in Annex 2. 
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Figure  36. VSC dependence on solar altitude. 

 

 

 

 

Figure  37. Confusion matrices of the Machine learning predictions. Classification 

tree (left), and ANN (right), for the CIE sky classification into five categories. 
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• Line 4: New Proposals for CIE Standard sky 

characterization using sky images and Machine Learning 

Algorithms. This is a new step in the research line initiated with paper 

IV and proposes the use of convolutional neural networks, specifically 

developed for image recognition [134, 135]. The objective is to improve the 

quality of the CIE standard sky classification by the comparison of several 

artificial neural network typologies.  

• Line 5: Development of new sky scanning devices. As 

explained in Section 2.4 (Chapter 2), although commercial sky scanners are 

valuable devices that have led to a significant increase in the knowledge of 

the angular distribution of luminance and radiance in the sky, they have 

significant drawbacks. Among these are their low spatial and temporal 

resolution, not to mention their high cost. For this reason, we propose a 

future line of research focused on the development of two new types of 

devices for measuring the angular distribution of celestial luminance and 

radiance to solve the mentioned drawbacks: 

1. To increase the temporal resolution: a sky scanner consisting of 

numerous low-cost sensors (145) will allow simultaneous 

measurement of the angular distribution of radiance over the 

entire celestial vault. The development of this equipment will 

involve a precise design and execution of the frame that will 

house the sensors and the geometric and photometric 

calibration of the sensor array. 

2. To increase the spatial resolution: design, characterization, 

calibration, and validation of a device for capturing high 

dynamic range (HDR) high-resolution hemispherical HDR 

images. In this way, the spatial resolution of the measurement 

will improve substantially. The equipment will consist of a 

commercial camera equipped with a fisheye lens. The camera-

lens assembly will be characterized from the geometric and 

photometric point of view. Specifically, the spectral 

characterization of the device will allow correlating the digital 
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levels of the image with different ranges of the solar radiation 

spectrum: photosynthetically active radiation, illuminance, and 

irradiance. These devices' implementation also means a 

decrease in the time required to scan the sky, although it does 

not reach the high temporal resolution of the equipment 

mentioned in the previous point. 

In both cases, the cost of the equipment is significantly lower than that 

of commercial sky scanners.
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Abstract: Outdoor daylight conditions in Burgos, Spain, are studied 

throughout a full year. The CIE standard sky type is selected in accordance 

with the lowest RMSD (Root Mean Square Deviation) following the 

comparison of both the theoretical and the experimental luminance 

distributions in the sky hemisphere. The selection is based on luminance 

distribution data, recorded every 30 min, from 145 patches of the sky 

hemisphere. The original criterion to determine the type of sky, the SSLD 

(the Standard Sky Luminance Distribution), is difficult to apply in certain 

places and at times when the solar elevation is higher than 35°. In 

consequence, two alternative procedures are used and compared in this 

study: the Tregenza method and the Normalization Rate (NR) in- troduced 

by Littlefair. The selection was taken from luminance distribution data of 

145 patches of the sky hemisphere recorded between June 2016 and May 

2017. The most frequent sky type observed in Burgos was V.5. (cloudless 

polluted with a broad solar corona), with a frequency of occurrence close to 

20%. Notwithstanding that observation, the group of clear skies exhibited 

a higher frequency (in almost 50% of the cases under study, using both 

methods). The skies above Burgos were of an overcast sky type in less than 

25% of cases, a situation with a higher likelihood in winter and in autumn, 

while in spring and summer the skies tended to be clear and cloud free. 

Both of the methodologies showed similar results in percentage terms and 

in confusion matrixes with almost insignificant differences when compared 

on a monthly, a seasonal, and an annual basis. Nevertheless, some 

mismatches were located in the highest solar elevation values. 
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A B S T R A C T

Outdoor daylight conditions in Burgos, Spain, are studied throughout a full year. The CIE standard sky type is
selected in accordance with the lowest RMSD (Root Mean Square Deviation) following the comparison of both
the theoretical and the experimental luminance distributions in the sky hemisphere. The selection is based on
luminance distribution data, recorded every 30min, from 145 patches of the sky hemisphere. The original
criterion to determine the type of sky, the SSLD (the Standard Sky Luminance Distribution), is difficult to apply
in certain places and at times when the solar elevation is higher than 35°. In consequence, two alternative
procedures are used and compared in this study: the Tregenza method and the Normalization Rate (NR) in-
troduced by Littlefair. The selection was taken from luminance distribution data of 145 patches of the sky
hemisphere recorded between June 2016 and May 2017. The most frequent sky type observed in Burgos was V.5.
(cloudless polluted with a broad solar corona), with a frequency of occurrence close to 20%. Notwithstanding
that observation, the group of clear skies exhibited a higher frequency (in almost 50% of the cases under study,
using both methods). The skies above Burgos were of an overcast sky type in less than 25% of cases, a situation
with a higher likelihood in winter and in autumn, while in spring and summer the skies tended to be clear and
cloud free. Both of the methodologies showed similar results in percentage terms and in confusion matrixes with
almost insignificant differences when compared on a monthly, a seasonal, and an annual basis. Nevertheless,
some mismatches were located in the highest solar elevation values.

1. Introduction

Energy efficiency and sustainability are increasingly important is-
sues in the field of architecture. Lighting often has the highest electrical
consumption and cost in buildings with no air-conditioning systems and
could account for over 40% of electricity costs in naturally ventilated
offices. Daylighting is recognized as a key strategy in reducing energy
consumption. The availability of natural light is highly recommendable
for reasons of energy efficiency, visual comfort, and the physical and
mental well-being of building occupants (Hwang and Jeong, 2011;
Torrington and Tregenza, 2007). Consequently, the recommendations
of energy standards and green building rating systems strongly advise
architects to incorporate daylighting strategies in their building designs
(Aalto University School of Science and Technology, 2010). Architects
and engineers need quantitative information on illumination levels and
solar irradiance absorbed on surfaces at different inclinations for the
incorporation of daylighting in the design of energy-efficient buildings

and for suitable dimensioning of both the cooling and the heating
systems. It requires an accurate estimation of the amount of available
outdoor illuminance and of course the availability of daylight is mainly
influenced by the levels and the patterns of luminance in the sky. To
obtain sky luminance distribution, empirical models of homogeneous
skies represents a low cost approach. Many of these methods (Li, 2010)
are aimed at estimating daylight availability.

In 2003, the CIE categorization defined 15 standard sky types
(Uetani et al., 2003). Sky types of the same category have the same
well-defined sky luminance pattern. Once the sky types are identified,
the basic solar irradiance and daylight illuminance on the surfaces of
interest can be obtained through simple mathematical expressions (Li
et al., 2013). The luminance distribution for each standard sky type can
help arrive at accurate determinations of daylight illuminance (Kittler
et al., 1997). The classification includes five types of clear sky, five
intermediate types, and five with cloud-cover. The distribution is
characterized by continuous mathematical expressions to calculate
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smooth variations in luminance from the horizon to the zenith and in
accordance with the angular distance from the sun. The general formula
for defining the relative pattern of luminance for any sky type is a
combination of a gradation function, dependent on two parameters, a
and b, and the indicatrix function, which considers the scatter of lu-
minance with regard to the direction of sunrays, which is modelled as a
function of three adjustable parameters: c, d, and e. The gradation
function modifies the luminance value between the horizon and the
local zenith, assigning the highest luminance value to the zenith with
cloudy skies and in reverse to clear skies, as shown in Fig. 1. The in-
dicatrix function shows the dispersion in the atmosphere of sunlight, as
represented in Fig. 2. The maximum luminance appears near the solar
position, decreasing rapidly with the distance to the sun. Each of the
functions takes six different forms and the combination yields 36 sky
types from which 15 were selected: five overcast, five partly cloudy,
and five clear sky types, as shown in Table 1.

The sky type must first be known, in order to apply the CIE standard
general sky type as per ISO 15469:2004 CIE S 011/E:2003 (2004) for
determining luminance distribution. The determination of the sky type
at each location and time is a complex problem, due to the high fluc-
tuation of the luminance magnitude and the influence of zenith lumi-
nance, that is determined with difficulty at low latitude locations. The
original criterion to define the sky type, known as the SSLD method
(Kittler et al., 1997) (Standard Sky Luminance Distribution), uses a
theoretical assemblage of curves that represent the relation between the
zenith luminance/diffuse illuminance (L D/z V ) ratio and the solar ele-
vation angle. These curves converge at solar elevation values higher
than 35°, making it difficult to apply this method in certain areas and
times when the solar elevation angle is higher than 35°, as can be seen
in Fig. 3. Several alternatives have been proposed involving the ratios of
horizontal global illuminance and extra-terrestrial illuminance (G E/ )v V ,
horizontal sky diffuse illuminance and extra-terrestrial illuminance
(D E/v V ), the turbidity index, Tv (Li et al., 2014) and different climatic
and atmospheric parameters (Kocifaj, 2011; Li et al., 2004). Machine
learning algorithms and other progressive methods has also been used
in the CIE standard sky classification (Li et al., 2010; Lima et al., 2016;
Lou et al., 2017)

The application of the above-mentioned calculations to the succes-
sive sky conditions yields the statistical distribution of the General Sky
types that best fit the sky luminance patterns at a given location and
that consequently define the daylight climate of a given site.
Notwithstanding its validity for calculating daylight availability, the
empirical ISO/CIE model of homogeneous skies could be inaccurate
when interpreting illuminances and irradiances on arbitrarily oriented
surfaces under cloudy conditions (Kocifaj and Kómar, 2016) due to
heterogeneity of cloud field.

Despite the high interest in these measurements, very few studies at
only a handful of European (Bratislava, Athens, South England, Spain)
and Asian (Honk Kong, Japan, Singapore) locations have been con-
ducted to characterize the sky under the CIE standard (Markou et al.,
2005; Markou et al., 2004; Torres et al., 2010a,b; Tregenza, 1999)
(Chaiwiwatworakul and Chirarattananon, 2004; Li et al., 2003;
Tregenza, 1999; Wittkopf et al., 2007) and over certain time periods

(Torres et al., 2010a,b).
The main objective of this work is to define the daylight conditions

in Burgos, northwestern Spain. A seasonal classification of the sky
conditions was performed with a full year of data recordings. The SSLD
method is not applicable to the location under study as the solar ele-
vation of 35° is surpassed, especially in summer. Various procedures to
circumvent this issue are proposed, using various methods of normal-
ization, two of which were selected for comparison in this study. The
first one is the widely accepted method proposed by Tregenza (2004),
consisting of a horizontal-based illuminance estimation. The second
method, initially proposed by Littlefair (1994a,b), deals with the Nor-
malization Ratio (NR) obtained by direct comparison between the CIE
theoretical luminance and the experimental luminance levels; a method
successfully applied to data recorded in Hong-Kong (Li et al., 2004; Li
and Tang, 2008).

A Matlab code was developed for this purpose and a complete
comparison of both methods is shown in a set of confusion matrixes. At
the end, more than seven thousand samples were used. A complete year
of measurement data was sufficient for a seasonal characterization of
the skies over Burgos, referenced by the hour of the day. This study
represents the first classification of this type in a Spanish city. Although
both methodologies have been proposed for solar elevations higher
than 35°, the NR approach is simpler and easier to compute than the
Tregenza method. The results obtained by both methodologies in this
study are perfectly comparable for the location under study and the
solar elevation that is observed.

The study is organized as follows: Section 2 describes the

Nomenclature

γ , Z angle of elevation, angle from zenith
α angle of azimuth
α γ,s s solar azimuth, solar elevation
np number of patches in band b
bp reference number of each band
p reference number of a scanned sky patch
Lp luminance measured by the Sky-scanner of a sky patch

(kcd/m2)

Ls p, luminance relative to the Zenith (dim)
Lpr st, normalized luminance of a sky patch, corresponding to a

standard sky (CIE)
Lpr sc, normalized luminance of a sky patch, corresponding to an

experimental measurement
Eh horizontal diffuse illuminance (kcd/m2)
Ehp horizontal illuminance from sky patch p (kcd/m sr2 )
NR luminance normalization ratio (kcd/m2)
L predp sc, normalized luminance (NR method) (kcd/m2)

Fig. 1. Relative gradation function.

A. Suárez-García et al. Solar Energy 169 (2018) 24–33

25



experimental facility used in this work, the meteorological features of
the location under study and the experimental procedure. Section 3
summarizes the peculiarities of both methods applied for the CIE
standard skies classification. Section 4 compares the sky classification
according to both methodologies and presents the results in both gra-
phical and numerical terms. Finally, Section 5 summarizes the principal
observations and the contributions of the study.

2. Experimental section

CIE sky modelling and the application of the two methodologies was
done using a code developed in Matlab.

2.1. Experimental facility

The experimental equipment used in this work is a commercial Sky-
scanner model MS-321LR. The apparatus was installed on the roof of a
building at Burgos University (42°21′04″N; 3°41′20″O; above mean sea
level 856m). Fig. 4 shows the sky scanner equipment and its geo-
graphical location.

The period of time under analysis was in general warm and dry.
Burgos has an average of 575mm of precipitation and an average an-
nual global irradiance of 1500 kWh/m2, as can be seen in a Typical

Meteorological Year (TMY) over the last twenty years, compiled by the
Spanish State Meteorology Agency (AEMET) (ITACYL-AEMET, 2013).
However, annual rainfall of 510mm was recorded in the year under
analysis (12% less than the TMY) and annual solar irradiance of
1650 kWh/m2 (10% higher than the TMY) as shown in Fig. 5. These
data might bias the analysis, by giving the impression of a higher
percentage of clear skies.

According to the sky-scanner specifications, shown in Table 2, the
sky is divided into 145 patches or sectors (p) that cover the whole
dome. The sectors are grouped into eight bands, named bp, and by their
solar altitude −( )Zπ

2 , where Z is the zenith angle. Fig. 6 shows the lo-
cation of the sectors in the whole dome. A luminance measurement
(kcd/m2) of each patch is taken four times per hour. Half-hourly and
hourly measurements taken between June 2016 and May 2017 were
used for this study. Continuous scanning yielded luminance data cor-
responding to the 145 patches (see Fig. 6) recommended for the CIE in
the Guide to Daylight Measurements, which were measured and re-
gistered. Likewise, the luminance corresponding to each of the com-
monly considered 15 standard sky types presented in Table 1 was cal-
culated at the same time and for the same 145 patches. The standard
sky type ascribed to each recorded moment showed the lowest RSMD
(Root Mean Square Deviation) between the 145 normalized luminance
values that were measured and calculated.

2.2. Experimental procedure

Half-hourly and hourly measurements taken from June 2016 to May
2017 were used in this study. The sky scanner is monthly adjusted to
measure from the sunrise to the sunset. The first and last measurement
of the day (solar elevation angle equal or lower than 5°) are discarded,
as well measurements higher than 50 kcd/m2 and lower than 0.1 kcd/
m2, following the specification of the equipment. Data pre-processing in
Matlab code was performed, to avoid incorrect measurements. The
number of available hourly data were classified by months, as shown in
Fig. 7. The abnormal number of available measurements in summer
2016, with the longest days of the year, is caused by modifications in
the device.

3. CIE sky characterization

As mentioned in the introduction section, the two different methods
applied in this study are both explained in this section.

Fig. 2. Relative indicatrix function.

Table 1
Parameters of CIE standard Sky types.

Type a b c d e Description

I.1 4.0 −0.70 0 −1.0 0.00 Overcast with a steep gradation and azimuthal uniformity
I.2 4.0 −0.70 2 −1.5 0.15 Overcast with a steep gradation and slight brightening toward sun

II.1 1.1 −0.80 0 −1.0 0.00 Overcast with a moderate gradation and azimuthal uniformity
II.2 1.1 −0.80 2 −1.5 0.15 Overcast with a moderate gradation and slight brightening toward sun

III.1 0.0 −1.00 0 −1.0 0.00 Overcast, foggy or cloudy, with overall uniformity
III.2 0.0 −1.00 2 −1.5 0.15 Partly cloudy with a uniform gradation and slight brightening toward sun
III.3 0.0 −1.00 5 −2.5 0.30 Partly cloudy with a uniform gradation and a brighter circumsolar effect
III.4 0.0 −1.00 10 −3.0 0.45 Partly cloudy, rather uniform with a clear solar corona

IV.2 −1.0 −0.55 2 −1.5 0.15 Partly cloudy with a shaded sun position
IV.3 −1.0 −0.55 5 −2.5 0.30 Partly cloudy with brighter circumsolar effect
IV.4 −1.0 −0.55 10 −3.0 0.45 White-blue sky with a clear solar corona

V.4 −1.0 −0.32 10 −3.0 0.45 Very clear/unturbid with a clear solar corona
V.5 −1.0 −0.32 16 −3.0 0.30 Cloudless polluted with a broader solar corona

VI.5 −1.0 −0.15 16 −3.0 0.30 Cloudless turbid with a broader solar corona
VI.6 −1.0 −0.15 24 −2.8 0.15 White-blue turbid sky with a wide solar corona effect
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3.1. The Tregenza method

The Tregenza method (Tregenza, 2004) calculates the horizontal
diffuse illuminance, Eh (Eq. (1)) in each scan. This value is the sum of
the luminance from the different parts of the sky hemisphere. Ehp (Eq.
(2)) is the contribution of the measured luminance, Lp, coming from the
patch p, to the horizontal diffuse illuminance. FC is a correction factor
that must be included because, in practice, the sum does not extend to
the 145 patches. A few of them are discarded for the analysis due to two
causes: (a) according to the specifications of the instrument, luminance
values lower than 0 kcd/m2 or higher than 50 kcd/m2 are outside the
range of its measurements; and, (b) patches close to the position of the
sun should also be excluded, in order to avoid direct luminance. As can

be seen in Fig. 6, the patches excluded for the calculation are those
bordering the patch corresponding to the position of the sun.

∑=
=

E F Eh c
p

hp
1 (1)

∫ ∫= = − − =E L γ γ dγdα L Fsin( )cos( ) L
2

(sin (γ) sin (γ ))(α α )hp
γ

γ

α

α

p P g p
P 2 2

0 0 ,

0 0

(2)

where, γ0 is the sky patch’s basis, and γ is the top. −(α α )0 is the azi-
muthal distance between patch’s limits. Fg p, is a geometrical factor
characteristic to each patch. Eq. (3) is used for calculating the geome-
trical factor of a particular patch, taking into consideration the

Fig. 3. Graphical representation of the ratio zenith luminance/diffuse illuminance (L D/z V ) vs solar altitude, where the convergence of the curves for values higher
than 35° can be appreciated.

Fig. 4. Location of the experimental apparatus on the roof of the Higher Polytechnic School building at the University of Burgos, Spain.
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distribution of the 145 patches shown in Fig. 6.
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The correction factor, FC, is calculated as:

∑
=F π

F
C

p
g p,

(4)

where, the additions correspond only to the patches really considered
for each scan. The normalized luminance distribution given for each
patch, and for each sky type is given by:

=L
L
Epr sc

p

h
, (5)

where, Lpr sc, is the previously normalized sky patch luminance,
corresponding to one experimental measure. Additionally, the Tregenza
method requires an estimate of the mean luminance of the Standard Sky
type across each patch, p, of the scanning pattern, in order to make an
accurate comparison with the measured values (Tregenza, 2004). So,
we should take the mean of the luminances at the corners of the patch.
The mean luminance of each Standard Sky type of the first 144 ele-
ments, is the average luminance obtained in the four corners by each
patch, given by the coordinates = − +{ }Z Z Z,p

π
p

π
30 30 and

= − +{ }α α α,p
π
n p

π
nb b

, where Zp is the zenithal angle of each center

patch, αp is the azimuth angle, as shown in Fig. 8, and nb is the number
of patches in the band (see Fig. 6). Note that, for b1, (patches from 1 to
30) only two corners are used in the average. The area around the ze-
nith is split into six triangles, so the resulting average is the sum of each
triangle calculated within its vertices.
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It is also possible to obtain normalized theoretical measurements, by
using Eq. (2) to calculate the corresponding horizontal illuminance.
Starting from that point, if the luminance of each patch is divided by
the previously calculated horizontal illuminance, Lpr st, , fifteen sets of
average normalized luminance are obtained, one for each type of
standard sky. Finally, each standard sky type will be compared with the
previously measured and normalized (Lpr st, ) experimental sky type.

The RMSE is obtained by comparing the measured patch luminance
with standard sky type luminance, excluding the empty patches from
the sum under the square root. The type of sky is obtained by picking
out the lowest RMSsc, st from the fifteen possible types.

=
∑ −

rms
L L

n
( )

sc st
pr sc pr st

,
, ,

2

(7)

Lpr st, is the normalized luminance of a sky patch, corresponding to a
(CIE) standard sky, Lpr sc, is the normalized luminance of a sky patch,
corresponding to an experimental measurement; N is the number of
measurements, excluding the empty patches. Finally, sc refers to an
experimental type and st is the particular standard sky type that is
tested.

3.2. The Littlefair normalization ratio (NR)

Luminance can be normalized according to the Normalization Ratio
introduced by Littlefair (1994a,b) and described by Li and Tang (2008).
This method was developed to be applied at locations where high solar
altitudes dominate. The luminance normalization ratio (NR) is given
by:

=
∑
∑

NR
L γ γ dγdα
L γ sin γ dγdα

cos( )sin( )
cos( ) ( )

p

s p, (8)

where, Lp is the luminance (kcd/m2) measured by the Sky scanner,

Fig. 5. Global irradiance and precipitation in Burgos (MInisterio de Agricultura y Pesca) (June 2016 to May 2017).

Table 2
Sky Scanner specifications.

Model MS-321LR Sky Scanner
Manufacturer EKO Instruments
Dimensions (W×D×H) 430mm×380mm×440mm
Mass 12.5 kg
Aperture 11°
Illuminance 0–50 kcd/m2

Radiance 0–300W/m2/sr
A/D convertor 16 bit
Calibration error 2%
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excluding luminance higher than 50 kcd/m2 and lower than 0.1 kcd/m2

and direct luminance values; Ls p, is the predicted sky path luminance in
a relative form given by CIE (Eq. (2)); γ is the angle of elevation of the
sky point above the horizon (radians) and α is the azimuth of a sky
patch (radians).

Finally, the predicted sky luminance value is calculated by multi-
plying the relative theoretical luminance by the Zenith and the nor-
malization ratio, as follows:

=L L NRpred s p,p sc, (9)

After normalizing the luminance, the sky type is chosen from the
best fit with the 15 CIE Standard skies, in accordance with the lowest

rRMSEsc value:

∑ ⎜ ⎟= ⎛
⎝

− ⎞
⎠

rRMSE
n

L L

L
1

sc
i

pred p

p

2
sc,

(10)

N is the number of non-empty readings, p refers to the path of the
sky or the number i, Lpred p sc, , is the normalized luminance obtained using
the NR factor and Lp is the luminance measured in kcd/m2 by the Sky
scanner.

4. Results

The classifications of the two previously described normalization
procedures are compared in this study. In view of the differences, the
overall annual comparison was disaggregated into hourly periods. First,

Fig. 6. Sky divided into 145 sectors (p) grouped into 8 bands (bp). The number of patches per band (nb) is shown in the figure. Patches adjacent to the position of the
sun are excluded from the luminance calculation.

Fig. 7. Number of available luminance measurements for the study.

Fig. 8. Scheme of the average done to obtain the luminance of each patch.
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an annual comparison of the classifications of both algorithms was
completed; second, the CIE and cloudiness types were grouped by
seasons (summer, autumn, winter and spring) to identify the times of
year with larger differences. The hourly relative differences of both
models were estimated, by selecting the months of the season with the
biggest discrepancies. Finally, all of the cloudiness models were com-
pared in a confusion matrix. All of those analyses contribute to the
characterization of the differences between both methods.

4.1. Seasonal classification of skies in Burgos

Fig. 9 shows the relative frequency of each sky type over the period
of study, calculated using both the Tregenza and the NR method. As can
be seen in both figures, all sky types of the CIE classification, shown in
Table 1, can be found in Burgos, from overcast to very clear. The lowest
frequency is for type I.2, corresponding to Overcast with the steep
gradation and slight brightening toward the sun, and the highest fre-
quency is for type V.5. (Cloudless polluted with a broader solar corona).
Both methods present very few differences and are almost equivalent in
the II.2, IV.3 and V.5 sky types, as shown in Fig. 9. The biggest dif-
ferences in the classification were found in types IV.2 and VI.5. These

Fig. 9. Comparative characterizations of the skies over Burgos.

Fig. 10. Seasonal CIE sky types histogram over Burgos calculated using the NR
method (a) and the Tregenza Method (b).

Fig. 11. Comparative study of cloudiness classifications in Burgos.

Fig. 12. Burgos sky cloudiness grouped by months using NR method (a) and
Tregenza method (b).
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results were grouped into different time intervals, in order to find a
pattern that produces the aforementioned gap.

One characteristic of Burgos is that all types of CIE skies classifi-
cation can be found throughout the year. This fact can be observed in

the monthly classification of the results of both methods shown in
Fig. 10(a) and (b). Sky types I.1, I.2, V.5. and V.6 are predominant in
winter (almost 10% frequency each). clear types of sky (IV.4, V.5.V.6
and VI.5) prevail in spring and summer time. In summer, type IV.2,
corresponding to a partly cloudy sky is also frequent. Autumn is a clear
sky season too.

Grouping the CIE types by seasons clearly profiles the switch be-
tween the IV.2 and VI.5 sky types. As can be seen in Fig. 10a, the NR
method classifies 15% of the skies in summer as IV.2 and almost 22% as
VI.5. In contrast, the Tregenza method classified 25% of the skies as
VI.5, in the same season, as shown in Fig. 10b. It also labelled 6% of the
recorded skies as IV.2. Sky type VI.5. appeared in 23% of cases when
using the Tregenza method. It is evident that the mismatch is limited to
9% of all records. The differences between both methods in the other
seasons of the year are insignificant.

The values of Eh would coincide for different types of sky in specific
positions of the sun in the hours of sunrise and/or sunset (Kocifaj,
2012). In these cases, this magnitude, which is what the Tregenza
method uses to perform the classification (Eq. (3)), can lead to an in-
adequate result. The NR method uses Lp, a magnitude that differs more
in these sky conditions.

4.2. Cloudiness classification

Cloudiness labelling was done with the CIE sky types: I.1 to III.1
were classified as cloudy, III.2 to IV.3 as partially cloudy, and IV.4 to
VI.6 as clear skies. These three categories, represented in Fig. 11, reflect
the characteristically clear skies that it is predominant in Burgos. Ac-
cording to both methods, a clear sky type was present every month in
almost 50% of cases, as can be seen in Fig. 12(a) and (b). An overcast
sky type was observed in Burgos in less than 25% of cases, a situation
more probably in winter and autumn, while in spring and summer the
skies were mainly clear.

The differences in the cloudiness classifications of the methods are
clearly visible in the months of June, July and August. The NR method
(Fig. 12a) classified a lower percentage of clear skies than the Tregenza
method (Fig. 12b) in the three aforementioned months. The percen-
tages of the skies classified as cloudy, partially cloudy, and clear, over
the remaining months are almost identical.

4.3. Analysis of summer time by daytime hour

The CIE relative differences in the classifications grouped by day-
time hours during the summer months was prepared to examine the
differences in greater detail. The results are shown in Fig. 13. There are
several forms of estimating the relative difference between both mag-
nitudes (Bennett and Briggs, 2008). In the present work, neither algo-
rithm can be considered superior, because there are no qualitative
differences between either one. Eq. (11) was used to estimate the re-
lative difference between the frequencies grouped by daytime hours.

= −x y
x y

d | |
max(| |,| |)r

(11)

It may be easily noted that the main divergence between CIE sky
types IV.2 and VI.5 are at midday hours. There are also other points
where the relative difference is above 50%. However, their weight in
the global percentages is irrelevant, as Fig. 13 shows. In summary, the
main differences between the Tregenza and the NR methods are at
highest solar altitudes of the year that take place in the central hours of
the day during summer.

4.4. Confusion matrix of Tregenza and NR methods

The results of both the Tregenza and the NR methods were com-
pared in a confusion matrix; an indicatrix of the matches between two
series of values. The confusion matrix is shown in Fig. 14. In this case,

Fig. 13. Relative difference, dr, calculated using Eq. (11), between the NR and
the Tregenza sky classifications, for the summer months.

Fig. 14. Confusion matrix comparing the Tregenza and the NR cloudiness
classifications.

Table 3
Statistical indicators RMSE and MBE, calculated using Eqs. (12) and (13).

∈ ( )α 0,π
2

< °α 35 > °α 35

rRMSE rMBE rRMSE rMBE rRMSE rMBE

Tregenza method 36.7% 14.1% 34.9% 13.1% 40.1% 16.0%
NR method 36.0% 13.3% 33.4% 11.4% 40.8% 17.0%
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the cloudiness classifications of the two methods are compared step by
step. Each square of the table shows the number of coincidences and
their corresponding percentages. The upper-left 3× 3 matrix corre-
sponds to the raw comparison, coding the cells either in green, if Tre-
genza and NR agree, or in red, if otherwise. The gray cells are the
percentages that count the total cases in each row or column. Finally,
the blueish cell to the lower-left shows the extent of global matching. As
it can be seen, the global coincidences for the cloudiness classification
amount to 94.3%.

4.5. Comparison between the goodness indicators of each method

As previously explained, both methods used in this study define the
type of sky based on a goodness indicator, the RMSE (Root Mean Square
Error), but the definition of this statistical indicator is different for each
method. While the NR method uses the luminance normalized ratio NR
defined by Eq. (10), Tregenza uses the horizontal diffuse illuminance to
normalize the values. The RMSE values calculated for both methods are
therefore not comparable values.

One solution to this issue would be a new definition of the relative
rRMSE coupled with another widely used statistical indicator, the re-
lative Mean Bias Error (rMBE). Both indices are defined in Eqs. (12) and
(13). The rMBE provides information on the grade of dispersion relating
to the center of the distribution and is a good dispersion indicator of the
model versus the reality (Bennett and Briggs, 2008). The comparison
was done using the theoretical CIE Luminance that refers to the Zenith,
without normalization, Lsp st, , and the experimental Luminance, Lsp,
calculated using the above method:
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N is the number of measurements, excluding the empty patches. Table 3
shows the results obtained using this new criterion. As can be seen, the
unification of the normalization criterion permits the numerical com-
parison of both methods. Both methodologies, as mentioned throughout
the study, are applicable to the area under study and both statistical
indicators yielded similar results, offering low MBE values at high solar
elevations.

5. Conclusions

Two different methodologies, Tregenza and NR, to define the CIE
standard sky types in the skies over Burgos, Spain, have been applied
and compared. Both methods are recommended for use in areas where
the latitude is higher than 35°, which is the case of Burgos. The best-
fitting sky types and their frequency of occurrence have been studied
over a complete year. The low value of the RMSE index shows that both
methods tend to get a very acceptable agreement between predictions
and measured values, so both methods can be used with high con-
fidence at the latitude of Burgos. However, this study shows that this
confidence will decrease at the highest solar altitudes. In addition, this
study supports the fact that, despite the crucial aspect of normalized
luminance, some effective and very different methods exist. The NR
method uses a statistical parameter (NR) while the Tregenza method
uses the horizontal illuminance, although the results are realistic, ac-
curate, and very similar. As the confusion matrix has shown, the mat-
ches between both models were very good, so it comes as no surprise
that the frequency distribution was likewise very similar. The smooth
differences in the frequency distribution of the sky type found can be
explained by the consideration of homogenous skies inherent of the CIE
standard classification. The luminance of a partly cloudy sky can vary
over a wide range even if the cloud fraction is stable for a long time and

CIE standard classification does not account for such variability.
The aim of this research work has been to determine the frequency

distribution of each Sky type, so as to obtain quantitative information
on the levels of illumination and solar radiation on surfaces. Both
methods confirm that the most frequent sky type observed in Burgos is
V.5. (cloudless polluted with a broad solar corona), with a frequency of
occurrence close to 20%. Nevertheless, the group of clear skies has a
higher frequency (in almost 50% of the cases under study for both
methods). The skies over Burgos are of an overcast type in less than
25% of cases, a situation with a greater likelihood in both winter and
autumn, while in spring and summer the sky is predominantly clear.
The summer skies over Burgos are very clear and the winter is quite
cloudy. Although those results show clear skies over Burgos during the
year that is under study, additional years of measurement will be
needed to arrive at a clear picture of global behavior that excludes years
of drought and excessive rainfall.

The generalization of the results will be given the more cases are
performed by the scientific community. It can be expected seasonal
behavior in the measurements and results obtained. Hence, it would be
necessary a multi-year analysis in order to avoid the aforementioned
bias. However, as it was said, given the amount of samples analyzed,
the differences detected cannot be deprecated. Not only the develop-
ment of new sky models is important in the field of science that con-
cerns us, but also, their comparison and the discern of their strengths in
order to use them in an optimum way.
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Featured Application: Knowledge of Vertical Sky Component (VSC) allows the calculation
of daylighting availability for buildings at any cardinal orientation for energetic and visually
efficient building and city design. This work describes different alternatives for VSC calculation
and a complete experimental characterization of the VSC in an extensive case study carried out
in Burgos, Spain.

Abstract: Daylight availability knowledge is the first step for an energetic and visually efficient
building and city design. It can be estimated with the Vertical Sky Component (VSC), which is
defined as the ratio of the vertical diffuse illuminance over the unobstructed horizontal diffuse
illuminance, simultaneously measured at the same point. These illuminance magnitudes are obtained
from luxmeter measurements but these data are scarce. Alternatively, VSC can be obtained from
prior knowledge of the sky illuminance distribution, which can be measured with a sky scanner
device or by reference to the CIE (Commission Internationale de L’Éclairage) Standard classification
for homogeneous skies. Both approaches are compared in this study. The coherence of the results
obtained for the four cardinal orientations are analyzed by applying classical statistical parameters
and luxmeter measurements as references for the results. The measurement campaign was completed
between September 2016 and January 2019 in Burgos (Spain), as representative case study and specific
contribution of this work. It was observed that the VSC values were higher than 100 in many cases:
21.94% for the south- and 33.6% for the east-facing vertical surfaces. The study highlights the good
daylighting conditions in Burgos, mainly due to the predominance of clear skies over much of the
year. This fact implies high daylight availability that, with efficient city planning and building design,
could potentially lead reduction energy consumption of buildings, improvements in visual comfort,
and the well-being of occupants.

Keywords: VSC; daylighting; diffuse illuminance; CIE standard sky classification

1. Introduction

Daylighting is a design concept of buildings used over the years with varying degrees of success.
It has been proven that buildings with good daylighting have positive effects on the well-being and
health of occupants, reducing stress levels, and improving mood and photobiological effects [1–5].
The International Energy Agency (IEA) promoted the use of daylight as a means of reducing electricity
consumption on lighting [6], and increasing the energy efficiency of buildings [7,8]. International Net
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Zero Energy Building (NZEB) standards and regulations recommend the incorporation of natural
lighting strategies in their design and define minimum standards [9,10].

A fundamental step towards building design that illuminates interiors with daylight is the
compilation of information on daylight availability outside the building. Illuminance on vertically
oriented surfaces is, therefore, important for modeling the daylight availability, especially for high-rise
buildings with substantial areas of glazed surfaces [11]. Solar radiation data on vertical surfaces can
also be used to evaluate the performance of Building Integrated Photovoltaics (BIPV), because the
vertical facades of modern cities occupy larger areas than roof surfaces and usually present better
maintenance conditions for photovoltaic panels [12]. However, the basic outdoor solar irradiance and
illuminance data for the surfaces of interest are not usually available in many parts of the world [13].

The Vertical Sky Component (VSC) is defined as the ratio of the vertical diffuse illuminance
() over the unobstructed horizontal diffuse illuminance () simultaneously measured at the same
point [14]. City planners and developers use the VSC to assess the impact of newly built constructions
on the access to daylighting. Its potential in early stage design decisions is widely recognized [15].
The VSC is an important daylight parameter, which has been also used for different applications:
Sky classification [16,17], unobstructed sky irradiance and illuminance determinations [18], and
calculations of indoor illuminance [19]. Global and diffuse outdoor illuminance on a horizontal surface
and vertical global illuminance on the four (north, east, south, and west) cardinal orientations have
been used to compute the VSC. However, as experimental data of Ldv and Ldh are scarce, different
alternatives are used to calculate VSC [11,17,20].

With a well-defined luminance distribution, the daylight illuminance on various inclined surfaces,
such as vertical planes facing towards different directions, can be estimated by integrating the luminance
distribution of the sky dome over each surface [21]. The usual instrument for measuring sky luminance
distribution is by means of a sky scanner [8]. On the other hand, empirical models of homogeneous
skies represent a low-cost approach to obtain sky luminance distribution. Generally, sky conditions
can be subdivided into overcast, partly cloudy, and clear skies. In 2003, CIE [22] and the International
Organization for Standardization (ISO) [23] adopted 15 Standard Sky Luminance Distributions (SSLD)
as the most versatile definition of skylight in various localities and daylight climate regions, making it
possible to simulate annual daylight profiles in absolute units based on typical luminance sky patterns.
Despite the high interest in those measurements, very few studies at only a handful of European [24–29]
and Asian [15,30,31] locations have been conducted to characterize the sky under the CIE standard,
mainly due to scarce sky luminance data obtained from sky scanner devices.

Different alternatives to the use of sky scanners have been proposed for classifying the
skies [32] including the use of different climatic parameters [33–36], vertical [12,20] and horizontal
illuminance [37,38], and satellite data [39]. VSC has been proposed as an appropriate method, both for
categorizing the CIE Standard General Skies and for determining daylight illuminance on inclined
surfaces with various orientations [17,32]. The VSC facing a given orientation at a given time under an
individual CIE Standard General Sky has its own features and stands for a unique value. So, the use of
the CIE standard classification could represent an alternative means of estimating VSC.

As it has been pointed out, the determination of daylight availability is a complex issue due
to scarce experimental data needed for all methodologies proposed. Therefore, it is mandatory the
establishment of the equivalence among the different methodologies for obtaining daylighting through
any of the proposed methods and even the possible combination between them when necessary.

This study focused on the determination of VSC in Burgos, Spain, for which purpose different
alternative proposals for its calculation are compared. Three methods are generally used to calculate
VSC: Available experimental data of horizontal global, diffuse, and beam illumination; through the data
from experimental sky scanner measurements; and the CIE standard classification for homogeneous
skies. The results obtained under different sky conditions were tested in a long-term experimental test
campaign over 29 months. The VSC data obtained from the experimental data of global horizontal,
diffuse, and beam illuminance were taken as the reference data and two statistical indicators, root
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mean square deviation (RMSD) and mean bias deviation (MBD), were used as quality indicators of
the equivalence of the different approaches. Finally, the daylight conditions in Burgos, Spain, were
determined with the VSC calculations for surfaces facing all four cardinal orientations.

The paper will be structured as follows. The experimental facility and the measurement campaign
as well the quality filters applied to the experimental data will be described in Section 2. The different
approaches used for the VSC calculations will be defined in Section 3 and the results of all three
methodologies with their statistical indicators will be compared in Section 4. In Section 5, the VSC
in Burgos will be calculated for all four cardinal orientations and the results will be compared with
the existing knowledge of the CIE standard sky type, analyzing both frequency of occurrence and
seasonal and monthly distributions. Finally, the main results and the conclusions of the study will be
summarized in Section 6.

2. Experimental Data

The experimental data for this study were recorded at a meteorological weather station located on
the roof of the Higher Polytechnic School building of Burgos University (42◦21′04′′ N, 3◦41′20′′ W,
856 m above mean sea level). The flat roof of this five-story building, in an area with no other buildings
of comparable height, is ideal for recording measurements with no external obstructions or reflections
from other surfaces. The experimental equipment is shown in Figure 1.
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Figure 1. Location of the experimental equipment on the roof of the Higher Polytechnic School building
at University of Burgos, Spain.

The daylight measurements included the global, diffuse, and beam outdoor illuminance on a
horizontal plane; the vertical global components facing the four cardinal orientations (north, east,
south, and west); and the luminance distributions for the whole sky, recorded with seven lumeters
model ML-020S-O luxmeters, and a commercial MS-321LR sky scanner both from EKO Instruments
(EKO Instruments Europe B.V. Den Haag, Netherlands). The diffuse luxmeter was obscured from
direct sunlight by a shadow hat. The direct solar illuminance (Lbh) sensor was installed on a sun
tracker (model SunTracker-3000, Geónica, Madrid, Spain) facing the sun. The technical specifications
of the sky scanner and luxmeter are shown in Tables 1 and 2, respectively.

Illuminance data were recorded every 10 min (averaging recorded scans of 30 s). The illuminance
data (horizontal global, Lgh, diffuse, Ldh, and beam, Lbh) were analyzed and then filtered using
CIE quality criteria, shown in Table 3. The sky scanner was adjusted on a monthly basis for taking
measurements from sunrise to the sunset. It completed a full scan in four minutes and started a
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new scan every 15 min. The first and last measurement of the day (αs ≤ 5◦) were discarded, as well
measurements higher than 50 kcd/m2 and lower than 0.1 kcd/m2, following the specifications of the
equipment. Only half-hourly and hourly sky scanner measurements were used in this study, to match
simultaneous records of illuminance data. If the illuminance data failed to pass the quality criteria,
then all the simultaneous data sets were rejected.

Table 1. Sky scanner specifications.

Model MS-321LR Sky Scanner

Dimensions (W × D × H) 430 mm × 380 mm × 440 mm
Mass 12.5 kg
FOV 11◦

Luminance 0 to 50 kcd/m2

Radiance 0 to 300 W/m2

A/D Convertor 16 bits
Calibration Error 2%

Table 2. Luxmeter technical specifications.

Model ML-020S-O

Irradiance Range 0 to 150,000 lux
Output 0 to 30,000 µV
Impedance 280 Ω
Operating temperature range −10 ◦C to 50 ◦C
Temperature response 0.4%

Table 3. Quality criteria for experimental illuminance measurements. The experimental data were
discarded if any of the following conditions were met. L0 is the luminous solar constant (133.8 kLx).

(a) Lgh > 1.2·L0 (e) Lgh, Ldh, Lbh if αs < 5◦

(b) Ldh > 0.8·L0 (f) Ldh > 1.15·Lgh
(c) Lbh > L0 (g) Lgh = (Lbh· cos Zs + Ldh) ± 15%
(d) Lgh, Ldh, Lbh < 20 Lux

The measurement campaign ran from September 2016 up until January 2019. A total of
3991 datasets of illuminance (horizontal global, diffuse, and beam and vertical global in the four
cardinal orientations) and sky scanner measurements passed the quality criteria.

3. Determination of VSC

The Vertical Sky Component (VSC) is defined as the ratio of the vertical diffuse illuminance, Ldv ,
over the unobstructed horizontal diffuse illuminance, Ldh, simultaneously measured at the same point,
as shown in Equation (1).

VSC =
Ldv
Ldh

. (1)

In this study, the measured global, beam, and diffuse illuminance on a horizontal surface and
vertical global illuminance on vertical surfaces facing the four cardinal orientations (north, east, south
and west) were used to compute the VSC for subsequent analysis. As Ldv data were not available
at the experimental facility described in the Section 2, these data will be obtained, considering the
similar characteristics of both solar irradiance and illuminance. The models developed for solar
irradiance prediction on a vertical surface can, therefore, also be employed for daylight calculations [12].
The illuminance incident on a vertical surface, Lgv, was evaluated as the sum of beam, Lbv, sky-diffuse,
Ldv, and ground-reflected, Lrv, components. It can be written as:

Lgv = Lbv + Ldv + Lrv. (2)
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Calculation of beam illuminance is quite straightforward, given the position of the sun and the
orientation of the surface, as shown in Equation (3):

Lbv =
( Lbh

sinαs

)
· cosαs · cos(φs −φNr), (3)

where αs is the solar elevation, φs is the azimuth angle of the sun, and, φNr is the azimuth vertical
surface angle (which is 0 for the south-facing surfaces, −π

2 for the vertical east surface, +π
2 for the

vertical west surface, and π for the north surface). It was assumed when estimating the ground-reflected
illuminance, Lrv, that vertical surfaces will receive half of the total illuminance reflected isotropically
from the ground, ignoring the inter-reflection between the vertical and the ground surfaces. Lrv depends
on the albedo, ρ, and the global horizontal illuminance, Lgh, as it is shown in Equation (4). In this work,
the value of ρ = 0.1519 was experimentally obtained [40].

Lrv =
ρ

2
·Lgh. (4)

Ldv can then be calculated with Equation (5). The VSC was obtained from the experimental data
of horizontal global, diffuse, and beam illuminance, as shown in Equation (6):

Ldv = Lgv −
ρ

2
·Lgh −

( Lbh

sinαs

)
· cosαs · cos(φs −φNr). (5)

VSC =
Lgv −

ρ
2 Lgh −

( Lbh
sinαs

)
cosαs · cos(φs −φNr)

Ldh
. (6)

If the luminance distribution in the sky dome is known, one alternative to determine the VSC is
through integration. With a well-defined luminance distribution, the daylight on any surface can be
estimated by integrating the luminance distribution of the sky dome over each surface. Traditionally,
sky luminance distribution has been measured by sky-scanner instruments. These instruments
divide the sky hemisphere into a limited number of sky elements (patches) of finite angular size and
continuously scan the luminance data corresponding to each patch, LP. Each sky patch will, it is
expected, be treated as point sources with negligible error, but integration over all sky luminance
scanning patches is only an approximation of total illuminance. Figure 2 shows a typical sky hemisphere
sectorization into 145 patches and the geometric magnitudes that characterize each patch.
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When sky scanner measurements are available, the horizontal and vertical diffuse illuminance
can be obtained from Equations (7) and (8), respectively [37,41,42]:

Ldh =
∑145

p=1
LP sinαP· cosαp·δαp·δφP, (7)
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Ldv =
∑145

p=1
∆ELvDP . (8)

In Equation (7), LP is the luminance of patch p, αp is the angle of elevation of a patch above
the horizon, δαp is the altitude length of patch p ( π

2·8 for all patches), and δφP is the azimuth length
of patch p. In Equation (8), ∆ELυDp represents the contribution of each patch to the vertical diffuse
illuminance, calculated with Equation (9):

∆ELvDp = Dp·Lp· cosαP·δαp·δφP. (9)

DP is a geometrical factor which depends on the patch position in the sky dome, defined by
Equation (10) [32]:

DP =

 cosαP· cos
(
φp −φNr

)
i f 0 ≤

∣∣∣φp

∣∣∣ ≤ 90◦

0 otherwise
, (10)

where φp is the azimuth of the patch p and φNr is the azimuth of the vertical surface.
Knowledge of the sky luminance distribution can be obtained through the CIE standard sky

classification, which establishes a biunivocal relationship between the sky type and the sky luminance
pattern. If the CIE standard sky classification is known, the luminance in each sky patch, Lp, can be
obtained using Equation (11):

Lp =
(
1 + c ·

[
edχ
− e

d·π
2

]
+ e· cos2 χ

) (
1 + a· e

b
cos ZP

)
. (11)

Coefficients a, b, c, d, and e, are defined by CIE [23] as functions of the sky type, as shown in
Table 4. ZP is the sky element zenith angle and χ is the dispersion angle, calculated from Equation (12):

χ = arcos(cos Zs cos ZP + sin Zs sin ZP cos
∣∣∣φP −φs

∣∣∣), (12)

where φP is the azimuth angle of the sky element, p, and Zs and φs are the zenith and azimuth angles
of the sun. The χ represents the shortest angular length between the sky element, p, and the sun,
as is shown in Figure 3. Once the luminance in each sky element is known, Equations (7)–(10) can be
applied to calculate Ldh, Ldv and, therefore, VSC. Figure 4 shows the VSC calculation for each CIE
standard sky type as a function of the dispersion angle, χ. As can be seen, sky types 1, 3, and 5 present
constant VSC values, regardless of χ. Therefore, the orientation of the vertical surface has no effect on
the level of illumination. The predicted VSC values for these sky types (1, 3, and 5) were 38.5%, 45%
and 50%, respectively.
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The VSC showed a great dependency on the scattering angle of the other CIE standard sky types,
with a minimum value of around 30% and a scattering angle close to 120◦, as shown in Figure 4.
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Table 4. Parameters of CIE standard sky types [22].

Sky a b c d e Sky Description

1 4 −0.7 0 1 0 CIE Standard Overcast Sky,

2 4 −0.7 1 −1.5 0.5 Overcast, with steep luminance gradation and slight
brightening towards the sun

3 1.1 −0.8 0 −1 0 Overcast, moderately graded with azimuthal
uniformity

4 1.1 −0.8 2 −1.5 0.15 Overcast, moderately graded and slight brightening
towards the sun

5 0 −1 0 −1 0 Sky of uniform luminance

6 0 −1 2 −1.5 0.15 Partly cloudy sky, no gradation towards zenith, slight
brightening towards the sun

7 0 −1 5 −2.5 0.3 Partly cloudy sky, no gradation towards zenith,
brighter circumsolar region

8 0 −1 10 −3 0.45 Partly cloudy sky, no gradation towards zenith, distinct
solar corona

9 −1 0.55 2 −1.5 0.15 Partly cloudy, with the obscured sun

10 −1 0.55 5 −2.5 0.3 Partly cloudy, with brighter circumsolar region

11 −1 0.55 10 −3 0.45 White-blue sky with distinct solar corona

12 −1 0.32 10 −3 0.45 CIE Standard Clear Sky with low polluted atmosphere

13 −1 0.32 16 −3 0.3 CIE Standard Clear Sky, polluted atmosphere

14 −1 0.15 16 −3 0.3 Cloudless turbid sky with broad solar corona

15 −1 0.15 24 −2.8 0.15 White-blue turbid sky with broad solar corona
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4. Comparative Study of the Different Approaches to Obtain the VSC

Three different procedures to calculate the VSC have been described. In this section, the results of
the different approaches to calculate the VSC in Burgos during the experimental campaign will be
compared, taking the VSC calculated by Equation (6) as a reference. The comparison was conducted
on a half-hourly basis. The two widely used statistical parameters, root mean square deviation, RMSD,
and mean bias deviation, MBD, calculated in Equations (13) and (14), respectively, were chosen as
indices to assess any differences between the procedures:

RMSD = 100·

√√
1
n

∑
i

(
(Xestimation −Xmeasured)

Xmeasured

)2

(13)

MBD = 100·
1
n

∑
i

(Xestimation − Xmeasured)

Xmeasured
(14)

Information on the long-term performances of the estimation is given by the MBD. The RMSD
indicates the data scattering around the estimation and gives information on the short-term performance.

The calculation of the diffuse illuminance on surfaces of any inclination and orientation is carried
out by means of Equations (7)–(10), from the measurements of the sky scanner. An estimation of the
error in the calculation of the diffuse illuminance can be obtained comparing the experimental data of
horizontal diffuse illuminance, Ldh, and the one that is calculated from the projection on the horizontal
surface of the sky luminance pattern obtained with the sky scanner data. The RMSD and the MBD,
both for the city of Burgos and for all experimental results of Ldh recorded during the experimental
campaign, were 27.14% and −3.8%, respectively. Hence, the use of the sky scanner data from the device
used in this study (EKO, model MS-321LR) to determine illuminance on inclined surfaces facing any
orientation had an implicit error higher than 25% in the city of Burgos. This error was caused by three
main factors. First, the field of wiew (FOV) of the sky scanner (11◦ as indicated in Table 1). Secondly,
the main assumption of the measurement with the sky scanner: As shown in Figure 2, it was assumed
that the luminance of a sky patch was the value measured in the circumference inscribed within that
patch. Thirdly, every scanning time was about 4 min and the measurements were taken every 15 min.
Therefore, important variations in sky illuminance may occur between records.

The experimental data of Ldv were obtained from Equation (5). Those values, calculated on the
four cardinal facing surfaces, were compared to those calculated as projections on the same surface
using the sky-scanner luminance pattern. Both the RMSD and the MBD values are recorded in Table 5
and, as can be appreciated, are comparable to those obtained for horizontal diffuse illuminance. It can,
therefore, be concluded from this study that the use of the sky-scanner measurements, to determine
the diffuse illuminance on any horizontal or tilted surface, had an intrinsic RMSD due, mainly, to the
technical specifications of the experimental device, near 30%, agreeing with other works [11].

Table 5. RMSD and MBD calculated for the vertical diffuse illuminance, Ldv, and the horizontal diffuse
illuminance, Ldh. The reference values of Ldv were calculated from Equation (5). The reference values
of Ldh were measured in the experimental facility, described in Section 2.

Orientation RMSD (%) MBD (%)

Vertical

South surface 27.31 −3.55

North surface 21.46 −0.31

East Surface 31.19 −11.87

West Surface 27.69 4.63

Horizontal 27.14 −3.80
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As has been previously stated, when CIE standard classification is available, the sky luminance
distribution can be obtained from Equation (11), and Equations (7)–(10) can be applied to calculate
Ldh, Ldv and, therefore, VSC. In this work, the CIE standard sky type in Burgos was determined
between September 2016 and January 2019, following the procedure described in a previous paper [26].
The frequency of occurrence (FOC) of each sky type during the period under study is shown in Figure 5.
As can be seen, all types of CIE standard skies can be found in Burgos. The most frequent sky type was
sky 7, (partly cloudy sky, no gradation towards zenith, brighter circumsolar region), with a FOC of
almost 13%. Sky types 12, 13, and 11, corresponding to CIE standard clear sky categories, had FOCs of
around 11%, similar to the FOC of sky type 8 (partly cloudy sky, no gradation towards zenith, distinct
solar corona). Only a category of cloudy sky, sky type 4 (overcast, moderately graded, and slight
brightening towards the sun), had a FOC close to 10%, while the FOC values of the other overcast
categories were very low.
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Figure 5. Frequency of occurrence (FOC, %) of CIE standard skies in Burgos, Spain, between September
2016 and January 2019.

VSC values calculated from the different procedures were compared, taking the VSC values
obtained by Equation (6) as a reference. Both the RMSD and the MBD parameters are shown in Table 6.
As can be seen, for the different vertical surfaces facing the cardinal orientations, the statistical indices
ranged between 23% and 32% for the RMSD and between −1% and 16% for the MBD. Both procedures
underestimated the VSC, as shown by the negative MBD values. The highest discrepancies between
the different approaches were for the east orientation. This observation agreed other works, where the
results of different approaches for VSC calculation varied with the different surface orientations [15].

Table 6. RMSD and MBD results from the comparison between the VSC values calculated with the
different approaches.

VSC
RMSD (%) MBD (%) RMSD (%) MBD (%)

Sky-Scanner CIE

South surface 24.46 −8.47 25.56 −11.25
North surface 23.46 −4.48 23.53 −5.56
East Surface 31.93 −15.51 29.85 −15.38
West Surface 22.99 −1.14 24.84 −2.90



Appl. Sci. 2020, 10, 3095 10 of 15

5. Experimental Characterization of the VSC in Burgos

The experimental values of the VSC calculated from Equation (6) were obtained for the city of
Burgos. Figure 6 shows the VSC values, classified by intervals, and for the four vertical cardinal
orientations. As can be seen from Figure 6, VSC values lower than 20% were practically nonexistent
on surfaces facing the four cardinal orientations. VSC values within the interval between 20% and
40% had high FOC, ranging between 6.74% (south-facing surface) and 52.53% (north-facing surface).
The following VSC interval, from 40% to 60%, presented FOC of almost 30% in all four cardinal
orientations. VSC values between 60% and 80% could also be found in all cardinal orientations with
FOC of 23.4% for south-facing facades and 10.91% and 10.16% for east- and north-facing facades,
respectively. VSC values higher than 100% were present in all directions, with greater frequency on the
south- (21.94%) and the east-facing surfaces (33.68%).
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Figure 6. Distribution of VSC values by intervals calculated in Burgos, Spain, between September 2016
and January 2019.

Building design must take into account the availability of daylighting for proper building and
room design factors, such as depth, floor area, glazing surface, and window heights and widths,
among others. High VSC values usually result in a greater illumination in interior spaces. Different
buildings standards [43–45] establish minimum levels of VSC for more effective daylighting [46]. If the
obstruction angle of external obstructions is no higher than 25◦ above the horizon, then VSC values
>27% usually indicate good daylight availability [14]. It must be noted that the VSC target value of
27% is a figure based on low-density suburban housing models. The daylight and sunlight review
states that in an inner-city urban environment, VSC values in excess of 20% should be considered as
reasonably good. However, whenever the VSC value falls below 10%, then the availability of direct
light from the sky will be poor. As pointed out in Figure 6, high VSC values are predominant in Burgos
in all cardinal orientations. Table 7 shows the frequency of occurrence of VSC values higher than 27%
for surfaces facing the four cardinal orientations.

This study, therefore, shows that the availability of daylight in Burgos is very favorable for
integration into the lighting design of buildings. Detailed plans for new city developments accept
higher urban density, thereby increasing the difficulties associated with the required levels of daylight.
The impact of site layout on daylight conditions, especially in dense urban areas at high latitudes,
has been remarked upon by several authors [47]. High VSC levels mean that even dense urban areas
can have good daylighting conditions.
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Table 7. Frequency of occurrence (FOC) of VSC values higher than 27% for surfaces facing the four
cardinal orientations.

Orientation of Surface FOC (%)

SOUTH 99.76
EAST 96.84
WEST 87.41
NORTH 90.22

A seasonal study of Burgos VSC conditions was completed using the CIE standard classification
for homogeneous skies. Knowledge of the sky type permits the determination of VSC on any surface
regardless of its orientation, due to the univocal relationship between the sky type and the illuminance
distribution. This approach presents the advantage that CIE standard classification can be done using
different procedures that avoid the use of sky scanner devices [32]. Firstly, the seasonal distribution
of sky types in Burgos was determined, as presented in Figure 7. As can be seen, the sky types
corresponding to clear sky conditions (11 to 15 CIE standard sky types) presented FOCs ranging from
71.72% in summer to 34.45% in winter. Sky type 12 was the most likely CIE standard sky type, with
FOCs of 18.19% in winter, 21.21% in spring, 27.84% in summer, and 17.61% in autumn. Those figures
imply VSC values higher than 45%, regardless of the scattering angle, with acceptable daylighting
conditions throughout the year for dense urban design.
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2016 and January 2019.

Sky types corresponding to cloudy sky conditions (CIE standard 1 to 5) are more probable in
winter and autumn. Sky type 1 has the highest FOC (21.17% in winter and 14.63% in autumn) in the
cloudy sky type group, while sky type 5 shows FOC lower than 2.5% throughout the year. There
is, therefore, a very low probability that the VSC will be lower than 25% (minimum value of VSC
corresponding to sky type 2 with a scattering angle of 120◦). The FOC of partly cloudy sky conditions
(CIE standard type from 6 to 10) was homogeneous throughout the year, ranging from 19.33% in
summer to 27.29% in autumn. This result confirms the availability of daylighting in Burgos and agrees
with the previous VSC calculations.

The monthly CIE standard sky classification is presented in Figure 8. The FOC of each clear sky
type is highlighted in Figure 8, mainly from April to September, confirming that VSC values higher
than 27% were obtained throughout almost all the year.
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6. Conclusions

VSC is a useful index of daylighting availability for acceptable urban design in modern cities.
There are very few studies on this parameter and its temporal distribution due, mainly, to the scarce
experimental data available around the world. In this study, different methodologies for obtaining
VSC were compared and an extensive campaign of measures was carried out over more than two years.
Taking the VSC value calculated with luxmeter measures as a reference, the use of the sky luminance
distribution from the CIE standard classification for homogeneous skies, and the one measured from a
sky scanner have shown comparable RMSD values, lower than 30%. This fact shows the equivalence of
both approaches for calculating VSC for surfaces facing a given orientation. The use of the CIE standard
classification presents the advantage that it can be obtained from different procedures, different from
the use of sky scanners, as various studies have shown.

Values of diffuse illuminance on horizontal and vertical cardinal-oriented surfaces calculated from
the sky scanner device used in this work (model MS-321LR) implied an intrinsic RSMD, in comparison
with the measured data from the luxmeters that ranged between 21% and 31%. The main discrepancies
between the VSC values calculated from the luxmeter measures and those obtained from the sky
illuminance distribution were due to the technical specifications of the sky scanner device. Therefore,
the use of more accurate devices could decrease the error made by equivalent procedures to the same
extent. In the study, neither climatic nor geographic variables were used, so the results are perfectly
extrapolated to other locations.

The VSC in Burgos, Spain, was calculated in a measurement campaign lasting 29 months, between
September 2016 and January 2019. During that period, VSC values lower than 20% in the four cardinal
orientations were practically nonexistent and values between 20–40% were of greater probability.
Values between 40% to 60% had FOC of almost 30% in all cardinal orientations and both the south-
and the east-facing orientations presented FOC in the interval 60–100% of 20% and 10%, respectively.
It means very good conditions for daylighting availability in accordance with the most common
European Building Standards.

VSC values of >27%, considered by different standards as representative value for acceptable
daylight levels, present FOC values ranging from 87% to 99%, so efficient city and building design
could lead to significant energy savings for lighting, as well positive effects for occupant health and
well-being. VSC values higher than 100% were found in all cardinal orientations, more probably on
east- (FOC 30%) and south- (FOC 20%) facing vertical surfaces, showing the high energetic and luminic
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potential of those orientations without underestimating the potential of the north and west facades,
usually less considered for an energy-efficient design of buildings.
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A B S T R A C T   

There are several compilations of sky classifications that refer to Meteorological Indices (MIs) (variables usually 
recorded at meteorological ground stations), due to the scarcity of sky scanner devices that can supply the 
experimental data needed to apply the CIE standard sky classification. The use of one rather than another MI is 
never justified, because there is no standardized criterion for their selection. In this study, forty-three MIs, 
traditionally used to define different sky conditions, are reviewed. Feature Selection (FS) is a key step in the 
design of a sky-classification algorithm using MIs as an alternative to data from sky scanners. Four procedural 
methods for FS -Pearson, Permutation Importance, Recursive Feature Elimination, and Boruta- are applied to an 
extensive data set of MIs that includes CIE standard sky classification data, which was used as a reference. The 
use of FS procedures significatively reduced the original set of MIs, permitting the construction of different 
classification trees with high performance for the sky classification. In the case of the Pearson FS method, the 
classification tree only used two MIs. The advantage of the Pearson FS method is that it functions independently 
from the machine-learning algorithm used latter for the sky classification.   

1. Introduction 

Daylight, as part of the solar irradiance is an essential natural 
resource even for human health. In building design, projection of 
daylight can increase the energy efficiency of buildings (Dubois et al., 
2016; Fouquart et al., 1990; Li, 2010) and will have positive effects on 
the well-being of occupants (Aries et al., 2015; Edwards and Torcellini, 
2002). Natural lighting availability is highly dependent on luminance 
levels and sky conditions. In 2003, the Commission International de 
L’Eclairage (CIE) (Uetani et al., 2003) and the International Organiza
tion for Standardization (ISO) (ISO, 2004) both adopted 15 Standard Sky 
Luminance Distributions (SSLD), five clear, five overcast and five partly 
cloudy sky conditions. They provide the most versatile definition of 
skylight at various localities and daylight climate regions, making it 
possible to simulate an annual daylight profile at any point on earth in 
absolute units, based on typical luminance sky patterns. 

The sky scanner is the standard instrument for measuring sky lumi
nance distribution (Li, 2010). Despite the high interest in those mea
surements, very few studies at only a handful of European (Markou 
et al., 2005; Markou et al., 2004; Suárez-García et al., 2018; Torres et al., 
2010a, b; Tregenza, 1999) and Asian (Chaiwiwatworakul and 

Chirarattananon, 2004; Li and Tang, 2008; Ng et al., 2007; Zi et al., 
2020) locations have been conducted to characterize the sky under the 
CIE standard, mainly due to the scarcity of sky scanner devices available 
to gather sky luminance data. 

Different alternatives to the use of sky scanners have been proposed 
for classifying the skies (Li et al., 2014b), including the use of different 
climatic parameters or meteorological indices (Li et al., 2004; Lou et al., 
2017; Umemiya and Kanou, 2008; Wong et al., 2012), vertical (Chen 
et al., 2019; Darula et al., 2013) and horizontal illuminance data 
(Alshaibani, 2016b; Alshaibani, 2017), as well as satellite data (Janjai 
et al., 2008). Added difficulties for sky classification (Allard et al., 2015) 
include the variability of sky conditions and their sensitivity to many 
stochastic variables. 

Sky classification in various studies relies on Meteorological Indices 
(MIs), factors usually recorded at meteorological ground stations that, to 
a greater or lesser extent, affect the luminance and radiance distribu
tions: sun position, cloud coverage, turbidity, and weather conditions, 
among others. Such climatic indices within certain ranges will lead to 
sky luminance and radiance distributions with similar features, and a 
straightforward approach is to describe those distributions by sky con
ditions (Lou et al., 2017). The selection of the MIs depends on their 
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availability. The number of MIs used and the conditions that define each 
sky type vary in each study, complicating the task of defining a taxon
omy that could unequivocally describe the specific characteristics of 
each sky type (Dieste-Velasco et al., 2019; Perez et al., 1990a), even in a 
reduced classification with only three sky types: clear, partly cloudy, and 
overcast conditions. 

In recent years, machine learning (ML) tools, such as Artificial 
Neural Networks (ANN’s) (Li et al., 2010) and classification trees have, 
among others, been applied to sky classification. Supervised machine 
learning tools permit the identification of patterns and relationships 
between inputs and outputs, as long as the algorithm has sufficient ex
amples to train recognition. In this paper, a set of sky type samples 
labeled as CIE Standard Sky Classification will be used as the training set 
for sky classification purposes and a test set of available MIs will be used 
as input for the algorithm. 

The work flow of a supervised Machine-Learning (ML) tool is shown 
in Fig. 1. The first step for every ML tool is to filter and to analyze the 
input data so as categorize it and to control its quality. The second step is 
the Feature Selection (FS) procedure: the identification of related fea
tures within a set of data and the removal of irrelevant or less important 
features that contribute little or nothing to the definition of the target 
variable, so as to achieve models of greater accuracy. FS is one of the 
core concepts of ML that will impact on the performance of the devel
oped model, improving its precision and reducing its complexity and 
overfitting as well as its runtime. 

Following acceptable FS, the algorithm is trained using part of the 
input data set (training set), typically 80% of the total, using the 
remaining 20% for validation tests. Training set data and test set data 
are exchanged as many times as necessary, until the algorithm is 
considered validated. 

In this study, a total of forty-three MIs describing sky conditions are 
borrowed from past studies for their use as variables to define sky types. 
The use of one rather than another MI is not justified, because there is no 
standardized criterion for selecting MIs. It is necessary to compare the 
information that each of them offers, removing those that offer redun
dant or insignificant information for the definition of sky types (Yang 
and Pedersen, 1997). Therefore, FS is a key step in the design of a sky 
classification algorithm using MIs as an alternative to data from sky 
scanners. The main objective of this study is to determine, through a FS 
procedure, the most suitable MIs and their precise number for the 
optimization of the sky classification algorithms. Forty-three MIs were 
included in the study, calculated from half-hourly experimental data 
records collected at Burgos, Spain, between September 2016 and 
December 2019. The following FS criteria were selected: Pearson (Bie
siada and Duch, 2007), Permutation Importance (Gregorutti et al., 
2017), Recursive Feature Elimination, and Boruta (Degenhardt et al., 
2019). 

This study reports an extensive review of the MIs that define different 
sky conditions and features that are suitable for sky classification. 

Structured and rigorous FS procedures can determine the usefulness of 
the information in these indices, with a high degree of success, for the 
problem of sky classification, the informative equivalence between some 
of the MIs, and the number of MIs that may be needed for sky classifi
cation in line with the CIE standard. It was proven that the Pearson FS 
procedure performed accurate sky classification into three sky condi
tions (clear, partly cloudy and overcast conditions), in accordance with 
the CIE Standard Classification, requiring only two MIs. The FS results, 
processed in a classification tree to test their validity, confirmed that the 
intervals of definition of the MIs for each sky type were close to the 
intervals that were established in each study for the individual use of 
each MI. 

The structure of this paper will be as follows. Following the Intro
duction in Section 1, the methodology will be explained in Section 2, 
where the experimental facility and the data processing needed to 
calculate the MIs and the experimental campaign is introduced in Sec
tion 2.1. In Section 2.2, the CIE Standard Sky classification of Burgos, 
Spain, gathered during the experimental campaign will be described, as 
reference data for sky classification. The MIs with their data on sky 
conditions that were available for the FS procedures will be reviewed in 
Section 2.3. Then, the different FS procedures used in this work and the 
results of their application to the experimental MIs will be described in 
Section 2.4. In Section 2.5, the classification trees will be introduced, 
together with the machine learning algorithm used to test the perfor
mance of the FS procedure; and in Section 2.6 the metrics used to test FS 
performance will be presented. Finally, the main results and the con
clusions of the study will be summarized in Sections 3 and 4. 

2. Methodology 

The present work was developed in four steps: data collection, 
Feature Selection (FS), classification trees, and classification metrics. 
Several meteorological variables were collected between 21 September 
2016 and 31 January 2020. The dataset contained over eight-thousand 
samples that were used for the evaluation of 43 MIs. The size of the data 
set lent support for the conclusions of this work. Following the calcu
lation of the MIs, the classification tree was employed in conjunction 
with the FS procedure to classify sky cloudiness (clear, partial or over
cast) following the established CIE patterns. The ML classification tree 
algorithm was selected, because it can process and extract the rules for 
sky labelling. FS, for maximum simplification of the classification trees, 
was applied, in an effort to reduce the number of MIs serving as ML 
algorithm inputs to a minimum. Finally, the outputs of the classification 
tree algorithm were analyzed using several metrics. 

2.1. The experimental facility 

The experimental campaign during which the meteorological data 
were recorded for the processing of each MI in this study was performed 

Fig. 1. Workflow of Supervised Machine-Learning tool.  
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in Burgos, Spain. Data collection took place at a meteorological facility 
located at the Higher Polytechnic School of Burgos University (LON. 
42◦21′04′′N, LAT. 3◦41′20′′W, 856 m above mean sea level). A com
mercial sky scanner from Eko instruments, model MS-321LR, was used 
for CIE Standard classification. Its technical specifications are shown in 
Table 1. Measurements from 4-minute scans were taken every 15 min, 
from September 2016 to December 2017. From January 2018, the scans 
were taken every 10 min. The device was adjusted on a monthly basis to 
measure from sunrise to sunset. First and last daily records were dis
carded, to avoid measurements with solar altitudes equal to or lower 
than 7.5◦. Data higher than 50 kcd/m2 and lower than 0.1 kcd/m2 were 
also discarded, following the technical specifications of the sky scanner. 
Seven lux sensors, EKO, model ML-020S-O, technical specification listed 
in Table 2, were also used: four of them recorded vertical global illu
minance in the four cardinal orientations and three lux sensors recorded 
horizontal, global, beam, and diffuse illuminance. Horizontal global, 
diffuse and beam irradiance were measured using Hukseflux pyran
ometers, model SR11 and a Hukseflux pyrheliometer, model DR01. The 
technical specifications of the pyranometers and the pyrheliometer are 
shown in Table 3. The beam illuminance and irradiance sensors were 
installed on a sun tracker, model Sun-Tracker 3000, from Geónica. The 
diffuse illuminance and irradiance sensors were obscured from direct 
sunlight by a shadow hat. Illuminance and irradiance data were recor
ded every 10 min (averaging recorded scans of 30 s). Fig. 2 shows the 
experimental equipment. 

CIE quality criteria (Comission Internationale de, L.E, 1995) were 
used for analyze and filter illuminance data while irradiance data were 
analyzed and then filtered using conventional quality criteria (Guey
mard and Ruiz-Arias, 2016). To match simultaneous records of illumi
nance and irradiance data, half-hourly and hourly sky scanner 
measurements were used in this study, from September 2016 to 
December 2017, and from January 2018, ten minutes records. If the 
illuminance and irradiance data failed to pass the quality criteria, then 
all the simultaneous data sets were rejected. 

The measurement campaign extended between 21 September 2016, 
and 31, January 2020. Following their analysis and the filtering process, 
the experimental data amounted to 8829 items. 

2.2. CIE standard classification of Burgos skies 

Supervised Machine Learning needs examples for training the clas
sifier algorithm. In this work, the CIE standard classification served as a 
benchmark for estimating the performance of the supervised machine 
learning algorithm and for testing the FS procedure. Several works have 
reported that the CIE Standard sky classification provides a good overall 
framework for representing the actual conditions for homogeneous skies 
(Li et al., 2011b; Li et al., 2004; Li et al., 2010; Markou et al., 2005). 
Tregenza (Tregenza, 2004) gave a detailed description of the CIE stan
dard classification procedure following a discrete integration method
ology, the same method that was used for sky classification in Burgos. 
The labelling of CIE sky types was as follows: I.1 to III.1: cloudy; III.2 to 
IV.3: partially cloudy; and, IV.4 to VI.6: clear skies. More information on 
the classification method can be obtained from a previous work (Suárez- 
García et al., 2018). In the experimental campaign between 21 
September 2016, and 31 January 2020, clear skies predominated in 

Burgos (52%) while overcast skies were present in 15% and partially 
cloudy skies in 33% of cases, as shown in Fig. 3. 

2.3. Meteorological indices 

Skies of the same category are assumed to share identical well- 
defined sky luminance patterns (Darula and Kittler, 2002), which is 
the straightforward approach for sky classification. Once the skies have 
been identified, the daylight on any surface can be estimated, by inte
grating the luminance distribution of the sky dome over each surface 
(Granados-López et al., 2020). Therefore, any climatic parameter based 
on lighting measurements can potentially identify a given sky condition. 
Table 4 describes the 43 MIs reviewed in this work. 

The US National Bureau of Standards (NBS) recommends the use of 
the horizontal diffuse fraction, kd, for sky classification (Fakra et al., 
2011): low kd values indicate clear sky conditions and high values are 
usually present, but not exclusively so, in overcast conditions (Li et al., 
2015). Alternatively, high values of the horizontal direct fraction, kb, are 
representative of clear skies, due to the high values of the solar irradi
ation beam component (Ferraro et al., 2010) while low kb values pre
dominate on cloudy days,. 

Perez’s Sky clearness, εp, maybe one of the most widely used MIs for 
sky characterization, was originally proposed to define the ratio of 
illuminance and irradiance, known as luminous efficacy, K. The sky’s 
brightness index, Δ, is often used with the clearness index, εp, for sky 
classification (Li et al., 2004; Perez et al., 1990a). 

Luminous efficacy, K, can be modeled through different parameters 
such as the solar zenith angle, Zs; Perez’s sky clearness index, εp; the 
sky’s brightness index, Δ, and, the atmospheric precipitable water 
content (Perez et al., 1990a). 

Relative heaviness, Ω, (Chung, 1992) is proportional to the amount 
of solar radiation entering into clouds. Cloud cover, CC, is often used as 
an indicator of sky conditions (Muneer et al., 2007): 0 oktas is the CC 
value for clear skies and 8 oktas is assigned in overcast conditions. A sky 
classification based on MIs was performed by Igawa et al. (Igawa et al., 
2004) using Igawa’s sky index, Si, the clear sky index, kc, and the 
cloudless index, Cle.

A CIE-based standard classification of skies using global horizontal 
illuminance, LxGH, and Kittler’s index, kt , was proposed by Lou et al. 
(2019). Kittler’s index, kt , is widely used for illumination studies, due to 
the high information content that it provides when only global irradia
tion data are available. However, kt is only available when the zenith 
sun angle is under 80◦, Zs < 80◦

. An alternative and globally valid 
definition was proposed by Perez et al. (1990b), kt2, that used cloud 
cover, CC, together with relative humidity, RH, among other factors, 

Table 1 
Sky scanner specifications.  

Model MS-321LR Sky Scanner 

Dimensions (W × D × H) 430 mm × 380 mm × 440 mm 
Mass 12.5 kg 
FOV 11◦

Luminance 0 to 50 kcd/m2 

Radiance 0 to 300 W/m2 

A/D Convertor 16 bits 
Calibration Error 2%  

Table 2 
Luxmeter technical specifications.  

Model ML-020S-O 

Illuminance Range 0 to 150,000 lx 
Output 0 to 30,000 μV 
Impedance 280 Ω 
Operating temperature range − 10 ◦C to 50 ◦C 
Temperature response 0.4%  

Table 3 
Pyranometers and Pyrheliometer technical specifications.  

Model SR11 DR01 

Measurement Range 0–3000 W/m2 0–4000 W/m2 

Calibration uncertainty <1.8% (k = 2) <1.2% (k = 2) 
Spectral Range 285–3000 × 10− 9 m 200–4000 × 10− 9m 
Sensitivity (nominal) 15 × 10− 6 V/(W/m2) 10 × 10–6 V/(W/m2) 
Operating temperature 

range 
− 40 ◦C to 80 ◦C − 40 ◦C to 80 ◦C 

Temperature response <± 2% (− 10 ◦C to 40 ◦C) <± 1% (− 10 to +40 ◦C)  
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effectively contributing to better definition of the atmospheric 
conditions. 

The cloud ratio on irradiance, Ce (Rahim et al., 2004) originally 
defined as the proportion of diffuse to global irradiance, was used in the 
estimation of solar radiation. Umemiya and Kanou (2008) introduced a 
new definition in terms of illumination, Cv, and used it for sky tree 
classification. The cloud ratio is 1 in overcast sky conditions and 0 for 
clear skies, and it will vary quickly and with some frequency when the 
sky is partly cloudy. The cloudless index, Cle, is often defined in terms of 
the standard cloud ratio, Ces, and the cloud ratio, Ce. Ces is defined as a 
polynomic fit of the lower limit of Ce. 

Perraudeau’s nebulosity index, OFP, introduced by Perraudeau in 
1989 (Kambezidis et al., 1998), classifies the skies into five categories 
(Kambezidis, 2018). This index has since been modified by other authors 
(Fakra et al., 2011) and is defined in this work as FP. The clearness 
function, F, was compared to the MIs Δ, εp, and kt for sky classification 
(Muneer, 2007). Low values of F, indicate overcast sky conditions and 
values near to 1 are obtained under clear sky conditions. 

The Klucher index, FK, (Klucher, 1979) depending only on kd, has 
also been used for sky classification. Markou et al. (2005) prepared a 
simple sky classification by modelling direct solar irradiance data, Pe, 
characteristic of each sky type. This proposal suggested the use of 
experimental MIs for sky classification: horizontal global irradiance, 
RaGH; horizontal diffuse irradiance, RaDH; horizontal beam irradiance, 

RaBH; and south-facing global vertical irradiance, RaGVS. 
Umemiya and Kanou (2008) proposed the turbidity index, TURV,

permeability, PERM, Unemiyas’s Cloud Ratio, CLDV, and global, diffuse, 
and beam illuminance, EVGM, EVDM, and EVSM, normalized to the 
optical mass, Mv, as effective sky condition sorters. They produced a sky 
classification with 7 types of skies that used a classification tree based on 
the turbidity index, TURV; Kittler’s index, kt ; sky brightness, Δ; and, 
normalized global illuminance, EVGM. A similar proposal was intro
duced by Lou et al. (2017) using solar altitude, αs; Kittler’s index, kt; the 
turbidity index, TURV; air temperature, T; and, relative humidity, RH.

Other variables, used for meteorological forecasting have been proposed 
among which MIs for sky classification such as wind speed, WS; relative 
humidity, RH; cloud cover, CC; and air temperature, T, among others 
(Inman et al., 2013). 

Li et al. [12] proposed a group of MIs that obtained a very accurate 
sky classification. They used a ratio of zenith illuminance, Lz, and hor
izontal diffuse illuminance, LxDH, named LERT, as a measure of sky 
brightness (Li et al., 2006; Markou et al., 2005). The luminous turbidity 
index, tv, refers to the attenuation of solar radiation in the atmosphere, 
due to the molecules contained into the air (water, dust or aerosols) (Li 
et al., 2016; Pasero and Mesi, 2010). In overcast sky conditions, tv, is 
very high, because there is no direct solar-irradiation component. Under 
clear or partly cloudy sky conditions, tv is a very interesting parameter, 
due to its high sensitivity to ambient pollution (Lou et al., 2017). It is 
related to CIE standard sky types VI.6, VI.5, and IV.4 (Kocifaj, 2011). 

Fig. 2. Experimental equipment on the roof of the Higher Polytechnic School of Burgos University, Spain.  

Fig. 3. Monthly distribution of the Frequency of Occurrence (FOC) and total FOC (%) of clear, partly cloudy, and overcast sky conditions in Burgos, Spain (from 
September 21st, 2016 to January 31st, 2020). 
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C1, defined as the ratio of horizontal global illuminance, LxGH, and 
horizontal extraterrestrial illuminance, L0h, evaluates the ambient 
clarity. Low values of C1 are characteristic of the passage of a cloud on a 
clear day while a high C1 value can reflect a cloud opening zone on a 
completely overcast day (Alshaibani, 2016a; Kittler and Danda, 2000). 
C2 is defined as the ratio of horizontal diffuse illuminance, LxDH, and 
horizontal extraterrestrial illuminance, L0h, so high C2 values are char
acteristic of partly cloudy skies, while low C2 values are characteristic of 
cloudy or completely clear skies (Li et al., 2006; Li et al., 2010; Markou 
et al., 2005). 

The vertical sky component, VSC, was also proposed as an MI for sky 
classification (Li et al., 2011b). Defined as the ratio of the vertical diffuse 
illuminance and horizontal diffuse illuminance, it can easily be obtained 
experimentally. Littlefair established an international standard for the 
indoor daylight evaluation of buildings (Littlefair, 2012) based on VSC, 
which is highly dependent on the solar altitude, αs, and the scattering 
angle, χ (Alshaibani, 2011; Li et al., 2014a). 

2.4. Feature selection 

43 MIs were selected (Table 1) for the study. Each one represents 
certain characteristics of the sky that are suitable for sky classification. 
The final objective of the present work is to distinguish the most 
representative MIs for sky classification according to the CIE taxonomy. 

The most simple and demanding methodology is the full combina
torial method. It proposes to test all the possible combinations of all MIs: 
at first, only one MI would be considered for the CIE classification; then, 
all combinations of two MIs would be used for the task and so on (Visa 
et al., 2011). Li et al. (2011a) followed this path to evaluate the per
formance of several MIs in neural networks for weather data classifi
cation. It was feasible because only five MIs were considered which 

meant a total of 30 sets of MIs for testing. In the present study, an 
analysis of the 43 variables implied over a trillion combinations, which 
was not feasible. FS was therefore essential to solve this task. 

Several FS techniques are used widely in the ML field to find the most 
important variables or to reject the most redundant ones. There are 
different types of FS algorithms. On the one hand, no clustering algo
rithms are used with the Filter Methods that base their decision on a 
statistical index that evaluates the dependence between the MIs. On the 
other hand, the Wrapper Methods evaluate the information provided by 
each MI using clustering algorithms, which implies a higher computa
tional cost (Solorio-Fernández et al., 2019). 

The FS Filter methods are used to study the similarity of MIs through 
a statistical parameter, a mathematical expression that serves to elimi
nate redundant or non-informative indices. These methods are inde
pendent from the ML algorithm used later on (Mitra et al., 2002; Yu and 
Liu, 2003). Hence, their results may be used as an input of any ML al
gorithm. They are an efficient procedure, in so far as they reduce the 
input dimensionality of the ML algorithm and prevent overfitting. In this 
study, a widely used statistical parameter will be used: the Pearson 
correlation coefficient. 

The FS Wrapper methods perform a global evaluation of the entire 
set of variables that creates a ranking of relevance. The ML algorithm 
executes the ranking and, consequently, the score is not universal and 
they cannot be applied to any other ML algorithm (Wald et al., 2014). In 
other words, the Wrapper methods will produce different rankings for 
different ML algorithms. Wrapper FS approaches are commontly used in 
the field of renewable energy applications due to their higher perfor
mance (Salcedo-Sanz et al., 2018). Permutation Importance, Recursive 
Feature Elimination and Boruta methods are all included within this 
category. In this work, the FS algorithms used for simplifying the clas
sification trees are: Pearson correlation coefficient, Permutation 

Table 4 
Definition of the 43 MIs reviewed as candidates for sky classification. L0 is the Luminous solar constant (133.8 kLux) and ISC is the standard global irradiance 

(1361.1
W
m2) (Gueymard, 2018).  

Ratio Zenith Illuminance 
to horizontal diffuse 
Illuminance 

Ratio Global Illuminance Ratio Diffuse Illuminance Luminous Turbidity index Vertical Sky Component 

LERT =
LZ

LxDH  C1 =
LxGH
LOh  

C2 =
LxDH
LOh  tv =

Ln(
LOh

LxBH
)

AVMV  

VSC =
RaDH
RaDV  

Normalized Global 
Illuminance 

Normalized Beam 
Illuminance 

Normalized Diffuse Illuminance Cloudless Index Igawa’s Sky Index 

EVGM = MV
LxGH

L0  
EVSM = MV

LxBH
L0  

EVDM = MV
LxDH

L0  
Cle =

1 − kd

1 − Ces(M)
Si =

RaGH

0.84
ISC

Mv
e− 0.0675Mv

+
̅̅̅̅̅̅̅
Cle

√

Direct Fraction Cloud Cover Illuminance Cloud Ratio Irradiance Cloud Ratio Standard Cloud Ratio 

kb =
RaBH
RaGH  

CC(%Clouds) CV =
LxDH

LxDH + LxBH  
Ce =

RaDH
RaDH + RaBH  

Ces = 0.01299 +

0.07698MV − 0.003857MV
2 +

0.0001054MV
3 − 0.000001031MV

4  

Umemiya’s Cloud Ratio Relative Heaviness Clear Sky Index Clearness Index Zenith Angle Independent Clearness Index 

CLDV =
LxDH
LxGH  Ω =

LxGH
Sinαs  

kC =
LxGH

0.84
ISC

Mv
e− 0.0675Mv  

kt =
RaGH
IOSinαs  

kt2 =
kT

1.031e
−

1.4
0.9 + 9.4MV + 0.1  

Luminous Efficacy Brightness Index Perez’s Clear sky index Original Perraudeau’s 
Nebulosity Index 

Perraudeau’s Nebulosity Index 

K =
LxGH
RaGH  

Δ =
RaDHMv

Iscεosinαs  εp =

(RaDH + RaBH)

RaDH
+ 1.04Z3

1 + 1.04Z3  

OFP =
1 − kD

1 −
Eclear

Eclear
+ RaGH  

FP =
1 − kD

1 − 0.12037(SinZS)
− 0.82  

Klucher’s Clearness 
Index 

RaBH,RaDH,RaGHRaGVS,
LxGH  

Optical Mass Scattering Angle Ref Turbidity 

FK = 1 − k2
D  Direct, Diffuse, Global 

(Horizontal and Vertical South 
oriented) Irradiance global 
horizontal Illuminance 

Mv =

(sinαs+0.50572(αs + 6.07995)− 1.6364  

χ = arcos(cosZscosZP +

sinZssinZPcos|ϕP − ϕs|)
TURV =

1 + 0.0045MV

0.1MV
Ln(

L0

LxBH
)

T,RH,WS,Lz,αs  Diffuse fraction Clearness Function Modeled direct solar 
irradiance 

Permeability 

Temperature, Relative 
humidity, Wind speed, 
Zenith luminance, solar 
altitude. 

kd =
RaDH
RaGH  F =

RaGH − RaBH
Iscεosinαs  

Pe =
RaGH − RaDH

sin(αs)
PERV = MV

̅̅̅̅̅̅̅̅̅̅̅̅
LxBH

L0

√

D. Granados-López et al.                                                                                                                                                                                                                      



Solar Energy 218 (2021) 95–107

100

Importance, Recursive Feature Elimination and Boruta. The following 
paragraphs describe them and their use in other fields of the ML. 

2.4.1. Pearson correlation coefficient criterion (P) 
The Pearson criterion is based on the Pearson correlation coefficient, 

r. If two datasets X and X’ are strongly correlated, the Pearson coefficient 
is 1 (direct correlation) or − 1 (inverse correlation). However, a Pearson 
coefficient near 0 implies a weak or null correlation. 

In this work, the Pearson criterion was applied in two steps: firstly for 
selecting the MIs with a strong correlation to the CIE cloudiness classi
fication. Only the MIs with Pearson correlation coefficients above a 
certain threshold were selected and used in the next step for detecting 
the MIs with high correlations between them and for selecting the most 
important ones. After both steps, only the most important independent 
MIs for the classification were selected. 

2.4.1.1. Permutation Importance (PI). Permutation Importance (PI) or 
the Mean Decrease in Accuracy (MDA) (Nembrini, 2019) algorithm is 
used to analyze how the score of the prediction model decreases when 
the data of a single variable is randomly permuted, generating random 
noise. Permutation feature importance is defined as decreasing in a 
model score when a single feature value is randomly shuffled (Bommert 
et al., 2020). A PI index of 0% means null relevance of this feature for the 
classification. Usually, a threshold of 5% is employed, considering only 
MIs with a permutation importance above 5% as important and dis
carding any others (Altmann et al., 2010). 

2.4.1.2. Recursive feature Elimination (RFE). The Recursive Feature 
Elimination (RFE) method fits a model, so as to remove the weakest 
features until a specified number of variables is reached. A great number 
of ML classification algorithms such as Decision Trees, Support Vector 
Machines (Weston et al., 2001), and Random Forests (Diaz-Uriarte and 
Alvarez de Andres, 2006), among others, attach a weight to each input 
for the classification. The features are ranked in each loop and a few 
features per loop are removed, in an attempt to lower their inter- 
dependencies and collinearity. Also, the final size of the feature set 
cannot be initially specified and the number is established when there is 
no global improvement in the accuracy of the model. This method has 
been widely used with high-dimensional data sets (Escanilla et al., 2018; 
Paul et al., 2015). Fields where the algorithm has successfully been 
applied include genetics (Darst et al., 2018), materials science (Sharp 
et al., 2018), cancer studies (Duan et al., 2005), sports (Paul et al., 2015) 
and solar and wind forecasting (Benamrou et al., 2020; Feng et al., 
2017). 

2.4.1.3. Boruta (BOR). The Boruta (BOR) method, rather than 
comparing features between each other, competes with a randomized 
version of so-called “shadow features”. In each iteration, the importance 
given by the classification algorithm to each original feature is 
compared with the highest feature importance recorded among the 
shadow features. Each time the importance of a feature is higher than 
this threshold, it is called a “hit”. A feature is considered useful, if it 
performs better than the best randomized feature. Counting the number 
of hits, the selection of a feature is decided after a number of trials. In the 
same way as RFE, the BOR method performs a top-down search for 
relevant features, progressively eliminating irrelevant ones (Kursa and 
Rudnicki, 2010). RFE and Boruta have been compared on many occa
sions and in scientific fields such as genetics (Kursa, 2014) and spec
troscopy (Poona et al., 2016). Permutation Importance is highly 
sensitive and effective (Gregorutti et al., 2017) when applied to bio
logical data (Degenhardt et al., 2019). 

2.5. Classification trees 

A classification tree is an algorithm that classifies datasets into 

certain outcome categories by using a sequence of “partitions”, or 
“splits”. However, the more complex the category analysis, the larger 
the sequence of splits that may be needed. Since the first implementation 
of Breiman et al. in 1984 (Breiman, 1984), classification trees have been 
used in a very large variety of disciplines, such as meteorology, medi
cine, and statistics, among others, and likewise CIE Standard skies 
classification (Umemiya and Kanou, 2008). 

The structure of the classification tree can be implemented by several 
criteria. The one chosen for the sky cloudiness classification is the 
Classification and Regression Tree (CART) (Breiman, 1984). It looks for 
successive binary splits that chooses the partitions, in order to obtain the 
highest performance. Both the Gini (D’Ambrosio and Tutore, 2011) and 
the Entropy (Witten et al., 2016) indices were considered to fit the 
classification tree. The Gini Index points to how often a randomly chosen 
element from the set would be incorrectly labelled. The entropy index 
considers the disorder of a grouping by the target variable. Both of them 
are performance measures of the classification tree. 

The classification tree algorithm was selected above other ML clas
sification algorithms, due to the transparency of the results it can obtain. 
The classification tree produces a diagram that can be more easily un
derstood than those produced by other ML techniques such as, Support 
Vector Machines, Neural Networks, Random Forest and Gradient 
Boosting, traditionally known as “black boxes”. 

2.6. Classification metrics 

Confusion matrices are a useful tool for the performance character
ization of an classification algorithm. Four possible cases can be ob
tained in a classification procedure: true positive (TP), true negative 
(TN), false positive (FP) and false negative (FN). The number of each one 
in the confusion matrix summarizes the performance of a dichotomic 
classification, as shown in Fig. 4. 

From the confusion matrix Precision, Pr, and Recall, Re, indices are 
defined in Eqs. (1) and (2), respectively, in order to measure the per
formance of the classification algorithm. Pr is the probability that a 
positive prediction was correct, while Re is the percentage of correctly 
detected positive cases. Both indices are independent from each other 
and could be explained by a very precise and not a very sensitive algo
rithm. Both indices are grouped in the f1 factor, defined in Eq. (3) as the 
harmonic average of precision and recall. 

Pr =
TP

TP + FP
(1)  

Re =
TP

TP + FN
(2)  

f 1 =
2

1
Pr +

1
Re
=

2TP
2TP + FN + FP

(3) 

Sky classification is a multiclass classification. It is therefore neces
sary to sum up the indices for each category, which yields a global result 
for the classification algorithm performance, as shown in Fig. 5. Pr, Re, 
and F1 indices were calculated for each CIE Standard sky condition 
(Clear, Partial and Overcast). 

Two different procedures can be used to obtain the global values: the 
macro-average and the weighted-average. The macro-average calculates 
the global value for each index as the average of the index for each 
category, regardless of the size of the category within the sample. 
Therefore, a low performance of the classification algorithm in one of 
the categories may affect overall performance, despite performing well 
in the other categories. This problem is as common in imbalanced class 
distribution as it is for the case of sky classification (see Fig. 2, where the 
FOC of clear, partial, and overcast conditions differ). The weighted- 
average yields the global value, by adding the results for each cate
gory and the weighting that represents the category size over the total 
number of cases. Therefore, the weighted aggregation used in this work 
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Fig. 4. Confusion matrix: possible cases in the comparison of the prediction with the actual data.  

Fig. 5. Confusion Matrix for multi-class sky classification.  

Fig. 6. Absolute value of the Pearson correlation between the MIs under consideration and the CIE Standard Sky classification, r(MIi,CIE).  
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will reward those algorithms with good performance in the most 
numerous classes and will have a lesser effect on those with poor per
formance, in the classes with fewer samples. 

3. Results 

3.1. Feature selection 

Figs. 6 and 7 show the results of the FS using the Pearson correlation 
coefficient. Fig. 6 shows the absolute value of the correlation between 
each MI and the CIE classification, denoted as r(MIi,CIE). Following 
Thumb’s rule (Mukaka, 2012), three r intervals were considered: high 
(0.9 ≥ r ≥ 0.7), moderate (0.7 ≥ r ≥ 0.5), and negligible (r < 0.5) cor
relations. The MIs with r(MIi,CIE) ≥ 0.7 were moved to the second stage 
of the Pearson correlation coefficient criterion. In the second step, an 
effort was made to discard the redundant MIs. Here, two MIs, MIi and 
MIk, are redundant if r(MIi,MIk) > 0.9. Fig. 7 represents the correlation 
between the MIs. The MIs for which r(MIi,MIk) ≥ 0.9. are shaded in 
blue. The redundant groups of the MIs were formed by grouping the MIs 
with very high correlation represented as blue squares, for each column 
of the matrix of Fig. 7. Each MI was only included in one group, as shown 
in Table 5. In this Table 5, all MIs in the same group were considered to 
have the same information and only one of them, the one with the 
highest value of r(MIi,CIE), was needed to reflect the information of the 
rest. CC was related to the others MIs and was therefore included in the 
selection process. As can be seen, the original set of 43 MIs was reduced 
to two. 13 features (MIs) were selected from the Permutation Index (PI) 
results as necessary for CIE Standard Sky classification, as shown in 
Fig. 8. All of them caused a 5% decrease in the performance of the 
classification algorithm when they were randomly shuffled. The red line 
in the figure represents the aforementioned threshold. All the scores 
above the line, represent an impact higher than 5%. Other thresholds 
could be considered. However, the optimal threshold for each algorithm 
is a matter for further research. 

Thirteen MIs were selected using the Recursive Feature Elimination 
(RFE) FS procedure that sets a minimum number of MIs needed for ac
curate CIE Standard Sky classification at 13 MIs. Fig. 9 shows the curve 
produced by recursive reduction of the number of MIs. The curve 
maintains an excellent f1 above 13 features when the most suitable 
variables that the algorithm selected were CC,LxGH,VSC,WS,OFP,Cle,kt ,

K,LERT,Ce,RH,Lz. When fewer variables were in the classification tree, 

the performance of the classification algorithm drastically decreased, 
because the most informative features were removed from the model. 
Conversely, redundant information was included, whenever additional 
variables were added. 

One hundred trial tests of the Boruta (BOR) FS methodology were 
completed. Fig. 10 shows the hits of each one of the MI. All MIs got a hit 
and the maximum number of hits was below ten. The MI with a number 
of hits higher than one was selected. 

The MIs selected by each FS procedure are summarized in Table 6. 
With the exception of the Boruta method, the FS procedures reduced the 
original set of MIs to a little less than 75%, selecting different MIs. The 
reduction in the number of variables required for the classification 
process, reflects the usefulness of the FS. Fewer variables to be measured 
and/or calculated implies less instrumentation and data storage, and 
simplifies the classification algorithm. Simpler models reduced the 
necessary computing power and, for example, made its implementation 
easier for lighting control systems. 

The results of different feature methods selection, show the rela
tionship existing between the variables, which in some cases can be 
directly deduced from the definition thereof, shown in Table 1 while in 
other cases does not appear so clearly reflected. The MIs selected by the 
FS algorithms can be classified into three types: variables related to the 
cloud conditions, others related to daylighting, brightness or clearness 
conditions of the skies and geometrical variables. While the Pearson FS 
method eliminates those variables that are most related to each other, in 
order not to include redundant information, the Boruta method does not 
eliminate a priori, highly related variables that can add distinctive nu
ances useful for classification. PI and RFE methods reach a compromise 
between information and complexity. 

3.2. Classification trees 

The classification trees for CIE Standard Sky Classification from the 
MIs selected by Pearson, Permutation Importance, RFE and Boruta FS 
procedures are shown in Figs. 11–14. Starting in the main left node, if 
the condition is met, the path of the upper branch is followed and, if not, 
the path followed is the one indicated by the lower branch. Evaluating 
each node consecutively, the sky conditions would be obtained. The 
number inside the nodes represents the number of samples inside each 
partition. The number of binary partitions or levels of the classification 
tree is a previously set parameter. In this work all the classification trees 
have four levels. An increased number of levels might increase the 
precision of the classification algorithm in the same way as complexity. 
The starting MI and the number of levels of the classification tree were 
selected following the Gini and the Entropy criteria, previously 
introduced. 

FP and CC are MIs selected by the Pearson FS method for the clas
sification tree. Both MIs are related to the cloud conditions, through the 
diffuse horizontal fraction (ratio diffuse horizontal irradiation to global 
horizontal irradiation) and the percentage of sky covered by clouds, 
respectively. The CIE Standard decision tree obtained from the variables 
selected by the Pearson FS method identifies the clear sky type by one of 
these cases: a)FP > 0.51, and CC ≥ 0.53; b)FP > 0.78; c)FP ≤ 0.51and 
CC ≤ 0.66.

Although the PI FS methods selected 11 MIs for the CIE sky classi
fication, only three were used in the four-level classification tree: FP,CC,
and VSC. The Vertical Sky Component, VSC, linked the classification to 
the daylighting. 

The classification tree obtained with the MIs selected by the RFE FS 
method started with the CC, a variable which directly classified the skies 
as clear if <61.7%. On the second and third levels of the classification 
tree, original Perraudeau’s Index, OFP, and VSC, were evaluated. At the 
last level, the MI selected to fit the classification was luminous efficacy, 
K. Again, two of the MIs were related to daylighting (VSC,K) and OFP 
and CC were related to cloud coverage. 

Boruta FS methods selected 34 MIs for the CIE standard sky classi
Fig. 7. Pearson correlation absolute value between MIs, r(MIi,MIk), for MIs 
with r(MIi,CIE) ≥ 0.7. 
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fication, but four were necessary to build the four-level classification 
tree. The sky classification started by evaluating Perraudeau’s nebu
losity index, FP (Kambezidis et al., 1998). At the second level, cloud 
cover, CC, and the vertical sky component, VSCwere investigated. 

Finally, the scattering angle, χ, a geometrical variable, was investigated. 
As regards the intervals established by the classification trees for 

each partition with respect to the one established by the authors in their 
original works, it is important to remark that the number of sky cate
gories is different for some MIs (for example FP establishes 5 sky cate
gories, instead of three). However, the original intervals and those 
obtained were in consonance. 

3.3. Analysis of the classification trees using different metrics 

Fig. 15 shows the results of the Pr, Re, and f1 metrics obtained for 
the classification trees calculated from the MIs selected by each FS 

Table 5 
Results of Pearson FS method.  

Group 1 kd  kb  Cle  Si  FK  FP  EVSM  CLDV  PERV  Pe  OFP  CV  

r(MIi,CIE) 0.762 0.761 0.770 0.747 0.764 0.771 0.714 0.755 0.762 0.729 0.769 0.740  

Fig. 8. Permutation Index (PI) results in feature selection of MIs for CIE Standard Sky classification.  

Fig. 9. Recursive Feature Elimination (RFE) results in FS of MIs for CIE Stan
dard Sky classification. 

Fig. 10. Results of the Boruta FS methodology for CIE Standard Sky Classification after 100 trial tests.  

Table 6 
Summary of the features (MIs) selected by each one of the FS algorithms.  

Feature Selection MI selected Number 

Pearson correlation 
coefficient criterion (P) 

FP,CC  2 

Permutation Importance 
(PI) 

Cle,Si,FP,αs,Mv,Ω,CC,VSC,RaGVS,EVSM,

LERT,CLDV,TURV  
13 

Recursive Feature 
Elimination (RFE) 

K,kt ,Cle,Ce,OFP,χ,RH,WS,CC,VSC,LxGH,Lz,

LERT  
13 

Boruta (BOR) C1,C2,CC,CLDV,Ce,χ,Cle,Cv,εp,EVDM,

EVGM,EVSMF,FK,FP,LERT,Lz,OFP,Ω,PERV,
Pe,RaBH,RaDHRaGVS,Δ,Si,TURV,VSC,kb ,

kc,kd,kt ,kt2 , tv  

34  
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procedure and for the different sky conditions (clear, partial, and 
overcast). The best results for all metrics were obtained in overcast sky 
conditions, with Pr and Reabove 85% and reaching 90% in the case of 
the classification tree that applied the four MIs selected for the RFE 
method (CC, OFP, VSC, K). The classification trees that used the MIs 
selected by both PI (FP,VSC,CC), and BORUTA (FP,VSC,CC, χ) obtained 
the same results. The simplest classification tree, from the two MIs 
selected by the P method, (CC, FP), yielded worse f1 metrics. 

In the identification of clear sky conditions, all classification trees 
presented more dispersion of the metrics value: f1 ranged from 65% (P 
method) to 87% (BORUTA method), but all indices exceeded 65%. The 
identification of partially covered skies was worse, lowering the values 
of all indices by between 55% and 70%. The irregularity of partially 
covered sky conditions, the high variability of the MIs for these condi
tions and the dependency of cloud cover with respect to the Sun might 
explain this fact. In every case, the RFE FS method yielded the closest 
values of the three metrics. 

The weighted-averaged global f1 is shown in Fig. 16. As can be seen, 
all the classification trees yielded results between 74% and 77%, the 
highest value of which was produced by the RFE FS procedure, very 
close to the BOR and PI FS procedure with the same value of f1. The 
Pearson method, also the simplest classification tree, showed the lowest 
f1 value. Taking into account the number of MIs used by each classifi
cation tree, perhaps the RFE FS methods offered the best performance 
with no high complexity, but the results highlighted no significant 

Fig. 11. CIE standard sky classification tree (MIs selected with the Pearson 
FS method). 

Fig. 12. CIE standard sky classification tree (MIs selected with the PI 
FS method). 

Fig. 13. CIE standard sky classification tree (MIs selected with the RFE 
FS method). 

Fig. 14. CIE standard sky classification tree. (MIs selected with the Boruta 
FS method). 
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advantages between the classification algorithms constructed from the 
different feature selection procedures used in this work. 

4. Conclusions 

This study has highlighted the usefulness of the FS procedure for 
adequate determination of MIs for sky classification in accordance with 
the CIE Standard classification, as an alternative to the use of sky- 
scanner devices. The maximum number of MIs can be identified with 
FS for use as an input for the ML algorithm, avoiding the introduction of 
redundant and useless information. Four FS (filter and wrapper) 
methods have been reviewed and applied. The initial set of 43 MIs was 
drastically reduced by three of the FS algorithms (Pearson, PI and RFE), 
although a less significant reduction was achieved with the Boruta FS 
method. The main advantage of the Pearson FS procedure over and 
above all the other methods that were tested was its independence from 
the ML algorithm used after the FS procedure, with the consequent 
saving of time when it was necessary to verify the operation of different 
ML algorithms. 

All the classification trees yielded performances that were similar to 
the CIE standard sky classification in terms of the Pr,Re and f1 metrics. 
The worse results were shown for the identification of partially cloudy 
conditions, while the overcast and clear sky conditions were identified 
with high success rates. No significant differences in the performance of 
the classification algorithms constructed from the MIs selected by the 
different FS methods have been pointed out, and the use of one or 
another FS method could be at the discretion of the researcher. 

The MIs selected by the FS algorithms can be classified into three 
types: variables related to the cloud conditions, (FP, CC, OFP), others 
related to daylighting, brightness or clearness conditions of the skies 
(VSC,K), and geometrical variables, such as αs and χ. 

Both the intervals established by the classification trees for each 
partition and those established by the authors in their original works 
were in consonance. However, the classification tree might be a good 
alternative, in order to set up these intervals independently from local 
climatic and meteorological conditions. 
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A. Suárez-Garcı́a ,1,2 M. Dı́ez-Mediavilla ,1 and C. Alonso-Tristán 1

1Research Group Solar and Wind Feasibility Technologies (SWIFT),
Electromechanical Engineering Department, Escuela Politécnica Superior, 09006 Burgos, Spain
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Digital sky images are studied for the definition of sky conditions in accordance with the CIE Standard General Sky Guide.
Likewise, adequate image-processing methods are analyzed that highlight key image information, prior to the application of
Artificial Neural Network classification algorithms. Twenty-two image-processing methods are reviewed and applied to a broad
and unbiased dataset of 1500 sky images recorded in Burgos, Spain, over an extensive experimental campaign. +e dataset
comprises one hundred images of each CIE standard sky type, previously classified from simultaneous sky scanner data. Color
spaces, spectral features, and texture filters image-processing methods are applied. While the use of the traditional RGB color
space for image-processing yielded good results (ANN accuracy equal to 86.6%), other color spaces, such as Hue Saturation Value
(HSV), which may be more appropriate, increased the accuracy of their global classifications. +e use of either the green or the
blue monochromatic channels improved sky classification, both for the fifteen CIE standard sky types and for simpler classi-
fication into clear, partial, and overcast conditions. +e main conclusion was that specific image-processing methods could
improve ANN-algorithm accuracy, depending on the image information required for the classification problem.

1. Introduction

Sky conditions are crucial factors when assessing daylighting
levels and solar-energy output. +e sky is generally classified
on the basis of cloud presence into three categories:
cloudless, partially cloudy, and overcast. Many models for
the calculation of global, direct, and diffuse irradiation and
illumination were defined for different sky types based on
the values of several climatic parameters [1]. In 2003, the
Commission Internationale de L’Éclairage (CIE) adopted
the set of 15 standard sky classifications proposed by Kittler
et al., in 1998, categorized under 3 sky types, clear, partial,
and overcast, each of five grades [2]. +ese CIE standard
skies that classify a general spectrum of homogeneous skies
throughout the world were standardized in ISO 15469:
2004(E)/CIE S 011/E:2003 [3] for the purpose of evaluating

indoor visual comfort within buildings [4], solar irradiance
calculations [5], and energy efficiency improvements to
lighting [6], among other applications.

+e CIE standard sky classification is based on taking
luminance measurements [7] of diffuse luminance angular
distribution in the sky vault. Skies within a CIE category
have approximately the same well-defined sky luminance
and solar radiance patterns.

Devices called sky scanners are used to measure sky
luminance patterns. According to the CIE Guide [8], a
reliable commercial sky scanner measures luminance from
145 patches of sky hemisphere. However, various alternative
procedures have been developed for CIE standard sky
classification [9], due to the scarcity of sky scanners available
to gather sky luminance data at ground meteorological
stations. In this task, Supervised Machine Learning (SML)
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procedures are proposed as effective tools for sky classifi-
cation, based on accessible meteorological indices [10] such
as decision trees (DTs) [11], Support Vector Machines
(SVMs) [12], and Artificial Neural Networks (ANNs)
[13–15].

Over recent years, interest has been expressed in cali-
brated sky luminance maps for sky classification and cloud
detection [16–19]. A digital camera equipped with a fisheye
lens can map at a higher resolution than commercial sky
scanners and High Dynamic Range (HDR) images can
capture the full sky luminance range [20].

+ere are also novel image-processing methods that can
help to overcomemisclassification due to cloud cover. While
some studies have had their focus placed on color space, the
focus of others has been on the modification and combi-
nation of the original monochromatic channels, known as
the spectral features. A third alternative, texture filters,
adjusts the gray pixel image patterns [21].

+e RGB (red, green, and blue) chromaticity color
model, a basic standard for computer images, has spectral
features that may be adapted to cloud detection (CD) [22].
Shorter sunlight spectrum wavelengths will scatter due to
atmospheric particles, giving the sky background a blue
appearance [23] where the chromaticity component is
mainly blue rather than red. Clouds appear white due to the
uniform scattering of visible-light wavelengths, indicating
similar amounts of red and blue components. Other models
successfully applied to CD include Removal Atmospheric
Scattering (RAS) [24], Red-Blue Ratio (RBR) [21], Red-Blue
Difference (RBD) [25], and Normalized Red-Blue Ratio
(NRBR) [17].

Some strategies have been aimed at adapting the image
to the color perception of the human eye. Hue Saturation
Value (HSV) [17], Red-difference Chroma (YCbCr) [18],
and Intensity Hue Saturation (HIS) [26], among other color
spaces, have recently demonstrated their efficacy for CD.

In addition to color space and spectral features, texture
procedures use the gray distribution of pixels and their
spatial neighborhood to identify objects and regions. +ese
procedures have been shown to be very effective for cloud
detection [27], medical images classification [28], and traffic
analysis [29]. Gray Level Cooccurrence Matrix (GLCM),
Local Range (LR), local Standard Deviation (STD), and local
Entropy Matrix (EM) are texture filter procedures that
statistically process the textures of images for their
classification.

Image processing based on spectral, texture, and color
spaces offers various perspectives of the same image. +eir
combination for image analysis can produce successful
applications such as mapping [30] and aerial photographic
classification [31]. In this paper, the recently proposed al-
ternatives to the RGB color model are reviewed and com-
pared for the improvement of image-processing methods
applied to cloud detection and sky classification using Ar-
tificial Neural Network (ANN) algorithms. In some cases,
preliminary image processing significatively improved the
accuracy of the ANN used to classify the same image dataset.
+e methods that reduce misclassification will be identified
from a detailed study, in which both the CIE standard sky

classification (15 types) and the reduced classification of
three categories (clear, partial, and overcast sky conditions)
were all considered.

+e paper will be structured as follows. A complete
comparison between several image-processing methods for
CIE standard sky classification though ANNs will be pre-
sented in Section 2. In Section 3, the acquisition and pro-
cessing of the experimental data will be described. In Section
4, the fit of the results of the ANN models with actual sky
conditions will be verified. +e results of the classification
algorithms will be discussed in Section 5 and, finally, suc-
cinct conclusions on the most efficient image-processing
methods will be presented in Section 6.

2. Review of Image-Processing Methods for
Cloud Detection

Table 1 summarizes the main characteristics of twenty-two
pixel image-processing methods that were reviewed and
tested in this study and classified in terms of color space,
spectral, and texture features. A complete description of all
the image-processing methods will be completed in this
section.

2.1. Color Spaces. +e RGB color space uses one channel for
each of the primary colors: blue, red, and green. Imple-
mented directly in machine learning or with previous
processing, this color space will yield spectral features. +e
primary colors, subchannels R, G, and B, build up a
monochromatic image. A grayscale (GS) image is created
when only pixel intensity is recorded. As previously men-
tioned, the HSV space is modelled on visual human per-
ception, which classifies objects in terms of their luminous
intensity (brightness or value) and chromaticity. +e
chromaticity has two independent parameters, hue and
saturation. Hue is the pure color that varies from red to
magenta (listed as red, yellow, green, cyan, blue, and ma-
genta). +e saturation describes the dilution of a pure color
in white (0�white; 1� pure color). +e hue, saturation, and
value channels can also be independently used. Clouds are
mostly perceived on a grayscale, due to interactions between
sunlight and the atmosphere, so different cloud cover can be
analyzed through the saturation channel. +is color space
has proved itself to be highly effective for sky classification
into three categories: blue sky, cloudy sky, and sunset sky
[35].

2.2. Spectral Features Based on the RGB Model. Unlike the
direct implementation of the RGB model, a spectral feature
describes the change of tone and color in an image. Its
capability of detecting dark clouds from high and trans-
parent cirrus clouds has been demonstrated [25]. +e RAS
channel was proposed to distinguish atmospheric scatter
from atmospheric background light [24].+e RAS channel is
obtained from a linear combination of the panchromatic
channel (Y), the bright channel (L), and the dark channel
(D), defined in Table 1. Channels Y, L, and D can also be
independently applied.

2 Complexity



Different combinations of red and blue channels were
proposed for cloud detection. +e aim of the Red-Blue Ratio
(RBR), which yields small ratios for blue skies and large
ratios for clouds, is to recognize thin and opaque cloud cover
and clear skies [36]. Heinle et al. [25] noted several problems
related to the use of the RBR channel for detecting thick
clouds and difficulties with circumsolar pixels. +ey
therefore proposed the RBD (Red-Blue Difference) channel
as an alternative. Yamashita et al. [37] performed a full
revision of the blue and red channel and implemented the
sky index or NRBR (Normalized Red-Blue Ratio) for sep-
arating the blue sky and clouds area.+ese adaptations of the
RGB channels have been successfully contrasted for CD.+e
green channel is however often overlooked in image pro-
cessing. +e Adjusted Red Green Difference (ARGD) [22]
was introduced to correct any possible saturation of the blue
component. Linear combinations of the spectral features
have been proposed in other works, such as C1 [17] and C2
[22] that are listed in Table 1.

2.3. Texture Filters. Texture filters use the gray pixel dis-
tribution (grayscale, from 0 to 255, GS matrix) and their

spatial neighborhood to identify objects and regions. Texture
filters divide the GS matrix into local neighbors, applying a
mathematical operator: range for Local Range (LR), the
Entropy Matrix (EM), and the local Standard Deviation for
STD image processing [34]. Figure 1 shows an example of an
LR texture-filtering process. GS is a monochromatic matrix
whose elements are Mi,j. +e size of the GS matrix, defined
by its neighbors, is represented in Figure 1 as the 9× 9 blue
square. Its size is smaller throughout the GS boundary
(elements represented as mi,j). +e filter function applies a
mathematical operator in this neighborhood and the result is
included in the position (i, j) of the new matrix.

2.3.1. Local Range Texture Filter. +e purpose of LR filtering
is to make the edges and contours of an image visible. +e
highest value is subtracted from the smallest one within the
9× 9 neighborhood, as shown in Figure 1.+e function saves
the result in the LR matrix.

2.3.2. EM Texture Filter. Entropy is a measure of the image
texture randomness.+e EntropyMatrix (EM) calculates the
local entropy of all the GS neighborhoods [34].+e EM value

Table 1: Summary of pixel image-processing methods.

Type Name Purpose Formulation Ref.

Color space

RGB Image visualization based on primary colors
R: red channel

[31]
G: green channel
B: blue channel

Subchannels R, G,
and B R: red channel; G: green channel; B: blue channel

GS Grayscale intensity image (calculated from
the RGB image) rgb2gray1 [32]

HSV Image visualization based on the perceptions
of the human eye

H: hue channel

[16]
S: saturation channel
V: value channel

Subchannels H, S,
and V H: hue channel; S: saturation channel; V: value channel

Spectral
feature

RAS Image processing for removing atmospheric
scattering

RAS � Y − (L − D)

[21, 24]

L � max(R, G, B) bright
D � min(R, G, B) dark of the channel

Y � 0.299 · R + 0.587 · G + 0.114 · B

Subchannels Y, L,
and D Y: panchromatic channel; L: bright channel; D: dark channel

RBR Background due to atmospheric scattering
(Red-Blue Ratio). RBR � R/B [24]

RBD Difference between red and blue channels RBD � R − B [33]

NRBR Blueness of the sky; high robustness to noise
(Normalized Red-Blue Ratio) NRBR � R − B/B + R [33]

C1 Combination of RBR, RBD, and NRBR
channels RBR − RBD − NRBR [17]

ARGD Reducing sunlight interference (Adjusted Red
Green Difference)

ARGD � k · R − G k � 1.7 (weight of the red
channel) [22]

C2 Combination of RBR, ARGD, and NRBR
channels RBR − RBD − ARGD [22]

Texture
feature

LR For distinguishing edges and contours (Local
Range) Rangefilt1

[34]STD Obtained from the standard deviation in each
neighborhood Stdfilt1

EM Randomness of the image (Entropy Matrix) Entropyfilt1
1MATLAB function ([34]).
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that is directly proportional to the degree of variation of a
pixel with respect to its neighbors is calculated with

EMi,j � − 􏽘
N

k�1
pk log2pk. (1)

In Figure 2, an image histogram with high variations is
shown. pk reflects the occurrence for the gray level p ele-
ment; N is the total number of gray levels in the
neighborhood.

2.3.3. Local Standard Deviation (STD) Texture Filter. +e
following equation is used to calculate the local Standard
Deviation (STD) within each neighborhood:

STDi,j �

��������������������������������������������������������������

􏽐
3
k�1,0,− 1 􏽐

3
l�1,0,− 1 M(i + k, j + l) − (1/N) 􏽐

3
k�1,0,− 1 􏽐

3
l�1,0,− 1 M(i + k, j + l)􏼐 􏼑􏽨 􏽩

2

N − 1

􏽳

. (2)

(N � 9) is the number of elements in the neighborhood;
k, l varies from − 1 to 1 to cover the neighborhood matrix.

3. Experimental Data Acquisition
and Processing

As previously stated, the main objective of this work is the
analysis of image-processing algorithms for CIE standard
sky classification using ANN-processed sky images. +e
workflow is described in Figure 3 and explained in the
following sections.

3.1. Experimental Data Acquisition. +e experimental data
used in this work were recorded at a meteorological weather
station located on the roof of the Higher Polytechnic School

building at Burgos University (42°21′04″N; 3°41′20″O;
856m above mean sea level). A complete description of the
meteorological facility may be found elsewhere [1, 10, 38].
+e experimental equipment is shown in Figure 4. +e sky
luminance distribution for characterization of sky condi-
tions according to the CIE Standard General Sky classifi-
cation was measured with a commercial MS-321LR sky
scanner (EKO Instruments Europe B. V. Den Haag, +e
Netherlands). +e sky scanner was adjusted on a monthly
basis for taking measurements from sunrise to the sunset. It
completed a full scan in four minutes and started a new scan
every 10minutes. +e first and last measurements of the day
(αs ≤ 5°) were discarded, as measurements were higher than
50 kcd/m2 and lower than 0.1 kcd/m2, following the rec-
ommended specifications of the sky scanner equipment. +e

LR

Neighborhod

Maximum value in 
neighborhod

GS

=
131 128 124
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127 125
130 127 123
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Figure 1: Example of LR calculation in the 9× 9 neighborhood (blue area) for the element M(i, j) � 127.
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sky images were recorded every 15 seconds by a commercial
SONA 201-D all sky camera day (Sieltec Canarias S L, Spain).
+e trigger frequency of the camera is one second and the
image resolution is 1158 × 1172 pixels, recorded with the
RGB color model (each pixel uses 8 bits, which have integer
values from 0 to 255). Tables 2 and 3 show the technical
specifications of the sky scanner and sky camera,
respectively.

+e experimental campaign took place between 1 No-
vember 2016 and 31 March 2020. +e Normalized Lumi-
nance method (NL) proposed by Tregenza in 2004 [39],
detailed in a previous paper [38], was used to determine the
CIE standard sky types over Burgos during the experimental
campaign. A total of 1,500 images were selected from the

experimental dataset (more than 80,000 sky images), 100
from each CIE sky category, which were characterized by
greater concordance with the CIE pattern for that category.
+e experimental dataset was therefore composed of one
hundred sky images catalogued as CIE standard sky cate-
gories. +is sky classification was used as a reference for the
sky conditions.

3.2.DataProcessing. +e original sky images were processed
using the twenty-two different channels chosen for the study
and summarized in Table 1. While some of them were

DATA ACQUISITION

1. Sky camera 2. Sky Scanner

DATA PROCESSING

ANN

IMAGE PROCESSING

EJM : RGB SPACE

CIE CLASSIFICATION 

PREDICTED

BY THE ANN

CIE CLASSIFICATION

Figure 3: Workflow for image processing. Example with RGB space.

Figure 4: Location of the experimental equipment on the roof of
the Higher Polytechnic School building at the University of Burgos
with the SONA 201-D sky camera (top) and EKO MS-321LR
(bottom) (source: Google Earth).

Table 2: Sky scanner technical specifications.

Model MS-321LR sky scanner
FOV 11°
Luminance 0 to 50 kcd/m2

Radiance 0 to 300W/m2

A/D convertor 16 bits
Calibration error 2%

Table 3: Sky camera technical specifications.

Model SONA 201-D
Sensor CMOS-2.3MP
Vision angle <180° (fisheye lens)
Operating temperature − 40°C to 55°C
Image format RAW

Complexity 5



directly generated from the sky images, others had to be
generated through complementary channels. In Figure 5, the
results of the image-processing methods applied to images of
sky conditions are classified as clear, partial, and overcast,
following the CIE taxonomy. As can be observed, each filter
highlights different features of the images. +e circumsolar
area and the nearest horizon zone present the greatest
difficulties for cloud detection. In Figure 5, it can be seen that
the RGB image is sensitive to the circumsolar region and is
capable of detecting the solar corona. However, in the RGB
image, no differences can be appreciated in dark-homoge-
nous sky conditions. +e appearance of direct day beam can
be a source of errors. Although the blue channel saturated
the circumsolar region, both the red and the green channels
showed greater sensitivity at detecting cloudy areas. In
contrast, the horizon was captured by the Y, D, L, RAS, V,
STD, and EMmethods, and LRmainly defined the contours.
Unlike most of the other channels, the RGB model had
difficulty with the directional homogeneity of the images for
the detection of overcast sky conditions. +e family of RAS
methods (RAS, Y, D, and L) appeared to show similar levels
of accuracy under all sky conditions, their main differences
being near the circumsolar area.

3.3. Image Compression. +e high resolution of the original
sky images (1158 × 1172 pixels) requires their compression
to reduce the dimension of the dataset, improving data
storage and subsequent image processing. In this study, the
original sky images were compressed to 110 × 110 pixels in
each channel. Figure 6 shows the result of the image
compression procedure to 0.89%, which facilitates ANN
tuning with no loss of efficiency.

4. ANN for CIE Standard Sky Classification

Artificial Neural Networks (ANNs) are frequently used in
meteorology science: CIE and cloud classification [40, 41],
solar irradiance and wind speed forecasting [42–47], at-
mospheric pollution distribution [48, 49], and rainfall
[50, 51]. ANN classification models serve to classify input
information into certain categories or targets. A Supervised
Machine Learning (SML) neural network is required for CIE
standard sky classification where the sky types are previously
known. +e model works efficiently when the prediction
matches the target. Modelled on the biological concept of
neurons, ANN is a very powerful technique for classification
problems. Figure 7 shows a conventional ANN structure,
which consists of an input layer, a set of several hidden
layers, and an output layer.

+e information from the neurons of the input layer
(X0

i ) crosses the hidden layers (one in this work), following
unidirectional connections, to the output layer that has one
neuron (X2′

i ) per target. Each processing center or neuron is
adjusted to the other neurons through an interactive process,
using (3). +e Scaled Conjugate Gradient method (SCG)
[52] was used to fit the weights (weighting matrix, Wn) for
each iteration.

X
n
i � W

n
X

n− 1
+ B, (3)

where Wn is the weighting matrix, Xn− 1 are the input
variables, and B is the bias. +e neuron generates the output,
Xn′

i , through the activation function, f(Xn
i ), given by the

hyperbolic tangent sigmoid transfer function in this study, as
shown in [13]

X
n′
i � f X

n
i( 􏼁 �

2
1 + exp − 2 · X

n
i( 􏼁

− 1. (4)

Supervised Machine Learning requires three datasets:
training, validation, and test datasets. +e training group is
used to determine the weighted matrix and the bias in an
iterative process. +e training is over when the results of the
performance of the resulting model, calculated using the
validation set, reach the desired quality. +e test data group
is used to calculate the performance of the model. Random
dataset division is crucial to achieve a reliable performance.
A conventional training dataset is randomly selected and
consists of 70% of the total data, while the validation set and
the test set each represent 15%, respectively.

+e design of the ANN is adapted to the database and the
process is simulated. +ere is no standardized procedure for
establishing the most effective number of neurons and
hidden layers [42], so experimentation or tuning is needed.
In this study, several trials were performed in which the
number of neurons (1–100) was varied, searching for the
best accuracy, Acc, of the ANN, given by

Acc �
TP + TN

TP + TN + FP + FN
, (5)

where TP and TN are the correct predictions of the ANN
(true positives and true negatives) and FP and FN are the
incorrect predictions (false positives and false negatives).
Accuracy is rated by the number of correct predictions over
the total number of predictions. +e neural network
structure (number of neurons in the hidden layer) was
selected on the basis of highest accuracy. After several trials,
the number of hidden layers was fixed at one.

5. Results

In Figure 8, the improved accuracy of the ANN models that
used the sky images as their input is shown. Each image had
previously been processed by each of the twenty-one image-
processing methods summarized in Table 1, with respect to
the RGB space, defined as Δ(Acc) and shown in

Δ(Acc) �
(Acc(channel x) − Acc(RGB space))

Acc(RGB space)
· 100,

(6)

where Acc(channel x) and Acc(RGB space) are the accuracy
obtained when the input of the ANN is the set of sky images
processed by each method x (x� each image-processing
method summarized in Table 1) and RGB space, respec-
tively. +e accuracy of each ANN and the number of
neurons in its hidden layer are shown in Table 4.
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As can be seen in Figure 8, HSV is better color space
than RGB for CIE standard sky classification using im-
ages, with a small improvement in the accuracy (0.66%)
with respect to RGB image processing. +e GS color
space and the RGB space were equally accurate. +e use
of the R, G, and B monochromatic channels also

improved the accuracy of the ANN for CIE standard sky
classification, the G channel being the most suitable for
this task. +e accuracy of the ANN fitted using the in-
dividual channels, H and S, worsened over the RGB color
space, while the V channel significantly improved ANN
accuracy.

O
V

ER
CA

ST
PA

RT
IA

L
CL

EA
R

RAS (L) EMLRSTDGSHSVVSHRAS

RGB B NRBRRBDRBRG C1 C2ARGD Y D

VSH

L LRSTDGSHSVVSHRAS EM

L LRSTDGSHSVVSHRAS EM

RGB R B NRBRRBDRBRG C1 C2ARGD Y D

RGB R B NRBRRBDRBRG C1 C2ARGD Y D

R

Figure 5: Results of the image-processing methods applied to clear, partial, and overcast CIE standard sky types.

(a) (b)

Figure 6: Result of the image compression procedure. (a) Actual sky image. (b) Compressed sky image.
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In the spectral feature category, the RAS processing
method worsened the sky classification accuracy of the
ANN. However, channels Y and L showed better behavior
for sky classification, although they used more neurons in
the hidden layer. Among the rest of spectral feature

channels, only RBD and C1 significantly improved ANN
accuracy. With regard to the texture filters, EM showed little
or no advantages over the use of the RGB color space and the
other two filters, LR and STD, impaired the accuracy of the
resulting neural network. +e number of neurons in the
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Figure 8: Improvement in ANN accuracy, ∆ (Acc), for CIE standard sky classification, using the results of each image-processing method as
input, as summarized in Table 1, over ANN accuracy obtained with the original RGB images as input.
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hidden layer, shown in Table 4, never increased the accuracy
of the ANN, as can be seen from the use of image-processing
methods Y and V.

Figure 8 shows the results of each ANN classifying the
skies into the fifteen CIE standard sky categories. A simpler
classification into three categories (clear, overcast, and
partial conditions) is often sufficient for many applications,
such as luminous efficacy calculations [53] and lighting
design in buildings [54]. +e fitted results of the ANN sky
classification for three categories are shown in Figure 9 and
Table 5.

For CIE standard sky classification into three sky cat-
egories, lower differences in accuracy can be seen and only
the G, the B, and the GS monochromatic channels and the
spectral features L and C1 improved ANN accuracy. In all
these classification cases, the number of neurons in the
hidden layer was lower.

+e accuracy index was used to group the goodness of fit
of the ANN in all categories, although the fitted quality in
each individual category was not processed. A confusion
matrix analysis is shown in Figures 10–13. In a confusion
matrix, when the Supervised Machine Learning algorithm
prediction and the target match each other (TP or TN re-
sult), the corresponding diagonal boxes of the matrix are
colored. When there are no matches between the prediction
and the target value (FP and FN), the other boxes of the
confusion matrix are filled in. +e best image-processing
method will have the highest number of colored boxes
around the diagonal line of the matrix. +e figures below
represent the confusion matrices corresponding to the 15
types of CIE standard skies.

Figure 10 shows the confusion matrix of the ANN-
calculated RGB-CIE sky classification for the test set (15% of

the total dataset). It can be seen that the RGB-CIE classi-
fication with machine learning misclassified cloudy and
partial skies: few matches are visible in the boxes along the
diagonal line. In Figure 10, the CIE standard sky classifi-
cation into three categories (clear, partial, and overcast sky
conditions) is also presented. +ose cases classified outside
the corresponding category were designated as critical, i.e.,
clear skies classified as either partial or overcast or vice versa.

+e same information is shown in Figure 11 for the color
space CIE standard sky classification, corresponding to the
other color space processing methods under analysis. +e
red, the green, and the blue channels showed a similar
behavior to the RGB color space.+e red channel adequately
classified CIE standard sky types 7 to 15, in other words, all
clear skies and some partial sky types. +e HSV color space
showed a similar performance in all categories, in contrast to
the RGB color space, in which the classification of clear sky
types may be highlighted. Hue and saturation channels
introduced too much noise, but the value channel showed
good performance.

In Figure 12, the confusion matrices are shown for the
spectral feature image-processing methods-CIE standard
sky classification. +e RBR and NRBR spectral features
introduced noise, but the resultant combination, C1, re-
ducedmisclassification, improving the traditional RGB color
space. It therefore appears to be an adequate alternative
image-processing method for CIE standard sky classification
using sky camera images. +e RAS channel theoretically
removed atmospheric scattering, but the confusion matrix
never reflected a better performance than the RGB color
space. +e confusion matrix has demonstrated that it cannot
distinguish the CIE sky types 1, 3, and 5. +e RAS method
also introduced too much noise in cloudy-to-partial sky
types.

Finally, the confusion matrices are shown in Figure 13
for texture filter processing methods-CIE standard sky
classification with ANN. As can be seen, all texture channels
performed well, especially the EM channel, while LR largely
failed for CIE standard sky classifications partial and
overcast.

A detailed study for the CIE standard sky classification
into three categories is presented in Figure 14, where the
confusion matrices presented in Figures 10–13 were divided
into four submatrices: overcast (CIE standard sky types 1 to 5),
partial (CIE standard sky types 6 to 10), clear (CIE standard
sky types 1 to 5), and critical that refers to cases classified
out of category. +e red line indicates the RGB result, taken
as a baseline for accuracy improvements, Δ(Acc). Some of
the image-processing methods for classifying certain sky
categories are highlighted in Figure 14. RBD, D, and B
showed the best performance for the detection of overcast
skies, increasing the performance of each respective ANN.
G, S, and GS achieved better results for the detection of
partial skies and clear skies were also in the same category
in which the conventional RGB color space achieved its
best performance.

Some channels highlighted certain sky types but dras-
tically failed to classify other types. +e blue channel sat-
urated in clear skies, to such a point that its performance was

Table 4: Accuracy and structure (number of neurons in the hidden
layer) of the selected ANN for each image-processing method.

Method Acc (%) Number of neurons
RGB 66.67 84
R 68.44 66
G 69.33 58
B 68 36
GS 66.67 58
HSV 67.11 40
H 55.11 23
S 60.89 27
V 70.22 58
RAS 62.22 25
Y 70.22 95
D 65.78 21
L 68.89 74
RBR 60 45
RBD 68 98
NRBR 60.44 27
C1 68.44 73
ARGD 64.89 17
C2 58.67 68
LR 57.33 39
STD 61.78 52
EM 66.67 58
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almost the worst for clear skies detection. +is behavior was
also noted for the D channel.

Unfortunately, no image preprocessing method drasti-
cally improved the RGB classification in the three

subcategories (clear, partial, and overcast conditions).
However, Y, green, red, RBD, V, and EM processing
methods were prominent in one or two categories and their
results were acceptable in all other categories, as shown in
Table 6.
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Figure 9: Improvement in ANN accuracy, ∆ (Acc), for CIE standard sky classification in three sky categories: overcast, partial, and clear
conditions, using as input the image processed by each image-processing method summarized in Table 1, over ANN accuracy obtained with
the RGB images as input.

Table 5: Accuracy and structure (number of neurons in the hidden
layer) of the ANN selected for each image-processing method.

Method Acc (%) Number of neurons
RGB 93.33 71
R 92.89 48
G 94.67 52
B 93.78 52
GS 94.67 52
HSV 92 11
H 89.78 23
S 88.89 73
V 93.33 15
RAS 92.89 90
Y 93.78 21
D 92.89 15
L 93.78 15
RBR 90.22 23
RBD 91.11 43
NRBR 89.33 23
C1 94.67 18
ARGD 92.89 19
C2 92 41
LR 90.67 81
STD 91.56 7
EM 92.89 68
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Figure 10: Confusion matrix for ANN-calculated RGB-CIE sky
classification into fifteen categories and into three categories:
overcast (CIE standard sky types 1 to 5), partial (CIE standard sky
types 6 to 10), and clear (CIE standard sky types 1 to 5). Critical
refers to cases classified out of category. +e color scale shows the
number of coincidences in each category.
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Figure 11: Confusion matrices color space image-processing methods-CIE standard sky classification.
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Almost all the image-processing methods reduced
critical mistakes or misclassification, which should as far as
possible be avoided. Following this criterion, RBR, RBD,
NRBR, ARGD, H, and S were discarded as preprocessing
image methods for ANN sky classification of sky images.

6. Conclusions

Sky classification and cloud detection from sky images and
machine learning can be largely improved through pre-
liminary image processing, reducing errors in classification
and simplifying algorithms. In this study, 22 sky image-
processing methods have been reviewed, including the three
most common categories, color spaces, spectral features, and
texture filters. +e CIE standard sky classification has been

selected to determine the characteristics of the sky, as it is
recognized as representative of the atmospheric conditions.
A very extensive unbiased dataset has been used, including
1,500 sky images and their corresponding CIE classification,
calculated through the Normalized Luminance method from
sky luminance distribution data. +e Artificial Neural
Network (ANN) was the selected machine learning
algorithm.

As a first conclusion, digital cameras equipped with
fisheye lens can be used as alternatives to sky scanner devices
for ANN-assisted CIE standard sky classification. +e ac-
curacy of the classification algorithm can be improved with
adequate preliminary image processing that highlights the
sky image information and optimizes the algorithmic
structure.
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in Table 1.

Table 6: Summary of the results.

CIE categories One category Two categories +ree categories
Clear R, C1, Y, EM, and V

R, G, C1, Y, S, V, and EM R, G, Y, and V, EMPartial G, S, HSV, and GS
Overcast R, G, B, RBD, NRBR, C1, ARGD, Y, D, L, S, V, and EM
Critical R, G, B, C1, C2, Y, D, L, RAS, V, HSV, GS, STD, LR, and EM
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HSV was a better color space than RGB, as were the
monochromatic channels R, G, and B, for classifying the
skies on the basis of the images into the fifteen CIE standard
sky types. Only the V individual channel of HSV worked
better than both HSV and RGB. Spectral feature channels Y
and L showed better behavior for sky classification than the
RGB color space, but they used more neurons in the hidden
layer. Among the rest of the spectral feature channels, only
RBD and C1 significantly improved ANN accuracy. Texture
filters added no significant advantages over the RGB color
space.

For CIE standard sky classification as clear, partial, and
overcast conditions, RGB appeared to be the best image-
processing method and only the monochromatic channels G
and B, GS, and the composed spectral feature C1 improved
the accuracy of the RGB color space. No improvement in
ANN performance was therefore noted with the use of extra
channels.

In contrast to previous studies [14] which have their
weakest accuracy in cloudy conditions, several channels have
worked successfully, improving the accuracy of the machine
learning algorithm by 10% over the RGB color space for
cloudy skies. +ese channels were B, R, S, V, ARGD, RBD,
C1, C2, Y, STD, and EM.

RGB and its primary channels, R, G, and B, were not
good enough for dark cloudy conditions, due to image-
processing information losses. While traditional cloud de-
tection has usually omitted the G channel, both the G and
the B channels have been shown to be equally effective. In
contrast, the B channel tended to saturate on clear sky
conditions.

+e confusion matrices highlighted that the ANN failed
to distinguish CIE sky types 1, 3, and 5.

+e main conclusion is that the use of a specific image-
processing method could improve the accuracy of an ANN
algorithm, depending on the information required from the
image for the classification problem. Future work will focus
on the classification of skies according to the CIE standard
using neural networks specifically designed for the classi-
fication of images such as convolutional neural networks.
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a b s t r a c t

Daylighting is recognized as an important and useful strategy in the design of energy efficient buildings.
Daylight is still the best source of light for good colour rendering and visual comfort. In this study, a new
model of global luminous efficacy over a horizontal surface is proposed. A comparative study of eighteen
classic models is presented, to obtain global horizontal illuminance, using both, the original formulation
and new formulae with local adaptations, in order to determine the most suitable models for the con-
ditions in Burgos (Spain). With this aim in mind, the selected models consisted of six models developed
for all sky conditions, five models for clear sky conditions, three for partly cloudy sky and four for
modelling overcast sky conditions. These eighteen models were also compared with the proposed model
using experimental global illuminance measurements for different sky conditions. It was shown that the
proposed model behaved in a better way than most of the classic models selected from the literature;
both for all sky conditions and for particular sky conditions (clear, partly cloudy and overcast). The
proposed model was therefore generally applicable, with no need to employ a different model for each
particular sky condition.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Solar-energy-based conversion systems and daylighting
schemes are recognized as an important design strategy to
generate clean energy that is sustainable and environmentally
friendly, thereby reducing peak electricity consumption and cool-
ing demands and saving on the total energy consumption of the
building. The availability of natural light is also recommendable for
reasons of visual comfort, and the physical and mental well-being
of building occupants [1]. Daylighting not only improves aesthetic
values, but can also lead to savings, using appropriate controls, of
up to 50% on lighting energy [2]. International recommendations of
energy standards and green building rating systems strongly advise
architects to incorporate daylighting strategies in their building
designs [3]. Illuminance data are essentially for the incorporation of
daylighting in the design of energy-efficient buildings and for

suitable dimensioning of both the cooling and the heating systems.
The availability of daylight has been recognized to be site-specific,
although the measurement of daylight is not so common on a long-
term basis [4]. An alternative method to increase illuminance data
is through the use of luminous efficacy. Once the ratio of illumi-
nance to irradiance, i.e., the luminous efficacy, is known, then
measured irradiance values can be converted to illuminance values,
which can in turn be used as input for a daylight simulation tool for
the calculation of available daylight. The luminous efficacy value is
not a constant, but will vary with solar altitude, cloud cover, and the
amounts of aerosol and water vapour in the atmosphere [5]. The
luminous efficacy models based on atmospheric conditions are also
strongly dependent on those local variables [6]. Hence the impor-
tance of studying models of luminous efficacy to predict the values
of illuminance at any one location.

Several studies have followed that pattern, mostly studying the
local behaviour of luminous efficacy and its variability. Littlefair [5]
reviewed different models of luminous efficacies formulated by
different authors prior to 1985 at several global locations, high-
lighting the strong dependency of luminous efficacy on local cli-
matic conditions. Vartiainen [7] studied the behaviour of five
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models of luminous efficacy in Finland, showing that Perez et al.
model [8] was the only one that improved the predictions of the
constant luminous efficacy model. De Souza et al. [9] showed the
local dependency of the luminous efficacy models, improving the
results obtained when local coefficients were calculated for
different models. Patil et al. [10] remarked on the good behaviour of
Perez et al. model with a locally adapted coefficient for different
climatic zones in India, and Azad et al. [11] proposed new global
and luminous efficacy models with constant forms for New Delhi.

As previously mentioned, eighteen models of luminous efficacy
are reviewed and tested in this study in the city of Burgos, Spain,
using both the original form of these models proposed by their
authors and their local adaption to the location under study.
Traditional statistical indicators RMSE (%) andMBE (%) were used to
classify the models and to determine their accuracy. One year and a
half of experimental data on illuminance were used in this study. In
addition, a new model to predict global horizontal illuminance is
proposed. This newmodel is analysed for all sky conditions and for
particular sky conditions (clear, partly cloudy and overcast)
showing the improvement in the illuminance prediction over the
eighteen previously tested models for the city of Burgos, Spain.

The structure of this paper will be as follows: the experimental
meteorological facility and data used for the study will be described
in Section 2. Section 3 will describe the global luminous efficacy
models on horizontal surfaces that are reviewed in this work. The
benchmarking results of the eighteen luminous efficacy models
under review will be presented in Section 4. The new model pro-
posed for the area under study and its comparison with the others
models under review will be shown in Section 5. In Section 6, the
validation of both the proposed model and the eighteen luminous
efficacy models under review will be presented and, finally, the
main conclusions of this study will be outlined, remarking on the
goals of the work and future lines of study.

2. Daylight global illuminance and solar global irradiance
measurements

The experimental data for this study were gathered at a mete-
orological and radiometric facility located on the roof of the Higher
Polytechnic School building at Burgos University (42�2100400N;
3�4102000O; 856m above mean sea level). This five-storey building,
in an area with no other buildings of comparable height, has a
horizon elevation angle that is lower than 10� with regard to the
surface where the radiometric station is located. The experimental
equipment is shown in Fig. 1.

The following meteorological data were measured: tempera-
ture, wind velocity and direction, atmospheric pressure, humidity
and rainfall. Global, beam and diffuse horizontal irradiation (Egh;
Ebh; Edh) and illuminance data (Lgh; Lbh; Ldh) were all recorded.
Class 1 Hukseflux SR11 pyranometers and an EKO ML020SO Lux-
meter were used to measure irradiance and illuminance data,
respectively. The facility includes a SONA201D All-Sky Camera-Day
and a MS-321LR sky scanner both from EKO. The experimental data
were recorded on a CAMPBELL CR3000 datalogger. Experimental
data were measured with a sampling time of 30 s, with average
values recorded every 10min, from 1st October 2016 to 31st March
2018, in order to determine the luminous efficacymodels. The same

Nomenclature

ai, bi, ci, di Perez coefficients
C cloud cover
D cloud ratio or sky ratio or diffuse fraction
E0 correction factor for the sun-earth distance
Ebh horizontal beam irradiance (W/m2)
Edh horizontal diffuse irradiance (W/m2)
Egh horizontal global irradiance (W/m2)
I normal incidence direct irradiance (W/m2)
I0 extra-terrestrial irradiance (W/m2)
Isc solar constant
Kg global luminous efficacy (lm/W)
Kt clearness index
Lbh horizontal beam illuminance (lux)
Ldh horizontal diffuse illuminance (lux)

Lgh horizontal global illuminance (lux)
m relative optical airmass
MBE Mean Bias Error (%)
n number of data
p0, p1, p2 coefficients of the proposed model
RMSE Root Mean Square Error (%)
t outdoor air temperature (�C)
Td three-hourly surface dew point temperature (�C)
W atmospheric precipitable water (cm)
Xmeasured measured variable
Xmodel predicted variable
Z solar zenith angle (rad)
a solar altitude angle (rad)
D sky brightness
ε sky clearness
U relative heaviness of overcast sky

Fig. 1. Experimental equipment.
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experimental procedure was followed from 1st April 2018 to 31st
May, in order to measure the data for testing the models. The
experimental 30 s values of Egh; Ebh; Edh, and Lgh; Lbh; Ldh were
properly analysed and filtered using traditional quality criteria
[12,13]. Whenever a 30 s data item failed to match the quality
criteria, the values were eliminated. Fig. 2 shows the experimental
values of horizontal global illuminance, Lgh ðluxÞ versus horizontal
global irradiance, Egh ðW=m2Þ measured in Burgos.

3. Global luminous efficacy models on horizontal surfaces

The global luminous efficacy values ðKgÞ were obtained by
simultaneously measuring both illuminance and irradiance on a
specified surface and then computing their ratio, as shown in
Equation (1):

Kg ¼ Lgh
Egh

ðlm=WÞ (1)

where, Lgh is the global horizontal illuminance ðluxÞ value and Egh
is the horizontal global irradiance ðW=m2Þ value. Alternatively,
both the illuminance and the irradiance of particular sky elements
can be measured to calculate the luminous efficacy. It is a conve-
nient quantity for the calculation of daylight availability and
lighting energy use in buildings. It enables daylight data to be
generated from the more widely measured solar irradiance data for
places where measured outdoor illuminance data are not recorded.

As previously mentioned, eighteen models of global horizontal
luminous efficacy that cover different sky types will be reviewed in
the following sections. Luminous efficacy models can be classified
according to the number and type of input variables needed for
their calculation: there are models of constant luminous efficacy,
while others depend exclusively on solar altitude and others
depend on more climatic variables. In some cases, the luminous
efficacy model has a different form depending on the characteris-
tics of the sky (clear, partly cloudy or overcast), while other models
are applied to all types of sky. In the following paragraphs, the
models used in this work are described. The models under review
are presented in two ways: using the original coefficients given by
their authors and adapted to local conditions. The previously
described experimental data were used to calculate the local co-
efficients of the models. The non-linear Least Squares method was

employed using the Matlab™ 2017 fit function.

3.1. Perez et al. model (1990)

One widely used model of luminous efficacy is the Perez et al.
model [8]. Applied at different locations around the world, it has
consistently provided good illuminance prediction values. Diffuse,
global and beam luminous efficacy can be modelled using the Perez
et al. model for all kind of skies. Equation (2) allows the calculation
of global luminous efficacy from radiance and the type of sky. These
models were developed from illuminance data gathered at ten
United States locations and three European cities covering different
climatic conditions, from high altitude desert to temperate oceanic,
oceanic and subtropical climates [8].

Kg ¼ ai þ biW þ ci cosðZÞ þ di lnðDÞ (2)

where, ai, bi, ci, di are the original coefficients of themodel shown in
Table 1(a). The local adaptation of these coefficients to the city of
Burgos, are presented in Table 1(b). W is the atmospheric precipi-
table water content, defined by Equation (3). Z is the solar zenith
angle, and D is the sky brightness as shown in Equation (4) [8].

W ¼ eð0:07Td�0:075Þ (3)

D ¼ Edh*m
I0

(4)

The sky clearness parameter allows the classification of the sky,
as in Equation (5) [8]:

ε ¼
�
Edh þ I
Edh

þ kZ3
���

1þ kZ3
�

(5)

where, k¼ 1.041 for Z in radians.

3.2. The Chung model (1992)

The Chung model [14] describes the luminous efficacy from the
solar altitude, a, for the case of clear sky. This model was tested in
the city of Hong Kong. In models for partly cloudy sky and overcast
sky, the sky conditions are included in the models through the sky
ratio of cloud ratio parameter, D, defined as the ratio of horizontal
diffuse irradiance to horizontal global irradiance. The cloud ratio
classifies the sky conditions as clear (D< 0.3), partly cloudy
(0.3<D< 0.8) and overcast (D> 0.8), and it gives different ex-
pressions for Kg calculations. Table 2 shows these expressions and
the corresponding adaptation of the model to the city of Burgos.

In Table 2, U ¼ Egh=sina shows the relative heaviness of overcast
sky conditions and it represents the solar energy that passes though
the cloud.

3.3. Lam and Li model (1996)

The clearness index, Kt , is obtained from Equation (6) and is
defined as the ratio of the global radiation at ground level on a
horizontal surface and the extra-terrestrial global solar irradiation
[15]. This is the main parameter of this model, also tested in the city
of Hong Kong [16].

Kt ¼
Egh

I0 sin a
(6)

I0 ¼ Isc E0 (7)

The clearness index classifies the sky as: clear sky (Kt> 0.65),
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Fig. 2. Measured global illuminance vs measured global irradiance on horizontal
surfaces, Burgos, (Spain).
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partly cloudy sky (0.3<Kt� 0.65) and overcast sky (0< Kt� 0.3).
Following this classification, Kg is obtained through the mathe-
matical expressions shown in Table 3. The local adaptation of the
model to the city of Burgos is also presented in Table 3.

3.4. Muneer and Kinghorn model (1998)

Muneer and Kinghorn [17] proposed a model of Kg valid for all
sky conditions that was tested in five different locations of UK. This
polynomial model has the clearness index Kt, as an input parameter.
The original expressions and the local adaptation of the model to
the city of Burgos are presented in Table 4.

3.5. Robledo and Soler model (2000)

Two different models of luminous efficacy, A and B for clear sky
conditions were proposed by Robledo and Soler [18] using exper-
imental data of illuminance and irradiance measured in Madrid,
Spain. The clear sky condition was determined through sky
brightness (D< 0.12) and sky clearness (ε> 5.0). Both parameters
were previously defined by Equation (4) and Equation (5). Table 5
shows the mathematical expressions of these models and their
local adaptation to the city of Burgos.

3.6. Ruiz et al. model (2001)

This all sky model for luminous efficacy has the solar altitude, a,
and the clearness index (Kt) as its input parameters. It was

proposed by Ruiz et al. [19] for the city of Madrid, Spain. The
equation of the model and its adaptation to the local conditions of
Burgos are presented in Table 6.

3.7. Robledo et al. model (2001)

Robledo et al. [20] proposed two different models of global lu-
minous efficacy for overcast skies (Models A and B) and a third for
partly cloudy skies. The sky classifications were established from
the sky clearness parameter (ε) defined previously by Equation (5).
The overcast sky condition was (ε< 1.2) and the partly cloudy sky
condition was (1.2<ε< 5.0). The solar altitude (a) and sky bright-
ness (D), which is defined by Equation (4), were the input param-
eters of the models. The mathematical expressions of these models
and their adaptation to the local conditions are shown in Table 7.

3.8. De Souza et al. model (2006)

De Souza et al. [9] proposed a clear sky model of luminous

Table 1
Perez et al. model (1990).

a) Original global luminous efficacy coefficients b) Local global luminous efficacy coefficients for
Burgos, Spain

ε category Lower bound Upper bound ai bi ci di ai bi ci di

1 1.000 1.065 96.63 �0.47 11.50 �9.16 109.53 0.04 �4.10 �3.14
2 1.065 1.230 107.54 0.79 1.79 �1.19 111.34 �0.63 �5.79 �2.00
3 1.230 1.500 98.73 0.70 4.40 �6.95 109.13 0.42 �5.68 �0.72
4 1.500 1.950 92.72 0.56 8.36 �8.31 103.61 0.57 2.39 1.09
5 1.950 2.800 86.73 0.98 7.10 �10.94 101.73 0.87 7.55 3.64
6 2.800 4.500 88.34 1.39 6.06 �7.60 116.20 0.61 11.61 11.03
7 4.500 6.200 78.63 1.47 4.93 �11.37 113.23 0.23 0.83 4.98
8 6.200 e 99.65 1.86 �4.46 �3.15 110.20 0.16 �17.50 �1.69

Table 2
Chung model equations for the calculation of luminous efficacy, Kg ðlm=WÞ, and for the different conditions of the sky. The original coefficients were calculated from
experimental data recorded in Hong Kong. The locally adapted coefficients were calculated from the experimental data measured in Burgos, Spain.

Clear sky Original model Kg ¼ 102:2þ 0:69a� 0:0059a2

Locally adapted model Kg ¼ 95:106þ 22:493a� 16:129a2

Overcast sky Original model Kg ¼ �
102:2þ 0:67a� 0:0059a2

�
*
�
1:18� 8:7*10�4Uþ 9:3*10�7 U2

�
Locally adapted model Kg ¼ �

101:958þ 7:144a� 7:387a2
�
*
�
1:135� 2:32*10�4Uþ 1:77*10�7 U2

�
Partly cloudy sky Original model Kg ¼ Dð135:3� 25:7DÞþ �

48:5þ 1:67a� 0:0098a2
�ð1� DÞ

Locally adapted model Kg ¼ Dð104:118þ 8:894DÞþ �
83:401þ 56:696a� 40:159a2

�ð1� DÞ

Table 3
Lam and Li andmodel equations for luminous efficacy calculations, Kg (lm/W), and for the different conditions of the sky. The original coefficients were calculated from
experimental data recorded in Hong Kong. The locally adapted coefficients were calculated from the experimental data measured in Burgos, Spain.

Clear sky Original model Kg ¼ �
59:15þ 1:12a� 0:0061a2

�ð1� DÞþ 130:6 D
Locally adapted model Kg ¼ �

118:752 � 0:513aþ 0:003 a2
�ð1� DÞþ 108:837 D

Overcast sky Original model Kg ¼ 116:2
Locally adapted model Kg ¼ 111:744

Partly cloudy sky Original model Kg ¼ �
59:15þ 1:12a� 0:0061a2

�ð1� DÞþ ð130:6� 14:4CÞD
Locally adapted model Kg ¼ �

62:240þ 2:436a� 0:031a2
�ð1� DÞþ ð111:693� 0:973CÞD

Table 4
Muneer and Kinghorn model equations for luminous efficacy calculations, Kg (lm/
W). The original coefficients were calculated with data from five different UK lo-
cations. The locally adapted coefficients were calculated with the experimental data
measured in Burgos, Spain.

All sky model Original model Kg ¼ 136:6� 74:541Kt þ 57:3421K2
t

Locally adapted model Kg ¼ 112:952� 5:809Kt � 9:487K2
t
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efficacy for Florianopolis, Brazil. The clear sky condition was
defined by (D< 0.12 and ε� 5.0), where parameters D and ε are
defined by Equation (4) and Equation (5), respectively. Table 8
collects the original form of the model and the form of its local
adaption to the city of Burgos.

3.9. Fakra et al. model (2011)

Fakra et al. [21] established an all sky type luminous efficacy
model for Saint-Pierre (Reunion Island) based on a constant form.
This model and its adaptation to the local conditions of Burgos are
shown in Table 9.

3.10. Mahdavi and Dervishi model (2011)

Clearness index (Kt), and the outdoor air temperature (t) are the
input parameters used by Mahdavi and Dervishi [22] to calculate
the global luminous efficacy in Vienna, Austria, for all sky types, as
shown in Table 10, joined to the local adaptation for the city of
Burgos.

3.11. Chaiwiwatworakul and Chirarattananon model (2013)

Global and diffuse luminous efficacy were evaluated by Chai-
wiwatworakul and Chirarattananon [4] at Bangkok, Thailand. The
sky clearness (ε) and zenith angle (Z) were used as input parame-
ters for the all sky type model as shown in Table 11. The local
adaptation of this model is also shown in Table 11.

A summary of the main features of the models reviewed and the
parameters used by each of them is shown in Table 12.

4. Evaluation of the global luminous efficacy models on a
horizontal plane

The goodness-of-fit of the models was calculated by means of
the statistical indicators MBE (%) (Mean Bias Error) and RMSE (%)
(Root Mean Square Error) [21], [23]. MBE shows the trend of the
model to either over-estimate or under-estimate the data. RMSE
provides a measure of the deviation between the predicted values
using the fitted models and the experimental measurements.
Equations (8) and (9) show the statistical estimators employed in
the present study.

MBE ð%Þ ¼ 100
P

nðXmodel � XmeasuredÞP
nXmeasured

(8)

RMSE ð%Þ ¼ 100

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
n
ðXmodel�XmeasuredÞ2

n

r
P

n
Xmeasured

n

(9)

Tables 13e16 present the results obtained following the appli-
cation of the statistical estimators shown by Equation (8) and (9) to
the models analysed in this study. Table 13 shows the results ob-
tained for the case of all sky conditions (six models). It can be
observed that, when local coefficients were used, the model with
the lowest RMSE was that of Chaiwiwatworakul and

Table 5
Robledo and Soler model equations for luminous efficacy calculations, Kg (lm/W). The original coefficients were calculated from experimental data recorded in
Madrid, Spain. The locally adapted coefficients were calculated from the experimental data measured in Burgos, Spain.

Clear sky model A Original model Kg ¼ 100:97þ 0:32a� 0:000019a3 þ 6:6257*10�9a5

Locally adapted model Kg ¼ 99:854þ 15:570a� 24:505a3 þ 9:459a5

Clear sky model B Original model Kg ¼ 129:46ðsinaÞ0:122e�0:0029a

Locally adapted model Kg ¼ 115:827 ðsinaÞ0:048e�0:132a

Table 6
Ruiz et al. model equations for luminous efficacy calculations, Kg (lm/W). The
original coefficients were calculated from experimental data recorded in Madrid,
Spain. The locally adapted coefficients were calculated from the experimental data
measured in Burgos, Spain.

All sky model Original model Kg ¼ 104:83ðsinaÞ0:026K�0:108
t

Locally adapted model Kg ¼ 101:086ðsinaÞ�0:021K�0:060
t

Table 7
Robledo et al. model equations for luminous efficacy calculations, Kg (lm/W). The original coefficients were calculated from experimental data recorded in Madrid, Spain. The
locally adapted coefficients were calculated from the experimental data measured in Burgos, Spain.

Overcast Sky model A Original model Kg ¼ 

129:46

�
sina0:122

�
e�0:0029a �

*
�
1:361� 1:091Dþ 1:0334D2

�
Locally adapted model Kg ¼

h
115:905 ðsinaÞ0:055e�116 a

i
*
�
1:128� 0:418Dþ 0:531D2

�
Overcast Sky model B Original model Kg ¼ 128:16ðsinaÞ0:122e�0:0029aD�0:105

Locally adapted model Kg ¼ 117:070ðsinaÞ�0:041e�0:104 aD�0:022

Partly cloudy sky Original model Kg ¼ 120:26ðsinaÞ0:077e�0:0019aD0:002

Locally adapted model Kg ¼ 138:173ðsinaÞ0:137e�0:234aD0:022

Table 8
De Souza et al. model equations for luminous efficacy calculations, Kg (lm/W). The original coefficients were calculated from experimental data recorded in Flo-
rianopolis, Brazil. The locally adapted coefficients were calculated from the experimental data measured in Burgos, Spain.

Clear sky model Original model Kg ¼ 99:10þ 0:927a� 0:0298a2 þ 0:000422a3 � 2:2*10�6a4

Locally adapted model Kg ¼ 101:104 � 1:700a þ 1:362a2 � 0:294a3 � 0:241a4

Table 9
Fakra et al. model equations for luminous efficacy calculations, Kg (lm/W). The
original coefficients were calculated from experimental data recorded at Saint-
Pierre, Reunion Island. The locally adapted coefficients were calculated from the
experimental data measured in Burgos, Spain.

All sky model Original model Kg ¼ 121:5
Locally adapted model Kg ¼ 103:428
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Chirarattananon [4] (3.61%) followed by the Mahdavi and Dervishi
model [22] (3.65%) and the Perez et al. model [8] (3.68%).

Table 14 shows the results obtained for the case of a clear sky
(five models). The models with the lowest RMSE values, when local
coefficients were employed, were those of Robledo and Soler [18]
(1.86%) followed by the model of Lam and Li [16] (2.02%).

Table 15 shows the results obtained for the case of partly cloudy

Table 10
Mahdavi and Dervishi model equations for luminous efficacy calculations, Kg (lm/W). The original coefficients were calculated from experimental data recorded at Vienna,
Austria. The locally adapted coefficients were calculated from the experimental data measured in Burgos, Spain.

All sky model Original model Kg ¼ 140:9þ 0:273t� 102Kt þ 0:60t*Kt � 0:001t2 þ 77:28K2
t

Locally adapted model Kg ¼ 112:554þ 0:139 t� 5:331Kt � 0:040 t*Kt � 0:008t2 � 7:140K2
t

Table 11
Chaiwiwatworakul and Chirarattananon model equations for luminous efficacy calculations, Kg (lm/W). The original coefficients were calculated from experimental
data recorded at Bangkok, Thailand. The locally adapted coefficients were calculated from the experimental data measured in Burgos, Spain.

All sky model Original model Kg ¼ �
101:65þ 13:92ε�3:49�ðcosZÞð�0:18þ0:19ε�1:25Þ

Locally adapted model Kg ¼ �
101:076þ 7:898ε�2:181�ðcosZÞð�8:475þ8:453ε�0:002Þ

Table 12
Summary of the global luminous efficacy models reviewed in this work. Literature reference of the original model, year, sky type classification, input parameters used in the
models and the original place of development of the model.

Ref. Year Authors Sky types Model parameters Location

[8] 1990 Perez et al. All D, Z, W USA and Europe
[14] 1992 Chung Clear a China

Overcast a, U
Partly a, D

[16] 1996 Lam and Li Clear a, D China
Overcast 116.2 lm/W
Partly a, C, D

[17] 1998 Muneer and Kinghorn All Kt UK
[18] 2000 Robledo and Soler (Model A) and Robledo and Soler (Model B) Clear a Spain
[19] 2001 Ruiz et al. All a, Kt Spain
[20] 2001 Robledo et al. Partly a, D Spain

Robledo et al. (Model A) and Robledo et al. (Model B) Overcast
[9] 2006 De Souza et al. Clear a Brazil
[21] 2011 Fakra et al. All 121.5 lm/W Reunion Island
[22] 2011 Mahdavi and Dervishi All Kt, t Austria
[4] 2013 Chaiwiwatworakul and Chirarattananon All Z, ε Thailand

Table 13
Evaluation of the global luminous efficacy models for all skies.

Model Original coefficients Local coefficients

MBE (%) RMSE (%) MBE (%) RMSE (%)

Chaiwiwatworakul and Chirarattananon 3.18 5.34 �0.41 3.61
Mahdavi and Dervishi 15.36 24.14 �0.20 3.65
Perez et al. 6.03 11.97 0.15 3.68
Ruiz et al. 4.16 6.99 �0.17 3.81
Muneer and Kinghorn 8.62 12.89 �0.28 3.86
Fakra et al. 15.11 21.24 �2.01 5.11

Table 14
Evaluation of the global luminous efficacy models for clear skies.

Model Original coefficients Local coefficients

MBE (%) RMSE (%) MBE (%) RMSE (%)

Robledo and Soler (Model A) 0.00 2.26 �0.06 1.86
Robledo and Soler (Model B) 23.94 24.98 �0.11 1.86
Lam and Li 6.28 8.59 0.02 2.02
Chung 1.29 2.76 �0.15 2.08
De Souza et al. �1.31 2.57 �1.00 2.34

Table 15
Evaluation of the global luminous efficacy models for partly cloudy skies.

Model Original coefficients Local coefficients

MBE (%) RMSE (%) MBE (%) RMSE (%)

Robledo et al. 12.10 16.63 �0.01 3.07
Chung �15.79 20.89 �0.28 3.38
Lam and Li 6.15 10.19 0.19 4.43

Table 16
Evaluation of the global luminous efficacy models for overcast skies.

Model Original coefficients Local coefficients

MBE (%) RMSE (%) MBE (%) RMSE (%)

Robledo et al. (Model A) 22.04 29.46 �0.74 4.27
Robledo et al. (Model B) 21.48 29.09 �0.84 4.35
Chung �6.15 10.49 �0.78 4.60
Lam and Li 3.93 8.44 �0.06 7.09
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skies (three models). When local coefficients were used, the model
with the lowest RMSE value was that of Robledo et al. [20] (3.07%),
followed by the model of Chung [14] (3.38%).

Finally, Table 16 shows the results obtained for the case of
overcast sky conditions (four models). It can be noted that when
using local coefficients, the models with the lowest RMSE values
were those of Robledo et al. (Model A) [20] (4.27%) and Robledo
et al. (Model B) [20] (4.35%).

As was expected a priori, it can be affirmed from the results in
Table 13-Table 16 that the models fitted with data from local
measurements provided lower RMSE values than those obtained
when using original coefficients.

5. Proposal of a new model to predict global luminous
efficacy

In this Section, the proposed model to predict global luminous
efficacy on horizontal surfaces is presented. Several models were
analysed for modelling global luminous efficacy as a function of
both the clearness index (Kt) and the solar altitude (a). From these
results, the function that had the best fit was found to be the model
shown in Equation (10). The advantage of the two parameters that
this new model uses as its independent variables is that they are
easily obtained. The model was firstly proposed for all sky condi-
tions, yielding lower RMSE than any of the models shown in
Table 13. Likewise, this new model also yielded lower RMSE values
than the lowest ones shown in Table 14 (clear sky), Table 15 (partly
cloudy sky) and Table 16 (overcast sky conditions). Therefore, as
will be shown afterwards, this model can be generally applied
either for all sky conditions or for other particular sky conditions.

Kg ¼ p0*e
p1*Kt*sinðp2*a

2Þ ðlm=WÞ (10)

Fig. 3 represents the experimental global luminous efficacy,
Kg ðlm=WÞ; versus the clearness index (Kt) and Fig. 4 shows the
experimental global luminous efficacy, Kg ðlm=WÞ versus the solar
altitude (a).

5.1. All sky conditions

The model fitted with experimental data measured in the city of
Burgos is shown in Equation (11).

Kg ¼ 111:616�e�0:127�Kt�sinð1:232�a2Þ (11)

The model shown in Equation (11) yielded an RMSE¼ 3.27% and
an MBE¼�0.19% for all sky conditions. This RMSE value was lower
than any of the six RMSE values obtained with themodels shown in
Table 13. As can be observed in Table 13 and in Table 17, the lowest
RMSE value was provided by Chaiwiwatworakul and Chirar-
attananon [4] (RMSE¼ 3.61%), higher than that obtained with the
proposed model. Therefore, it can be affirmed that the proposed
model was capable of predicting the global illuminance for all sky
conditions more accurately than the other models analysed in
Table 13, for local data measured in Burgos.

Fig. 5 shows the estimated global illuminancewith the proposed
model vs the measured global illuminance for all sky conditions. As
can be observed in this figure, the proposed model acceptably
predicted the global illuminance values for all sky conditions.

5.2. Clear sky

Equation (12) shows the proposed model, adapted for the
particular case of clear sky which is defined by (ε> 5.0 and
D< 0.12). These conditions are employed by the Robledo and Soler
models [18] that have the lowest RSME values of all the models
shown in Table 14. The new proposed model yielded an
MBE¼�0.03% and an RMSE¼ 1.80%. As can be observed, the RMSE
was slightly lower than the one obtained with the models of
Robledo and Soler [18] (1.86%). Moreover, as can be observed in
Table 18, the proposed model in Equation (11), locally fitted for all
sky conditions, showed a similar RMSE value to the previous ones.

Kg ¼ 108:591*e
�0:111*Kt*sinð1:031*a2Þ (12)

Fig. 6 shows the estimated global illuminancewith the proposed
model versus the measured global illuminance for clear sky con-
ditions (given by ε> 5.0 and D< 0.12). As can be observed, the
proposed model adequately predicted the global illuminance in the
case of clear sky conditions.

5.3. Partly cloudy sky

Equation (13) shows the proposed model, adapted for the
particular case of partly cloudy sky conditions defined by
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Fig. 3. Experimental luminous efficacy vs clearness index at Burgos.
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Fig. 4. Experimental luminous efficacy vs solar altitude at Burgos.
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(1.20<ε< 5.0). These conditions were employed by model of
Robledo et al. [20], which is the model with the lowest RSME value
of all the models shown in Table 15. The new model shown in
Equation (13) yielded an RMSE of 2.89%, slightly lower than the
value (3.07%) obtained with the model of Robledo et al. [20]. As
observed in Table 19, the new model, locally fitted for all sky, as
shown in Equation (11), yielded a lower RMSE value than the
previous ones.

Kg ¼ 109:152�e �0:100�Kt�sinð 1:013�a2Þ (13)

Fig. 7 shows the estimated global illuminancewith the proposed
model versus measured global illuminance for partly cloudy sky
conditions. As can be observed, the proposed model acceptably
predicted global illuminance values for partly cloudy sky conditions
defined from (1.20<ε< 5.0).

5.4. Overcast sky conditions

Equation (14) shows the proposed model, adapted for the
particular case of overcast sky defined by (ε< 1.2). This condition is
employed by Robledo et al. (Model A) [20], which has the lowest
RSME value of all the models shown in Table 16. The new model

shown in Equation (14) yielded an RMSE of 4.22%, a slightly lower
value than the one obtained with Model A (Robledo et al.) [20]. On
the other hand, as can be observed in Table 20, the new model,
locally fitted for all sky, which is shown by Equation (11), yielded an
RMSE value similar to the previous ones.

Kg ¼ 111:693�e�0:103�Kt�sinð1:241�a2Þ (14)

Fig. 8 shows estimated global illuminance with the proposed
model versus measured global illuminance for overcast sky con-
ditions. As can be observed, the proposed model acceptably pre-
dicts the global illuminance values for overcast sky conditions.

In this section, the new proposedmodel has been presented and
analysed. It has been demonstrated that this new model yielded
lower RMSE values than all the eighteen classic models considered
in this study. These values have been verified both for all sky con-
ditions and for particular (clear, partly cloudy and overcast sky)
conditions. Moreover, as can be observed in Table 18-Table 20, the
new model proposed for all sky conditions, which is shown in
Equation (11), also provided values close to those obtained with
models adapted for particular sky conditions (clear, partly cloudy
and overcast).

Table 17
Comparison between the best performing model for all sky and the proposed model.

Model Local coefficients

MBE (%) RMSE (%)

Proposed model, All sky (p0¼ 111.616; p1¼�0.127; p2¼ 1.232) �0.19 3.27
Chaiwiwatworakul and Chirarattananon �0.41 3.61
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Fig. 5. Estimated global illuminance with the proposed model vs measured global
illuminance for all sky conditions.

Table 18
Comparative between the best performing model for clear sky and the proposed model, using the same sky conditions ε > 5.0 and D< 0.12.

Model Local coefficients

MBE (%) RMSE (%)

Proposed model, Clear sky (p0¼ 108.591; p1¼�0.111; p2¼ 1.031) �0.03 1.80
Robledo and Soler (Model A) �0.06 1.86
Robledo and Soler (Model B) �0.11 1.86
Proposed model, All sky (p0¼ 111.616; p1¼�0.127; p2¼ 1.232) 0.88 2.01
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Fig. 6. Estimated global illuminance with the proposed model vs measured global
illuminance for clear sky conditions given by ε> 5.0 and D< 0.12.
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6. Validation of the global illuminance models

In Section 3, global luminous efficacy models from eighteen
existingmodels in the literaturewere fitted by using local data from
Burgos (Spain) and the models were then evaluated in Section 4.
Moreover, the results of fitting and analysing a new model for all
sky and for particular sky conditions, using the same data as the
previousmentionedmodels, has been presented above in Section 5.
In the present Section, validation of all these models is shown by
employing two additional months of measurements (from 1st April
2018 to 31st May 2018). Thesemeasurements were taken, following
the procedure shown in Section 2. Fig. 9 shows the experimental
data employed for testing the global luminous efficacy models. This
figure compares measured global illuminance versus measured
global irradiance on the horizontal surface at Burgos over the test
period.

Data obtained from these two additional months were used to
re-evaluate both RMSE and MBE in the models that had previously
been fitted with experimental data (local models). Tables 21e24
show the results obtained after evaluating the statistical estima-
tors shown in Equation (8) and in Equation (9) taken from the

Table 19
Comparison between the best performing model for partly cloudy sky and the proposed model, using the same sky conditions (1.20<ε< 5.0).

Model Local coefficients

MBE (%) RMSE (%)

Proposed model, All sky (p0¼ 111.616; p1¼�0.127; p2¼ 1.232) 0.31 2.84
Proposed model, Partly cloudy sky (p0¼ 109.152; p1¼�0.100; p2¼ 1.013) 0.04 2.89
Robledo et al. �0.01 3.07
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Fig. 7. Estimated global illuminance with the proposed model vs measured global
illuminance for partly cloudy sky conditions (1.20<ε< 5.0).

Table 20
Comparison between the best performing model for overcast skies and the proposed model, using the same sky conditions (Overcast skies: ε< 1.2).

Model Local coefficients

MBE (%) RMSE (%)

Proposed model, Overcast sky (p0¼ 111.693; p1¼�0.103; p2¼ 1.241) �0.81 4.22
Robledo et al. (Model A) �0.74 4.27
Proposed model, All sky (p0¼ 111.616; p1¼�0.127; p2¼ 1.232) �1.37 4.40
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Fig. 8. Estimated global illuminance with the proposed model vs measured global
illuminance for overcast sky (ε< 1.2).
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Fig. 9. Measured global illuminance vs measured global irradiance on the horizontal
surface at Burgos. Test data (01/04/18e31/05/18).
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luminous efficacymodels that have been analysed in this study. The
results obtained from the different sky conditions under study are
also shown. To that end, particular sky conditions proposed by each
author were applied, in order to define different sky types (clear
sky, partly cloudy sky and overcast sky). The new model proposed
in this study was also validated in both all sky and particular sky
conditions (clear, partly cloudy and overcast). In the latter case, the
conditions employed by the model with the lowest RMSE value
were used in order to define the sky type.

Table 21 shows the results obtained with the testing data for the
case of all sky conditions (seven models). The model of Ruiz et al.
[19] (2.57%) was slightly lower than the new proposed model
(2.66%). However, the MBE obtained with the proposed model
(�0.01%) was ten times lower than the one obtained with the
previous model (�0.1%).

The results obtained from classic clear sky models (five models)
and the proposed model are shown in Table 22. In addition, the
results obtained when the all sky model, given by Equation (11),
was validated for this particular sky type are also compared. It is
shown that the new model proposed in this study yielded the
lowest RMSE values, both after validation with the all sky model
coefficients (0.66%) and with the coefficients fitted with data from
clear sky conditions (1.40%), followed by Robledo and Soler (Model
A) [18] (1.53%).

Likewise, Table 23 shows the results obtained for classic partly
cloudy sky models (three models) and these three models are also
compared with the new proposed models. It can be noted that
models with the lowest RMSE values are those of Robledo et al. [20]
(2.43%) and the new model for partly cloudy sky (2.46%) followed
by the model of Chung [14] (2.67%).

Finally, Table 24 shows the results obtained for the case of classic
overcast sky models (four models) and these models are also
compared with the new proposed models. It can be noted that the
models proposed in this study yielded the lowest RMSE values
when fittedwith either overcast or with all sky conditions, followed
by those of Robledo et al. (Model B) [20] (2.52%) and Robledo et al.
(Model A) [20] (2.65%).

Table 21-Table 24 show the results obtained after validating the
models with two additional measurements months. From these
results, it can be observed that the proposed model, fitted for a
specific sky condition, yield lower RMSE values for both overcast
sky (Equation (14), 2.30%) and clear sky (Equation (12), 1.40%) than
any of the analysed models. With regard to partly cloudy sky con-
ditions, the RMSE obtained with the proposed model (Equation
(13), 2.46%) was approximately equal to that of Robledo et al. [20]
(2.43%), and the RMSE obtained with the proposed model (Equa-
tion (11), 2.66%) for all sky conditions was slightly higher than that
of the model of Ruiz et al. [19] (2.57%).

It should be mentioned that the model fitted with all the data
(all sky conditions), shown in Equation (11), can be generally
applied for modelling particular sky types (clear, partly cloudy and
overcast), because the RMSE values obtained after validating this

model in these specific sky types were 0.66%, 2.80%, and 2.48%,
respectively.

7. Conclusions

Eighteen classic global luminous efficacy models, from the
existing literature, have been evaluated, both with their original
coefficients and locally fitted with experimental data measured in
Burgos (Spain), between 1st October 2016 and 31st March 2018.
The local behaviour of the models has been noted, which leads to
lower RMSE and MBE values than those obtained by using their
original coefficients.

A new model to predict the global luminous efficacy on hori-
zontal surfaces has been proposed and analysed in this study. This
new model has been fitted for either all sky types or particular sky
types (clear, partly cloudy and overcast). It employs the solar alti-
tude and the clearness index (Kt) as independent variables, which
have the advantage of being two easily obtained parameters.

It has been shown that with data employed for fitting the
models over the period of study (01/10/16 to 31/03/18) in the city of
Burgos (Spain), the new proposed model has provided lower RMSE
values than any of the eighteen classic models analysed in this
study, for either all sky or particular sky conditions (clear, partly
cloudy and overcast). Moreover, this new model provides lower
MBEs than most of the classical models analysed in this study. With
regard to the results obtained with the validation data measured in
the period (01/04/18 to 31/05/18), the proposed model has pro-
vided lower RMSE values for clear sky and overcast sky conditions
than any of the classic models and it has provided similar RMSE

Table 21
Validation of the global luminous efficacy models for all skies.

Model Local coefficients

MBE (%) RMSE (%)

Ruiz et al. �0.10 2.57
Proposed model. Equation (11) �0.01 2.66
Chaiwiwatworakul and Chirarattananon 1.23 2.81
Mahdavi and Dervishi 0.94 2.94
Perez et al. 1.31 2.98
Muneer and Kinghorn 0.36 3.22
Fakra et al. �2.52 3.64

Table 22
Validation of the global luminous efficacy models for clear skies.

Model Local coefficients

MBE (%) RMSE (%)

Proposed model (All sky). Equation (11) �0.26 0.66
Proposed model (Clear sky). Equation (12) �1.21 1.40
Robledo and Soler (Model A) �1.25 1.53
Robledo and Soler (Model B) �1.32 1.65
Lam and Li �0.20 2.07
Chung �1.84 2.30
De Souza et al. �3.07 3.43

Table 23
Validation of the global luminous efficacy models for partly cloudy skies.

Model Local coefficients

MBE (%) RMSE (%)

Robledo et al. 0.51 2.43
Proposed model (Partly sky). Equation (13) �0.09 2.46
Chung 0.93 2.67
Proposed model (All sky). Equation (11) 0.27 2.80
Lam and Li 2.25 3.44

Table 24
Validation of the global luminous efficacy models for overcast skies.

Model Local coefficients

MBE (%) RMSE (%)

Proposed model (Overcast sky). Equation (14) 0.65 2.30
Proposed model (All sky). Equation (11) �0.21 2.48
Robledo et al. (Model B) 0.71 2.52
Robledo et al. (Model A) 0.86 2.65
Chung 1.27 2.76
Lam and Li 2.56 4.16
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values to those obtained with the models that presented the lowest
RMSE values for all sky and partly cloudy sky conditions.

It can be affirmed from these results that the model fitted for all
sky conditions, shown in Equation (11), can also be applied for
modelling the global illuminance in all sky types and in particular
sky conditions (clear sky, partly cloudy and overcast), with no need
to employ different luminous efficacy models for each specific sky
type.

As future work, the proposed model could be applied to data
gathered in different locations, in order to compare the results and
to determine its applicability to the modelling of horizontal global
illuminance.
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A B S T R A C T

Sky classification is a complex problem, due in part to such abstract conceptual definitions as clear, intermediate,
and overcast, as well as other intermediate ranges. The CIE (Commission Internationale de L’Éclairage) Standard
classification offers a solution to this problem, although its application requires data on the luminance dis-
tribution of the whole sky that are less commonly available. A benchmarking and classification system of ten
meteorological indices is introduced in this study to classify the sky types from overcast to clear. The indices can
be calculated from measurements of global, diffuse, and direct irradiance that are widely available from me-
teorological ground stations. The classification system uses confusion matrices, a machine-learning tool that
generates a visual display of the results of supervised-learning algorithms. The CIE Standard skies classification,
applied to half hourly sky-scanner measurements in Burgos (Spain), over the period June 2016 - May 2017, is
used in this study as a baseline reference for a comparative review of the results from the meteorological indices
and their results. They are classified by four performance ratings: Accuracy, Jaccard, Cohen, and Matthews,
which feature both classification similarity and the randomness of any agreement. All meteorological indices
yielded a high average degree of accuracy - close to 80% - in a detailed review of their classification. Neverthless,
the results suggested that Perez’s Clearness Index based on global, diffuse and direct radiation measurements
offered the most precise classification of the skies, followed closely by the Klucher Clearness Index and the
Perraudeau Nebulosity Index.

1. Introduction

A key aspect in the modelling of solar radiation and daylighting is
sky classification. Many models for the calculation of global, direct, and
diffuse irradiation and illumination (i.e. luminous efficacy) are defined
for different sky types, based on the values of different climatic para-
meters. Searching for parameters that can quantify abstract concepts
such as clear, partially cloudy, and overcast skies, as well as all possible
intermediate classes, is a complex problem that researchers have ad-
dressed using different strategies. Sky conditions of the same category
should have similar solar radiation and sky luminance distributions and
the corresponding climatic parameters should be within certain ranges
(Li and Lam, 2001).

In 2003, 15 standard sky types were defined in the CIE categor-
ization (Uetani et al., 2003). The classification included five types of
clear sky, five intermediate types, and five types of cloudy skies. Sky
types of the same category have the same well-defined sky luminance
pattern. Once the sky types are identified, the basic solar irradiance and
daylight illuminance on the surfaces of interest can be obtained through

simple mathematical expressions (Li et al., 2013). The luminance dis-
tribution for each standard sky type can help arrive at accurate de-
terminations of daylight illuminance (Kittler et al., 1997). Several
works have reported that the CIE standard sky classification provides a
good overall framework for representing the actual sky conditions and
covers the whole probable spectrum of skies found in nature
(Alshaibani, 2011; Li and Cheung, 2006; Li et al., 2008; Li et al., 2007;
Markou et al., 2005; Markou et al., 2004; Torres et al., 2010a, b;
Tregenza, 2004; Wong et al., 2012). Each CIE General Standard Sky is
well defined by the straightforward approach for sky classification: the
sky luminance pattern. The standard instrument for measuring sky lu-
minance distribution is a sky scanner and basic sky luminance data are
available at many locations across the world.

When interpreting sky conditions, meteorological data are initially
used as weighting factors to show the degree of sky clearness, but dif-
ferent researchers have each adopted different kinds of Meteorological
Indices (MIs), each with a different range (Li et al., 2007; Lou et al.,
2017; Umemiya and Kanou, 2008). Their selection depended on the
availability of meteorological variables. Some previous attempts have

https://doi.org/10.1016/j.solener.2019.11.060
Received 18 December 2018; Received in revised form 8 November 2019; Accepted 16 November 2019

⁎ Corresponding author.
E-mail address: catristan@ubu.es (C. Alonso-Tristán).

Solar Energy 195 (2020) 499–513

0038-092X/ © 2019 International Solar Energy Society. Published by Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/0038092X
https://www.elsevier.com/locate/solener
https://doi.org/10.1016/j.solener.2019.11.060
https://doi.org/10.1016/j.solener.2019.11.060
mailto:catristan@ubu.es
https://doi.org/10.1016/j.solener.2019.11.060
http://crossmark.crossref.org/dialog/?doi=10.1016/j.solener.2019.11.060&domain=pdf


been made to use specific MIs to classify sky conditions. The diffuse
fraction, k ,d and the clearness index, k ,t were used in (Brunger and
Hooper, 1993) for the classification of sky conditions. Igawa (Igawa
et al., 2004) defined a clear-sky index, Si, that can be used as an index
with no dependency on the solar altitude for the classification of sky
conditions. (Baharuddin et al., 2010) and (Rahim et al., 2004) classified
daylight data into three sky conditions – clear, intermediate, and
overcast – using two methods: sunshine duration and cloud ratio
methods. The sunshine duration method estimates the frequencies of
the occurrence of clear, intermediate, and overcast sky from the
monthly mean value of the relative sunshine duration. The cloud ratio
method classifies the sky condition into three sky classes, based on the
observation of the pattern of diffuse fraction graphs. (Kong and Kim,
2013) evaluated the ability of the diffuse fraction, Perez’s clearness
index, and the clearness index to classify the skies by means of a fre-
quency distribution. (Umemiya and Kanou, 2008) introduced a sky
classification method, by using different combinations of nine “insola-
tion” or irradiation indices. In (Lou et al., 2017), the CIE Standard Skies
identified by the luminance scan were correlated with fourteen me-
teorological parameters (solar altitude angle, clearness index, diffuse
fraction, turbidity, air temperature, relative humidity, wet bulb tem-
perature, and direct normal solar irradiance, among others) using the
Classification Tree algorithm. (Li and Lam, 2001) investigated the
prevailing sky conditions in Hong-Kong in terms of different climatic
parameters (cloud cover distribution, hours of sunshine, kt and kd) and
highlighted the merits of each one. In terms of modelling solar radiation
and outdoor illuminance components, the authors concluded that kt
was the best parameter from among the four indices under study. (Li
et al., 2014) analysed different alternative approaches to perform the
CIE Standard skies classification, the clearness index, and the turbidity
index, among others.

No previous studies have presented analyses of each MI and its sky
classification capability. The frequency of occurrence of clear, inter-
mediate, and overcast skies is determined by combining various MIs
through mathematical algorithms. Likewise, no simultaneous compar-
ison between the different approaches to sky classification has been
conducted. The comparison is usually done in terms of frequency of
appearance. Very few of the works just reviewed included comparisons

of their results with the CIE Standard sky classification. Nevertheless,
the CIE Standard skies are internationally considered as sufficiently
comprehensive to simulate skylight luminance and radiance distribu-
tions, crucial factors in passive energy efficient building designs and in
active solar energy applications. Even a simple sky classification with
only three categories (clear, partial, and cloudy) would allow a major
improvement in lighting control systems (Li, 2010; Li et al., 2008), a
precise selection of the models to estimate solar irradiance and for its
prediction (Djafer et al., 2017; Ruiz-Arias and Gueymard, 2018), more
accurate determination of the spectral components of solar radiation
(Escobedo et al., 2009; Jacovides et al., 2007), and better prediction of
photovoltaic production, to improve grid integration (Perveen et al.,
2018).

In this study, a review of the different MIs used for sky classification
and their benchmarking has led to the selection of those calculated with
three standard variables recorded at many meteorological stations:
global, beam, and diffuse irradiance. Sky conditions and characteriza-
tion of CIE Standard sky types were reported in a previous publication
with a full year of data recorded at Burgos, northwestern Spain,
(Suárez-García et al., 2018). The sky classifications using these MIs
were compared to the CIE cloudiness categories (cloudy, partial, and
clear), adapting the original intervals to match the number of cate-
gories.

The main objective of this study is to assess the selected MIs pre-
sented as alternatives to the CIE classification, so as to perform sky
classifications of acceptable accuracy. For sky classification, the ap-
propriate MIs would be expected to require less expensive and more
common equipment at meteorological ground stations than the sky
scanner that is used to measure sky luminance and its distribution.
Calculation of simple MIs is fast and allows an efficient implementation
of control systems of daylighting and active solar energy applications.
The use of confusion matrices as a benchmaking tool is a novelty in the
study of sky conditions. In this way, both the MI classification and the
CIE Standard, may be compared against the same timestamp, rather
than through a frequency distribution that can only be done at the end
of the data collection period.

This study is structured as follows: the CIE Standard classification
will be described in Section 2. In Section 3, the MI derived from global,

Nomenclature

Greek symbols

χ scattering angle
φ Z( ) gradation function
γ γ, s angle of elevation, solar elevation
α α, s Azimuth angle, solar azimuth
f χ( ) indicatrix function
∈ Perez’s clearness index
ε0 average value of the orbital eccentricity of the Earth
Δ Perez’s brightness index
κ Cohen Kappa
Z Z, s angle from zenith, angle between sky zenith and sun
a, b, c, d, e coefficients of the gradation and indicatrix function for

CIE standard skies classification
bp reference number of each band
Bsc extraterrestrial irradiance constant (1361.1 W/m2)
B n( ) beam irradiance (W/m2)
B n( )ext extraterrestrial direct solar irradiance (W/m2)
Ces standard cloudiness fraction
G (0)ext extraterrestrial global solar irradiance on a horizontal

plane
Cle cloudless index
dn day number of year, 1 on 1st January and 365 on 31st

December. February has 28 days
DV diffuse luminance (cd m/ )2

D O( ) diffuse horizontal irradiance (W/m2)
F clearness function
FK Klucher clearness index
FP Perraudeau nebulosity index
Gst standard global irradiance
G (0)clear clear-sky irradiance (W/m2)
G O( ) global horizontal irradiance (W/m2)
kb horizontal direct fraction
kd horizontal diffuse fraction
kd0 horizontal diffuse fraction for a clear sky
kk batlles clearness index
kt clearness index
ktt auxiliary parameter for Batlles Clearness Index calculation
Lp luminance of a sky patch measured by the Sky-scanner

(cd m/ 2)
Lz Zenith luminance cd m( / )2

MI meteorological index
m optical air mass
np number of patches in band b
NR luminance normalization ratio (cd m/ 2)
p reference number of a scanned sky patch
Si Igawa index
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beam, and diffuse irradiation will be used to define the sky types.
Section 4 will examine the main characteristics of the confusion ma-
trices classification and the indicators used for the MIs benchmarking
process. The experimental facility and data used in this work, as well as
the results of the study, will be described in Section 5 and in Section 6,
respectively. Finally, the principal observations will be presented in
Section 7 together with the main contributions of the study.

2. CIE standard classification

The CIE standard sky classification describes the luminance ratio of
any given sky patch, L kcd m( / ),p

2 normalized by the sky's zenith lumi-
nance, L kcd m( / ),z

2 as the product of the relative gradation function,
φ Z φ( )/ (0), and the relative scattering indicatrix function, f χ f( )/ (0), as
shown in Eq. (1):

=
L
L

f χ φ Z
f φ
( )· ( )
(0)· (0)

.p

z (1)

The gradation function (Eq. (2)) gives the luminance/radiance
variation from horizon to zenith and the indicatrix function (Eq. (3))
expresses the decrease of luminance from the solar disc to sky patches
far away from the sun:

=
+

+
φ Z φ

a b Z
a b

( )/ (0)
1 ·exp( /cos )

1 ·exp
.

(2)

=
+ ⎡⎣

− ⎤⎦
+

+ ⎡⎣
− ⎤⎦

+

( )
( )

f χ f
c d χ d e cos χ

c d Z d e cos Z
( )/ (0)

1 · exp( · ) exp · ·

1 · exp( · ) exp · ·
.

π

s
π

s

2
2

2
2

(3)

Z is the angle between sky zenith and the sky patch under scrutiny,
(rad). Zs is the angle between sky zenith and the Sun. Coefficients a, b,
c, d, and e can be adapted to depict the 15 CIE sky conditions: five
overcast, five partly cloudy, and five clear sky types, as shown in
Table 1. χ is the scattering angle (rad) that represents the shortest
distance from the sky patch to the solar disc and is calculated from Eq.
(4):

= + −χ Z Z Z Z α αarccos(cos ·cos sin ·sin ·cos | |),s s s (4)

where αis the azimuth angle of the sky patch and αs is the solar azi-
muth.

Fig. 1 shows a sky image of three different sky conditions classified
by the CIE Standard as: (a) Clear (IV.4 type); (b) partial (III0.2); and, (c)
cloudy (II.2).

The luminance distributions of individual standard skies were
modelled and compared with the scanned sky luminance readings. The
standard sky that was assigned had the lowest Mean-Square Error
(RMSE), (Tregenza, 2004). The original criterion to define the sky type,

known as the Standard Sky Luminance Distribution method (SSLD)
(Kittler et al., 1997), uses a theoretical assemblage of curves that re-
present the relation between the zenith luminance/diffuse luminance
(L D/z V ) ratio and the solar elevation angle. These curves converge at
solar elevation values higher than 35°, making it difficult to apply this
method in certain areas and at times when the solar elevation angle is
higher than 35° (Li et al., 2013), which is the case at the location under
study, especially in summer. Various procedures to circumvent this
issue are proposed, using various methods of normalization (Li et al.,
2014). In a previous paper (Suárez-García et al., 2018), the Normal-
ization Ratio (NR) introduced by Littlefair (Littlefair and Paul, 1994;
Littlefair, 1994) was used to obtain the CIE Standard sky types in
Burgos, Spain.

3. Meteorological indices for sky classification

The sky classification by luminance distribution is reliable, but it
has several restrictions (Li et al., 2014). The most significant problem is
that luminance measurements are only available at a few sites in the
world and only over short measurement periods. Alternatively, sky
conditions can be evaluated using MIs calculated from meteorological
variables readily accessible from most weather stations. In this study,
different MIs traditionally used to classify the sky conditions were used
to correlate the CIE Standard Skies determined by the luminance scan in
terms of confusion matrices. The correlation can be easily interpreted
and used to analyse the long-term sky conditions at sites that share
similar climatic variables with the location under study. In the fol-
lowing paragraphs, the different MIs contemplated here are briefly
described. For comparative purposes, a common classification is used in
all cases, i.e., the CIE cloudiness categorization (cloudy, partial and
clear, as shown in Table 1). As highlighted in Section 1, the definition of
clear, partial, and cloudy sky conditions may be ambiguous, and the
limits between these words are fuzzy. However, cloudy sky can be de-
fined at one end of a continuous scale with clear sky at the other end.

The problem addressed in this work is the homogenization of the
sky categories in the same number of classes without changing the
original limits established by their authors. This follows a similar ap-
proach to that in (Gueymard et al., 2019) where the authors compared
different MI models in an attempt to classify clear skies. Different in-
tervals were tested, in order to mitigate the semantic effects and to
maximize MI performance, keeping the class limits that the respective
authors set in their original works. Fig. 2 shows the possible combi-
nations of the limits of the intervals for the different MIs studied,
keeping the ordinal relationship between cloudy, partial, and clear-sky
conditions. For some of the MIs, no adaptation was needed. When more
than three intervals were defined in the original work, all possible
combinations for merging the intervals were tested. The adapted

Table 1
Parameters of CIE standard Sky types (Uetani et al., 2003).

Type a b c d e Description

CLOUDY I.1 4.0 −0.70 0 −1.0 0.00 Overcast with a steep gradation & azimuthal uniformity
I.2 4.0 −0.70 2 −1.5 0.15 Overcast with a steep gradation & slight brightening toward the Sun
II.1 1.1 −0.80 0 −1.0 0.00 Overcast with a moderate gradation & azimuthal uniformity
II.2 1.1 −0.80 2 −1.5 0.15 Overcast with a moderate gradation & slight brightening toward the Sun
III.1 0.0 −1.00 0 −1.0 0.00 Overcast, foggy or cloudy, with overall uniformity

PARTIAL III.2 0.0 −1.00 2 −1.5 0.15 Partly cloudy with a uniform gradation & slight brightening toward the Sun
III.3 0.0 −1.00 5 −2.5 0.30 Partly cloudy with a uniform gradation & a brighter circumsolar effect
III.4 0.0 −1.00 10 −3.0 0.45 Partly cloudy, rather uniform with a clear solar corona
IV.2 −1.0 −0.55 2 −1.5 0.15 Partly cloudy with a shaded sun position
IV.3 −1.0 −0.55 5 −2.5 0.30 Partly cloudy with brighter circumsolar effect

CLEAR IV.4 −1.0 −0.55 10 −3.0 0.45 White-blue sky with a clear solar corona
V.4 −1.0 −0.32 10 −3.0 0.45 Very clear / unturbid with a clear solar corona
V.5 −1.0 −0.32 16 −3.0 0.30 Cloudless polluted with a broader solar corona
VI.5 −1.0 −0.15 16 −3.0 0.30 Cloudless turbid with a broader solar corona
VI.6 −1.0 −0.15 24 −2.8 0.15 White-blue turbid sky with a wide solar corona effect
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interval is the one that maximized the classification metrics for each MI.
The original and the adapted values of the intervals selected by each
index are summarized in Table 2. The MIs are calculated using global
horizontal irradiance, G (0); diffuse horizontal irradiance, D (0); and
beam irradiance, B n( ).

3.1. Horizontal diffuse fraction, kd

The horizontal diffuse fraction (or cloud ratio or cloudiness index or
diffuse ratio), kd (Eq. (5)), is defined as the ratio between the diffuse
horizontal irradiance, D (0), and the global horizontal irradiance, G (0)
(Erbs et al., 1982). kd refers to the cloudiness of the sky and/or the
turbidity of the atmosphere: the higher the proportion of the diffuse
radiation in the global one, the higher the kd (Kambezidis, 2018).

=k D
G

(0)
(0)

.d
(5)

Conversely, low values mean that the global radiation mainly

consists of the direct component that predominates under clear skies.
The cloud ratio method classifies the sky condition into three skies
based on the observation of the pattern of kd graphs defining a sky as
either clear or overcast when the value of kd remains close to either 0 or
1, respectively, and as intermediate when kd changes frequently and
rapidly (Baharuddin et al., 2010). Different works have used the diffuse
fraction for the classification of radiation data into three sky conditions.
Hence, its value can be divided into three intervals from 0 (clear sky) to
1 (overcast sky). (Baharuddin et al., 2010; Kong and Kim, 2013; Li and
Lam, 2001; Rahim et al., 2004). In this work, three equal intervals were
applied assigning a cloudiness type to each one, which unifies the in-
tervals used in the previously mentioned studies. Both, the original and
the adapted intervals are shown in Table 2.

3.2. Horizontal direct fraction kb

As an alternative to kd, the horizontal direct fraction, kb, is defined
as the ratio between the direct horizontal irradiance, B (0), and the

a) Clear sky b) Partly cloudy sky c) Overcast sky

Fig. 1. Sky Image of diferent sky conditions classified by CIE Standard as (a) Clear (IV.4 type), (b) partial (III.2) and (c) cloudy (II.2), taken by a SONA201D All-Sky
Camera-Day in Burgos, Spain, on 6/22/17 at 10:30 UTC, 3/11/2017 at 16:45 UTC and 8/23/2017 at 13:00 UTC, respectively.

Fig. 2. Interval adaptation procedure of the original MIs.
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global horizontal irradiance, G (0) as shown in Eq. (6). Hence, the direct
horizontal irradiance can be calculated through the direct irradiance on
a plane facing the Sun, B n( ), and the solar altitude angle, γs. As with kb,
a number of intervals can be defined between its minimum (0, overcast
sky) and its maximum (1, clear sky) value. Three equal intervals were
taken assigning a cloudiness type to each one of them as can be seen in
Table 2. The pattern is the inverse of the one used for k ,d due to the
complementarity of both indices ( = −k k1 )b d .

= = =k B
G

B n Z
G

B n γ
G

(0)
(0)

( )cos
(0)

( )sin
(0)

.b
s s

(6)

3.3. Clearness index, kt

The clearness index, kt , (Iqbal, 1983) (Eq. (7)) is the ratio between
the global horizontal irradiance, G (0), and the extraterrestrial global
horizontal irradiance, G (0)ext .

= =k G
G

G
B ε Z

(0)
(0)

(0)
cos

.t
ext sc s0 (7)

Bsc is the extraterrestrial irradiance constant (1361.1 W/m2

(Gueymard, 2018; Gueymard and Ruiz-Arias, 2016)), ε0 is the average
value of the orbital eccentricity of the Earth, calculated from Eq. (8),
and Zs is the angle between sky zenith and sun.

= +ε cos π d1 0.033· [2· · /365],n0 (8)

where dn is the day the year. kt has often been adopted to indicate the
relative clearness of the atmosphere for sky categorization (Djafer et al.,
2017; Escobedo et al., 2009; Kong and Kim, 2013; Wang et al., 2013)

and it indicates the percentage of solar irradiance that radiates through
the atmosphere. (Mellit et al., 2008) suggested that the choice of
ktinterval values would also differ from one site to another. In general,
when the atmosphere is clear, a small fraction of the solar radiation is
scattered, resulting in a predominance of direct sunlight yielding a high
kt reading. Under overcast skies, a large portion of the solar radiation is
dispersed, so the main component is diffuse with a small kt value.
Several empirical relationships between kd and kt have been developed
to calculate diffuse irradiation on horizontal and tilted surfaces from
the global irradiation using a different time basis (Iqbal, 1983) that has
been the object of numerous reviews (Khorasanizadeh and
Mohammadi, 2016; Khorasanizadeh et al., 2016; Muneer et al., 2007;
Tapakis et al., 2016; Torres et al., 2010a). As many categories as re-
quired may be generated for the indices kd and kb. The selected intervals
are depicted in Table 2.

3.4. Clearness function F

The anisotropic sky-diffuse models use the horizontal diffuse frac-
tion, kd, and the clearness index, kt , to describe the prevailing sky
conditions. Under non-overcast conditions, the constituent components
of sky-diffuse irradiance are a circumsolar (Sun’s aureole) part and
background diffuse irradiance. The sky clarity indices are used to relate
the above-mentioned components (Muneer, 2007), the most common of
which is the clearness function, F , defined by Eq. (9):

= − = −F G B
G

G B n Z
B ε Z

(0) (0)
(0)

(0) ( )cos
cos

.
ext

s

sc s0 (9)

Muneer (2007) established four types of sky in function of the F

Table 2
Summary of the MIs used to classify the skies, the original intervals used to define the clear, partial and cloudy sky conditions and the adapted ones used in this work.

Symbol MI Ref. ORIGINAL ADAPTED

kd Diffuse fraction (Kong and Kim, 2013) (0.00, 0.33] clear
(0.33, 0.8) partial
[0.8, 1) cloudy

(0.00, 0.33] clear
(0.33, 0.8) partial
[0.8, 1) cloudy

kb Direct fraction [0.66, 1) clear (0.33, 0.66) partial
(0, 0.33] cloudy

kt Clearness Index (Wang et al., 2013) [0.65, 1) clear
(0.35, 0.65) partial
(0, 0.35] cloudy

[0.65, 1) clear
(0.65, 0.35) partial
(0, 0.35] cloudy

F Clearness Function (Muneer, 2007) [0.61, 1.00) completely clear
[0.51, 0.61) clear
[0.18, 0.51) partial
[0.00, 0.18) completely cloudy

[0.51, 1.00) clear
[0.18, 0.51) partial
(0.00, 0.18) cloudy

kk Batlles Clearness Index (Batlles et al., 2000) >
<

k k
k k

t tt

d k
clear

>
<

k k
k k

t tt

d k
clear

FK Klucher Clearness Index (Klucher, 1979) [0.61, 1.00) completely clear
[0.51, 0.61) clear
[0.18, 0.51) partial
[0.00, 0,18) completely cloudy

[0.51, 1.00) clear
[0.18, 0.51) partial
(0.00, 0.18) cloudy

∊ Perez’s clearness index (Perez et al., 1990; Perez et al., 1987) [6.20, ∞) completely clear
[2.80, 6.20) clear
[1.50, 2.80) partial
[1.065, 1.50) cloudy
[1.00, 1.065) completely cloudy

[2.4, ∞) clear
[1.50, 2.4) partial
[1.00, 1.50) cloudy

Δ Sky brightness (Perez et al., 1990; Perez et al., 1987) [0.48, ∞) very bright
[0.30, 0.48) bright
[0.10, 0.30) partial
[0.00, 0.10) very dark

[0.30, ∞) clear
[0.10, 0.30) partial
[0.00, 0.10) cloudly

FP Nebulosity Index (Kambezidis et al., 1998) [0.90, 1.00] blue sky
[0.70, 0.90) partial
[0.20, 0.70) partially blue
[0.05, 0.20) partially cloudy
[0.00, 0.05) totally cloudy

[0.70, 1.00] clear
[0.05, 0.70) partial
[0.00, 0.05) cloudy

Si Igawa Index (Igawa et al., 2004) [1.70, ∞) clear
[1.50, 1.70) almost clear
[0.60, 1.50) partially clear
[0.30, 0.60) partially cloudy
[-∞, 0.30] totally cloudy

[1.70, ∞) clear
(0.30, 1.70) partial
[-∞, 0.30] cloudy
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value that were reduced to three, which are used in this work, as shown
in Table 2.

3.5. Batlles clearness index kk

Two new indices, ktt and kk, have been introduced by (Batlles et al.,
2000), based on solar altitude, and are defined in Eqs. (10) and (11) as:

= − − +k γ γ0.3262 0.0032 0.6843log( ),tt s s (10)

= −k γ1.0827 0.3893log( ).k s (11)

kk index is restricted to clear skies, simultaneously defined by
>k kt tt and <k kd k (Muneer et al., 2004). This index therefore only

distinguishes two categories of skies: clear and overcast. The original
criteria were maintained for this study.

3.6. Klucher clearness index FK

Klucher (1979) proposed a model for estimating irradiance on a
tilted surface and developed the function FK , depending on D (0), and
G (0),as defined by Eq. (12). The original and the adapted classification
of cloudiness using this index, shown in Table 2, is equal to the one
established in the clearness function F.

⎜ ⎟= − ⎛
⎝

⎞
⎠

= −FK D
G

k1 (0)
(0)

1 .d

2
2

(12)

3.7. Perez’s clearness indices ∊∊ and Δ

Eqs. (13) and (14) introduce the sky clearness index, ∊, and the
brightness factor, Δ, respectively, both defined by Perez in 1987 (Perez
et al., 1987) and revised in 1990 (Perez et al., 1990). ∊ predicts cloud
conditions using the ratio between the diffuse horizontal irradiance and
the direct one on the same plane. Δ quantifies cloud thickness or aerosol
loading.

∊ =
+

+

+ kZ

kZ1
,

D B n
D s

s

(0) ( )
(0)

3

3 (13)

= mD
B n

Δ (0)
( )

.
ext (14)

Zs is the angle between sky zenith and sun (rad) and =k 1.04 (or
= −k 5.53·10 6 if Zs is expressed in degrees). B n( )ext is the extraterrestrial

direct irradiance ( =B n B ε( ) )ext sc 0 and m is the optical air mass calcu-
lated using the Kasten model (Kasten, 1993). Classification of the
cloudiness sky types using∊and Δare shown in Table 2.

3.8. Perraudeau nebulosity index, FP

Derived from the original work of Perraudeau and Chauvel (1986),
the nebulosity index, FP, is defined by Eq. (15) (Kambezidis et al.,
1998). This index models the degree of the sky covered by clouds using
the diffuse horizontal fraction, k ,d and the diffuse horizontal fraction for
a clear sky, kd0, given by Eq. (16).

= −
−

FP k
k

1
1

,d

d0 (15)

=
+

k G
G B n

(0)
(0) ( )d
clear

clear
0 (16)

Here G (0)clear , given by Eq. (17), is the clear-sky irradiance and B n( ) is
the beam irradiance.

= + ∙ − +

∙ + − −

+ − +

− −

− − −

G γ γ γ

γ γ

γ γ γ γ

(0) (0.5528 0.8785 0.01322· 0.0003434· )

(6.9731 0.042496· 8.5275·10 · 8.6088·10 ·

1.984·10 · 1.6222·10 · 4.7823·10 · )

clear
2 3

4 2 5

3 6 4 8 5 11 6 (17)

Depending on the FP value, five sky types can be identified that are
shown in Table 2.

3.9. Igawa index Si

The Igawa Index (Igawa et al., 2004), Si, defined by Eq. (18), uses
the standard global irradiance, Gst , the cloudless index, Cle, and the
standard cloudiness fraction, Ces, calculated from Eqs. (18)–(21).

= +Si G
G

Cle(0) ,
st (18)

= −G B
m

e0.84 ,st
sc m0.0657

(19)

= −
−

Cle k
Ces

1
1

,d
(20)

= + − + −
Ces

m m m m0.01299 0.07698 0.003857 0.0001054 0.0000010312 3 4

(21)

Gst is calculated considering the Linke turbidity factor as 2.5 in the
Kasten model (Kasten, 1993) of global irradiance for a clear sky; Ces is
given by a polynomial fit adjustment using the optical air mass as the
independent variable and Bsc is the extraterrestrial irradiance constant
(1361.1 W/m2). The original criterion used by Igawa and the adapted
one stablished following the procedure described by Fig. 2 (Section 3)
are shown in Table 2.

4. Confusion matrices

In the field of machine learning, a confusion matrix is used for
measuring the performance of classification algorithms. Classification is
known as a supervised learning approach, because the machine is
trained with selected examples of the data from which it is said to learn.
After the learning process, the model that has been tuned by the data
inputs will classify a new observation or sample into a given number of
classes. The classification can be binary (e.g. a dichotomous classifi-
cation of email as either spam or not spam) or multi-class (e. g. re-
cognition of handwritten numbers). When the algorithm attempts to
classify a sample, it processes an individual measurable property or
feature. For example, in binary classification the algorithm attempts to
detect the presence of a relevant feature. If it is detected, the sample is
labelled as “positive” and, if otherwise, “negative”, (Fig. 3). Comparing
the prediction with reality, there are four possible scenarios: the pre-
dicted positive will agree with the actual one (True Positive or TP), the
predicted positive will not agree with the actual one (False Positive or
FP), the predicted negative will agree with the actual one (True Ne-
gative or TN) and the predicted negative will not agree with the real
one (False Positive or FP). Each row of the matrix represents the in-
stances of the predicted class, while each column represents instances of
the reference class (Powers, 2011). The matrix was so-named, because
it easily visualizes whether the algorithm is confusing or mislabelling
two classes.

In this present work, the reference labels are established by the CIE
methodology for sky classification and the predicted labels by the MIs.
Hence, the latter are the algorithms or predictive models under ana-
lysis. As mentioned above, the CIE defines fifteen types of sky that can
be grouped into three types of cloudiness: clear, partial, or cloudy. The
MIs distinguish between the features in an attempt to define these three
classes. This task can be analyzed as a multiclass problem that can be
decomposed as a multiple dichotomous classification where each
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cloudiness categorization is predicted against the other remaining ones
(Fig. 4). At the end of the process, the dichotomous classification of the
MIs is evaluated using several performance ratings explained in the
following sections.

4.1. Accuracy index

The Accuracy Index, also known as the Simple Matching Coefficient,
represents the ratio of correct predictions, positive or negative, amongst
all the cases evaluated by the algorithm expressed by Eq. (22):

= +
+ + +

Accuracy TP TN
TP TN FP FN

.
(22)

As can be appreciated, it represents the overall portion of agreement
and it is usually the starting point for analyzing the quality of a pre-
dictive model. The main weakness of the so-called Accuracy Paradox is
that models of a given accuracy may have greater predictive power than
others of higher accuracy (Kundel and Polansky, 2003). An illustration
of this fact would be a comparison of two different algorithms designed

to detect insurance frauds for the same set of 100 samples, represented
in Fig. 5. Given a confusion matrix (with notation [TP FP; FN TN]) for
the first one of =M [12; 295]1 and for the second one of =M [02; 098]2 ,
then the accuracy of the first and the second algorithm would be 0.95
and 0.98, respectively. In comparison with the first model, the second
model would show fewer incorrect predictions and improved accuracy,
globally; however, its fraud detection power would be weaker. This
paradox arises in imbalanced data where there is a substantial differ-
ence in the size of the categories. The use of other metrics may therefore
be advisable.

In multiclass classification performance, there are two types of
averages: micro-averages and macro-averages. The micro-average sums
up all the TP, TN, FP, and FN cases of all the classes, aggregating their
contributions before calculating the metrics. The result would be
dominated by the performance of the common categories and it would
be similar to weighting it against the population size of each category. A
bad performance labelling one of the classes could be masked. The
macro-average - the average type used in this work- is computed by
averaging the metrics after their calculation. Therefore, equal weight
was given to each category, regardless of its frequency. Using the latter,
the classification performance must be good in all of the (cloudy, partial
and clear) classes, if it is to be among the highest positions of the metric
ranking.

Fig. 3. Confusion matrix: possible scenarios in the comparison of the prediction
to the actual data.

Fig. 4. Multiclass to dichotomous transformation.

Fig. 5. Confusion matrices for a fraud detection example.
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4.2. Jaccard index

The Jaccard Index (Jaccard, 1912) expressed by Eq. (23), measures
the similarity between the number of true positives in all the cases
under evaluation. The main difference to the Accuracy Index is the
omission ofTN , meaning that the Jaccard Index only takes into account
successful detection of the relevant attribute. In the above insurance
fraud example, the Jaccard Index is 0.20 for M1 and 0 for M2, showing a
better reflection of the predictive power of the first algorithm.

=
+ +

Jaccard Index TP
TP FP FN

.
(23)

The Jaccard Index is focused on the detection of the relevant feature
or true positives. It makes no distinction between FP and TN. There are
some scenarios where such a distinction is crucial. For example, in
medical diagnostics, a model with a confusion matrix [90 10; 0 0] and
another characterized by [90 0; 10 0] would have the same Jaccard
Index of 0.9. However, the first model would have 10 FP cases and the
second one 10 FN. The second model would have harmful con-
sequences, so the use of the first one would be recommendable.
Depending on the field of application, the use of another metric or full
information would be recommendable before taking the final decision.

4.3. Cohen’s Kappa

Cohen’s Kappa, κ, is a measure of true agreement rather than a true
prediction that reflects the possibility that the algorithm agrees with the
reference by chance. It indicates the proportion of agreement beyond
that expected by chance, as shown in Eq. (24):

=
−

−
=

−
−

κ
observed agreement chance agreement

chance agreement
p p

p1 1
,o e

e (24)

where po is the overall agreement given by Eq. (25); pe is the expected
agreement by chance as calculated by Eq. (26), − p1 e is the fraction of
cases on which agreement is not expected to occur by chance, and N
(Eq. (27)) is the total number of cases analyzed by the algorithm.

= +p TP TN
N

,o (25)

= ⎛
⎝

+ ⎞
⎠

⎛
⎝

+ ⎞
⎠

+ ⎛
⎝

+ ⎞
⎠

⎛
⎝

+ ⎞
⎠

p TP FP
N

TP FN
N

TN FP
N

TN FN
N

,e (26)

= + + +N TP TN FP FN . (27)

Table 3 shows the strength of agreement for various ranges of κ
suggested by (Landis and Koch, 1977). The choice of intervals is arbi-
trary, but is now in wide use (Kundel and Polansky, 2003). In the
previous example, Cohen’s Kappa scored 0.313 (fair strength) for M1

and 0 (poor strength) for M2, avoiding the Accuracy Paradox.
Cohen’s Kappa takes into account the four classes of the confusion

matrix and is more informative than other confusion-matrix measures.
It can produce drastically different results to Accuracy and the Jaccard
Index in scenarios where the positives cases are the predominant class.
For example, a classification algorithm that produces the confusion
matrix =M [905; 41]3 would produce Accuracy 0.91, Jaccard Index
0.91, and κ 0.13. Nevertheless, the Jaccard Index and Accuracy will
provide indicative assessments of almost perfect predictive power and κ
will predict a performance near a random classifier with null predictive
power, because of its incapacity to detect true negatives (Sim and
Wright, 2005).

4.4. Matthews correlation coefficient

The Matthews Correlation Coefficient (Matthews, 1975) given by
Eq. (28) is a measure of the quality of the binary classification:

= −
+ + + +

Matthews Correlation TP TN FP FN
TP FN TP FP TN FP TN FN

· ·
( )( )( )( )

.

(28)

Essentially, it is a correlation coefficient between the reference and
predicted classification returning a value between +1 (perfect predic-
tion) and −1 (total disagreement). The 0 value is representative of a
random prediction. Returning again to the Accuracy Paradox example,
the Matthews Correlation is 0.31 for M1 and 0 for M2. As with Cohen’s
Kappa, the Matthews Correlation takes into account the four classes of
the confusion matrix with the same implications as those seen in the
Section 4.3 (Chicco, 2017).

4.5. Combination of the confusion matrix metrics

In the preceding sections, various metrics for a classification algo-
rithm have been explained. All of them are attempts to sum up the
confusion matrix associated with the algorithm using only one number.
Inevitably, the process is associated with a loss of information, because
a four dimensional matrix is collapsed into one number. Each dimen-
sion attempts to highlight one aspect of interest. However, they are
correlated in some way because the starting data are all the same. In
fact, the ranking offered by each one is very similar.

The different rankings produced by all the metrics are combined to
arrive at the best MI for classifying sky cloudiness. At the end of the
process, four rankings are thus obtained, one per confusion matrix. The
one designated as best model holds the best positions in all of them. So,
by using all of them simultaneously, the deficiencies of the metric and
its biases are avoided.

5. Experimental section

5.1. The meteorological facility

The experimental data for this study were gathered at a meteor-
ological weather station located on the roof of the Higher Polytechnic
School building at Burgos University (42°21′04″N; 3°41′20″O; 856 m
above mean sea level). This five-storey building is in an area with no
other buildings of comparable height, free from any external obstruc-
tions. The experimental equipment is shown in Fig. 6. The following
meteorological data were measured: temperature, wind velocity and
direction, atmospheric pressure, humidity, and rainfall. Global, beam,
and diffuse horizontal irradiation (G B n D(0), ( ), (0))were all recorded
using first-class Hukseflux SR11 pyranometers and a Hukseflux DR01
pyrheliometer. The facility includes a SONA201D All-Sky Camera-Day,
from Sieltec Canarias and an MS-321LR sky scanner, from EKO. The
experimental variables were recorded with a CAMPBELL CR3000 da-
talogger. Tables 4–6, respectively, show the technical specifications of
the sky scanner, the pyranometers, and the pyrheliometer used for this
study.

5.2. Data processing

Global, beam, and diffuse irradiance data are measured from June
2016 to May 2017, for the classification and benchmarking of the

Table 3
Strength of agreement indicated with κ values.

κ strength

(− ∞, 0] poor
[0, 0.20) slight
[0.20, 0.40) fair
[0.40, 0.60) moderate
[0.60, 0.80) substantial
[0.80, 1.00] almost perfect
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different MIs selected for this study. Both the pyranometers and the
pyrheliometer are classified as “first class” in the ISO classification (ISO
9060:1990) with a WMO performance level that is of “good quality”
(WMO, 2010). The calibration and the management of the meteor-
ological facility is done following ISO (1992) and the WMO Guide to
Meteorological Instruments and Methods of Observation (WMO, 2008.
(Updated 2010)). Global, diffuse, and beam irradiation data are re-
corded every ten minutes (averaging recorded scans of thirty seconds).
The sky-scanner completes a full scan in four minutes and starts a new

scan every fifteen minutes. So as to match simultaneous records of
global, diffuse, and beam irradiation, only half-hourly and hourly sky-
scanner measurements are used in this study. The irradiance data are
analysed and filtered using traditional quality criteria (Gueymard and
Ruiz-Arias, 2016). If irradiance data (global, diffuse, and beam irra-
diance data) fail to pass the quality criteria, then the three simultaneous
data sets are rejected.

The number of indices, once the data from both sources had passed
the quality criteria, was above 300 per month, as shown in Fig. 7. In the
summer months there were fewer estimated indices than expected,
because the weather station and Sky Scanner experienced several
shutdowns due to servicing works. Overall, over 3600 indices were
correlated with their respective sky cloudiness.

5.3. CIE standard classification of skies in Burgos, Spain

The sky scanner divides the sky into 145 patches or sectors (p) that
cover the whole dome. The sectors are grouped into eight bands, named
bp, and by their solar altitude, = −γ Z( )π

2 , where Z is the zenith angle.
Fig. 8 shows the location of the sectors in the whole dome. A luminance
measurement (kcd/m2) of each patch is taken four times per hour. Half-
hourly and hourly measurements were recorded between June 2016
and May 2017. Continuous scanning yielded luminance data corre-
sponding to the 145 patches (see Fig. 8) recommended for the CIE in the
Guide to Daylight Measurements (Tregenza et al., 1994), which were
measured and registered. Likewise, the luminance corresponding to

Fig. 6. Location of the meteorological station on the roof of the Higher Polytechnic School building at the University of Burgos, Spain.

Table 4
Sky Scanner specifications.

Model MS-321LR EKO Instruments

Dimensions (W × D × H) 430 mm × 380 mm × 440 mm
Mass 12.5 kg
Aperture 11 °
Luminance 0 to 50 kcd/m2

Radiance 0 to 300 W/m2/sr
A/D Convertor 16 bit
Calibration Error 2%

Table 5
Pyranometer specifications.

Model SR11

ISO classification first class
Spectral range 300 to 2800 nm
Irradiance range 0 to 2000 W/m2

Sensitivity 15 × 10−6 V/(Wm−2)
Calibration uncertainty < 1.8%

Table 6
Pyrheliometer specifications.

Model DR01

ISO classification first class
Spectral range 200 to 4000 nm
Irradiance range 0 to 2000 W/m2

Sensitivity 7-15 × 10−6 V/(Wm−2)
Calibration uncertainty < 0.3%

Fig. 7. Number of sets of the MIs estimated per month.
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each of the commonly considered 15 standard sky types presented in
Table 1 was calculated at the same time and for the same 145 patches.
The standard sky type ascribed to each record expressed the lowest
RMSD (Root Mean Square Deviation) between the 145 normalized lu-
minance values that were measured and calculated.

The sky scanner is adjusted each month to measure daylight hours
from sunrise to sunset. The first and last measurement of the day (solar
elevation angle equal or lower than 5°) were discarded, as were mea-
surements higher than 50 kcd/m2 or lower than 0.1 kcd/m2, following
the specification of the equipment. Fig. 9 gives the frequency of oc-
currence (FOC) of the sky classification results by the method. One
previous work (Suárez-García et al., 2018) described the details of the
sky luminance measurement and classification methodology. All sky
types of the CIE classification, shown in Table 1, can be found in
Burgos, from overcast to very clear. The lowest frequency is for type I.2,
corresponding to Overcast with the steep gradation and slight bright-
ening toward the sun (1.7%), and the highest frequency is for type V.5.
(18.3%) (Cloudless polluted with a broader solar corona). Cloudiness
labelling was done with the CIE sky types: I.1 to III.1 classified as
cloudy, III.2 to IV.3 as partially cloudy, and IV.4 to VI.6 as clear skies.
These three categories reflect the characteristically clear skies that are
predominant in Burgos (56.3%), while cloudy skies are presented in
23.7% and partially cloudy in 20% of cases, as shown in Fig. 10.

6. Results and discussion

6.1. Results of cloudiness classification from the meteorological indices

In this section, the results of the calculation of each MI used for sky
classification are presented. The calculated MIs have values inside the
intervals defined by their authors (Table 2). The box plots, presented in
Fig. 11, show the data organized by quartiles. The high variability of
their interquartile ranges (IQR) can be observed: kt , kb , kd , FK , ∊ and
Si. It might be thought that a wider dispersion of the values would mean
a higher number of different cloudiness classifications. As will be seen
later (Table 8), ∊, FK , and kt are ranked first, third, and fourth in the
cloudiness classification. However, the second best single index (FP)
had an IQR of low variance. The explanation could be a better adaption
of its intervals originally established by the CIE types of cloudiness.

The results of each MIs for the cloudiness classification are sum-
marized in Fig. 12 and presented by month. Fig. 13 shows the monthly
cloudiness classification obtained from the standard CIE.

Individual analysis of sky classification with the MIs shows that
practically no index is able to identify the high percentage of clear skies
indicated by the CIE classification. The Klucher clearness index (FK ) is
the one that identifies a higher percentage of clear skies, and at the
opposite extreme, the Batlles clearness index identifies practically all
cases as overcast. Δ, Si, FP, and F , identify most of the cases as partial
cloudiness. The stacked bar graph shows an imperfect match between
the different approaches. A frequency graph would be insufficient for a
complete comparison: the energy contribution of the Sun depends on its
elevation above the horizon, which varies according to the time of day
and day of year. It is therefore necessary to compare the classification at
each timestamp.

6.2. Confusion matrices

Finally, the comparison between classifications at each instant is
obtained and presented in terms of the confusion matrices and the
rating variables: Accuracy, κ,Jaccard, and Matthews. The overall power
prediction of the MIs is shown using the data for all the months. Then,
their estimations are compared with the CIE classification for all the
samples that were registered. The maximum percentage of true posi-
tives in each sky type is limited by the CIE classification shown in
Fig. 10. For this reason, an ideal algorithm with no errors in its clas-
sification would obtain the following classification matrices, expressed
as percentages: =M [570; 043]clear , =M [240; 076]partial and

=M [190; 081]cloudy . In the matrices, the values are the maximum true
positives and true negatives that the algorithms can obtain. In Fig. 14
the confusion matrices for each MI used as a sky cloudiness classifier
are presented. Percentages of true positives (tp), true negatives (tn),
false positives (fp) and false negatives (fn) are depicted. The lowercase
abbreviation is used to distinguish the percentage of the raw recount
where uppercase is preferred. To give as much information as possible,
the number of samples analyzed, N, is detailed in the title of each
figure. For example, the confusion matrix for the kd detecting clear skies
is =M [1524; 4318]clear kd, in percentage terms or

=M [330527; 945395]clear kd, in samples counting.
A predominant behavior can be observed in each one of the sky

types. The false negatives are predominant in the clear skies (Fig. 14).
There is a considerable number of cases where the MIs predict a non-
clear sky (i.e. partial or cloudy) when the CIE model predicts a clear
sky. Better than all of the other MIs, FK stands out from the rest with a
true positive ratio near 45%, ten percentage points higher than the rest.

The behavior of the MIs slightly changes in the partly cloudy skies
classification shown in Fig. 14, where the false positives and true

Fig. 8. Sky divided into 145 sectors (p) grouped into 8 bands (bp). The number
of patches per band (nb) is shown in the figure. Figure shows two ficticious cases
illustrating how, depending on sun position, the patches adjacent to the posi-
tion of the sun are excluded for the luminance calculation.

Fig. 9. Frequency of occurrence (FOC) from June 2006 to May 2017 Burgos CIE
Standard Skies.
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negatives are predominant. Clear and cloudy skies are clearly dis-
tinguished. However, MIs can hardly classify a partial cloudiness sky
correctly. Finally, the true negatives predominate in the cloudy sce-
narios, with the rest of cases evenly spread out between the true posi-
tives, false positives, and false negatives. In both cloudiness scenarios,
partial and cloudy skies, the true positive ratio is below 20%.

The confusion matrix metrics, shown in Table 7, summarize the
performance of the MI classifications. The results are discussed in two
groups: the indices that characterize similarity (Accuracy and Jaccard)
and the indices that analyze randomness in the agreement (Cohen
Kappa and Matthews Correlation). The results obtained by Accuracy, in
some cases, show values, above 80%, such as the classification of
cloudy skies by the FP and the Si indices, and the average value was
above 60% in five indices (FK , FP, Si, k ,t and kb). Nonetheless, these

high values are reached, because the true negative ratios value are in-
cluded in the accuracy computation. In the present study, where there
are three classes (clear, partial, and cloudy), a true negative obtained in
one class implies that the sample could be in any of the other two. The
Jaccard index shows an average of the meteorological classifiers below
35%. This considerable reduction is because the Jaccard Index only
measures the similarity of the true positives, omitting the true nega-
tives. The Jaccard index emphasizes the scoring capability of the al-
gorithm to detect the desired value of the attribute under analysis. The
Jaccard Index is nevertheless 45% when the Klucher Clearness classifies
clear skies. Cohen’s Kappa and Matthews Correlation Coefficient both
show a fair strength of agreement for most of the classifiers, as shown in
Table 7. Poor performance under partly cloudy skies is also very visible
from the values, below 10% obtained for both classifiers. The results
obtained in the cloudy skies are the best ones, followed by the clear
ones. In other words, the extreme situations are those that are detected
with best accuracy.

Table 8 summarizes the average ranking obtained by the MIs. ∊ was
in first place in the Jaccard Index, κ and Matthews evaluations. It was
only surpassed by the FK index in the Accuracy ranking. Bearing in
mind the similarity of the numerical values obtained by ∊ FK, and FP in
the evaluation indices, these three MIs may be identified as the best
classifiers of sky cloudiness. When studying only the capacity of the MIs
to identify clear skies, FK obtained first position in all the indicators.
This result was already shown in Fig. 12. None of the MIs under analysis
have simultaneously shown good results in the rating variables, for the
identification of either partial or cloudy skies,.

7. Conclusions

A key aspect in the modelling of solar radiation and daylighting is

Fig. 10. Comparative study of cloudiness classifications in Burgos.

Fig. 11. MIs calculated from the experimental data of global, beam, and diffuse irradiance measured in Burgos from June 2016 to May 2017.
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sky classification. The use of MIs as an alternative to the CIE standard
classification has been investigated in this work. Various MIs for sky
classification have been reviewed. Ten classical MIs obtained from
global, diffuse, and/or beam irradiance measurements, recorded at
weather stations have been used. The baseline reference in the one-year
experimental measurement campaign was the standard CIE classifica-
tion for homogenous skies. Only three cloudiness sky categories have
been established: clear, partial and cloudy. This homogenization has
required scaling down the number of intervals of some MIs, keeping the
class limits stated in the original works. An exhaustive analysis of all the
possibilities has been made to merge the intervals, always respecting
the original limits and selecting the option that optimized the result of

each MI. Confusion matrices have been used as a tool for benchmarking
the MIs under study and four different quality metrics have been cal-
culated, to determine the performance of each MI as a sky classifier.

Although the classification of the skies was limited to three cate-
gories, none of the MIs under analysis distinguished the large global
number of clear skies that the CIE determined in the city of Burgos; the
FK index was the closest to this classification, in terms of frequency of
occurrence of each of the sky categories. The rest of the indices, in
general, indicated partially or fully covered skies as the predominant
ones in the area under study. The monthly distribution over the year-
long analysis of the types of sky calculated by the different indices also
differed from that offered by the CIE standard, which predicted

Fig. 12. Monthly cloudiness classification obtained from each meteorological index calculated from the experimental data of global, beam, and diffuse irradiance
measured in Burgos from June 2016 to May 2017.
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predominantly clear skies in summer.
The metrics for the cloudiness classification have shown that the

performance of the MIs may, at best, be considered as “fair”.
Classification accuracy reached values of over 70% for cloudy skies.
However, this metric can lead to misunderstandings, as it accounts for
the correct classification of true positives and true negatives (see the
Accuracy Paradox in Section 4.1). As Table 8 shows, the best MI for the
sky classification was ∊ followed closely by FKand FP indices. kkand
F showed the worst results for the classification of cloudiness of the
skies into three categories. No correlation was observed between the
mathematical complexity of the MIs or the number of input parameters
and the classification result of the MIs. As can be observed, the original
definition of the intervals is one of the main factors that justifies the
difference in the performance of the MIs.

The experimental data of the present study were taken from a dif-
ferent location other than that used in the original studies for the de-
finition of each MI. However, if subtle language differences are ne-
glected, the definition of “clear” or “cloudy” sky should be independent
of the location. Attending to the metrics, regardless of the accuracy, the
results were quite similar. The average accuracy almost reached 70% in
FK , and was above 50% in all the MIs. However, this result is

overoptimistic because of the accuracy paradox. The average value was
below 33% for the Jaccard Index and below 25% for Cohen’s Kappa and
Matthews correlation coefficient. In short, the capability of the MIs at
classifying sky cloudiness can be considered “fair”. As demonstrated,
their isolated use would not be advisable for the classification of sky
cloudiness.

Several possible lines may be followed to improve on the results that
have been presented here. Future work must address different combi-
nations of these indices linked with other variables related to climatic
and atmospheric conditions, which were not considered in the calcu-
lation of the indices. Another option would be to modify the original
interval limits of each sky type to obtain the best classification results.
The use of machine learning techniques should also be considered, to
obtain models that will help to classify day cloudiness in real time. The
final objective must be to reuse the big data available from meteor-
ological stations, so as to classify cloudiness in the most reliable manner
without the use of expensive sky scanner devices.
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Table 8
Ranking average summary.

kd kb kt F kk FK ∊∊ Δ FP Si

ACCURACY 5 7 4 9 10 1 2 8 3 6
JACCARD 5 7 4 9 10 2 1 8 3 6
COHEN KAPPA κ, 5 7 4 8 9 2 1 10 3 6
MATTHEWS 5 7 6 9 10 3 1 8 2 4
GLOBAL 5 7 4 9 10 2 1 8 3 6
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ANII- 1. Diego Granados López; David González Peña; Ana García 

Rodríguez; Sol García Rodríguez; Manuel García Fuente. Machine 

Learning for BIPV Production. EU PVSEC European Photovoltaic 

Solar Energy Conference and Exhibition 2021. WIP Renewable 

energies. 2021. Portugal. 1529 – 1531.  ISBN 3-936338-78-7. 

Abstract: The increase in energy consumption in homes has never 

been as intense as in the last decade. The international alarm has 

resulted in various plans and strategies This research supports the 

implementation of Building Integrated Photovoltaics (BIPV) 

proposing a model to predict vertical PV production from vertical solar 

irradiation and ambient temperature data. The predictor is an 

Artificial Neural Network (ANN), trained using the Levenberg 

Marquardt algorithm. The research tested and compared several 

architectures of the ANN to obtain the most accurate network. The 

ANN chosen has a single hidden layer. Its entry has two neurons, 

ambient temperature, and global vertical irradiation, RaGV. This 

research showed that ambient Temperature and RaGV are enough to 

estimate BIPV production, being RaGV the most relevant variable. 

The introduction as input of the model of the ambient temperature 

increased its performance. The obtained model had good statistical 

results and allowed to estimate the PV production from commercial 

panels. 

ANII- 2. Diego Granados López; Ana García Rodríguez; Sol García 

Rodríguez; David Gonzalez Peña.  Avoiding shading on 

photovoltaic panels in building integrated photovoltaics 

(BIPV). ICEESEN (2020). Erciyes Üniversitesi ERÜ / 

KAYSERİ. 2020. Turquía. 347 – 350. ISBN: 978-625-409-147-6 

Abstract: The integration of photovoltaic (PV) panels on non-used 

buildings surfaces allows the electricity distributed generation near 

the consumption places and the electrification of remote areas 

avoiding the transportation cost and electrical losses. The current 
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study highlights the importance of carrying out a prior analysis of the 

nearest area to get a correct implementation of the PV panels, avoiding 

the shadows produced by the close obstacles. A recently refurbished 

public building has been analyzed: the IndUVA building of the 

University of Valladolid, Spain. Although the current design offers 

good energy production, the consideration of the roof surface in the 

design could have improved the electricity production up to 37%. The 

roof surface presents some advantages over the facade surfaces: easier 

and cheaper implementation of the PV panels, and also, higher 

production than the south-oriented surface in summer. 

ANII- 3. Diego Granados López; Montserrat Díez Mediavilla; Ana García 

Rodríguez; David Gonzalez Peña; Cristina Alonso Tristán.  Towards 

Net-Zero Public Buildings through BIPV: a Case Study in 

Castilla-León(Spain). 37th European Photovoltaic Solar Energy 

Conference and Exhibition. PVSEC. 2020. Portugal. 1964 – 1967. 

ISBN 3-936338-73-6 

Abstract: The new European directives focused to achieve public Net-

Zero Energy Buildings require for their application the knowledge of 

the potential of photovoltaics (PV) generation of these buildings. The 

available building surfaces (façades and roofs) for PV integration 

depend on the building’s location and orientation, and relative position 

of the nearby buildings and elements. This work developed a technical 

procedure to determine the available surface for PV integration, the 

economic and energetic viability of the PV facilities, and their 

contribution of the energy consumption of the buildings through a case 

study. The current design has a potential benefit of 0,17 million of 

euros. Its greenhouse gas emissions are 0.27–0.92 Ton, ten times 

smaller than a production obtained through the traditional fuels (6–

8.47 Ton), which are commonly used in Spain. 
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ANII- 4. Diego Granados López; Manuel García Fuente; David González 

Peña; Montserrat Diez Mediavilla; Cristina Alonso Tristán. Indoor 

Daylight Model for All Sky-Type Luminance Pattern. XII 

National and III International Conference on Engineering 

Thermodynamics. 12CNIT (2022). Universidad Carlos III de Madrid. 

Spain. (Accepted submission). 

Abstract: Daylight is a valuable source for illuminating indoor spaces 

that provides positive effects on the well-being and health of 

occupants, reducing stress levels, and improving mood and 

photobiological effects. Daylight reduces electricity consumption on 

lighting and increases the energy efficiency of buildings. International 

Net Zero Energy Building (NZEB) standards and regulations 

recommend the incorporation of natural lighting strategies in their 

design and define minimum standards. Important input data for 

predicting the indoor illuminance are the distributions of the sky 

luminance, that can be obtained from different models. In this study, 

DeLight of Vartiainen model was selected to predict the indoor 

illuminance using the CIE Standard sky luminance distribution 

model. Model has been tested experimentally. 

ANII- 5. Diego Granados-López; Sol García-Rodríguez; Ana García-

Rodríguez;  Montserrat Díez-Mediavilla; Cristina Alonso-Tristán. 

Machine Learning techniques for estimation of BIPV 

production. XII National and III International Conference on 

Engineering Thermodynamics. 12CNIT (2022). Universidad Carlos III 

de Madrid. Spain. (Accepted submission). 

Abstract: The European Commission promotes achieving climate 

neutrality by 2050 . Taking advantage of renewable energy sources is 

crucial in the most recent European strategies, whose focus is to 

reduce the energy dependency of Europe and to avoid greenhouse gas 

emissions. The decrement of the electricity costs from utility-scale 

solar photovoltaic (PV) installations has been notably reduced since 

2010 and nowadays is getting close to being competitive with 
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conventional electricity sources. Building Integrated PV facilities 

(BIPV) can be a leading technology in terms of cost and efficiency. PV 

production is highly dependent on weather conditions. 

ANII- 6. Diego Granados-López; Ignacio García; Jose Luis Torres; Andrés 

Suárez-García; Montserrat Díez-Mediavilla; Cristina Alonso-Tristán. 

Propuesta de reagrupación de los tipos de cielo ISO/CIE 

mediante técnicas de aprendizaje supervisado. XVIII Congreso 

Ibérico y XIV Congreso Iberoamericano de Energía Solar. CIES2022 

(2022). Universitat de Les Illes Balears. Spain. (Accepted submission). 

Abstract: La nubosidad del cielo determina en gran medida la 

radiación solar y la luz natural recibida en la superficie terrestre. En 

este sentido, el conocimiento de la distribución angular de la radiancia 

y la luminancia en el cielo, permite conocer de manera precisa la 

irradiancia o iluminancia recibidas en un plano de interés. Entre los 

modelos existentes, se encuentra el propuesto por la Comisión 

Internacional de Iluminación (CIE), que se consolidó en una norma 

ISO en 2004 (ISO 15469:2004(E)/CIE S 011/E:2003). La propuesta de 

la CIE establece un total de 15 tipos de cielo, cada uno asociado a un 

patrón específico de distribución de la luminancia en el cielo. Este 

patrón se puede integrar sobre un plano de interés con una orientación 

e inclinación determinadas para calcular la iluminancia difusa. 

Resulta especialmente interesante su integración sobre los planos 

vertical y horizontal. Concretamente, la ratio entre la iluminancia 

recibida sobre el plano vertical (libre de obstáculos) y el horizontal se 

conoce como Vertical Sky Component (VSC) y está estrechamente 

relacionada con la clasificación de cielos ISO/CIE. 

En la Figure  36, se muestra la evolución de la VSC en función de la 

elevación solar y el tipo de cielo. Como se puede apreciar en la propia 

Figure  36, en este trabajo, se propone una agrupación simplificada de 

los 15 tipos de cielo de la norma ISO/CIE en cinco grupos: Grupo 1: 

tipos 1, 2, 3, 5; Grupo 2: tipos 4, 6, 7; Grupo 3: tipos 8, 9, 10, 11; Grupo 

4: tipos 12, 13; Grupo 5: tipos 14, 15. El Grupo 1 refiere el porcentaje 
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de cielo más cubierto de la clasificación. El grupo 2 será también 

bastante oscuro, y la influencia del Sol debe empezar a ser tenida en 

cuenta. El grupo 3 puede mostrar una dependencia muy fuerte con la 

posición del Sol, y cada orientación tendrá su propia iluminancia 

disponible. El grupo 4 será un cielo contaminado o un poco turbio, y la 

VSC teórica puede ser mayor del 100% (la iluminancia difusa vertical 

es mayor que la horizontal). Por último, en el grupo 5 la VSC puede 

alcanzar valores aún más altos, disminuyendo el confort visual y 

aumentando la carga térmica en el interior del edificio. 

La clasificación de cielos según la norma ISO/CIE tiene un gran 

potencial ya que permite relacionar los tipos de cielos con la 

distribución angular de luminancia celeste. Sin embargo, la medida de 

dicha distribución requiere de equipos, comúnmente conocidos como 

sky scanners, que raramente están presentes en las estaciones 

meteorológicas convencionales. Por esta razón, en la literatura 

científica se pueden encontrar diferentes métodos alternativos de 

clasificación de cielos aplicables a partir de las medidas registradas 

rutinariamente en las estaciones meteorológicas. Entre estas 

alternativas se encuentra el uso Índices Meteorológicos (IMs), que se 

calculan a partir de variables fácilmente accesibles desde las 

estaciones meteorológicas. 

Este estudio propone la utilización del machine learning supervisado 

para clasificar el cielo a partir de IMs en los cinco tipos anteriormente 

establecidos según los valores de VSC. Concretamente, se han 

utilizado el índice de nebulosidad de Perraudeau (𝐹), el índice de brillo 

(∆) y de claridad (𝜖) de Perez, la Cloud Cover (𝐶𝐶), el 𝑉𝑆𝐶, y el índice 

de cielo de Igawa (𝑆𝑖). Tomando como referencia la clasificación de 

cielos realizada a partir de las medidas proporcionadas por un sky 

scanner localizado en la estación meteorológica de la Universidad de 

Burgos (España), se ha comparado la clasificación ISO/CIE obtenida 

mediante el uso de redes neuronales artificiales (ANNs, por sus siglas 

en inglés) y árboles de decisión (ADs). Se ha observado que ambos 
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modelos presentan un buen comportamiento a la hora de clasificar los 

cielos a partir de IMs. 

En las matrices de confusión presentadas en la Figure  37, se observa 

que ambos modelos ofrecen buenas predicciones a la hora de clasificar 

los cielos a partir de IMs, sin diferencias reseñables. Por su 

simplicidad, se recomienda la aplicación de ADs frente a las ANNs. 

 

National 

ANII- 7. Diego Granados López; David González Peña; Andrés Suárez 

García; María Isabel Dieste Velasco; María del Carmen Rodríguez 

Amigo; Montserrat Díez Mediavilla; Cristina Alonso 

Tristán.  Obtención de la componente vertical del cielo.  V 

Jornadas de Doctorandos de la Universidad de Burgos, Servicio de 

Publicaciones e Imagen Institucional. 2018. España. pp 29-38. ISBN: 

978-625-409-147-6 (e-book).  

Resumen: Para el estudio de la eficiencia energética en edificios, 

conocer los valores de irradiación e iluminación solar es de crucial 

importancia, sobre todo en países con frecuencias muy elevadas de 

cielos despejados, como es el caso de España. La estimación de la luz 

que llega a una determinada zona de trabajo en el interior de un 

edificio requiere del conocimiento de las condiciones exteriores de 

iluminación, en concreto de la componente difusa, que, en general, es 

la más importante. La cantidad de luz disponible se estima con la 

Componente Vertical del Cielo (Vertical Sky Component, VSC), 

definida como la relación entre la iluminancia difusa horizontal y la 

iluminancia difusa vertical en un punto de referencia. Este parámetro 

se puede obtener de forma teórica o experimental. En la ciudad de 

Burgos, donde el tipo de cielo según el estándar CIE más frecuente es 

el cielo despejado, se puede afirmar que, en la mayoría de las 

ocasiones. la iluminancia vertical es superior a la horizontal. Por lo 

tanto, con un diseño adecuado de los edificios en cuanto a la 



Annex II - 7 

distribución de ventanas y lucernarios, se podría aumentar 

considerablemente la eficiencia lumínica, reduciendo los costes 

energéticos asociados. 

ANII- 8. Diego Granados López, David Gonzalez Peña, Ana García 

Rodríguez, Montserrat Díez Mediavilla, Cristina Alonso Tristán. 

Clasificación de cielos con árboles de clasificación. VI Jornadas 

De Doctorandos de la Universidad De Burgos. Servicio de 

Publicaciones e Imagen Institucional. Burgos 2019. ISBN: 978-84-

16283-86-6 (e-book). 

Resumen: La radiación solar es considerada como uno de los recursos 

más valiosos que la naturaleza ofrece. Correctamente aprovechada 

permite aumentar la calidad de vida y desarrollar la actividad humana 

a la vez que se convive en armonía con el resto de los seres vivos del 

planeta. No obstante, presenta el inconveniente de ser altamente 

dependiente de la presencia y distribución de nubes en la cúpula 

celeste. La metodología estandarizada a nivel mundial que permite 

clasificar cielos fue la diseñada por la Comisión Internacional de 

Iluminancia (CIE), que precisa del uso de Sky-scanner, un aparato 

relativamente costoso raramente disponible en las estaciones 

meteorológicas locales. Existen multitud de modelos desarrollados 

para, de manera simplificada, clasificar el cielo. Estos modelos parten 

de la definición de variables que actúan como indicadores 

meteorológicos (MIs) que definen intervalos característicos. En este 

trabajo se propone una clasificación de la nubosidad del cielo 

(despejados, intermedios y nublados) basada en el Estándar 

Internacional de la norma CIE. La metodología propuesta tiene una 

gran fiabilidad, con un índice estadístico f1 del 80%. Se ha obtenido 

que el uso conjunto del índice de nebulosidad de Perraudeau, la 

cubierta nubosa y el VSC es suficiente para categorizar el cielo con un 

algo grado de confianza. 
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