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Abstract

In this work, we introduce and theoretically analyze various compu-
tational techniques to approximate the solutions of solve a fractional
extension of a double condensate system. More precisely, the contin-
uous model extends the well-known Gross–Pitaevskii equation to the
fractional scenario, and considering two interacting condensates. The
mathematical system considers two complex-valued regimes with cou-
pling, and a mass and energy functions are associated to this model.
Both are constant in time. Here, various discretizations are analyzed
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to solve this system. Some of them are able to preserve the mass and
the energy, some are not. We discuss the existence of solutions, the
consistency of the models, the stability and the convergence. Finally,
from the computational point of view, some algorithms are simpler to
code than others. In fact, those for which the mass and the energy are
conserved are more difficult to implement. We discuss here pros and cons.

Keywords: fractional Bose–Einstein model; double-fractional system; fully
discrete model; stability and convergence analysis

MSC Classification: 65Mxx; 65Qxx

1 Introduction

In this manuscript, we let p ∈ N be the number of spatial dimensions and
T ∈ R+ corresponds to a final time. We agree that In = {k ∈ N : k ≤ n}, while
In, the so-called ‘closure of In’, is defined by {0}∪ In, for each n ∈ N. We will
let ai and bi be real numbers which must satisfy ai < bi, for all i ∈ Ip. Define
Ωi = (ai, bi) ⊆ R, the spatial domain Ω = Πp

i=1Ωi and the spatio-temporal
domain ΩT = Ω × (0, T ). Suppose that ψ1 : ΩT → C and ψ2 : ΩT → C, and
let x = (x1, ..., xp) ∈ Ω. throughout, Γ will denote the Gamma function.

Definition 1 Let ψ : ΩT → C, and i ∈ Ip fixed. Let n ∈ N ∪ {0} and α ∈ R such
that n− 1 < α < n. For each (x, t) ∈ ΩT , we define

∂αψ(x, t)

∂|xi|α
=

−1

2 cos(πα2 )Γ(n− α)

∂n

∂xni

∫ ∞

−∞

ψ(x1, . . . , xi−1, η, xi+1, . . . , xp, t)

|xi − η|α−1
dη. (1)

Define the associated fractional Laplacian [1, 2] as

△αψ(x, t) =

p∑
i=1

∂αψ

∂|xi|α
(x, t). (2)

Let 1 < α1, α2 ≤ 2, and consider complex-valued functions ϕ1 : Ω → C
and ϕ2 : Ω → C. In this work, we will consider the following coupled system of
nonlinear partial differential equations with non-negative constant coefficients
and fractional derivatives in space:

i
∂ψ1

∂t
= λψ2 +

[
V (x) +D + β11|ψ1|2 + β12|ψ2|2 −

1

2
△α1

]
ψ1,

i
∂ψ2

∂t
= λψ1 +

[
V (x) + β12|ψ1|2 + β22|ψ2|2 −

1

2
△α2

]
ψ2,

subjected to

{
ψi(x, 0) = ϕi(x), ∀i ∈ I2, ∀x ∈ Ω,
ψi(x, t) = 0, ∀i ∈ I2, ∀(x, t) ∈ (Rp \ Ω)× (0, T ).

(3)
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Obviously, this system represents a generalization of the Gross–Pitaevski sys-
tem [3, 4]. One of the main properties of (3) is the existence of invariant
quantities. One of them is the energy function which is constant in time. In
fact, the energy is given by the following expression:

E(t) =
∫
Ω

−1

2

p∑
i=1

∂α1ψ1

∂|xi|α1
ψ1 −

1

2

p∑
i=1

∂α2ψ2

∂|xi|α2
ψ2 +D|ψ1|2

+ λRe
(
ψ1ψ2

)
+ V (x)

(
|ψ1|2 +|ψ2|2

)
+

1

2
β11|ψ1|4

+
1

2
β22|ψ2|4 + β12|ψ1|2|ψ2|2

]
dx, ∀t ∈ [0, T ].

(4)

Obviously, the fractional Hamiltonian for this system at each point (x, t) ∈ ΩT

is given by the formula

H(x, t) = −1

2

p∑
i=1

∂α1ψ1

∂|xi|α1
ψ1 −

1

2

p∑
i=1

∂α2ψ2

∂|xi|α2
ψ2 +D|ψ1|2

+ 2λRe
(
ψ1ψ2

)
+ V (x)

(
|ψ1|2 +|ψ2|2

)
+

1

2
β11|ψ1|4

+
1

2
β22|ψ2|4 + β12|ψ1|2|ψ2|2 .

(5)

The second invariant is the total mass. The individual masses of the contin-
uous system (3) at the time t are defined as Mi(t) = ∥ψi∥2x,2, for each i ∈ I2.
Meanwhile, the total mass is the sum of the individual masses, that is,

M(t) = M1(t) +M2(t), ∀t ∈ (0, T ), (6)

and it is also constant in time. The total energy and mass of (3) satisfy the
following properties (see []).

Lemma 1 The energy function (4) has the alternative form

E(t) = 1

2

p∑
i=1

∥∥∥∥∥ ∂α1/2ψ1

∂|xi|α1/2

∥∥∥∥∥
2

x,2

+
1

2

p∑
i=1

∥∥∥∥∥ ∂α2/2ψ2

∂|xi|α2/2

∥∥∥∥∥
2

x,2

+D∥ψ1∥2x,2

+ 2λRe ⟨ψ1, ψ2⟩x +
〈
V (x),|ψ1|2 +|ψ2|2

〉
x
+

1

2
β11∥ψ1∥4x,4

+
1

2
β22∥ψ2∥4x,4 + β12∥ψ1ψ2∥2x,2,

(7)

for each t ∈ (0, T ). □

Theorem 2 (Energy conservation) If ψ1 and ψ2 satisfy the problem (3) then the
energy function E(t) is constant. □
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Theorem 3 (Mass conservation) If ψ1 and ψ2 are solutions of (3), then the mass
function M(f) is constant. If λ = 0, then the individual masses are constant. □

The following is a direct consequence from Theorem 3.

Corollary 4 (Boundedness) If ψ1 and ψ2 satisfy (3), then there exists a constant

M0 ≥ 0 such that max
{
∥ψ1∥22, ∥ψ2∥22

}
≤M0, for each t ∈ (0, T ). □

In this work, we compare four finite-difference methods to solve system (3).
Two of those methods conserve the main structural properties of the con-
tinuous system, namely, they conserve the mass and the energy. The other
two schemes have the advantage of being easier to implement computation-
ally. All four schemes are numerically analyzed for consistency, stability and
convergence. Our main goal is to study the advantages and disadvantages of
each method on theoretical and numerical grounds. The discretizations for
fractional derivatives will hinge on the following definition.

Definition 2 (Ortigueira [5]) Suppose that h, α ∈ R+ and assume that f : R → R.
We define the discrete operator

∆
(α)
h f(x) =

∞∑
k=−∞

f(x− kh)g
(α)
k , ∀x ∈ R, (8)

where

g
(α)
k =

(−1)kΓ(α+ 1)

Γ(α2 + k + 1)Γ(α2 − k + 1)
, ∀k ∈ Z. (9)

It is important to note that if f is sufficiently smooth and α ∈ (0, 1) ∪ (1, 2], then

∂αf(x)

∂|x|α = −∆α
hf(x)

hα
+O(h2), (10)

for almost all x ∈ R (see [6]).

2 Numerical algorithms

For the remainder, we will let N and Mi be natural numbers, with i ∈ Ip.
Define τ = T/N and hi = (bi − ai) /Mi, and let

xi,ji = jihi + ai, ∀i ∈ Ip,∀ji ∈ IMi , (11)

tn = nτ, ∀n ∈ IN . (12)

Let J =
∏p

i=1 IMi , where J =
∏p

i=1 IMi−1. If j = (j1, . . . , jp) ∈ J , we define
xj as (x1,j1 , . . . , xp,jp). For each (j, n) ∈ J × IN , we use (unj , v

n
j ) to denote a

computational approximation to (Un
j , V

n
j ) = (ψ1(xj , tn), ψ2(xj , tn)). Finally,

let ∂J represent the collection of all j ∈ J with the property that xj ∈ ∂Ω.
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Definition 3 For each α ∈ (0, 1) ∪ (1, 2], (j, n) ∈ J × IN−1 and w = u, v, define

µtw
n
j =

wn+1
j + wn

j

2
, (13)

µ
(1)
t wn

j =
wn−1
j + wn+1

j

2
(14)

µ
(2)
t wn

j =
3wn

j − wn−1
j

2
. (15)

We introduce also the difference operators

δtw
n
j =

wn+1
j − wn

j

τ
, (16)

δ
(1)
t wn

j =
wn+1
j − wn−1

j

2τ
, (17)

δ
(α)
xi w

n
j = − 1

hαi

Mi∑
k=0

g
(α)
ji−kw(x1,j1 , . . . , xi−1,ji−1

, xi,k, xi+1,ji+1
, . . . , xp,jp , tn). (18)

Moreover, we agree that

△(α)
h wn

j = δ
(α)
x1 w

n
j + δ

(α)
x2 w

n
j + . . .+ δ

(α)
xp w

n
j , (19)

▽(α)
h = (δ

(α)
x1 w

n
j , δ

(α)
x2 w

n
j , . . . , δ

(α)
xp w

n
j ). (20)

Method 1

We define the first discretization of (3) as follows [7], for each (j, n) ∈ J×IN−1:

iδtu
n
j = µtλv

n
j +

[
Vj +D + µt

[
β11

∣∣∣unj ∣∣∣2 + β12

∣∣∣vnj ∣∣∣2]− 1

2
△(α1)

h

]
µtu

n
j ,

iδtv
n
j = µtλu

n
j +

[
Vj + µt

[
β12

∣∣∣unj ∣∣∣2 + β22

∣∣∣vnj ∣∣∣2]− 1

2
△(α2)

h

]
µtv

n
j ,

such that


u0j = ϕ1(xj), ∀j ∈ J,

v0j = ϕ2(xj), ∀j ∈ J,

unj = vnj = 0, ∀(j, n) ∈ ∂J × IN .

(21)

This is a two-step implicit and conservative finite-difference scheme. Like the
continuous system, this discrete model has discrete Hamiltonian, energy and
mass functions. For its implementation, it is necessary to solve a two equation
nonlinear system at each iteration of the numerical model.
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Method 2

The following is the second discretization [8], which solves some of the
computational difficulties inherent to the first method:

iδ
(1)
t unj = λvnj +

[
Vj +D + β11

∣∣∣unj ∣∣∣2 + β12

∣∣∣vnj ∣∣∣2 − 1

2
△(α1)

h

]
µ
(1)
t unj ,

iδ
(1)
t vnj = λunj +

[
Vj + β22

∣∣∣vnj ∣∣∣2 + β12

∣∣∣unj ∣∣∣2 − 1

2
△(α2)

h

]
µ
(1)
t vnj ,

such that


u0j = µ

(1)
t u0j = ϕ1(xj), ∀j ∈ J,

v0j = µ
(1)
t v0j = ϕ2(xj), ∀j ∈ J,

unj = vnj = 0, ∀(j, n) ∈ ∂J × IN ,

(22)

Here, (j, n) ∈ J× IN−1. This is an implicit method, it is uncoupled and linear,
so its implementation is much easier than the first. Moreover, the present tech-
nique also preserves the invariants. Notice that being a three-step method, it
cannot start with only the initial conditions, so we could use Taylor’s expansion
for the second step or artificial initial conditions.

Method 3

The two previous systems depend on the former steps to define the coefficient
matrices. This issue can be solved also, at the cost losing the conservation of
mass and energy [9]. Such method is given by the third discretization:

iδtu
n
j = µ

(2)
t λvnj +

[
Vj +D − 1

2
△(α1)

h

]
µtu

n
j

+

[
β11

∣∣∣µ(2)
t unj

∣∣∣2 + β12

∣∣∣µ(2)
t vnj

∣∣∣2]µ(2)
t unj ,

iδtv
n
j = µ

(2)
t λunj +

[
Vj −

1

2
△(α2)

h

]
µtv

n
j

+

[
β12

∣∣∣µ(2)
t unj

∣∣∣2 + β22

∣∣∣µ(2)
t vnj

∣∣∣2]µ(2)
t vnj ,

such that


u0j = µtu

0
j = µ

(2)
t u0j = ϕ1(xj), ∀j ∈ J,

v0j = µtv
0
j = µ

(2)
t v0j = ϕ2(xj), ∀j ∈ J,

unj = vnj = 0, ∀(j, n) ∈ ∂J × IN .

(23)

Obviously, this is a semi-explicit, decoupled and linear system, and it possesses
no invariants. However, the computer implementation is much easier than the
two previous methods. Once again, we have a three-step method, so we could
use Taylor’s approximation for the second step.
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Method 4

Finally, we introduce our fourth numerical algorithm [10] to approximate the
solution of (3) on Ω× [0, T ]:

iδ
(1)
t unj = λvnj +

[
Vj +D − 1

2
△(α1)

h

]
µ
(1)
t unj

+

[
β11

∣∣∣unj ∣∣∣2 + β12

∣∣∣vnj ∣∣∣2]unj ,
iδ

(1)
t vnj = λunj +

[
Vj −

1

2
△(α2)

h

]
µ
(1)
t vnj +

[
β12

∣∣∣unj ∣∣∣2 + β22

∣∣∣vnj ∣∣∣2] vnj ,
such that


u0j = µ

(1)
t u0j = ϕ1(xj), ∀j ∈ J,

v0j = µ
(1)
t v0j = ϕ2(xj), ∀j ∈ J,

unj = vnj = 0, ∀(j, n) ∈ ∂J × IN ,

(24)

This scheme is a semi-explicit, decoupled and linear system. The main differ-
ence with respect to the previous method is the number of steps. In the present
discretization, it is not necessary to use additional approximations around t0.

Clearly, systems (22) and (23) miss explicit forms of the initial approxima-
tions u1, and v1. To solve this limitation, we make use of the initial conditions

µ
(i)
t u0j = ϕ1(xj) and µ

(i)
t v0j = ϕ2(xj), for all j ∈ J , i ∈ I2, which yield

δ
(i)
t u0j =

u1j − ϕ1(xj)

τ
, ∀j ∈ J, i ∈ I1 (25)

δ
(i)
t v0j =

v1j − ϕ2(xj)

τ
, ∀j ∈ J, i ∈ I1. (26)

As a consequence, we obtain

u1j = ϕ1(xj)− iτ
[
β11

∣∣ϕ1(xj)∣∣2 + β12
∣∣ϕ2(xj)∣∣2]ϕ1(xj)

− iτλϕ2(xj) + iτ

[
−Vj −D +

1

2
△(α1)

h

]
ϕ1(xj), ∀j ∈ J,

(27)

and

v1j = ϕ2(xj)− iτ
[
β12

∣∣ϕ1(xj)∣∣2 + β22
∣∣ϕ2(xj)∣∣2]ϕ2(xj)

− iτλϕ1(xj) + iτ

[
−Vj +

1

2
△(α2)

h

]
ϕ2(xj), ∀j ∈ J.

(28)

3 Structural properties

In this section, we provide the results that guarantee the existence of solu-
tions of the numerical methods presented in the previous section, and present
properties on the conservation of energy and mass of those discrete systems.
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For convenience, we let h = (h1, . . . , hp), and Vh will be the collection of all
complex-valued functions with domains {xj : j ∈ J}. Finally, set wj = w(xj).

Lemma 5 (Brouwer fixed-point theorem [11, 12]) Let (H, ⟨·, ·⟩) be a finite-
dimensional inner product space, let ∥ · ∥ be the associated norm and let g : H → H
be a continuous function. Assume that the following condition is satisfied:

∃β > 0, ∀z ∈ H, ∥z∥ = β, Re⟨g(z), z⟩ > 0. (29)

Then there exists z∗ ∈ H such that g(z∗) = 0 and ∥z∗∥ ≤ β.

Theorem 6 (Existence of solutions) For any set of initial conditions, the systems
(21)–(22) are solvable.

Proof Let us start with system (21) firstly. For convenience, let us define the function
G = (G1, G2) : (η, ν) ∈ Vh × Vh → (G1(η, ν), G2(η, ν)) ∈ Vh × Vh, where

G1(η, ν)j =
λiτ

2
νj +

iτ

2

[
Vj +D +

β11
2

(∣∣∣unj ∣∣∣2 +
∣∣∣2ηj − unj

∣∣∣2)

+
β12
2

(∣∣∣vnj ∣∣∣2 +
∣∣∣2νj − vnj

∣∣∣2)− 1

2
△α1

h

]
ηj + ηj − unj ,

(30)

and

G2(η, ν)j =
λiτ

2
ηj +

iτ

2

[
Vj +

β22
2

(∣∣∣vnj ∣∣∣2 +
∣∣∣2νj − vnj

∣∣∣2)
β12
2

(∣∣∣unj ∣∣∣2 +
∣∣∣2ηj − unj

∣∣∣2)− 1

2
△α2

h

]
νj + νj − vnj ,

(31)

for each j ∈ J . Here, G1 and G2 are obtained from (3) after some algebraic manip-
ulation. Take the real part of the inner product of G1 and η as well as the real part
of the inner product of G2 and ν, to obtain

Re⟨G1(η, ν), η⟩ = ∥η∥2 +Re

(
λiτ

2
⟨ν, η⟩ − ⟨un, η⟩

)
, (32)

Re⟨G2(η, ν), ν⟩ = ∥ν∥2 +Re

(
λiτ

2
⟨η, ν⟩ − ⟨vn, ν⟩

)
. (33)

Using then the Cauchy–Schwarz inequality we see that

Re⟨G(η, ν), (η, ν)⟩ = ∥(η, ν)∥2 +Re

[
λiτ

2

(
⟨ν, η⟩+ ⟨ν, η⟩

)
− ⟨(un, vn), (η, ν)⟩

]
≥ ∥(η, ν)∥2 − ∥(un, vn)∥∥(η, ν)∥.

(34)

Letting β = ∥(un, vn)∥ + 1 and using Lemma (5), we conclude that there exists
(η∗, ν∗) ∈ Vh×Vh such that (G1(η

∗, ν∗)j , G2(η
∗, ν∗)j) = (0, 0), for each j ∈ J . Thus

the system (21) is solvable. A similar argument applies for system (22). □

Lemma 7 (Desplanques [13]) Let A be a square complex matrix. If A is strictly
diagonally dominant, then A is invertible. □
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Theorem 8 (Existence of solutions) The systems (23)–(24) are uniquely solvable
for any set of initial conditions.

Proof We provide the proof for the existence of solutions of system (24). The proof
for system (23) is similar. Rewrite the first equation of (24) in vector form as

− 1
2Au

n+1 = b(un−1) + a(un, vn), (35)

where

a(unj , v
n
j ) = (β11

∣∣∣unj ∣∣∣2 + β12

∣∣∣vnj ∣∣∣2)unj + λvnj , (36)

b(unj ) =
1

2

(
Vj +D +

i

τ
− 1

2
δ
(α1)
x1

)
unj . (37)

A =



V0 +D − i

τ
+
g
(α1)
0

2hα1
1

g
(α1)
−1

2hα1
1

· · ·
g
(α1)
2−M1

2hα1
1

g
(α1)
1

2hα1
1

V1 +D − i

τ
+
g
(α1)
0

2hα1
1

· · ·
g
(α1)
3−M1

2hα1
1

...
...

. . .
...

g
(α1)
M1−2

2hα1
1

g
(α1)
M1−3

2hα1
1

· · · VM1
+D − i

τ
+
g
(α1)
0

2hα1
1


.

(38)
It is easy to prove that:

M1∑
j ̸=i

∣∣aij∣∣ = M1∑
j ̸=i

∣∣∣∣∣∣g
(α1)
l−j

2hα1
1

∣∣∣∣∣∣ = −
M1∑
j ̸=i

gα1

l−j

2hα1
< −

∞∑
l=−∞
l ̸=j

gα1

l−j

2hα1
=

gα1
0

2hα1
≤|aii| . (39)

By Lemma (7), the matrix A is invertible. It follows that (23) is uniquely solvable for
un+1. A similar argument can be employed to show the existence and the uniqueness
of the approximation vn+1. The conclusion follows now by induction. □

Now that the existence of a solutions for the four discretizations has been
proved, we turn our attention to the invariant properties of (21)–(22).

Theorem 9 (Energy conservation) Let (un, vn)Nn=0 be a solution of (21), and define

En =
1

2
∥ ▽α1

h un∥22 +
1

2
∥ ▽α2

h vn∥22 +D∥un∥22 + 2λRe
〈
un, vn

〉
+
〈
V,
∣∣un∣∣2 +

∣∣vn∣∣2〉+
β11
2

∥un∥44 +
β22
2

∥vn∥44 + β12

〈∣∣un∣∣2 ,∣∣vn∣∣2〉 , (40)

for each n ∈ IN−1. Then δtE
n = 0, for each n ∈ IN−1.

Theorem 10 (Mass conservation) Let (un, vn)Nn=0 be a solution of (21), and let

Mn = ∥un∥22 + ∥vn∥22, ∀n ∈ IN−1. (41)

Then δtM
n = 0, for each n ∈ IN−1.
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Theorem 11 (Energy conservation) Let (un, vn)Nn=0 be a solution of (22), and let

En =
1

2
µt

∥∥∥▽(α1/2)
h un

∥∥∥2
2
+

1

2
µt

∥∥∥▽(α2/2)
h vn

∥∥∥2
2
+Dµt∥un∥22

+ λRe

(〈
un, vn+1

〉
+
〈
vn, un+1

〉)
+

〈
V, µt

(∣∣un∣∣2 +
∣∣vn∣∣2)〉+

β11
2

〈∣∣un∣∣2 ,∣∣∣un+1
∣∣∣2〉

+
β22
2

〈∣∣vn∣∣2 ,∣∣∣vn+1
∣∣∣2〉

+
β12
2

(〈∣∣un∣∣2 ,∣∣∣vn+1
∣∣∣2〉+

〈∣∣vn∣∣2 ,∣∣∣un+1
∣∣∣2〉) ,

(42)

for each n ∈ IN−1. Then, δtE
n = 0, for each n ∈ IN−1.

Theorem 12 (Mass conservation) If (un, vn)Nn=0 is a solution of ststem (22), then
δtM

n = 0, for each n ∈ IN−2. Here, for each n ∈ IN−1,

Mn = µt
(
∥un∥22 + ∥vn∥22

)
− λτ Im

(〈
un, vn+1

〉
+
〈
vn, un+1

〉)
, (43)

Moreover, if λ = 0, then the individual masses satisfy δtM
n
1 = δtM

n
2 = 0, where

Mn
1 = µt∥un∥22 − λτ Im⟨un, vn+1⟩, ∀n ∈ IN−1, (44)

Mn
2 = µt∥vn∥22 − λτ Im⟨vn, un+1⟩, ∀n ∈ IN−1. (45)

It is clear that the discretizations described for (3) are not the same, start-
ing with the first two being implicit and the second two semi-explicit, following
with the number of steps needed for each iteration. Some properties all four
of them share are the order of consistency (even if it is not around the same
point), the stability of the schemes and quadratic order of convergence, obvi-
ously our goal is to compare them convergence-wise but all of the previous
properties will be proved in the next section.

Before closing this section, it is worth highlighting that various mathe-
matical models have the property that they conserve important mathematical
functionals, like the energy or the mass of the system. Proposing discrete
models which preserve those characteristics has been an important direc-
tion of investigation in numerical analysis. Indeed, since various decades ago,
there have been articles which strive to preserve the energy of nonlinear wave
equations with periodic potentials [14–16], symplectic techniques for systems
in quantim mechanics [17], variational methodologies in the discrete domain
which provide efficient and fast computational results [18, 19], Galerkin tech-
niques which are capable of preserving the dissipation or the conservation
of energy in nonlinear mathematical models [20, 21]. Moreover, those his-
toric reports found generalizations to the fractional scenario a conservative
techniques for energy- and mass-preserving methodologies [22–24].
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4 Numerical results

In this stage, we will review the most important properties on the numeri-
cal models introduced in previous sections. More precisely, we will examine
the properties of consistency, stability and convergence of the schemes. In
particular, to prove the consistency, we define the continuous operators

L1 = i
∂ψ1

∂t
− λψ2 +

[
−V (x)−D − β11|ψ1|2 − β12|ψ2|2 +

1

2
△α1

]
ψ1, (46)

L2 = i
∂ψ2

∂t
− λψ1 +

[
−V (x)− β12|ψ1|2 − β22|ψ2|2 +

1

2
△α2

]
ψ2, (47)

for each (x, t) ∈ ΩT . It is obvious that both operators depend on (ψ1, ψ2).
Associated with the numerical method (21), we set

L1,1 = iδtu
n
j − λµtv

n
j +

[
−Vj −D − β11µt

∣∣∣unj ∣∣∣2
−β12µt

∣∣∣vnj ∣∣∣2 + 1

2
△(α1)

h

]
µtu

n
j ,

(48)

and

L1,2 = iδtv
n
j − λµtu

n
j −

[
Vj + β22µt

∣∣∣vnj ∣∣∣2 + β12µt

∣∣∣unj ∣∣∣2 − 1

2
△(α2)

h

]
µtv

n
j , (49)

both of which depend on (unj , v
n
j ). In similar fashion, we introduce discrete

operators Li,1 and Li,2 for Model j, where i = 2, 3, 4. As a final step, for each
(x, t) ∈ ΩT , (j, n) ∈ J × IN−1 and i ∈ I4, we let

L(ψ1, ψ2) =
(
L1(ψ1, ψ2),L2(ψ1, ψ2)

)
, (50)

Li(ψ1, ψ2) = (Li,1(ψ1, ψ2), Li,2(ψ1, ψ2)). (51)

Theorem 13 (Consistency) If ψ1, ψ2 ∈ C5,4x,t (ΩT ), then the numerical models (21)–
(24) yield quadratically consistent approximations to the solutions of (3).

Proof The result is an application of Taylor’s theorem. □

Next, we consider initial data of the form (ϕ1, ϕ2) and (ϕ̃1, ϕ̃2). Here, ϕ̃1 and
ϕ̃2 are both complex functions, and the numerical approximations associated
to each of these pars is represented as (u, v) and (ũ, ṽ), respectively.
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Lemma 14 For each i ∈ I4, let P
n
i,j and Qn

i,j represent the nonlinear terms of Model

i, and let ϵn = un− ũn and ζn = vn− ṽn, for each n ∈ IN . Then there are constants
Ci ≥ 0 which dependents only on τ , such that

max{|Pn
1,j |, |Q

n
1,j |} ≤ C1(|ϵnj |+ |ϵn+1

j |+ |ζnj |+ |ζn+1
j |), (52)

max{|Pn
2,j |, |Q

n
2,j |} ≤ C2(|ϵn−1

j |+ |ϵnj |+ |ϵn+1
j |+ |ζn−1

j |+ |ζnj |+ |ζn+1
j |), (53)

max{|Pn
3,j |, |Q

n
3,j |} ≤ C3(|ϵn−1

j |+ |ϵnj |+ |ζn−1
j |+ |ζnj |), (54)

max{|Pn
4,j |, |Q

n
4,j |} ≤ C4(|ϵnj |+ |ζnj |), (55)

for each (j, n) ∈ J × IN−1.

Proof The conclusions are applications of the Mean Value Theorem. □

Next we tackle the convergence of the numerical models presented in the
previous section. It is worth pointing out that the stability properties are
established in similar fashion.

Theorem 15 (Convergence) Let ϵn and ζn be the differences of the previous lemma,
associated with each of the numerical methods of the previous section

� Method 1. There exists C ′′
1 ≥ 0 such that, if 2C ′′

1 τ < 1, then

∥ϵn∥22 + ∥ζn∥22 ≤ 2(∥ϵ0∥22 + ∥ζ0∥22)e4C
′′
1 T , ∀n ∈ IN . (56)

� Method 2. There exists C ′′
2 ≥ 0 such that, if

(
2λ+ 4C ′′

2 + 1
)
τ < 1, then

µt

(
∥ϵn∥22 + ∥ζn∥22

)
≤ µt(∥ϵ0∥22 + ∥ζ0∥22)e

(
λ+

4C′′
2 +1

2

)
T
, ∀n ∈ IN . (57)

� Method 3. There exists C ′′
3 ≥ 0 such that, if (C ′′

3 + λ)τ < 1
2 , then

∥ϵn∥22+∥ζn∥22 ≤

[
1 +

(
C ′′ +

λ

4

)
τ

]
(∥ϵ0∥22+∥ζ0∥22)e2C

′′
3 T , ∀n ∈ IN . (58)

� Method 4. There exists C ′′
4 ≥ 0 such that, if 2C ′′

4 τ < 1, then

µt(∥ϵn∥22 + ∥ζn∥22) ≤ 2µt(∥ϵ0∥22 + ∥ζ0∥22)e2C
′′
4 T , ∀n ∈ IN . (59)

Proof Subtract the equations satisfied by (u, v) and (ũ, ṽ) using (21), in order to
obtain the equations associated to (ϵn, ζn). By the previous lemma, there exists
C′
1 ∈ R+ with the property that

max{∥Pn∥22, ∥Qn∥22} ≤ C′
1

(
∥ϵn∥22 + ∥ζn∥22

)
, ∀n ∈ IN−1. (60)
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Rearranging terms, we can readily obtain

δt∥ϵn∥22 = 2 Im⟨Pn, µtϵ
n⟩+ 2 Im⟨µtζn, µtϵn⟩, ∀n ∈ IN−1, (61)

δt∥ζn∥22 = 2 Im⟨Qn, µtζ
n⟩+ 2 Im⟨µtϵn, µtζn⟩, ∀n ∈ IN−1. (62)

The next step is to show the existence of C′′
1 ∈ R+ that satisfies our conclusion. To

that end, observe that

∥ϵm+1∥22 + ∥ζm+1∥22 = ∥ϵ0∥22 + ∥ζ0∥22 + 2τ

m∑
n=0

Im⟨Pn, µtϵ
n⟩

+ 2τ

m∑
n=0

Im⟨Qn, µtζ
n⟩

≤ ∥ϵ0∥22 + ∥ζ0∥22 + 2C′′τ
m∑

n=0

(
∥ϵn∥22 + ∥ζn∥22

)
+

1

2

(
∥ϵm+1∥22 + ∥ζm+1∥22

)
.

(63)

Subtract the term 1
2 (∥ϵ

m+1∥22 + ∥ζm+1∥22) from both ends, and multiply both sides
by 2. It follows that a discrete form of Gronwall’s inequality [25] is satisfied, for each
m ∈ IN−1. Here, we used ωm = ∥ϵm∥22+∥ζm∥22 for eachm ∈ IN , as well as C0 = 4C′′

and ρm = 2(∥ϵ0∥22 + ∥ζ0∥22). The proofs for (22)–(24) are very similar. □

5 Conclusions

In this work, we compared various numerical models to approximate the solu-
tions of a fractional extension of the Gross-Pitaevskii system. That model has
been used to describe the interaction between a two-component system, and
we consider here a fractional extension using derivatives of the Riesz type, with
two differentiation orders. It is well known that the system is capable of pre-
serving the mass and the total energy with respect to time. Four discretizations
based on the use of fractional-order centered differences are presented here.
The existence of solutions is established using fixed-point theorems, and two
of the schemes have associated discrete mass and energy functionals which are
conserved throughout time. The numerical properties of the schemes were also
considered, and it was found out that they were second-order discretizations of
the continuous model, as well as conditionally stable and convergent. Various
incomparable conditions need to be imposed upon the computational param-
eters in order to guarantee the stability and the convergence of the schemes.
Finally, it is worth pointing out that the schemes which were not capable of
preserving the mass or the energy were those with the easiest implementations.
Some simulations were provided to illustrate some of the properties.
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