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Abstract

Silicene, as other 2D buckled structures, is a gapped Dirac material with intrinsic spin-orbit

coupling whose band structure can be controlled by applying a perpendicular electric field. It

presents a topological phase transition from a topological insulator to a band insulator at the

charge neutrality point. We present in this paper a characterization of this phase transition by

using fidelity of Loschmidt echoes when a magnetic and two slightly different electric fields are

applied by considering the time evolution of two kinds of wave packets, one with a single Gaussian

profile and the other with a double Gaussian profile creating a cat state. We also show that

Zitterbewegung, classical and revival Loschmidt periods diverge close to but not exactly at the

charge neutrality point and explain this behaviour.

2



I. INTRODUCTION

Silicene is a two dimensional crystal of silicon, belonging to a group of 2D gapped Dirac

materials analogous to graphene but with a relevant intrinsic spin-orbit coupling (as com-

pared to graphene) and a buckled structure. It has been studied theoretically [1, 2] and

experimentally [3–7]. Other gapped Dirac materials are germanene, stannene and Pb [8].

In the case of silicene, the low energy electronic properties can be described by a Dirac

Hamiltonian with a Fermi velocity vF = 5 × 105 m s−1 and a value of the spin-orbit cou-

pling ∆so = 4.2 meV. It has a buckling length l = 0.22 Å which allows to control the band

structure by applying an electric field, Ez = ∆z/l, perpendicular to the silicene monolayer

generating a tunable band gap |∆s,ξ| = |(∆z − sξ∆so)/2| (s and ξ denote spin and valley,

respectively). Silicene has a topological phase transition (TPT) [9] from a topological in-

sulator (TI, |∆z| < ∆so) to a band insulator (BI, |∆z| > ∆so), at a charge neutrality point

(CNP) ∆(0)
z = sξ∆so, with a gap cancellation between the perpendicular electric field and

the spin-orbit coupling, thus exhibiting a semimetal behavior.

Topological phases are characterized by topological charges like Chern numbers. Theo-

retical information measures and uncertainty relations have been used to characterize TPTs

[10–13]. Recently, we have studied the time evolution of electron wave packets in silicene

under perpendicular magnetic and electric fields to characterize topological-band insulator

transitions [14].

In this paper we want to use fidelity to characterize TPTs. Fidelity (also known as

Loschmidt Echo), was introduced by Peres [15] and it has been used to understand the

dynamics in few [16–18] and many-body [19–21] quantum systems. It has been relevant

to quantify a very important problem in quantum physics, that is, the problem of the

coherence and stability of the dynamics of many bodies subject to external perturbations

[22]. Additionally, fidelity has been used to quantify corruption in the context of quantum

information [23]. Recently, it has been used to study quantum phase transitions in a XXZ

spin chain model in a random magnetic field [24] and in a spin-interacting XY model [25].

Additonally, we want to point out the seminal article [26], and other interesting works like

[27, 28] or the revision about Loschmidt echoes and quatum phase transtions in [29].

The paper is organized as follows. In Section 2, we introduce the low energy Hamiltonian

describing the electronic properties of silicene and similar 2D materials in perpendicular elec-
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∆so (meV) l (Å) vF (105 m/s)

Si 4.2 0.22 4.2

Ge 11.8 0.34 8.8

Sn 36.0 0.42 9.7

Pb 207.3 0.44 –

TABLE I: Approximate values of model parameters ∆so (spin-orbit coupling), l (interlattice dis-

tance) and vF (Fermi velocity) for two-dimensional Si, Ge, Sn and Pb sheets. These data have

been obtained from first-principles computations in [8] (∆so and l) and [30, 31] (vF).

tric and magnetic fields. Section 3 contains a study of the relationship between topological

phase transitions and fidelity. Our results for Loschmidt periodicities are given in Section

4 while a more detailed study of the time evolution of the echos is presented in Section 5.

Finally, Section 6 contains our conclusions.

II. LOW ENERGY HAMILTONIAN

Let us consider a monolayer silicene film in external magnetic B and electric Ez fields

applied perpendicularly to the silicene plane. The low energy effective Hamiltonian in the

vicinity of the Dirac point is given by [9]

Hξ
s = vF(σxpx − ξσypy)−

1

2
ξs∆soσz +

1

2
∆zσz, (1)

where ξ corresponds to the inequivalent corners K (ξ = 1) and K ′ (ξ = −1) of the first

Brillouin zone, respectively, σj are the usual Pauli matrices, vF is the Fermi velocity of the

Dirac fermions (see Table I for theoretical estimations for Si as well as for other materials:

Ge, Sn and Pb), spin up and down values are represented by s = ±1, respectively, and

∆so is the band gap induced by intrinsic spin-orbit interaction, which provides a mass to

the Dirac fermions. We are considering the application of a constant electric field Ez which

creates a potential difference ∆z = lEz between sub-lattices. The value l appears in table I

for different materials. The values of the spin-orbit energy gap induced by the intrinsic spin-

orbit coupling has been theoretically estimated [8, 32–34] for different 2D Dirac materials

that we show in Table I.

4



The eigenvalue problem can be easily solved. Using the Landau gauge, ~A = (0, Bx, 0), the

corresponding eigenvalues and eigenvectors for the K and K ′ points are given by [9–13, 35]

Es,ξ
n,∆z

=

 sgn(n)
√
|n|h̄2ω2 + ∆2

s,ξ, n 6= 0,

−ξ∆sξ, n = 0,
(2)

and

|n〉s,ξ =

 −iAs,ξn,∆z
||n| − ξ+〉

Bs,ξ
n,∆z
||n| − ξ−〉

 , (3)

where we denote by ξ± = (1± ξ)/2, the Landau level index n = 0,±1,±2, . . ., the cyclotron

frequency ω = vF

√
2eB/h̄, the lowest band gap ∆s,ξ ≡ (∆z − sξ∆so)/2 and the constants

As,ξn,∆z
and Bs,ξ

n,∆z
are given by [35]

As,ξn,∆z
=


sgn(n)

√
|Es,ξn,∆z |+sgn(n)∆s,ξ

2|Es,ξn,∆z |
, n 6= 0,

ξ−, n = 0,

Bs,ξ
n,∆z

=


√
|Es,ξn,∆z |−sgn(n)∆s,ξ

2|Esξn,∆z |
, n 6= 0,

ξ+, n = 0,

(4)

The vector |m〉 with m = 0, 1, 2, ... denotes an orthonormal Fock state of the harmonic

oscillator, and we will have m = |n| ± ξ±. Note that the case m = −1 always cancels due to

the value of the coefficients As,ξn,∆z
or Bs,ξ

n,∆z
defined in (4).

III. FIDELITY AND TOPOLOGICAL PHASE TRANSITIONS

We are going to generalize the definition of fidelity given by [36] for two slightly different

initial states in the following way. If we have a Hamiltonian H and consider a small per-

turbation that gives a perturbed Hamiltonian H ′, with time evolution operators U(t) and

U ′(t), respectively and study the time evolution of some arbitrary but similar initial states

|Ψ0〉 and |Ψ′0〉 with both Hamiltonians, we get

|Ψ(t)〉 = U(t)|Ψ0〉

|Ψ′(t)〉 = U ′(t)|Ψ′0〉 . (5)

The time-dependent fidelity amplitude with respect to the unperturbed evolution, is defined

as the overlap of the perturbed and unperturbed time-evolving states:

m(t) = 〈Ψ(t)|Ψ′(t)〉 = 〈Ψ0|U(−t)U ′(t)|Ψ′0〉 . (6)
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Time-dependent fidelity is the square of its modulus

M(t) = |m(t)|2 . (7)

We will have M(t) = 1 if H ′ = H and |Ψ′0〉 = |Ψ0〉. It is clear that if the Hamiltonians and

the initial states are very similar, i.e. the perturbation is small, we will have a fidelity close

to one. Otherwise the fidelity value will be smaller than 1.

We can also define time-independent fidelity as

F = M(t = 0) . (8)

If, instead of using states, we want to use densities, we can consider the DFT fidelity

amplitude defined by [37]:

f(ρ, σ) =
∫
ρ1/2(r)σ1/2(r)dr (9)

where ρ(r) and σ(r) are two densities. We will have f(ρ, σ) = 1 if ρ(r) = σ(r) everywhere.

The more the densities differ, the smaller the value of the fidelity amplitude.

In order to compute fidelity, we have to write first the Hamiltonian eigenstates given in

Eq. (3) in position and momentum representations. We know that Fock (number) states |n〉

can be written in position representation as

〈x|n〉 =
ω1/4√

2nn!
√
π
e−ωx

2/2Hn

(√
ωx
)

(10)

where Hn(x) are the Hermite polynomials of degree n. We will introduce the number-state

density in position space as ρn(x) = |〈x|n〉|2, which are normalized according to
∫
ρn(x)dx =

1. Now, taking into account Eq. (3), the position density for the Hamiltonian eigenvectors

is given by

ρs,ξn,∆z
(x) = (As,ξn,∆z

)2|〈x||n| − ξ+〉|2 + (Bs,ξ
n,∆z

)2|〈x||n| − ξ−〉|2. (11)

We will study f(ρs,ξn,∆z
, ρs,ξn,∆′z) that is, fidelity amplitude for the densities corresponding to

electric field values ∆z and ∆′z = ∆z + δz, where δz � ∆z.

As already stated, there is a prediction (see e.g. [32–34, 38]) that when the gap |∆s,ξ|

vanishes at the CNP ∆(0)
z , silicene undergoes a phase transition from a topological insulator

(TI, |∆z| < ∆so) to a band insulator (BI, |∆z| > ∆so). This topological phase transition

entails an energy band inversion. Indeed, in Figure 1 we show the fidelity amplitude as a

function of the external electric potential ∆z for B = 0.01 T. One can see that there is a
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band inversion for the n = 0 Landau level (either for spin up and down) at both valleys.

The energies E1,ξ
0 and E−1,ξ

0 have the same sign in the BI phase and different sign in the TI

phase, thus distinguishing both regimes.

-Dso-3Dso-5Dso Dso 3Dso 5Dso

Dz

1

F
Ξ
n ,sHDz L

FIG. 1: Fn,s(∆z) ≡ f(ρsξn,∆z
, ρsξn,∆z+δ∆z

) when B = 0.01 T and ξ = 1 for n = 1, s = 1 (blue);

n = −1, s = 1 (red); n = 1, s = −1 (orange); and n = −1, s = −1 (black).

We are going to consider two types of Gaussian wave packets in this work. The first type

is a single Gaussian packet centered on the n0-th level above the Fermi level:

|Ψ(∆z, t)〉 = |ψ(t)〉s,ξ =
∞∑
n=0

cne
−iEs,ξn,∆z t/h̄|n〉s,ξ (12)

with

cn =
1

σ
√
π
e−(n−n0)2/(2σ2), (13)

where n0 defines the center of the wave packet and σ its width.

The second type of wave packet is a cat state that consists of two Gaussians symetrically

distributed around the n0-th levels above and below the Fermi level:

|Ψ(∆z, t)〉 = |ψ(t)〉s,ξ =
∞∑
n=0

cne
−iEs,ξn,∆z t/h̄|n〉s,ξ +

7



FIG. 2: Coefficients used for the two types of wave packets used. The upper panel shows the packet

centered around n0 = 10 (we will call it Type I) while the lower panel depicts the packet centered

around n0 = 10 and n′0 = −n0 = −10 (we will call it Type II). In both cases σ = 0.9.

+
0∑

n=−∞
c′ne
−iEs,ξn,∆z t/h̄|n〉s,ξ (14)

with

cn =
1

σ
√

2π
e−(n−n0)2/(2σ2) and c′n =

1

σ
√

2π
e−(n+n0)2/(2σ2). (15)

Examples of coefficients for both types of wave packets –that we will call Type I and

Type II, respectively– can be seen in Fig. 2.

Time-dependent fidelity can be written for a Type I packet as

M s,ξ
L (∆z, δz, t) = |ms,ξ(∆z, δz, t)|2, (16)

where

ms,ξ(∆z, δz, t) = 〈Ψ(∆′z, t)|Ψ(∆z, t)〉 =

= ∆′z〈Ψ0|eiH(∆′z)t/h̄e−iH(∆z)t/h̄|Ψ0〉∆z =

=
∑∞
n,m=0 cmcne

i

(
Es,ξ
m,∆′z

−Es,ξn,∆z

)
t/h̄

s,ξ,∆′z〈m|n〉s,ξ,∆z . (17)

Since we are only going to consider very small δz values, we can assume the variations in the

energy levels due to the small change in the electric field are smaller than the difference be-

tween two consecutive levels and the orthogonality relations among states will approximately
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hold, i.e. s,ξ,∆′z〈m|n〉s,ξ,∆z ≈ s,ξ,∆z〈m|n〉s,ξ,∆z with

s,ξ,∆z〈m|n〉s,ξ,∆z = As,ξm,∆′zA
s,ξ
n,∆z

δ|m|−ξ+,|n|−ξ+ +Bs,ξ
m,∆′z

Bs,ξ
n,∆z

δ|m|−ξ−,|n|−ξ− =

= As,ξm,∆′zA
s,ξ
n,∆z

δ|m|,|n| +Bs,ξ
m,∆′z

Bs,ξ
n,∆z

δ|m|,|n|. (18)

Taking into account the Kronecker deltas in Eq. (18) the fidelity time evolution given

in Eq. (17) is governed by the energy differences Es,ξ
n,∆′z
− Es,ξ

m,∆z
for m = n. We are going

to assume levels are so close to each other we can use the continuous approximation and

perform a limited Taylor expansion for the energy around the n0 level,

Es,ξ
n,∆′z
− Es,ξ

n,∆z
≈
(
Es,ξ
n0,∆′z

− Es,ξ
n0,∆z

)
+

+
(
Es,ξ ′
n0,∆′z

− Es,ξ ′
n0,∆z

)
(n− n0) +

+1
2

(
Es,ξ ′′
n0,∆′z

− Es,ξ ′′
n0,∆z

)
(n− n0)2, (19)

where primes in energies denote derivatives with respect to level numbers.

Therefore, the exponential in (17) contains three parts. The first one does not depend

on n and leads to a global phase factor, while the other two ones give rise to periodic

oscillations with two different periods: The first oscillation period is analogous to the one

found when a localized wave packet is excited with an energy spectrum which is tightly

spread around a large central value of the principal quantum number of the unperturbed

Hamiltonian. Following correspondence principle arguments it has been associated with the

classical period of motion of the unperturbed Hamiltonian [39]. Therefore, in our case it

can be called classical Loschmidt period,

TCl
L =

2πh̄

|Es,ξ ′
n0,∆′z

− Es,ξ ′
n0,∆z
|
. (20)

The second oscillation period is responsible for the long-term spreading and reconstruction

of the wave packet associated with the quantum revival time scale [39] and can be called

revival Loschmidt period

TR
L =

2πh̄

|Es,ξ ′′
n0,∆′z

− Es,ξ ′′
n0,∆z
|
. (21)

An analogous derivation can be made for the time evolution of the fidelity for a Type II

wave packet, but in this case a new feature arises. Since we have both positive and negative

values for n, the absolute values in the Kronecker deltas in Eq. (18) become relevant and

the time evolution is now governed by the energy differences Es,ξ
n,∆′z
− Es,ξ

m,∆z
for m = ±n.
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This means the exponential in the equation analogous to (17) no longer contains a global

phase factor but a third period of oscillation –similar to the one due to Zitterwebegung that

appears for the unperturbed Hamiltonian [40]– that we can call Zitterbewegung Loschmidt

period,

T Zb
L =

πh̄

|Es,ξ
n0,∆′z

− Es,ξ
n0,∆z
|
. (22)

The overall situation for this Loschmidt periodicities is analogous to the case of quantum

revivals in monolayer graphene quantum dots as well as monolayer and bilayer graphene

rings [41, 42]. Classical and revival periodicities appear for both Type I and Type II packets

while Zitterbewegung only appears for Type II packets.

For the sake of simplicity we are going to select one valley (ξ = 1) and one spin orientation

(s = 1) to study these oscillations in the next sections. Analogous results can be obtained

for other {s, ξ} combinations.

IV. LOSCHMIDT PERIODICITIES

As we pointed out in the Introduction, it has been proposed that silicene undergoes a

topological phase transition at the charge neutrality point ∆(0)
z = sξ∆so. One could expect

the phase transition at this point to show as divergences in the three periodic oscillations

considered. We present in Fig. 3 Zitterbewegung, classical and revival Loschmidt periods

for three different δz values for a Type II wave packet (the last two are also valid for a Type

I packet).

It is clear that the the three periodicities diverge near the charge neutrality point but

not exactly at it. In fact there seems to be a dependence on the value of δz: The smaller

δz the closer the divergence is to the CNP. There is an easy explanation for this feature.

We have to take into account that in order to calculate the fidelity we are working with

two slightly different energy spectra corresponding to two different electric field values ∆z

and ∆′z = ∆z + δz. For instance, for Eq. (22) to diverge, we need Es,ξ
n,∆′z

= Es,ξ
m,∆z

and using

(2), this means (∆′s,ξ)
2 = ∆2

s,ξ, that leads to |∆′z − sξ∆so| = |∆z − sξ∆so| or, equivalently,

|∆z+δz−∆(0)
z | = |∆z−∆(0)

z |. Disregarding the trivial solution δz = 0, we get ∆z+δz−∆(0)
z =

−(∆z −∆(0)
z ) and, finally, the critical point is located at

∆z

∆
(0)
z

= 1− 1

2

δz

∆
(0)
z

. (23)
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FIG. 3: Zitterbewegung (upper panel), classical (intermediate panel) and revival (lower panel)

Loschmidt periods for different δz values for a Type II wave packet (the last two are also valid for

a Type I packet). Solid black line for δz = 10−3∆so, red dotted line for δz = 10−2∆so and blue

dash-dotted line for δz = 10−1∆so.

This result indicates that the divergences in the Lochsmidt periods should appear close to

the CNP (because δz � ∆(0)
z ) but not exactly at that point. This displacement with respect

to the exact critical point appears because in order to calculate Loschmidt fidelity we are

using at the same time the unperturbed and the perturbed Hamiltonians corresponding to

two slightly different electric fields and, therefore, slightly different charge neutrality points.
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The smaller the difference in the electric fields, the closer the divergence is to the CNP of

the unperturbed Hamiltonian.

Taking into account the valley and spin selected (ξ = s = 1), ∆(0)
z = sξ∆so = ∆so and

Eq. (23) reads
∆z

∆so

= 1− 1

2

δz
∆so

. (24)

We present in Fig. 4 Zitterbewegung, classical and revival Loschmidt periods for the same

three different δz values but only in the vicinity of the CNP. The three panels in the figure

look similar but the time scales are different, T Zb
L � TCl

L � TR
L . It is clear that Eq. (24) is

satisfied.

All Loschmidt periodicities shown in Fig. 4 seem to be symmetric with respect to the

divergence. We will test in the next section if that is the case and analyze in greater detail

the time evolution of the wave packets.

V. TIME-EVOLUTION OF THE ECHOES

We present in this section the time-dependent fidelity ML(t) defined in Eq. (16) and the

time-independent fidelity calculated using Eq. (8), F = ML(t = 0), when δz = 10−2∆so.

Similar results are found for the δz = 10−1∆so and δz = 10−3∆so cases.

A. Type I wave packets

Let’s analyze first the region below the critical point that, with the parameters chosen,

is located at ∆z = 0.995∆so. Fig. 5 shows the time evolution of the fidelity for the Type I

packet described in the upper panel of Fig. 2 for three different values of the electric field

(∆z = −2∆so, ∆z = 0 and ∆z = 0.9∆so). In each case, the fidelity is shown as a function of

time and as a function of classical and revival Loschmidt periods.

If we compare the upper left graph in each panel we can see that the classical Loschmidt

period decreases when ∆z increases from −2∆so to 0 but increases when it goes from 0 to

0.9∆so. In fact, if we look at the central panel in Fig. 3 we can see that TCl
L decreases down

to a minimum and then starts to increase when the system approaches the critical point.

If we now focus our attention on the upper right graph in each panel where ML(t) is

depicted as a function of time but in TCl
L units we notice that, obviously, there is one

12



FIG. 4: The same as Fig. 3 but in the vicinity of the charge neutrality point.

oscillation per unit in the t-axis but that while the amplitude of the oscilllations seems to

be constant in the upper panel, it is clearly modulated in the other two cases: It oscillates

one and a half times in ten classical periods for ∆z = 0.9∆so but only describes half an

oscillation when ∆z = 0. Nevertheless, if we use Loschmidt revival period as time unit we

get the graphs in the lower part of each panel. It is clear that there is always amplitude

modulation but that when ∆z = −2∆so a great number of classical oscillations occur before

a revival oscillation completes. In fact, the lower panel in Fig. 3 looks similar to the middle

one but there is a big difference: the slope of the decreasing part is much bigger in absolute

13



∆z = −2∆so

∆z = 0

∆z = 0.9∆so

FIG. 5: Time-dependent fidelity for a Type I packet for three different values of ∆z: −2∆so in

the upper panel, 0 in the middle panel and 0.9∆so in the lower one. In each case, this quantity is

shown as a function of time and as a function of classical and revival Loschmidt periods.

value (remember the logarithmic scale).

Let’s move now to the region above the critical point. To test if classical and revival

Loschmidt periods are symmetric with respect to this point as Fig. 3 suggests we have cal-

culated the ∆z = 3.99∆so, ∆z = 1.99∆so and ∆z = 1.09∆so cases that are the symmetrical

ones to those presented in Fig. 5. The results are exactly the same as those of their coun-

14



terparts and we don’t show them. In fact, we have studied 9 different pairs of symmetrical

points, both close to and far from the critical point, and in all cases there is perfect agree-

ment. It is then clear than both classical and revival Loschmidt periods are symmetric with

respect to the critical point as the middle and lower panels in Fig. 3 suggest.

In order to analyze in greater detail the amplitude of the oscillations in the fidelity we

have calculated the maximun amplitude of the time-dependent fidelity,

(AML
)MAX = max

t∈[0,TR
L )
ML(t). (25)

The left panel in Fig. 6 represents this quantity as a function of the electric field. The

maximum amplitude slightly decreases close to the critical point and it is symetric with

respect to it.

We have also calculated the time-independent fidelity, F and plotted it in the right panel

in Fig. 6. The result is the same, indicating that the maximum in fidelity occurs at t = 0.

FIG. 6: Maximun amplitude of the time-dependent fidelity (left panel) and time-independent

fidelity (right panel) for a Type I packet with δz = 10−2∆so.

B. Type II wave packets

Cat states give rise to a third periodicity due to Zitterbewegung with a shorter period than

the classical one and this fact introduces some differences with respect to Type I packets.

Let’s start again with the region below the critical point. Fig. 7 shows the time evolution

of the fidelity for the Type II packet described in the lower panel of Fig. 2 for three different

values of the electric field (∆z = −2∆so, ∆z = 0 and ∆z = 0.9∆so). In each case, the fidelity

is shown as a function of time and as a function of Zitterbewegung, classical and revival

Loschmidt periods.
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∆z = −2∆so

∆z = 0

∆z = 0.9∆so

FIG. 7: Time-dependent fidelity for a Type II packet for three different values of ∆z: −2∆so in

the top panel, 0 in the central panel and 0.9∆so in the bottom one. In each case, this quantity is

shown as a function of time and as a function of Zitterbewegung, classical and revival Loschmidt

periods.

If we compare the upper left graph in each panel we can see that the Zitterbewegung

Loschmidt period increases as ∆z increases from −2∆so to 0.9∆so. If we look at the upper

panel in Fig. 3 we can see that T Zb
L increases monotonically up to the critical point.

If we now move to the upper right graph in each panel where ML(t) is depicted as a
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function of time but in T Zb
L units we see something similar to what happened when Type I

results were plotted using TCl
L as time unit but the decay in the amplitude is much slower.

More oscillations are needed for the amplitude modulation to show.

If we use Loschmidt revival period as time unit we get the graphs in the lower left part

of each panel. The modulation is now more clear but Zitterbewegung is so fast with this

time scale that indivual oscillations are no longer visible and become a solid area. This is

also the case when TR
L is used as time unit (lower right graph of each panel). Nevertheless,

Zitterbewegung, in spite of introducing a new oscillation that exhibits a different behavior

with electric field than classical or revival oscillations (compare the upper panel in Fig. 3

with the other two ones), doesn’t perturbate classical and revival Loschmidt periods because

it has a completely different time scale.

Focusing now on the region above the critical point, we have performed the same test

as we did for Type I packet and the result holds. Not only classical and revival Loschmidt

periods are symmetric with respect to the critical point but Zitterbewegung Loschmidt

period also exhibits the same symmetry.

We have also calculated the maximun amplitude of the time-dependent fidelity defined

in (25). The left panel in Fig. 8 represents this quantity as a function of the electric field.

The maximum amplitude slightly decreases in the vicinity of the critical point but increases

close to it and presents the absolute maximum at this critical point. This is different to

what happened for Type I packets but the symmetry with respect to the critical point is

preserved.

We have calculated the time-independent fidelity defined in (8) too and plotted it in the

right panel in Fig. 8. The result doesn’t coincide with that for (AML
)MAX but with the one

for F in Type I packets. This difference indicates that the maximum in fidelity doesn’t

appear at t = 0 for cat states. Zitterbewegung can’t affect F because this quantity only has

to do with the initial overlap of the wave functions corresponding to the slighly different

electric fields. But it changes (AML
)MAX as the left panels in Figs. 6 and 8 clearly show.

VI. CONCLUSIONS

We have studied Zitterbewegung, classical and revival periods for silicene as a function

of electric field intensity when the electric field is changed by a very small amount. We have
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FIG. 8: Maximun amplitude of the time-dependent fidelity (left panel) and time-independent

fidelity (right panel) for a Type II packet with δz = 10−2∆so.

used two different kinds of wave packets. Type I packet is a simple Gaussian while Type II

is a double Gaussian cat state. We have shown that all three Loschmidt periods diverge

close to the charge neutrality point. The offset with respect to this point is determined by

the amount the electric field is changed.

We have also proven that time-independent as well as time-dependent fidelities can be

used as markers of topological phase transitions in silicene (and other 2D gapped materials)

and that time-indepent fidelity is equal to the maximum of the time-dependent one for

Type I packets but not for Type II packets.
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