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Abstract: This manuscript introduces a discrete technique to estimate the solution of a double-
fractional two-component Bose–Einstein condensate. The system consists of two coupled nonlinear
parabolic partial differential equations whose solutions are two complex functions, and the spatial
fractional derivatives are interpreted in the Riesz sense. Initial and homogeneous Dirichlet boundary
data are imposed on a multidimensional spatial domain. To approximate the solutions, we employ a
finite difference methodology. We rigorously establish the existence of numerical solutions along with
the main numerical properties. Concretely, we show that the scheme is consistent in both space and
time as well as stable and convergent. Numerical simulations in the one-dimensional scenario are
presented in order to show the performance of the scheme. For the sake of convenience, A MATLAB
code of the numerical model is provided in the appendix at the end of this work.
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efficient scheme
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1. Introduction

In this work, p ∈ N represents the number of spatial dimensions, and T ∈ R+ defines
a period of time. We agree that In = {1, 2, ..., n} and In = In ∪ {0}, for each n ∈ N, and
assume that ai and bi are real numbers with the property that ai < bi, for all i ∈ Ip. For
convenience, we use the notations Ω = Πp

i=1(ai, bi) ⊆ Rp and ΩT = Ω× (0, T) and agree
that Ω and ΩT denote the closures of Ω and ΩT , respectively, in the Euclidean metric
topology of Rp. We assume that ψ1 : ΩT → C and ψ2 : ΩT → C are sufficiently smooth
functions and employ the conventions x = (x1, x2, . . . , xp) ∈ Ω and i =

√
−1. Throughout

this manuscript, Γ will represent the usual Gamma function that extends factorials.

Definition 1 (Podlubny [1]). Suppose that f is a real function defined in all of R and assume that
n ∈ N ∪ {0} and α ∈ R are such that n− 1 < α < n. We define the fractional derivative in the
Riesz sense of order α of f at the point x ∈ R as

dα f (x)
d|x|α =

−1
2 cos(πα

2 )Γ(n− α)

dn

dxn

∫ ∞

−∞

f (ξ)dξ

|x− ξ|α+1−n . (1)

Definition 2. Let ψ : ΩT → C be a function and let i ∈ Ip. Suppose that α and n are a real and
a natural number, respectively, satisfying the properties in the previous definition. Whenever it
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exists, the space-fractional partial derivative in the sense of Riesz of order α of ψ with respect to the
variable xi at (x, t) ∈ ΩT is defined as

∂αψ(x, t)
∂|xi|α

=
−1

2 cos(πα
2 )Γ(n− α)

∂n

∂xn
i

∫ ∞

−∞

ψ(x1, . . . , xi−1, ξ, xi+1, . . . , xp, t)
|xi − ξ|α−1 dξ. (2)

Here, we extend ψ by allowing ψ ≡ 0 outside of Ω. If these fractional derivatives exist for all
i ∈ Ip, then we define

4α ψ(x, t) =
p

∑
i=1

∂αψ

∂|xi|α
(x, t). (3)

In this manuscript, we will use D, β11, β12,β22, and λ to represent constant real
numbers, and we employ P : Ω → R to denote a real function. Throughout, we will
assume that α1, α2 ∈ R satisfy the properties 1 < α1 ≤ 2 and 1 < α2 ≤ 2. We let φ1 : Ω→ C
and φ2 : Ω → C be sufficiently regular functions. In this work, we tackle the numerical
solution of the following double-fractional initial-boundary value problem ruled by two
nonlinear coupled Gross–Pitaevskii-type equations:

i
∂ψ1

∂t
=

[
P(x) + D + β11|ψ1|2 + β12|ψ2|2 −

1
2
4α1

]
ψ1 + λψ2, ∀(x, t) ∈ ΩT ,

i
∂ψ2

∂t
=

[
P(x) + β12|ψ1|2 + β22|ψ2|2 −

1
2
4α2

]
ψ2 + λψ1, ∀(x, t) ∈ ΩT ,

satisfying


ψ1(x, 0) = φ1(x), ∀x ∈ Ω,
ψ2(x, 0) = φ2(x), ∀x ∈ Ω,
ψ1(x, t) = ψ2(x, t) = 0, ∀(x, t) ∈ ∂Ω× (0, T).

(4)

This system is a two-component Bose–Einstein condensate that considers the presence
of an internal atomic Josephson junction. In this physical context, ψ1 and ψ2 denote the
two-component condensate wave functions.

There are systems that describe single-component Bose–Einstein condensates. As
examples, there are works that investigate round, symmetric, and central vortex states in
rotating Bose–Einstein condensates [2], considering only a parameter that characterizes the
interaction between particles and a constant that corresponds to the angular speed of the
laser beam. As in the present work, a real-valued external trapping potential is employed
in those models. From the numerical point of view, there are already works that tackle the
numerical solution of single-component fractional Nose–Einstein condensates.

As an example, there are papers that computationally studied the ground states
of space-fractinoal nonlinear Schrödinger–Gross–Pitaevskii equations with a rotation
term and non-local nonlinear interactions [3]. However, we must clarify that the single-
component non-fractional case has been more studied that the double-component fully frac-
tional scenario [4,5], possibly due to the mathematical difficulties in the double-component
and fractional scenario. Clearly, this case is physically more relevant as it describes the
dynamics of mixtures Bose–Einstein condensates that have been experimentally observed
in the laboratory [6–10].

The following are crucial definitions and properties to discretize the fractional deriva-
tives in the initial-boundary value problem in Equation (4).

Definition 3 (Ortigueira [11]). Let f be any real function defined on R. Suppose that h ∈ R+

and that α is a real number satisfying α > −1. We define the centered difference of fractional order
α of f at the number x as

∆(α)
h f (x) =

∞

∑
k=−∞

f (x− kh)g(α)k , ∀x ∈ R, (5)
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with

g(α)k =
(−1)kΓ(α + 1)

Γ( α
2 + k + 1)Γ( α

2 − k + 1)
, ∀k ∈ Z. (6)

Lemma 1 (Wang et al. [12]). Let 0 < α ≤ 2 and α 6= 1.

(a) If k 6= 0, then g(α)k = g(α)−k < 0.

(b) g(α)0 ∈ R+.

(c)
∞

∑
k=−∞

g(α)k = 0.

Lemma 2 (Wang et al. [12]). Let f : R→ R be a function in the set C5(R), which has integrable
derivatives to the fifth order on R. If α ∈ (0, 1) ∪ (1, 2], then

−
∆α

h f (x)
hα

=
∂α f (x)
∂|x|α +O(h2), (7)

for almost all x ∈ R.

The field of fractional calculus has witnessed a vertiginous development in recent
years, partly due to the vast amount of potential applications in the physical sciences [13].
Today, many different fractional derivatives and integrals have been proposed. For example,
some of the first fractional derivatives introduced historically in mathematics were the
Riemann–Liouville fractional derivatives [14], which generalized the classical integer-order
derivatives with respect to specific analytical properties [1].

The fractional derivatives in the senses of Caputo, Riesz, and Grünwald–Letnikov are
also extensions of the traditional derivatives of integer order. These fractional operators
are nonequivalent in general, and various applications of all of them have been proposed
in science and engineering [15,16]. For instance, some reports have provided theoretical
foundations for the application of fractional calculus to the theory of viscoelasticity [17],
while others have proposed possible applications of fractional calculus to dynamic prob-
lems of solid mechanics [18], continuous-time financial economics [19,20], Earth system
dynamics [21], mathematical modeling of biological phenomena [22], and the modeling of
two-phase gas/liquid flow systems [23], to mention some potential applications.

However, it is important to recall that Riesz-type derivatives may be the only fractional
derivatives that have real physical applications. This is due to a well-known result by
Tarasov, which establishes that Riesz fractional derivatives result from systems with long-
range interactions in a continuum-limit case [24]. In turn, systems consisting of particles
with long-range interactions are useful in statistical mechanics, thermostatics [25,26], and
the theory of biological oscillator networks [27].

From the mathematical point of view, many interesting avenues of investigation have
been opened by the progress in fractional calculus. Indeed, the different fractional deriva-
tives have found discrete analogues, which have been used extensively in the literature.
As examples, Riesz fractional derivatives have been discretized consistently in various
fashions using fractional-order centered differences [11,28] and weighted-shifted Grünwald
differences [29,30].

Clearly, those discrete approaches have been studied to determine their analytical
properties, and they have been used extensively to provide discrete models to solve Riesz
space-fractional conservative/dissipative space-fractional wave equations [31], a Hamilto-
nian fractional nonlinear elastic string equation [32], an energy-preserving double fractional
Klein–Gordon–Zakharov system [33], and even a Riesz space-fractional generalization
with generalized time-dependent diffusion coefficient and potential of the Higgs boson
equation in the de Sitter space-time [32], among other complex systems.

On the other hand, Caputo fractional derivatives have been discretized consistently
using various criteria. For instance, some high-order L2-compact difference approaches
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have used to that end [34], as well as L1 formulas [35,36] and L1–2 methodologies [37].
Using those approaches, various numerical schemes have been proposed to efficiently
solve Caputo time-fractional diffusive and wave differential equations [38–40]. Various
potential applications of these systems have been reported in the sciences [25,41].

From the analytical point of view, the literature offers a wide range of reports that focus
on the extension of integer-order methods and results for the fractional case. For example,
there are various articles that tackle the existence, uniqueness, regularity, and asymptotic
behavior of the solution for the fractional porous medium equation [42], nonlinear fractional
diffusion equations [43], nonlinear fractional heat equations [44], the Fisher–Kolmogorov–
Petrovskii–Piscounov equation with nonlinear fractional diffusion [45], fractional thin-
film equations [46], and the fractional Schrödinger equation with general nonnegative
potentials [47].

From a more particular point of view, the fractional generalization of the classical
vector calculus operators (that is, the gradient, divergence, curl, and Laplacian operators)
has also been an active topic of research developed from different approaches. Some of the
first attempts to extend those operators to the fractional scenario were proposed in [48,49]
using the Nishimoto fractional derivative.

These operators were used later on in [50] to provide a physical interpretation for the
fractional advection-dispersion equation for flow in heterogeneous porous media (see [51]
and the references therein for a historic account of the efforts to formulate a fractional form
of vector calculus). More recently, a new generalization of the Helmholtz decomposition
theorem for both fractional time and space was proposed in [52,53] using the discrete
Grünwald–Letnikov fractional derivative. As in the present manuscript, the authors
of [52,53] considered different derivative orders assuming non-homogeneous models and
non-isotropic spaces.

This manuscript is organized as follows. Section 2 is devoted to present the discrete
nomenclature and the numerical model to solve the continuous problem under investi-
gation in this work. We introduce suitable discrete norms and recall a useful theorem by
Desplanques. With that result at hand, we rigorously establish the properties of existence
and uniqueness of numerical solutions. Section 3 is devoted to establishing the most
important computational features of our numerical scheme. More concretely, we show
that the discrete model proposed in this work has second order consistency under suitable
conditions on the smoothness of the solutions.

We also rigorously prove the stability property of the scheme along with its quadratic
order of convergence in both time and space. In turn, Section 4 is devoted to show
some illustrative simulations that exhibit the stability and the convergence of the method
proposed in this work. We will also provide numerical evidence that the finite-difference
scheme proposed here has a quadratic order of convergence in both space and time. Finally,
we close this manuscript with some concluding remarks. For the sake of convenience to the
reader, an appendix is provided at the end of this paper, in which we present the numerical
scheme used to produce the simulations.

2. Numerical Method

Throughout this manuscript, we let Mi, N ∈ N, for each i ∈ Ip, and fix the spatial
and temporal step-sizes hi = (bi − ai)/Mi and τ = T/N, for each i ∈ Ip. We will consider
regular partitions of the intervals [ai, bi] and [0, T] represented as

xi,ji = ai + jihi, ∀i ∈ Ip, ∀ji ∈ IMi , (8)

tn = nτ, ∀n ∈ IN , (9)

respectively. Let J = ∏
p
i=1 IMi−1 and J = ∏

p
i=1 IMi , and convey that xj = (x1,j1 , . . . , xp,jp),

for each j = (j1, . . . , jp) ∈ J. Throughout this work, we will employ the symbol (un
j , vn

j ) to
denote a numerical approximation to (Un

j , Vn
j ), where Un

j = ψ1(xj, tn) and Vn
j = ψ2(xj, tn)),

for each (j, n) ∈ J × IN . Let us agree that Pj = P(xj), for each j ∈ J. We will employ the
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symbol ∂J to represent the boundary of J, which is defined as the set of all multi-indexes
j ∈ J that satisfy xj ∈ ∂Ω.

Definition 4. We introduce the following average operators, for each α ∈ (0, 1) ∪ (1, 2], (j, n) ∈
J × IN−1 and w = u, v:

µtwn
j =

wn+1
j + wn

j

2
, (10)

µ
(1)
t wn

j =
3wn

j − wn−1
j

2
. (11)

Under the same conditions, we introduce the difference operators

δtwn
j =

wn+1
j − wn

j

τ
, (12)

δ
(α)
xi wn

j = − 1
hα

i

Mi

∑
k=0

g(α)ji−kw(x1,j1 , . . . , xi−1,ji−1 , xi,k, xi+1,ji+1 , . . . , xp,jp , tn). (13)

In the present manuscript, we convey that

4(α)
h wn

j = δ
(α)
x1 wn

j + δ
(α)
x2 wn

j + . . . + δ
(α)
xp wn

j . (14)

Moreover, for the sake of convenience, we also introduce the discrete fractional gradient vector

5(α)
h = (δ

(α)
x1 wn

j , δ
(α)
x2 wn

j , . . . , δ
(α)
xp wn

j ). (15)

With this nomenclature at hand, the following numerical method will be employed in
this work to approximate the solution of the initial-boundary value problem Equation (4)
on the set Ω× [0, T], for each (j, n) ∈ J × IN−1:

iδtun
j =

[
−1

2
4(α1)

h +Pj + D
]

µtun
j +

[
β11

∣∣∣µ(1)
t un

j

∣∣∣2 + β12

∣∣∣µ(1)
t vn

j

∣∣∣2]µ
(1)
t un

j + λµ
(1)
t vn

j ,

iδtvn
j =

[
−1

2
4(α2)

h +Pj

]
µtvn

j +

[
β12

∣∣∣µ(1)
t un

j

∣∣∣2 + β22

∣∣∣µ(1)
t vn

j

∣∣∣2]µ
(1)
t vn

j + λµ
(1)
t un

j ,

such that


u0

j = µtu0
j = µ

(1)
t u0

j = φ1(xj), ∀j ∈ J,

v0
j = µtv0

j = µ
(1)
t v0

j = φ2(xj), ∀j ∈ J,
un

j = vn
j = 0, ∀(j, n) ∈ ∂J × IN .

(16)

One may readily check that the general iterative formula of this numerical model
makes it a three-step implicit model. On the other hand, to determine the approximations
at the time t1, we need to employ the initial conditions u0

j = µtu0
j = µ

(1)
t u0

j = φ1(xj) and

v0
j = µtv0

j = µ
(1)
t v0

j = φ2(xj), for all j ∈ J. Substituting these formulas into the general
iterative equations at time t0, we obtain

u1
j = φ1(xj) + iτ

[
1
2
4(α1)

h −Pj − D
]

φ1(xj)− iτλφ2(xj)

− iτ
[

β11
∣∣φ1(xj)

∣∣2 + β12
∣∣φ2(xj)

∣∣2]φ1(xj), ∀j ∈ J,
(17)

and

v1
j = φ2(xj) + iτ

[
1
2
4(α2)

h −Pj

]
φ2(xj)− iτλφ1(xj)

− iτ
[

β12
∣∣φ1(xj)

∣∣2 + β22
∣∣φ2(xj)

∣∣2]φ2(xj), ∀j ∈ J.
(18)
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For the remainder of his manuscript, we define h = (h1, . . . , hp) and h∗ = ∏
p
i=1 hi. We

will employ Vh to represent the collection of all complex functions on the spatial mesh
{xj : j ∈ J} ⊆ Rp. Finally, for each w ∈ Vh and all j ∈ J, let wj = w(xj).

Definition 5. Let us introduce the functions 〈·, ·〉 : Vh × Vh → C and ‖ · ‖1 : Vh → R, defined
respectively by

〈u, v〉 = h∗∑
j∈I

ujvj, (19)

‖u‖1 = h∗∑
j∈I
|uj|, (20)

for any u, v ∈ Vh. We define the function ‖ · ‖2 : Vh → R as the Euclidean norm obtained from
〈·, ·〉. If u, v ∈ Vh, then we agree that uv ∈ Vh represents the pointwise multiplication of u and v.
Moreover, |u| ∈ Vh will denote the absolute value of the complex function u.

Lemma 3 (Desplanques [54]). Let A be a square complex matrix. If A is strictly diagonally
dominant, then A is invertible.

Theorem 1 (Unique solvability). If (φ1, φ2) is any set of initial conditions, then the finite-
difference model Equation (16) has a unique solution.

Proof. The proof will be provided for the one-dimensional scenario only in view that the
case for higher dimensions is similar. Note that, beforehand, the approximations u0, v0, u1

and v1 are provided explicitly by the initial conditions and the formulas
Equations (17) and (18). Proceeding by induction, suppose that un, vn, un−1, and vn−1

were calculated, for some n ∈ IN−1. It is important to observe now that the first equation
of the numerical method can be equivalently rewritten as(

i
τ
− 1

4hα1
gα1

0 −
1
2
(
Pj + D

))
un+1

j − 1
4hα1

M1

∑
l=0
l 6=j

g(α1)
l−j un+1

l

= b(un
j ) + a(un−1

j , un
j , vn−1

j , vn
j ), ∀(j, n) ∈ J × IN−1,

(21)

where

a(un−1
j , un

j , vn−1
j , vn

j ) = (β11|µ
(1)
t un

j |2 + β12|µ
(1)
t vn

j |2)µ
(1)
t un

j + λµ
(1)
t vn

j , (22)

b(un
j ) =

(
i
τ
+

1
2

(
−1

2
4(α1)

h +Pj + D
))

un
j , (23)

for each (j, n) ∈ J × IN−1. It follows that the first identity of the numerical scheme
Equation (16) can be alternatively expressed in vector form as

Aun+1 = −b(un)− a(un−1, un, vn−1, vn), ∀n ∈ IN−1. (24)

In this expression, the square complex matrix A = (aij) is defined by
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A =



g(α1)
0

4hα1
1

+
P0 + D

2
− i

τ

g(α1)
−1

4hα1
1

· · ·
g(α1)

2−M1

4hα1
1

g(α1)
1

4hα1
1

g(α1)
0

4hα1
1

+
P1 + D

2
− i

τ
· · ·

g(α1)
3−M1

4hα1
1

...
...

. . .
...

g(α1)
M1−2

4hα1
1

g(α1)
M1−3

4hα1
1

· · ·
g(α1)

0
4hα1

1
+

PM1 + D
2

− i
τ


. (25)

Notice now that the diagonal entries of A satisfy

|aii| =

√√√√( g(α1)
0

4hα1
1

+
1
2
(Pi−1 + D)

)2

+

(
−1
τ

)2
. (26)

On the other hand, the numbers in the real sequence (g(α1)
k )∞

k=−∞ guarantee that

M1

∑
j 6=i

∣∣aij
∣∣ = M1

∑
j 6=i

∣∣∣∣∣∣
g(α1)

l−j

4hα1
1

∣∣∣∣∣∣ = −
M1

∑
j 6=i

gα1
l−j

4hα1
< −

∞

∑
l=−∞

l 6=j

gα1
l−j

4hα1
=

gα1
0

4hα1
≤ |aii|. (27)

It follows that the matrix A is non-singular by the previous lemma, which implies
then that there exists a unique solution un+1 of the vector equation Equation (24). In similar
fashion, we can readily prove the existence of the vector vn+1 after noticing that the second
difference equation of the discrete system Equation (16) may be rewritten in vector form as

Bvn+1 = −d(vn)− c(un−1, un, vn−1, vn), (28)

where, for each (j, n) ∈ J × IN−1,

c(un−1, un, vn−1, vn) = (β12|µ
(1)
t un

j |2 + β22|µ
(1)
t vn

j |2)µ
(1)
t vn

j + λµ
(1)
t un

j , (29)

d(vn
j ) =

(
i
τ
+

1
2

(
−1

2
4(α2)

h +Pj

))
vn

j . (30)

In this expression, B is the square complex matrix given by

B =



g(α1)
0

4hα2
1

+
P0

2
− i

τ

g(α2)
−1

4hα2
1

· · ·
g(α2)

2−M1

4hα2
1

g(α2)
1

4hα2
1

g(α2)
0

4hα2
1

+
P1

2
− i

τ
· · ·

g(α2)
3−M1

4hα2
1

...
...

. . .
...

g(α2)
M1−2

4hα2
1

g(α2)
M1−3

4hα2
1

· · ·
g(α2)

0
4hα2

1
+

PM1

2
− i

τ


. (31)

One may readily check that this matrix is strictly diagonally dominant; therefore,
Equation (28) has a unique solution vn+1. The conclusion of this theorem readily follows
now by mathematical induction.

3. Numerical Properties

The aim of the present section is to theoretically demonstrate the most relevant features
of the discrete model Equation (16). Concretely, we, herein, prove properties, including
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the consistency, stability, and convergence of our numerical model. In a first stage, we will
require to define the following continuous operators for each (x, t) ∈ ΩT :

L1(ψ1(x, t), ψ2(x, t)) = i
∂ψ1(x, t)

∂t
+

[
1
2
4α1 −P(x)− D− β11|ψ1(x, t)|2

−β12|ψ2(x, t)|2
]
ψ1(x, t)− λψ2(x, t),

(32)

and

L2(ψ1(x, t), ψ2(x, t)) = i
∂ψ2(x, t)

∂t
+

[
1
2
4α2 −P(x)

−β12|ψ1(x, t)|2 − β22|ψ2(x, t)|2
]
ψ2(x, t)− λψ1(x, t).

(33)

For each (j, n) ∈ J × IN−1, we also introduce the discrete operators

L1(Un
j , Vn

j ) = iδtUn
j +

[
1
2
4(α1)

h −Pj − D
]

µtUn
j

−
[

β11

∣∣∣µ(1)Un
j

∣∣∣2 + β12

∣∣∣µ(1)Vn
j

∣∣∣2]µ(1)Un
j − λµ(1)Vn

j ,
(34)

and

L2(Un
j , Vn

j ) = iδtVn
j +

[
1
2
4(α2)

h −Pj

]
µtVn

j

−
[

β12

∣∣∣µ(1)Un
j

∣∣∣2 + β22

∣∣∣µ(1)Vn
j

∣∣∣2]µ(1)Vn
j − λµ(1)Un

j .
(35)

Here, recall that we previously agreed that Un
j = ψ1(xj, tn) and Vn

j = ψ2(xj, tn), for

each (j, n) ∈ J × IN . For the sake of convenience, when (x, t) ∈ ΩT and (j, n) ∈ J × IN−1,
then we agree that

L(ψ1(x, t), ψ2(x, t)) = (L1(ψ1(x, t), ψ2(x, t)),L2(ψ1(x, t), ψ2(x, t))), (36)

L(ψ1(xj, tn), ψ2(xj, tn)) = (L1(ψ1(xj, tn), ψ2(xj, tn)), L2(ψ1(xj, tn), ψ2(xj, tn))). (37)

Theorem 2 (Consistency). Suppose that ψ1, ψ2 ∈ C5,4
x,t (ΩT) and P ∈ C(Ω). There are positive

numbers C1 and C2 independent of h and τ, which satisfy the inequalities

‖L(ψ1(xj, tn), ψ2(xj, tn))−L(ψ1(xj, tn+ 1
2
), ψ2(xj, tn+ 1

2
))‖∞ ≤ C1(τ

2 + ‖h‖2
2), (38)

‖L(ψ1(xj, tn), ψ2(xj, tn))−L(ψ1(xj, tn), ψ2(xj, tn))‖∞ ≤ C2(τ + ‖h‖2
2), (39)

for each (j, n) ∈ J × IN−1.

Proof. To prove these results, we require Taylor’s theorem, Lemma 2, and the smoothness
assumptions on the functions ψ1 and ψ2. There exist nonnegative constants C1,k, C2,k, C3,k,i,
C4,k, and C5,k.l , which are independent of τ and h, for each i ∈ Ip and k, l ∈ I2, with the
property that
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∣∣∣µ(1)
t ψk(xj, tn)− ψk(xj, tn+ 1

2
)
∣∣∣ ≤ C1,kτ2, (40)∣∣∣∣δtψk(xj, tn)−

∂ψk
∂t

(xj, tn+ 1
2
)

∣∣∣∣ ≤ C2,kτ2, (41)∣∣∣∣µtδ
(α1)
xi ψk(xj, tn)−

∂α1 ψk
∂|x|α1

(xj, tn+ 1
2
)

∣∣∣∣ ≤ C3,k,i(τ
2 + h2

i ), (42)∣∣∣P(xj)µtψk(xj, tn)− P(xj)ψk(xj, tn+ 1
2
)
∣∣∣ ≤ C4,kτ2, (43)∣∣∣∣∣∣∣µ(1)

t ψk(xj, tn)
∣∣∣2µ

(1)
t ψl(xj, tn)−

∣∣∣ψk(xj, tn+ 1
2
)
∣∣∣2ψl(xj, tn+ 1

2
)

∣∣∣∣ ≤ C5,k,lτ
2, (44)

for each (j, n) ∈ J × IN−1. The inequality in the conclusion of this proposition follows now
applying the triangle inequality for an appropriate number C1, which depends only on
C1,k, C2,k, C3,k,i, C4,k, and C5,k.l for each i ∈ Ip and k, l ∈ I2, and the model parameters. This
implies, in particular, that C2 is independent of h and τ, as desired. The constant C2 is
obtained applying the same arguments around the node (xj, tn) instead of (xj, tn+ 1

2
).

We tackle now the stability and the convergence of the numerical scheme Equation (16).
We require the next technical results.

Lemma 4 (Pen-Yu [55]). Suppose that (ωn)N
n=0 and (ρn)N

n=0 are sequences of non-negative
numbers. Let C ≥ 0 satisfy the inequality

ωn ≤ ρn + Cτ
n−1

∑
k=0

ωk. (45)

Then, ωn ≤ ρneCnτ for each 0 ≤ n ≤ N.

Lemma 5 (Macías-Díaz [56]). Suppose that α is a real number with α ∈ (0, 1)∪ (1, 2]. If u, v ∈ Vh,
then 〈−4(α)

h u, v〉 = 〈4(α/2)
h u,4(α/2)

h v〉.

Lemma 6. If α ∈ (1, 2] and w = (wn)N
n=1 ⊆ Vh, then the following holds, for each n ∈ IN−1:

(a) 2〈δtwn, µtwn〉 = δt‖wn‖2
2 +

i
τ 2 Im〈wn+1, wn〉,

(b) 2〈−4(α)
h µtwn, µtwn〉 = 2‖ 5(α/2)

h µtwn‖2
2,

(c) 2〈Vµtwn, µtwn〉 = 2〈V, |µtwn|2〉.

Lemma 7. Let ε = (εn)N
n=0 and ζ = (ζn)N

n=0 be sequences in Vh. If m ∈ IN−1, then

2
m

∑
n=1

[
Im〈µ(1)

t εn, µtζ
n〉+ Im〈µ(1)

t ζn, µtε
n〉
]

≤ 1
4

(
‖ε0‖2

2 + ‖ζ0‖2
2

)
+

3
2

m

∑
n=1

(
‖εn‖2

2 + ‖ζn‖2
2

)
+ ‖εm+1‖2

2 + ‖ζm+1‖2
2.

(46)

Proof. The proof follows after applications of Young’s inequality and some algebraic
regrouping.

The stability of the discrete method Equation (16) will require us to consider two sets
of initial conditions, namely (φ1, φ2) and (φ̃1, φ̃2), where all the initial data are complex
functions, which are defined on Ω. The respective solutions will be denoted by (u, v) and
(ũ, ṽ). This means that (u, v) satisfies Equation (16), while (ũ, ṽ) satisfies the problem



Mathematics 2021, 9, 1412 10 of 22

iδtũn
j =

[
−1

2
4(α1)

h +Pj + D
]

µtũn
j +

[
β11

∣∣∣µ(1)
t ũn

j

∣∣∣2 + β12

∣∣∣µ(1)
t ṽn

j

∣∣∣2]µ
(1)
t ũn

j

+ λµ
(1)
t ṽn

j ,

iδtṽn
j =

[
−1

2
4(α2)

h +Pj

]
µtṽn

j +

[
β12

∣∣∣µ(1)
t ũn

j

∣∣∣2 + β22

∣∣∣µ(1)
t ṽn

j

∣∣∣2]µ
(1)
t ṽn

j + λµ
(1)
t ũn

j ,

such that


ũ0

j = µ
(1)
t ũ0

j = φ̃1(xj), ∀j ∈ J,

ṽ0
j = µ

(1)
t ṽ0

j = φ̃2(xj), ∀j ∈ J,
ũn

j = ṽn
j = 0, ∀(j, n) ∈ ∂J × IN .

(47)

for each (j, n) ∈ J × IN−1.

Lemma 8. Let (u, v) and (ũ, ṽ) be solutions of Equation (16), respectively, and let εn = un − ũn

and ζn = vn − ṽn, for each n ∈ IN . For each (j, n) ∈ J × IN−1, let us define

Pn
j =

[
β11

∣∣∣µ(1)
t un

j

∣∣∣2 + β12

∣∣∣µ(1)
t vn

j

∣∣∣2]µ
(1)
t un

j −
[

β11

∣∣∣µ(1)
t ũn

j

∣∣∣2 + β12

∣∣∣µ(1)
t ṽn

j

∣∣∣2]µ
(1)
t ũn

j , (48)

Qn
j =

[
β22

∣∣∣µ(1)
t vn

j

∣∣∣2 + β12

∣∣∣µ(1)
t un

j

∣∣∣2]µ
(1)
t vn

j −
[

β22

∣∣∣µ(1)
t ṽn

j

∣∣∣2 + β12

∣∣∣µ(1)
t ũn

j

∣∣∣2]µ
(1)
t ṽn

j . (49)

Then, there exists a constant C ≥ 0, which is independent of h and τ, with the property that

max{|Pn
j |, |Qn

j |} ≤ C(|εn−1
j |+ |ζn−1

j |+ |εn
j |+ |ζn

j |), ∀(j, n) ∈ J × IN−1. (50)

Proof. The result is straightforward.

Theorem 3 (Nonlinear stability). Consider the solutions (u, v) and (ũ, ṽ) of Equation (16)
corresponding to initial conditions (φ1, φ2) and (φ̃1, φ̃2), respectively. For each n ∈ IN , define
εn = un − ũn and ζn = vn − ṽn. If (C′ + λ)τ < 1

2 , then there is a nonnegative constant C′′ that
is not dependent on τ and h, such that

‖εn‖2
2 + ‖ζn‖2

2 ≤ (1 + (C′′ +
λ

4
)τ)(‖ε0‖2

2 + ‖ζ0‖2
2)e

2C′′T , ∀n ∈ IN . (51)

Proof. Beforehand, take C as in the last result. Note that the existence of (u, v) and (ũ, ṽ)
is guaranteed by Theorem 1. It is clear that (ε, η) satisfies the following discrete problem,
for each (j, n) ∈ J × IN−1:

iδtε
n
j =

[
−1

2
4(α1)

h +Pj + D
]

µtε
n
j + Pn

j + λµ
(1)
t ζn

j ,

iδtζ
n
j =

[
−1

2
4(α2)

h +Pj

]
µtζ

n
j + Qn

j + λµ
(1)
t εn

j ,

such that


ε0

j = µ
(1)
t ε0

j = φ1(xj)− φ̃1(xj), ∀j ∈ J,

ζ0
j = µ

(1)
t ζ0

j = φ2(xj)− φ̃2(xj), ∀j ∈ J,
εn

j = ζn
j = 0, ∀(j, n) ∈ ∂J × IN .

(52)

Here, Pn
j and Qn

j are as in Lemma 8. Then, there is a nonnegative real number C′ such
that, for each n ∈ IN−1,

max{‖Pn‖2
2, ‖Qn‖2

2} ≤ C′
(
‖εn−1‖2

2 + ‖ζn−1‖2
2 + ‖εn‖2

2 + ‖ζn‖2
2

)
. (53)

The number C′ does not depend on h and τ. Take the first identity in Equation (52)
and calculate its inner product with 2µ

(1)
t εn. On both sides of the result, next calculate
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the imaginary part. Similarly, consider the second identity of Equation (52) and take the
inner product with 2µ

(1)
t ζn. Calculate the imaginary part on both sides. After applying the

identities after Theorem 6, we readily obtain that

δt‖εn‖2
2 = 2 Im〈Pn, µtε

n〉+ 2λ Im〈µ(1)
t ζn, µtε

n〉, ∀n ∈ IN−1, (54)

δt‖ζn‖2
2 = 2 Im〈Qn, µtζ

n〉+ 2λ Im〈µ(1)
t εn, µtζ

n〉, ∀n ∈ IN−1. (55)

After adding those two results side by side and bounding from above, we notice that
there exists a nonnegative number C′′ that is not dependent on τ and h, with

‖εm+1‖2
2 + ‖ζm+1‖2

2

= ‖ε0‖2
2 + ‖ζ0‖2

2 + 2τ
m

∑
n=1

Im(〈Pn, µtε
n〉+ 〈Qn, µtζ

n〉)

+
λτ

4

[
‖ε0‖2

2 + ‖ζ0‖2
2 + 4

(
‖εm+1‖2

2 + ‖ζm+1‖2
2

)
+ 6

m

∑
n=1

(
‖εn‖2

2 + ‖ζn‖2
2

)]

≤ (1 +
λτ

4
)(‖ε0‖2

2 + ‖ζ0‖2
2) +

τ

2

m

∑
n=1

[
2‖Pn‖2

2 + 2‖Qn‖2
2

+‖εn‖2
2 + ‖ζn‖2

2 + ‖εn+1‖2
2 + ‖ζn+1‖2

2

]
+

λτ

2

[
2
(
‖εm+1‖2

2 + ‖ζm+1‖2
2

)
+ 3

m

∑
n=1

(
‖εn‖2

2 + ‖ζn‖2
2

)]

≤ (1 + (C′′ +
λ

4
)τ)(‖ε0‖2

2 + ‖ζ0‖2
2) + 3τ

(
C′′ +

λ

2

) m

∑
n=1

(
‖εn‖2

2 + ‖ζn‖2
2

)
+ τ(C′′ + λ)(‖εm+1‖2

2 + ‖ζm+1‖2
2), ∀m ∈ IM−1.

(56)

Subtract the term τ(C′′ + λ)(‖εm+1‖2
2 + ‖ζm+1‖2

2) from both ends of this chain of
inequalities, group the common terms, and we notice that (C′+λ)τ < 1

2 . As a consequence,

‖εm+1‖2
2 + ‖ζm+1‖2

2 ≤ (1 + (C′′ +
λ

4
)τ)(‖ε0‖2

2 + ‖ζ0‖2
2)

+ 3τ

(
C′′ +

λ

2

) m

∑
n=1

(
‖εn‖2

2 + ‖ζn‖2
2

)
,

(57)

for each m ∈ IM−1. The conclusion is reached then using Lemma 4 with the constants
ωn = ‖εn‖2

2 + ‖ζn‖2
2 and ρn = (1 + (C′′ + λ

4 )τ)‖ε0‖2
2 + ‖ζ0‖2

2, for each n ∈ IN−1.

Finally, we investigate now the convergence of the finite-difference method Equation (16).
As mentioned previously, (u, v) represents a solution of the numerical model, while
(U, V) = (ψ1, ψ2) denotes a solution of the continuous problem. It is clear that (U, V)
satisfies the discrete initial-boundary value problem
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iδtUn
j =

[
−1

2
4(α1)

h +Pj + D
]

µtUn
j +

[
β11

∣∣∣µ(1)
t Un

j

∣∣∣2 + β12

∣∣∣µ(1)
t Vn

j

∣∣∣2]µ
(1)
t Un

j

+ λµ
(1)
t Vn

j + ρn
j ,

iδtVn
j =

[
−1

2
4(α2)

h +Pj

]
µtVn

j +

[
β12

∣∣∣µ(1)
t Un

j

∣∣∣2 + β22

∣∣∣µ(1)
t Vn

j

∣∣∣2]µ
(1)
t Vn

j

+ λµ
(1)
t Un

j + σn
j ,

such that


U0

j = µ
(1)
t U0

j = φ1(xj), ∀j ∈ J,

V0
j = µ

(1)
t V0

j = φ2(xj), ∀j ∈ J,
Un

j = Vn
j = 0, ∀(j, n) ∈ ∂J × IN .

(58)

Here, ρn
j and σn

j denote local truncation errors. Under the regularity assumptions on
the solutions U and V stated in Theorem 2, there is a nonnegative number C0, such that
‖ρn‖2, ‖σn‖2 ≤ C0(τ

2 + ‖h‖2
2). This number is independent of τ and h. This fact will be

employed in the proof of the following theorem.

Theorem 4 (Convergence). Let (U, V) be a solution of Equation (4), such that U, V ∈ Cx,t(ΩT)
and P ∈ C(Ω). If τ is sufficiently small, then the corresponding solution of the finite-difference
scheme Equation (16) converges to (U, V) with order O(τ2 + ‖h‖2

2) in the L2-norm.

Proof. The proof is analogous to the previous result. Beforehand, let εn = un −Un and
ζn = vn −Vn, for each n ∈ IN . It is clear then that the pair (ε, ζ) satisfies

iδtε
n
j =

[
−1

2
4(α1)

h +Pj + D
]

µtε
n
j + Pn

j + λµ
(1)
t ζn

j + ρn
j ,

iδtζ
n
j =

[
−1

2
4(α2)

h +Pj

]
µtζ

n
j + Qn

j + λµ
(1)
t εn

j + σn
j ,

such that


ε0

j = µ
(1)
t ε0

j = 0, ∀j ∈ J,

ζ0
j = µ

(1)
t ζ0

j = 0, ∀j ∈ J,
εn

j = ζn
j = 0, ∀(j, n) ∈ ∂J × IN ,

(59)

where, for each (j, n) ∈ J × IN−1,

Pn
j =

[
β11

∣∣∣µ(1)
t un

j

∣∣∣2 + β12

∣∣∣µ(1)
t vn

j

∣∣∣2]µ
(1)
t un

j

−
[

β11

∣∣∣µ(1)
t Un

j

∣∣∣2 + β12

∣∣∣µ(1)
t Vn

j

∣∣∣2]µ
(1)
t Un

j

(60)

and

Qn
j =

[
β22

∣∣∣µ(1)
t vn

j

∣∣∣2 + β12

∣∣∣µ(1)
t un

j

∣∣∣2]µ
(1)
t vn

j

−
[

β22

∣∣∣µ(1)
t Vn

j

∣∣∣2 + β12

∣∣∣µ(1)
t Un

j

∣∣∣2]µ
(1)
t Vn

j .
(61)

Proceeding now as in the proof of Theorem 3, we obtain a nonnegative number
C′, which does not depend on τ and h, with the property that Equation (53) is satisfied.
Applying the same steps used to obtain Equations (54) and (55), we may readily obtain the
following identities, valid for each n ∈ IN−1:

δt‖εn‖2
2 = 2 Im〈Pn, µtε

n〉+ 2λ Im〈µ(1)
t ζn, µtε

n〉+ 2 Im〈ρn, µεn〉, (62)

δt‖ζn‖2
2 = 2 Im〈Qn, µtζ

n〉+ 2λ Im〈µ(1)
t εn, µtζ

n〉+ 2 Im〈σn, µtζ
n〉. (63)
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From here, it is possible to check that there are numbers C3, C4 ≥ 0 independent of τ
and h, such that

‖εm+1‖2
2 + ‖ζm+1‖2

2

≤ 2τ
m

∑
n=0

(Im〈Pn, µtε
n〉+ Im〈Qn, µtζ

n〉+ Im〈ρn, µtε
n〉+ Im〈σn, µtζ

n〉)

≤ (1 + (C′′ +
λ

4
)τ)(‖ε0‖2

2 + ‖ζ0‖2
2) + 3τ

(
C′′ +

λ

2

) m

∑
n=1

(
‖εn‖2

2 + ‖ζn‖2
2

)
+ τ(C′′ + λ)(‖εm+1‖2

2 + ‖ζm+1‖2
2)

+
τ

2

m

∑
n=1

(
2‖Pn‖2

2 + 2‖Qn‖2
2 + ‖εn‖2

2 + ‖ζn‖2
2 + ‖εn+1‖2

2 + ‖ζn+1‖2
2

)
≤ (1 + (C′′ +

λ

4
)τ)(‖ε0‖2

2 + ‖ζ0‖2
2) + C3(τ

2 + ‖h‖2
2)

2

+ C4τ
m

∑
n=0

(
‖εn‖2

2 + ‖ζn‖2
2

)
+ τ(C′′ + λ +

1
2
)
(
‖εm+1‖2

2 + ‖ζm+1‖2
2

)
.

(64)

Subtract the term τ(C′′ + λ + 1
2 )
(
‖εm+1‖2

2 + ‖ζm+1‖2
2
)

from both ends of this series
of inequalities. Notice now that Equation (45) is satisfied, for each m ∈ IN−1, letting
C0 = C4, and

ωm = ‖εm‖2
2 + ‖ζm‖2

2, ∀m ∈ IN−1, (65)

ρm = (1 + (C′′ +
λ

4
)τ)(‖ε0‖2

2 + ‖ζ0‖2
2) + C3(τ

2 + ‖h‖2
2)

2, ∀m ∈ IN . (66)

Lemma 4 guarantees now that

‖εn‖2
2 + ‖ζn‖2

2 ≤ C5(τ
2 + ‖h‖2

2)
2, ∀(j, n) ∈ J × IN , (67)

where C5 = C3eC0T . From this, it follows that ‖εn‖2, ‖ζn‖2 ≤
√

C5(τ
2 + ‖h‖2

2), for each
(j, n) ∈ J × IN . The conclusion of this proposition readily follows now.

4. Illustrative Simulations

We provide illustrative simulations to show the main properties of Equation (16). In
particular, we provide a numerical study of the convergence of the scheme, and we confirm
the validity of the conclusion of Theorem 4. The experiments provided in this section make
use of the Algorithm provided in Appendix A, which is a MATLAB implementation of
Equation (16).

In this section, we consider only the spatially one-dimensional scenario. To that end,
let p = 1. We employ the set of parameters in Table 1. In particular, notice that Ω = (−7, 7).
The parameters α1 and α2 may change values from one simulation to the other, and the
function V is defined by V(x) = 1

2 x2, for each x ∈ Ω. Finally, the initial data is defined by
φ1(x) = φ2(x) = 1√

π
exp(−x2), for each x ∈ Ω.

Table 1. Table of the parameter values employed in the numerical simulations of this manuscript.

p a1 b1 β11 β12 β22 λ D

1 −7 7 1.5 0.5 1.5 0.5 2

Example 1. Throughout this example, we let T = 10 and fix the computer parameters τ = 0.01
and h1 = 0.1. The results of our simulations are provided in Figure 1. In that figure, we provide the
graphs of the approximate solutions of the problem Equation (4) as functions of (x, t) ∈ Ω× [0, T]
using the scheme Equation (16). More precisely, graphs show the numerical solution of the real
parts of (a) ψ1 and (b) ψ2, the imaginary parts of (c) ψ1 and ψ2, and the absolute values of (e) ψ1
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and (f) ψ2. The graphs show that the scheme is a stable technique. We repeated this experiment
using all the parameters as before, and α1 = α2 = 1.5. The results are provided in Figure 2, and
they suggest that the scheme Equation (16) is stable, in agreement with Theorem 3. For illustration
purposes, Figure 3 shows the simulations corresponding to α1 = α2 = 1, and they also support the
conclusions of this example.

(a) (b)

(c) (d)

(e) (f)

Figure 1. Numerical approximations to the solutions of Equation (4) versus x and t, using the
constants of Table 1. The graphs were obtained using the finite-difference method of Equation (16)
with T = 10, α1 = α2 = 2, τ = 0.01, and h− 1 = 0.1. We also let V(x) = 1

2 x2 and φ1(x) = φ2(x) =
1√
π

exp(−x2), for each x ∈ Ω. The graphs provide (a) Re(ψ1), (b) Re(ψ2), (c) Im(ψ1), (d) Im(ψ2),

(e) |ψ1|, and (f) |ψ2|.
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(a) (b)

(c) (d)

(e) (f)

Figure 2. Numerical approximations to the solutions of Equation (4) versus x and t, using the
constants of Table 1. The graphs were obtained using the finite-difference method of Equation (16)
with T = 10, α1 = α2 = 1.5, τ = 0.01 and h− 1 = 0.1. We also let V(x) = 1

2 x2 and φ1(x) = φ2(x) =
1√
π

exp(−x2), for each x ∈ Ω. The graphs provide (a) Re(Ψ1), (b) Re(Ψ2), (c) Im(Ψ1), (d) Im(Ψ2),

(e) |Ψ1|, and (f) |Ψ2|.
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(a) (b)

(c) (d)

(e) (f)

Figure 3. Numerical approximations to the solutions of Equation (4) versus x and t, using the
constants of Table 1. The graphs were obtained using the finite-difference method of Equation (16)
with T = 10, α1 = α2 = 1, τ = 0.01 and h− 1 = 0.1. We also let V(x) = 1

2 x2 and φ1(x) = φ2(x) =
1√
π

exp(−x2) for each x ∈ Ω. The graphs provide (a) Re(Ψ1), (b) Re(Ψ2), (c) Im(Ψ1), (d) Im(Ψ2), (e)

|Ψ1|, and (f) |Ψ2|.

Example 2. We numerically studied the convergence of the scheme Equation (16), using the
parameters in Table 1 along with the functions V, φ1 and φ2 defined in the paragraph before
Example 1. In the following experiments, we fix T = 0.5 and α1 = α2 = 1.5, though similar
results have been obtained for other values of these parameters (we did not include them to avoid
redundancy). The exact solution of the problem is calculated using τ = 5× 10−5 and h = h1 =
0.02. Let (u, v) be the solution of the scheme Equation (16) at the time tN , obtained using the
computer parameters τ and h. Under these circumstances, let us define the complex constants
ετ,h(xj) = ψ1(xj)− uN

j , for each j ∈ J. In turn, we define the temporal and spatial convergence
rates, respectively, as
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ρτ,h = log2

(‖ε2τ,h‖2

‖ετ,h‖2

)
, (68)

στ,h = log2

(‖ετ,2h‖2

‖ετ,h‖2

)
. (69)

With these conventions, Table 2a,b provides numerical studies of convergence in time and in
space, respectively, for the problem described in this example. Various values of τ and h were chosen
to that end. However, in any case, the results seem to support that the scheme Equation (16) is
quadratically convergent, in agreement with Theorem 4.

Table 2. Absolute errors and the rates of convergence (a) in time and (b) in space. Example 2 describes
the experimental setting for these results.

(a) Temporal Study of Convergence.

τ
0.08 h = 0.04 h = 0.02

‖εt,h‖2 ρτ,h ‖εt,h‖2 ρτ,h ‖εt,h‖2 ρτ,h

0.04 7.1074× 10−2 − 1.9124× 10−2 − 3.9163× 10−3 −
0.02 1.2825× 10−2 2.4703 2.9995× 10−3 2.6726 8.6646× 10−4 2.1763
0.01 2.6863× 10−3 2.2553 6.0564× 10−4 2.3082 2.3468× 10−4 1.8844

(b) Spatial Study of Convergence.

h
τ = 0.001 τ = 0.0005 τ = 0.00025

‖εt,h‖2 στ,h ‖εt,h‖2 στ,h ‖εt,h‖2 στ,h

0.08 1.6737× 10−5 − 3.9923× 10−6 − 9.3696× 10−7 −
0.04 3.3586× 10−6 2.3171 8.3193× 10−7 2.2627 2.4757× 10−7 1.9201
0.02 7.5983× 10−7 2.1441 2.2384× 10−7 1.8940 6.8871× 10−8 1.8459

5. Conclusions

We proposed a three-level discrete model to solve a double-fractional coupled Bose–
Einstein system considering Riesz spatial fractional operators along with two different
orders of differentiation. The system is a fractional generalization of the two-component
Gross–Pitaevskii system investigated in physics. The solutions of the continuous system are
complex; therefore, the computational complexity for solving the system is a shortcoming
to be considered.

To alleviate this problem, a three-level scheme was designed to solve our contin-
uous model. This scheme is linear and explicit, which implies that the computational
implementation is relatively easy to propose. Indeed, a numerical algorithm to solve
this system is presented in the appendix of this work. The code is provided in MATLAB
for the sake of convenience, and the nomenclature used to describe it follows that of the
theoretical description.

In this manuscript, we proved the existence and uniqueness of the solutions using ar-
guments of linear algebra. We also established that the algorithm is spatially and temporally
quadratically consistent. We proved that the finite-difference scheme is spatially and tem-
porally quadratically convergent to the solution of the differential problem. Computational
simulations are presented in this work to illustrate this fact.
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Appendix A. MATLAB Algorithm

In this appendix, we present a MATLAB implementation of the scheme in Equation (16).
To that end, we will provide an alternative form of the linear equations. Equations (24)
and (28) in order to avoid computational instabilities. Departing from Equation (21), we
multiply both sides of that equation by 2τ. Proceeding as in the proof of Theorem 1, it
follows that expression may be expressed in vector form as

Aun+1 = 2τa(un, vn) + b(un−1), ∀n ∈ IN−1. (A1)

Here,

a(un
j , vn

j ) = (β11|un
j |2 + β12|vn

j |2)un
j + λvn

j , ∀(j, n) ∈ J × IN−1, (A2)

b(un
j ) =

(
i− τ

2
δ
(α1)
x1 + τ(Vj + D)

)
un

j , ∀(j, n) ∈ J × IN−1, (A3)

and

A =



i−
τg(α1)

0
2hα1

1
− τ(V0 + D) −

τg(α1)
−1

2hα1
1

· · · −
τg(α1)

2−M1

2hα1
1

−
τg(α1)

1
2hα1

1
i−

τg(α1)
0

2hα1
1
− τ(V1 + D) · · · −

τg(α1)
3−M1

2hα1
1

...
...

. . .
...

−
τg(α1)

M1−2

2hα1
1

−
τg(α1)

M1−3

2hα1
1

· · · i−
τg(α1)

0
2hα1

1
− τ(VM1 + D)


. (A4)

In similar fashion, it is possible to rewrite Equation (28) as

Bvn+1 = 2τc(un, vn) + d(un−1), ∀n ∈ IN−1. (A5)

In this case, we define

c(un
j , vn

j ) = (β12|un
j |2 + β22|vn

j |2)vn
j + λun

j , ∀(j, n) ∈ J × IN−1, (A6)

d(vn
j ) =

(
i− τ

2
δ
(α2)
x1 + τVj

)
vn

j , ∀(j, n) ∈ J × IN−1 (A7)

and
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B =



i−
τg(α2)

0
2hα2

1
− τV0 −

τg(α2)
−1

2hα2
1

· · · −
τg(α2)

2−M1

2hα2
1

−
τg(α2)

1
2hα2

1
i−

τg(α2)
0

2hα2
1
− τV1 · · · −

τg(α2)
3−M1

2hα2
1

...
...

. . .
...

−
τg(α2)

M1−2

2hα2
1

−
τg(α2)

M1−3

2hα2
1

· · · i−
τg(α2)

0
2hα2

1
− τVM1


. (A8)

The description of these recursive formulas will be described next. The initial steps
Equations (17) and (18) will be observed also in our implementation. Moreover, the com-
putational implementation will make use of the fact that the coefficients (g(α)k )∞

k=−∞ can be
expressed in alternative form as

g(α)0 =
Γ(α + 1)

Γ(α/2 + 1)2 (A9)

and

g(α)k+1 =

(
1− α + 1

α/2 + k + 1

)
g(α)k , ∀k ∈ N∪ {0}. (A10)

The following conventions and definitions will be observed in our code:

Input:

• a1= a1,
• b1= b1,
• T= T,
• betta11= β11,
• betta12= β12,
• betta22= β22,
• lambda= λ,
• D= D,
• tau= τ,
• h1= h1,
• P= P,
• u1= φ1, and
• v1= φ2.

Output:

• u3= uN and
• v3= vN .

a1=-10;
b1=10;
T=0.5;

alpha1 =1.5;
alpha2 =1.5;
beta11 =1.5;
beta12 =0.5;
beta22 =1.5;
lambda = -0.5;
D=2;
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tau =0.01;
h1=0.1;

x=a1:h1:b1;
t=0:tau:T;
M=length(x);
N=length(t);

P=0.5.*x.^2;

u1=exp(-x.^2)./sqrt(pi);
v1=exp(-x.^2)./sqrt(pi);

ga1=zeros(1,M);
ga2=zeros(1,M);
ga1 (1)=gamma(alpha1 +1)/gamma (0.5* alpha1 +1)^2/h1^alpha1;
ga2 (1)=gamma(alpha2 +1)/gamma (0.5* alpha2 +1)^2/h1^alpha2;
for k=1:M-1
ga1(k+1)=(1-( alpha1 +1) /(0.5* alpha1+k))*ga1(k);
ga2(k+1)=(1-( alpha2 +1) /(0.5* alpha2+k))*ga2(k);
end

Ha1=zeros(M,M);
Ha2=zeros(M,M);
for j=1:M
for k=1:M
Ha1(j,k)=ga1(abs(j-k)+1);
Ha2(j,k)=ga2(abs(j-k)+1);
end
end

A=diag (0.5* tau .*(P+D)-1i)+0.25.* tau.*Ha1;
C=diag (0.5* tau .*(P+D)+1i)+0.25.* tau*Ha1;
B=diag (0.5* tau.*P-1i)+0.25.* tau.*Ha2;
D=diag (0.5* tau.*P+1i)+0.25.* tau.*Ha2;

u2=u1+1i.*tau .*( -0.5.*u1*Ha1 -P.*u1-u1*D-lambda*v1...
-(beta11 .*abs(u1).^2+ beta12 .*abs(v1).^2).*u1);
v2=u1+1i.*tau .*( -0.5.*v1*Ha2 -P.*v1-lambda*u1...
-(beta12 .*abs(u1).^2+ beta22 .*abs(v1).^2).*v1);

for n=3:N
meanu =0.5.*(3.*u2-u1);
meanv =0.5.*(3.*v2-v1);
c=( beta11 .*abs(meanu).^2+ beta12 .*abs(meanv).^2).* meanu+lambda

.*meanv;
d=( beta12 .*abs(meanu).^2+ beta22 .*abs(meanv).^2).* meanv+lambda

.*meanu;

u3=linsolve(A,-C*u2 '-tau.*c') ';
v3=linsolve(B,-D*v2 '-tau.*d') ';
u3(1) =0;
u3(M)=0;
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u1=u2;
u2=u3;
v1=v2;
v2=v3;
end
end
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