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Abstract

Software reuse by importing packages from centralised repositories is
an efficient and increasingly widespread way to develop software. Given
the transitivity of dependencies, defects introduced in the repository can
have extensive effects on the software ecosystem. Drawing from com-
plex network theory, we define a model of repository vulnerability based
on the statistically expected damage that the repository sustains from
the random introduction of software defects. We test the model in styl-
ized networks derived from real repositories, PyPI, Maven and npm, and
show that the existence of a giant strongly connected component (SCC)
explains most of the vulnerability. Indeed, we found that theoretical pro-
tection (immunization) of this entire component would remove almost all
vulnerability from the network. Since repositories and their communities
have limited resources to mitigate issues, we further model the problem of
how to best apply these resources, finding sets much smaller than the giant
SCC whose protection is nearly as good. Furthermore, we prove that the
optimal selection of sets of given size is NP-Hard but can be approached
with heuristics, yielding respectable results. Our model contributes to a
better understanding of software package repositories and could also be
applied to other systems with a similar structure.

Keywords: Complex network, Network structure, Network vulnerability,
Package dependency networks, Software repositories

1 Introduction

The reuse of components is one of the cornerstones of software development.
Software components can be maintained, fixed, and documented only once,
which brings great benefits in quality, productivity, and efficiency [1]. Software
component repositories, a collection of interdependent and reusable packages,
are widely used by open-source projects. A repository works like a centralized
market where a developer can seek and get a lot of functionalities necessary
for their project. A survey conducted among developers in 2014 concluded
that 90% of the lines of code in a typical application correspond to external
components and that more than 80% of projects use centralized repositories of
components [2].

The purpose of a package repository is the distribution of reusable software
components. The term “package” refers to the appropriate artifact to facilitate
this distribution, including the downloading, verification and installation of the
components by the repository users. The development of software repositories is
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usually a bottom-up process. Programmers freely decide to create new function-
alities by combining their own code with code already published and available
inside any package in the repository to finally encapsulate it in a new package
that is in turn added to the repository. In most repositories there are no require-
ments, beyond certain formats and technical protocols, as to who can publish
and what can be published. In addition, for each language or system, there is
usually a very popular repository that concentrates most of the community’s
development. For this reason, it is common to speak of centralized repositories.
When a computer executes any part of a package, it processes its code lines
and the rest of code lines of the dependent packages that may form long chains.
In short, a code line of a package is virtually present in all packages that use
it, all packages that use these second packages, and so on, until the end of the
chains of dependencies. Therefore, any error in a code line may have effects on
multiple packages depending on the dependency structure of the repository.

On March 20, 2016, Azer Koçulu, a Californian software developer, was in-
volved in a dispute over the name of one of his JavaScript libraries in the npm
repository, and after a questionable intervention of npm’s managers, he decided
to remove all his packages from the repository [3]. Among these packages, there
was a script to justify text strings, called left-pad, widely used by other npm
packages. After that, almost a million websites began to have difficulties updat-
ing their dependencies or deploying new versions, and these failures affected big
firms such as Facebook and Netflix. Finally, npm’s managers decided unilater-
ally to restore the left-pad package to solve the problem. Another remarkable
example is Heartbleed, a big security vulnerability in the popular open-source
cryptographic library OpenSSL used to provide secure connections on the In-
ternet. A simple bug by one of its developers went unnoticed for two years
jeopardizing all systems with this dependency in their software, and as result,
hundreds of thousands of secure web servers were vulnerable to attacks includ-
ing popular web sites such as Google, Youtube, Yahoo, Pinterest or Instagram
among others [4]. These cases evince that the use of software repositories may
involve risks due to the transitive dependency of packages.

Similar errors can be triggered by multiple issues, like bugs or security vul-
nerabilities. A recent report points out that security vulnerabilities detected in
open source software almost double every two years, and nearly 80% of them
are caused by indirect dependencies [5].

Although there is a growing interest in the community of developers and
users [6], and there are some incipient works that examine particular issues and
vulnerability cases (see details in the Sec. 2), in our opinion, the study of
software package repositories as a whole that focuses on the networked struc-
ture has not received enough attention so far. The objective of our work is to
understand the complexity of vulnerability of repositories and propose strate-
gies to reduce their negative effects. To meet this goal we make use of network
theory to model a software repository as a directed graph that we call package
dependency network. Based on this network, we propose a formal definition of
vulnerability considering all transitive connections, which measures how sensi-
tive the network is to the introduction of random defects, assumed to be caused
by diverse and unspecific phenomena. We call this kind of vulnerability failure
vulnerability, in contrast to attack vulnerability, where failures are not random,
but directed by a malicious actor. In the rest of this paper, unless otherwise
stated, we will refer to the former simply as vulnerability.
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The main contributions of our work are summarized in the next points:

• The definition of a novel model to quantify the vulnerability of package
repositories based on the structure of the underlying dependency network.

• The study of possible methods to reduce the vulnerability of repositories.

• The analysis of a set of stylized models derived from three well-known real
repositories. Our results show that the network’s vulnerability is related to
the size of the largest strongly connected component (SCC), caused by the
appearance of cyclic dependencies. When the SCC has a significant size
the vulnerability of the network is much higher. We found out that it is
possible to greatly reduce the vulnerability of a repository by protecting
a small fraction of packages, although the search for the optimal set of
packages that maximize the protection is an NP-Hard problem. We study
several heuristics and get significant reductions by acting on a suboptimal
number of packages.

The rest of the paper is organised as follows. Section 2 summarizes a review
of related work, paying special attention to the study of vulnerability and cas-
cading failure phenomena in complex networks. Section 3 describes the formal
model and the main concepts that allow us to quantify the vulnerability of a
repository to random failures. Section 4 contains the test of the model on three
major programming language repositories and the results obtained and Section 5
covers the discussion of its implications and possible applications. Finally, the
last section summarises the main conclusions of this work.

To make the research method used in this work available to the scientific
community, the code is published in the repository “Open-source Library In-
dexes Vulnerability Identification and Analysis” (OLIVIA) [7].

2 Literature review

In software engineering literature, the term vulnerability usually refers to a
particular code defect that can be used by a malicious attacker to get a benefit.
However, we use this term to refer to the potential damage to a repository due
to any type of error or malfunction in its components. Note that in the model
we propose in this article, a defect is not only a security flaw and that we pay
attention to the function of the entire repository, not a particular package. In
short, our interest is to study the vulnerability of a package repository as a
whole and how simple errors trigger a cascade of failures affecting long chains
of packages in the network of dependencies. In this section, we review first the
literature related to package repositories, focusing on their networked structure,
then the literature about the study of vulnerabilities in complex networks. It is
not intended to be exhaustive, but to mention the main research lines in these
topics.

The use of package repositories has grown in the last years in both propri-
etary and open-source software. With the expansion of collaborative projects,
the importance and size of open-source repositories are becoming much more
prominent, e.g., popular programming languages such as Java with its Maven
repository, JavaScript with npm, Python with PyPI or R with CRAN, among
others [8].
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The use, management, and maintenance of these ecosystems have challenges
and issues, some of them are related to the networked structure of dependencies
among packages. For example, the colloquial term “dependency hell” [9] is
often used to define issues caused by the long chains of dependencies an installer
has to fetch, something particularly critical in large software compilations [10].
Some package-management systems do regular surveillance, e.g., CRAN, the
primary source of R packages, checks the running of packages to find errors and
inconsistencies in the versions. But this type of predictive maintenance is not
common, and developers usually go blind choosing packages within a repository.

We also find security risks associated with the use of repositories that can
depend on the dependency network. So, some authors identify malicious pack-
ages [11] and evaluate the propagation of a known set of security vulnerabili-
ties [12, 13]. An interesting research line uses data mining techniques to exploit
the heterogeneous information contained in repositories that improve the knowl-
edge about software development [14, 15, 16]. These works can complement the
intent to understand developer decisions and practices that affect the evolution
of software ecosystems [17]. However, to explicitly formalize the network of de-
pendencies as we do in this article is a recent and under-explored approach, al-
though network theory seems to be suitable for studying the complexity of these
systems [18]. Among these works, it is worth mentioning some some studies
of software systems [19, 20] and comparative analyses of popular programming
languages [21, 22, 23]. These works show that by formalizing the network of
dependencies, it is possible to unveil relevant features such as changes in size
and complexity over time, the little fragmentation due to the existence of a large
component of packages, or the heterogeneous distribution of dependencies that
shows how a few packages accumulate a large proportion of the dependencies.

The relationship between security risks and the topology of the dependency
network in npm is analyzed in [24]. The authors find that some individual
packages could impact a large part of the repository and propose some actions
to reduce this risk by mainly vetting untrusted maintainers and code releases.
We will see that these results are in line with the results of our work.

Aware of these risks, some European research groups have launched the
HORIZON 2020 project “Fine-Grained Analysis of Software Ecosystems as Net-
works” (FASTEN), although they propose a higher level of granularity in the
analysis than in our work, trying to map the function call dependencies in a
repository [3]. Other related initiatives have recently emerged within the open
source community, such as the Open Source Security Foundation’s “Securing
Critical Packages” technical working group [25].

The term vulnerability is widely adopted in the network and complex sys-
tems literature. Within this literature, we first explore vulnerability by looking
at the opposite term robustness. In network theory, robustness refers to the ca-
pability of a network to continue operating after a damage in a set of nodes [26].
Robustness has long been a topic of central interest with multiple applications
on technological, economic, social, or biological systems whose dynamics depend
on the topology of the interactions among their components. Take, for exam-
ple, the electric power system, the transportation system, the Internet, or the
financial system, among others, where a failure in a part can severely affect the
system’s operativeness as a whole depending on the structure of the network. A
common approach to study robustness is to model failures as removals of nodes
and study how these removals, random or deliberate, affect the overall connec-
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tivity of the network [27, 28]. We find prolific research that uses mathematical
and computational models to analyze phase transitions that separate the states
of tolerable connectivity from unacceptable disconnection [29, 30, chapter 6];
Gross and Barth [31] provide a new review of the analytic framework used to
study network robustness. Unfortunately, failures in package repositories do not
fit well into this approach, since connectivity cannot be related to a measure of
robustness in package networks.

Another approach to analyzing the vulnerability in networks is to model
explicitly the spread dynamics [32]. In this case, we are interested in how the
structure of a network affects the spread of a failure. Once again, we find a
rich range of mainly socio-economic and biological phenomena that display a
spreading process over a network, and that has generated a rich theoretical and
empirical research (in a socio-economic context we usually talk about diffusion
processes, while in a biological context we talk about epidemic processes) [33,
Chap. 9], [34, Chap.15,16], [35, Chap. 10], [36]. We can group most of the
theoretical models into three different classes that differ in the object and the
mechanism of spreading. In all of them, an individual interacts with its neigh-
bours (defined by a network), and as a result of this interaction, the individual
changes its state. First, we find contagion-dependent models, i.e., an individ-
ual exposed to an infected neighbour can be infected with a probability. This
mechanism similar to biological infections is the basis of many epidemic mod-
els [37, 38]. Second, frequency-dependent models (or threshold models), i.e.,
an individual changes its behaviour or belief if a fraction of its neighbours that
follow another behaviour or belief is greater than a threshold. These models
have been proposed to study technology (or innovation) adoption and opin-
ion formation [39, 40]. And third, payoff-dependent models, i.e., an individual
chooses a strategy and plays with its neighbours, then it gets a payoff depend-
ing on all players’ strategies, and changes to another neighbouring strategy if
it gives more payoff. These strategic models have long been studied by game
theory [41, 42]. There is an excellent review of these models in [43, Chapters
3-4]. It is possible to sophisticate these models considering links of multiple
classes (i.e., hypergraph) and formalize more complex interaction to study hy-
pergraph robustness in higher-order networks. There is an emerging research
line on contagion dynamics in high-order models (see the review by [32]).

However, the spread of failures in package repositories differs from these
models: (i) there is no strategic interaction among packages like in payoff-
dependent models; (ii) a failure in a package does not depend on the frequency
of neighbouring failures like in frequency-dependent models; and (iii) unlike
contagion-dependent models, we need to consider the number of defects that
each package accumulates. In package repositories, unlike biological systems,
it is only necessary to repair the package sourcing of error to avoid the prop-
agation to all transitively dependent packages. Moreover, any of the packages
in-between may solve the problem for its transitive dependants if there are no
alternative paths from the origin of the error. We also note that, in contrast to
conventional epidemic or social-economic models, propagation phenomena in a
package repository are inherently asymmetric.
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3 Method

3.1 Description of the network model

We propose a model where the network corresponding to a package repository
is constructed using a simple directed graph G = (V,E). We call G a package
dependency network. The nodes (V ) represent the packages in the repository
and the arcs (E) represent the dependency between packages. The arc (u, v) ∈ E
expresses the relation “node v depends on node u”. We will write u → v to
express the existence of a dependency between the two nodes. Only packages
that have at least one dependent or at least one dependency are considered. This
kind of dependency is a reflexive and transitive binary relation, i.e. a preorder,
over the domain of packages in the repository. That is, we consider that each
package depends on itself, v → v for all v, and from u → v and v → w it follows
that u → w. In the latter case, we say that u is a transitive dependency of w,
and that w is a transitive dependent of v. A defect or failure in a package may
potentially affect itself and all of its direct and transitive dependants.

3.2 Modeling vulnerability

We consider that a package repository must fulfill the function of uninterrupt-
edly providing a set of reusable, quality software components that operate ac-
cording to its specifications. We shall say that the service level of the repository
decreases when its operation deviates from this role. When a defect is intro-
duced into a package of the repository, we will say that this node fails in the
network model. This failure results in damage, a decrease in the service level of
the repository.

We will not assume any implicit restrictions on the nature of failures arising
in the repository. That is, we are not focusing on a particular kind of defect, nor
on a particular set of possible causes. These causes are assumed to be diverse –
human errors, hardware failures, communication or process errors, etc.– and the
superposition of their effects is seen as a stochastic process: we will model the
vulnerability on the assumption that the repository is subject to the continuous
introduction of defects of a random and independent nature.

Our concept of vulnerability shall seek to reflect the statistically expected
damage that the repository endures when facing these random defects. We
start by analyzing the failure of a single package. We establish a mapping
between each package and a measure of this damage –what is the damage to the
network caused by the introduction of a defect in some package?–, i.e. a cost
function over the domain of the network nodes. Thus, the expected damage
caused to the network by a random failing package would be the average value
of this function. However, considering a network that presents a single failure
is unrealistic. Therefore, if we want a meaningful model, we need to generalize
our cost function to the case of subsets –what is the damage to the network
caused by the (possibly concurrent) failure of some subset of packages?–. But
this abstraction is not easy to set up for any cost function. In general, the
relationship between the value of the function for a set of packages and its
subsets, including single packages, depends on the structure of the network and
would be quite challenging to define explicitly for any combination of packages.
Yet, this difficulty can be avoided by using an additive cost function, such that
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the sum of costs of the failure of two disjoint sets of packages is equal to the
cost of the failure of the union set.

Definition 1 (Failure vulnerability). Let G = (V,E) be a package dependency
network and consider the set function Reach : P(V ) → R such that:

Reach(W ) =

∣∣∣∣∣ ⋃
v∈W

({v} × out(v))

∣∣∣∣∣ for any W ⊆ V

where out(v) denotes the out-component of v ∈ V , i.e. the set of nodes that
can be reached by recursively following all outgoing edges from v, including v.

We define the failure vulnerability of G, measured using Reach as a cost func-
tion, and denote it by ϕReach(G), as the average value of Reach over individual
network nodes:

ϕReach(G) =
1

|V |
∑
v∈V

Reach({v})

It holds that Reach({v}) = |{v} × out(v)| = |out(v)| and therefore we have that

ϕReach(G) =
1

|V |
∑
v∈V

|out(v)|

Note that Reach is possibly the simplest function that evaluates the cost
of failures on a structural level. For a single package, it maps to the num-
ber of packages potentially affected through direct or transitive dependencies.
However, it should be noted that the definition of Reach does not explicitly ac-
count for the number of packages affected, but rather for the number of defects
introduced into the network. Considering other failing packages, this effect is ac-
cumulative, since defects transitively inherited from one dependency are added
to defects inherited from another, increasing the damage to the network.

It is immediate to check that Reach is additive, i.e. Reach(X)+Reach(Y ) =
Reach(X ∪ Y ) for all disjoint X,Y . This property allows to compute the ex-
pected damage to the network of k random packages incorporating a defect as
kϕReach(G) –the potential introduction of this number of defects in the network,
with some packages possibly affected by more than one defect–.

Reach is useful for measuring the damage to the repository by defect prop-
agation. However, other cost functions with different assumptions can also be
considered. If we associate a specific cost w(v) to each package v in the net-
work, we could easily calculate the weighted version of Reach as the sum of
individual costs of the elements in each out-component, added across the set
of failing packages. The cost may include information external to the network,
for example, w(v) could be the number of open source projects (outside the
repository) that depend on v.

The exact value of ϕReach for any network can be obtained from the tran-
sitive closure of the underlying graph, which may be reasonably computed for
real package dependency networks using Purdom’s algorithm [44] or one of its
variants, such as the marginally more efficient Goralcikova-Koubek version [45].
These require the prior computation of the condensed network, which is usually
done using Tarjan’s algorithm [46]. The entire process can be completed with
quadratic worst-case time complexity in the number of nodes in the network.
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3.3 Modelling immunization

We say that a node is immunized when any action is taken to eliminate the
possibility of it failing or incorporating a defect. It is clear that immunizing
certain nodes reduces the vulnerability of the network. Note that we use the
term immunization as an abstraction of any preventive action, e.g., special mon-
itoring of a package by the repository manager, that reduces the probability of
failure in a package. Immunization at its maximum effectiveness would make
this probability zero, although this is not possible in real systems. The analysis
of the vulnerability of a dependency network would be greatly complicated if we
were to consider a stochastic model. However, we will show in the results that
the assumption of zero defects in an immunized package allows getting impor-
tant insights into the complexity of these phenomena. Under this assumption,
the effects of immunization should be interpreted as the maximum level of what
could be achieved by preventive activities.

Considering a theoretical immunization that prevents the appearance of de-
fects in a node from any cause, we must also eliminate the possibility of the
defect appearing due to transitive propagation from one of its dependencies.
Therefore, in our model, an immunized node also prevents the propagation of
defects to its dependents. It should be noted that each node plays an inter-
mediary role, forwarding the defects of all its transitive dependencies. Node
immunization prevents this transmission, but the defects could still reach all or
part of its transitive dependents through alternative paths.

Since an immunized node can neither present nor propagate defects, the
vulnerability of the immunized network can be analyzed simply by defining an
ancillary network where we eliminate the node together with its incoming and
outgoing edges see Figure 1).

Definition 2 (Immunization delta). Let G = (V,E) be a package dependency
network, W ⊂ V a set of nodes in the network and G .−W the network result-
ing from removing all nodes of W from G. We define the immunization delta
∆µ

G(W ) as the reduction in the vulnerability of G, measured by a cost function
µ : P(V ) → R, due to the immunization of W :

∆µ
G(W ) = ϕµ(G)− |V | − |W |

|V |
ϕµ|P(V −W )(G .−W )

Here the correcting factor |V |−|W |
|V | accounts for G .−W having |W | less nodes

than G.

In our model, we use Reach as the cost function, so the immunization delta
∆Reach

G is the decrease in the average of packages potentially affected by a ran-
dom failure due to the immunization of a given set of packages in G. Figure 1
shows some examples of immunization in simple dependency networks with the
numerical values of the immunization delta.

Definition 2 gives a direct method for calculating the immunization delta
for arbitrary cost functions and immunization sets on any package dependency
network, computing vulnerability twice, first in G and then in G .−W .

From a practical point of view, it is interesting to determine which set of
nodes to choose to achieve the greatest possible immunization delta, so that
vulnerability can be efficiently reduced. For example, a package manager might
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Figure 1: Examples of immunization in simple package dependency networks.
The figure shows three initial networks, i.e., A, B and C, and two immunization
cases for each one, i.e., A′, A′′ and so on, in which one or two nodes are immu-
nized. We show Reach values for each node, the network vulnerability before
and after the immunization of different sets of nodes (highlighted in black) and
the immunization delta. The symbol • denotes the set of immunized nodes in
each case. The calculations of these magnitudes are detailed in the first row of
cases. The Reach of a node (see Definition 1) is the size of the out-component
(i.e., the set of nodes that can be reached by recursively following all outgoing
edges from a node, including itself). The Reach value for an immunized node is
0 because neither itself nor its outgoing arcs (drawn by dotted lines) are consid-
ered in the calculation. For the same reason, Reach values for dependencies of
an immunized node are decreased. The network vulnerability is the average size
of the out-component of the nodes. The immunization delta (see Definition 2)
is computed as the difference between the network vulnerability of the initial
network and the immunized network.
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be interested in providing additional assets, performing special monitoring, or
imposing certain restrictions on key package developers, so that the network as a
whole is less vulnerable to random failures. Depending on the type of protection
strategy to be implemented and the resources available, it would be desirable to
obtain an optimal set of k elements to immunize for an arbitrary k parameter.
Clearly the difficulty of this task depends on the chosen cost function, but in
general it seems a hard combinatorial problem, similar to other optimization
problems on graphs. In the following we formalize it for the Reach case.

Definition 3 (MAX-k-DELTA-REACH problem). Let G = (V,E) be a package
dependency network and k < |V | a natural number. We define the problem of
maximum immunization measured by the Reach cost function (MAX-k-DELTA-
REACH) as the problem of finding V ′ ⊂ V such that |V ′| = k and ∆Reach

G (V ′)
is maximized.

Indeed,MAX-k-DELTA-REACH can be proved NP-hard (Appendix A, The-
orem 1 in the supplemental file). Dealing with an optimization problem on
set functions it is interesting to check if ∆Reach is submodular, in which case
we would have a specific and powerful set of tools available for maximiza-
tion [47, 48]. Unfortunately, it is not, as can be easily proved by counterexample
(Appendix A, Proposition 1, in the supplemental file).

The OLIVIA repository [7] includes a Python library of functions with the
definitions of this section together with a collection of Jupyter Notebooks as a
user guide for researchers.

4 Results

We study three real reference package repositories using the previously defined
theoretical framework, focusing on the Reach cost function. In this section, we
outline the results and our analysis in relation to them.

From now on, when we use the term vulnerability of a network, it should be
understood that we are referring to ϕReach, the vulnerability to failure measured
using the Reach cost function.

4.1 Sample networks

We have tested our model in three package dependency networks derived from
PyPI, npm and Maven, the centralized package repositories of Python, node.js
(JavaScript) and Java, respectively. These package repositories are associated
with very popular programming languages (see for example TIOBE index [49]).
On the other hand, we want heterogeneous repositories in size, which a priory
could have different dependency structures, to get more general results.

The dependency information was constructed from the January 12, 2020,
libraries.io data dump [8]. Libraries.io is an online service that aggregates
information related to open source package repositories. It has been used with
good results in other works [21, 50, 51, 52].

To extract the necessary information for our model we have used only the
dependencies file included in the data distribution (dependencies-1.6.0-2020-01-
12.csv). For this purpose, a simple script was utilized to read the source data,
filter the dependencies corresponding to a specific repository and build a directed
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network model. Our theoretical approach is highly unconstrained in relation to
the causes and types of defects. Thus, we consider dependencies in their broadest
sense, in line with the UML standard definition of usage dependency [53], in
which one package requires another package (or set of packages) for its full
implementation or operation. So all kind of dependencies present in the file
–runtime, test, development and build– are extracted and incorporated into the
model.

We have only considered the dependencies at the package level and not the
version level. Most package managers allow the definition of dependencies with
version constraints. Solving a set of this kind of dependencies is a problem that
does not generally have a unique solution. Moreover it is intractable [54], so
package managers use heuristic techniques to approximate a valid set of de-
pendency versions. Hence, the exact version of code that will end up being
incorporated into a project depends on factors that are largely impossible to
control at the network definition stage and so the dependency problem with
versions generates arbitrariness in the determination of the edges between pack-
ages. Version-level models can be proposed on different sets of assumptions
(which will inevitably introduce additional biases) to answer specific research
questions. Given that we aim to draw interpretable conclusions about how struc-
tural features contribute to defect propagation, we do not consider that our work
will benefit from this level of detail. Also, our modelling at the package level
obviates the analysis of the specific use of subroutines or library methods. We
believe that these assumptions, however, allow us to get a stylized model with
enough complexity to understand the potential damage that defects in some
packages can generate in others, compromising the functionality of the repos-
itory. All the proposed results are in any case applicable to network models
of higher granularity, for example, in the FASTEN project mentioned in the
literature review.

Therefore, the network corresponding to a package repository consists of the
packages, i.e., nodes, in the repository and the set of arcs that represent the
dependencies among packages. There is an arc from package A to package B if
at least one version of B depends on some version of A. The implementation
of the construction of the dependency network can be found in the OLIVIA
repository [7].

4.2 Vulnerability characteristics of repositories

The sizes of the three models are markedly different, both in the number of
nodes (packages) and arcs (dependency relationships) (Table 1). In addition,
the dependency structure contains, particularly in Maven and npm, a significant
number of cycles. We note that the occurrence of cycles in the dependency
network is possible due to the presence of dynamic processes that not only
create but also modify the packages in the repository. If packages were published
once, at a single point in time, developers would only be able to include as a
dependency the already existing packages, and cycles would be impossible. This
is the case, for example, in citation networks. But packages can be updated at
any time after publication, eventually adding new dependency relationships.
The aggregation of cycles in a network results in the emergence of strongly
connected components (henceforth SCC ), i.e., sets of nodes such that there is a
directed path between any pair of them. In package dependency networks, this
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means that within an SCC all packages are transitively dependent on all others.
If we measure ϕReach in our models, we observe large differences that seem

to be related to the presence of a giant SCC, of significant size relative to the
magnitude of the network and much bigger than the second largest (Table 1).
For example, introduction of k defects in PyPI can potentially replicate across
the network structure 15.73k times, but this expected value is 1805.54k in Maven
and 27193.83k in npm. So, even when npm is around 21 times bigger in size
than PyPI, the effect of the introduction of k defects in npm is approximately
1723 times higher than in PyPI. This shows the multiplicative effect of the size
of the SCC and therefore the importance of taking into account the complexity
of the dependency structure when studying the vulnerability of any repository.

The emergence of a giant SCC is a well-known phenomenon in the field of
network theory. In the case of directed networks it can be modelled by such a
simple mechanism as random directed networks [55], a variation of the classical
Erdös–Rényi model [56]. In the evolution of random networks, a critical point
–dependent on the average number of edges per node– separates the subcritical
regime, where the largest SCC has on the order of log(n) elements for a network
of n nodes, from the supercritical regime, where there is a distinctly larger SCC.
Although it is clear that the structure of package dependency networks cannot
be explained solely by the random network generation mechanism, we will use
the terms subcritical and supercritical to refer to the two regimes in which we
can classify a particular repository. Using the criterion of the order of the size
of the SCC, PyPI would be in a subcritical regimen, without a giant SCC, and
its vulnerability is therefore low. Maven and npm, on the other hand, would
be in a supercritical regime, with a large SCC, and its vulnerability is therefore
much higher.

Some authors use the concepts of weakly connected component (WCC), i.e.,
subgraph where all nodes are connected by some path, ignoring the direction
of edges, and SCC to characterize the structure of directed networks. There
is evidence [57, 58] that many directed networks show a structure where most
nodes belong to a WCC that can be partitioned into three main subsets: the
largest SCC, the set of nodes that can reach the SCC, i.e. the IN set, and the set
of nodes that can be reached from the SCC, i.e. the OUT set, which is usually
represented in the form of a bow-tie diagram [57]; the partition of the nodes is
completed with other less relevant subsets (see [59] for a complete definition).
The results show that Maven and npm present a bow-tie structure (Table 1)
with a very large OUT module. This asymmetric bow-tie structure (a significant
SCC with a huge OUT) helps to understand the fact that the vulnerability
appears to be of the order of the size of the largest SCC (Table 1). In the
bow-tie model, let us consider a network of size n and (i) an SCC of significant
size but small compared to the network, (ii) an OUT set of size comparable to
that of the network and (iii) negligible vulnerability caused by nodes outside the
SCC (i.e., very sparse connectivity within the remaining components). Then the
vulnerability of the network is dominated by the contribution to the propagation
of defects from nodes inside the SCC, each including nodes in OUT, of size
similar to n. Therefore, the average defect propagation can be approximated by
the size of the SCC. Note how this phenomenon we observed in our case studies
requires the relative balance specified in (i) and (ii). If the SCC were very
small, its contribution to vulnerability is diluted by other sources of vulnerability
included in the rest of the model components. On the contrary, if the SCC is
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Table 1: Bow-tie components and vulnerability to failure of reference package
dependency networks. n: number of packages, m: number of arcs (dependency
relations), 2nd and 1st-SCC : size of second largest and largest strongly con-
nected component present. IN, OUT, Tubes, Tendrils and Disconnected are
bow-tie network structural components (see [59] for a definition of these terms).
ϕReach: vulnerability to failure measured by the Reach cost function and next
to it vulnerability ratio in relation to the size of the network.

of a size comparable to the network, the aggregate effect of defect propagation
grows quadratically, and therefore its average could be approximated by a linear
function over n. We remark that (iii) is something we observe in our models
of real networks, where immunization of the SCC almost completely eliminates
network vulnerability (Table 2).

The definition of vulnerability with an additive cost function (Reach) allows
us to get interesting statistical results about the risk a project faces by using
a repository. Assuming a known rate of defects r per period T that occur
in a repository of size n, the expected number of defects for a project with m
direct dependencies will be mrϕReach/n, where ϕReach is the vulnerability of the
repository. The application of the above formula yields a value of approximately
0.025mr for our model of npm (see ϕReach in Tab. 1), so for mr ≥ 40 a client
project may expect to incorporate a defect from the repository. For example, if a
project imports m = 4 packages from npm, it will be sufficient to consider a rate
r of approximately 10 defects per T for the project to expect the incorporation
of a defect over T . For the same m = 4, r would need to be slightly higher
(r ≈ 18) in our model of Maven but more than 800 in PyPI. Note that r may
refer to any type of specific defect of interest, as security vulnerabilities or bugs.

It is also straightforward to precisely estimate the odds of a project using
the repository incorporating at least one defect after f failures in the repository.
The probability that any given package is not affected by a random failure in
the network is 1− ϕReach/n, and hence the probability that it incorporates no
defects after f failures in the repository is (1−ϕReach/n)f . If a project imports
m packages from the repository, the probability that it incorporates at least one
defect after f failures is therefore 1− (1− ϕReach/n)fm. If we take for example
m = 4 in addition to ϕReach and n in Table 1, we have that this probability
exceeds 0.99 after 46 failures (out of more than one million packages) and 82
failures (out of more than one hundred thousand packages) in npm and maven
respectively, but the same level of risk only occurs in the smaller PyPI after more
than 3800 failures. We conclude that developers have no hope of remaining free
of defects when using supercritical repositories, even considering high-quality
ones.

These simple results underline the important effect that the vulnerability
of repositories may have on the ecosystem and the striking gap between low
(subcritical) and very high (supercritical) vulnerability repositories.
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Table 2: Decrease in vulnerability in supercritical package dependency net-
works by immunizing the largest strongly connected component (SCC) and the
set of strong articulation points of it (SAP).

4.3 Optimization of immunization sets

In our model of PyPI, which as we have seen is in a subcritical regime, it
is possible to significantly reduce ϕReach by immunizing a small set of nodes.
Let P = (V,E) be the package dependency network corresponding to PyPI.
We select a set W ⊂ V to immunize. The selection can be done heuristically
according to simple criteria. Choosing the 10 packages with the highest out-
degree, i.e., the number of direct dependents, we have that ∆Reach

P (W ) = 3.73.
This represents a reduction in vulnerability of 24% by immunizing 0.02% of
the network. It is easy to improve this result. For example, let us define
Upper : V → N such that

Upper(v) = |out(v)| · |in(v)|

where out(v) and in(v) denote respectively the out-component –i.e., the set
of nodes that can be reached by recursively following all outgoing edges from
a node– and in-component –the set of nodes that reach a node by recursively fol-
lowing all their outgoing edges– of v. Upper(v) is an upper bound on ∆Reach

P ({v}),
so it is a rough heuristic about the potential of immunization for individual pack-
ages. If we take W as the top 10 packages according to Upper values, we achieve
a ∆Reach

P (W ) = 5.45, a 35% reduction in the vulnerability.
We consider immunization of subcritical networks to be an interesting prob-

lem, but their vulnerability is negligible when compared to supercritical net-
works, and hence in this paper we will focus on the latter.

In the case of supercritical networks, we have seen that immunization of the
entire SCC results in a drastic reduction in vulnerability (Table 2). However,
not all packages within the largest SCC are equally important. It is foreseeable
that the immunization of many sets does not alter the connectivity of the com-
ponent as a whole, i.e., the rest of the packages are still connected by alternative
routes. Since the strong connectivity of a giant component is the cause of the
network vulnerability, to reduce it we must eliminate this property by choosing
immunization sets that considerably decrease the size of the largest SCC. This
task belongs to the family of problems of locating feedback sets in a network,
which are generally intractable [60]. However, we may still employ approximate
alternatives. We can, for example, look at the set of strong articulation points
(SAP) of the largest SCC. Strong articulation points –whose detection can be
performed in linear time relative to the number of nodes and arcs of the compo-
nent [61]– are those whose single removal disintegrates the SCC, decreasing its
size and creating at least one new SCC. In both Maven and npm, the SAP set of
the larger SCC is much smaller than the SCC itself, but still its immunization
achieves a reduction of the same order in the vulnerability (Table 2).

SAP is much smaller than the network, but is of considerable size and de-
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termined by the structure of the largest SCC itself. If we wanted to reduce the
effort that a repository manager would have to make to take care of these pack-
ages and reduce their failure probability, we would need to get a smaller target
set, i.e., solve an instance of the NP-Hard MAX-k-DELTA-REACH problem
(Definition 3).

In this paper, we make an initial approach to the problem of finding ap-
proximate solutions. We test some well-known network centrality measures:
out-degree –i.e., number of direct dependants– and betweenness –i.e., the im-
portance of a package as an intermediary among the rest of the packages through
paths of transitive dependencies, the greater the number of dependency paths a
package is a part of the greater its betweenness [62]–, to test their performance
in relation to the problem of choosing a given number of elements to immunize.

We note that the out-degree is expected to be correlated with the size of
the out-component and with the probability of belonging to the giant SCC and,
within it, to the SAP set. Moreover, the out-degree is an upper bound on the
number of new SCCs that can be created by removing a node from the SAP, or
the ability to disaggregate the SCC.

High betweenness centrality nodes are located in a large number of shortest
paths between pairs of nodes in the network and correspond to packages that
are in the middle of numerous chains of transitive dependency in the repository.
To understand the heuristic value of this measure for our problem, consider
that a high betweenness value for a package p guarantees a high number of
transitive dependent and dependency pairs, corresponding to paths that pass
through p, and potentially protected by the immunization of it. In addition, the
existence of many different paths in the network between its dependents and
dependencies would decrease the probability that those passing through p are
the shortest. Therefore, for high betweenness nodes we can deem the probability
of alternative paths for defect propagation to be smaller.

Our approach is to select the top-k elements with respect to centrality values.
The computation of betweenness is not feasible –or at least very difficult– on
the whole network, so we will limit the calculation to the SAP set, precisely to
the induced subgraph. It contains, as we have seen, the structures responsible
for most of the network vulnerability.

In short, the heuristics we test to solve theMAX-k-DELTA-REACH problem
are:

• Ranking out-degree: selects the k elements with the highest out-degree
(number of direct dependents) in the network.

• SAP + Ranking out-degree: selects the k elements with the highest out-
degree within the SAP set of the largest SCC of the network.

• SAP + Ranking betweenness: selects the k elements with the highest be-
tweenness centrality within the SAP set of the largest SCC of the network.

Table 3 shows the results of the application of the proposed heuristics for
immunization target sets of sizes k = 1, 10, 200 and 1000, on the two supercritical
reference networks considered. We highlight the fact that a relatively good
immunization set of size k can be obtained simply by selecting the k nodes with
the highest out-degree centrality. In general, it appears that this result can be
slightly improved by limiting the selection to the SAP set.
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Table 3: Immunization results on reference networks of target sets of size k ob-
tained using different heuristics. For each value of k and each repository, three
columns headed by shorthand symbols are shown. If we consider in each case
a network G and an immunization set S of size k, we write ∆ for ∆Reach

G (S),
the reduction in vulnerability of G as a result of S immunization, ∆/ϕ for
100 · ∆Reach

G (S)/ϕReach(G), the ratio of reduction in vulnerability relative to
the original vulnerability (shown in percentage), ∆/k for ∆Reach

G (S)/k, the vul-
nerability reduction per immunized package. Values in bold correspond to the
maximum reduction in vulnerability (when two or more heuristics are tested).
The absence of values in some cells corresponds to k equal to the sizes of the
SAP in Maven (k = 351) and npm (k = 5902) because there is no point to
use rankings when the whole SAP is immunized. Similarly, it makes no sense
SAP+rankings heuristics with k = 1000 in Maven because the size of the SAP
is 351.
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In some cases, considerably better figures can be obtained by employing
betweenness centrality, but not always. Overall, the markedly heterogeneous
results suggest that either each network and/or each value of k require a different
heuristic, or that there are much more efficient methods than those used here to
select immunization sets, which would explain the variability obtained. In any
case, it seems clear that the immunization performance per package decreases
as k increases. Although our methods are approximate, this suggests that most
of the network vulnerability is generated by a small combination of packages.

In any case, some of the results of this exploratory analysis are remarkable.
For example, using SAP+Ranking betweenness we have reduced the vulnera-
bility of Maven by 26.11% by immunizing only 10 packages out of more than
125000, or by 62.5% the vulnerability of npm by acting on one thousandth of
its 1074508 packages.

5 Discussion

The repository vulnerability based on the cost function Reach shows how sensi-
tive a repository is to the introduction of random defects. Considering the large
number of failures that can affect the functionality of a repository, e.g. depen-
dency issues [21], security vulnerabilities [12, 13], the assumption of independent
and random errors seems to be reasonable.

We can state that in repositories with high vulnerability, e.g. Maven and
npm, defects inevitably introduced at different stages of package development
propagate more easily through the dependency structure, potentially affecting
a larger number of other packages. For example, we see these dependency
problems with packages updates [21, 63].

The causes of vulnerability are related to the structure of the dependency
network as some authors have already pointed out [21]. Our work goes one step
further and proves that within the complexity of this network, the existence of a
large set of packages that are transitively dependent on each other, i.e., a large
SCC, explains most of the vulnerability of a repository. In fact, the vulnerability
appears to be of the order of the size of the largest SCC present, moreover this
fact seems to be related to the asymmetric bow-tie structure already commented
on. This is a crucial conclusion from which important implications can be drawn.
These vary depending on the role one plays in the management, development
and use of repositories. We distinguish four roles, i.e., the repository manager,
the package developer, the user and the scholar, which are discussed below.

We have empirically learned that the size of SCCs is directly related to the
vulnerability of a repository. The existence of an SCC significantly larger than
log(n) in a repository of size n is reason for concern. Our results suggest that
repository managers should prevent the growth of dependency vulnerability by
impeding or slowing down the emergence of a large SCC. This task would limit
the propagation of defects and can be achieved by implementing cycle control
measures, such as prohibiting or subjecting to special requirements the release
of packages whose inclusion in the repository creates a cycle of dependencies or
promotes the growth of complex cyclic structures. It can also be useful to involve
the community by publishing code guides and specific tools, helping developers
understand their individual responsibility for the health of the repository.

On the other hand, in repositories that already show a significantly large
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SCC, the probability that random errors affect a large number of packages
could be reduced by decreasing the likelihood that the packages that contribute
most to the vulnerability contain or propagate defects. Clearly, it is not possible
to make this probability zero, as we have assumed in our theoretical model of
immunization, but it would be worth dedicating special resources or prioritizing
those currently devoted to preventive actions that could reduce this probability.
We must also make the important point that discussing these critical packages
contributing significantly to the vulnerability only makes sense once the size of
the target set to be immunized has been fixed. The problem of immunizing the
dependency network is combinatorial in nature: for each target set size there are
one or more optimal solutions that do not necessarily share elements between
them and with other set sizes.

We can think of low-cost preventive measures, such as awareness campaigns
for developers or running automated code checks. In these actions, the largest
SCC in the repository or its SAP subset are targets to consider. Both sets
of packages can be efficiently obtained using well-known algorithms. Our ap-
proach allows calculating the theoretical maximum reduction of the vulnerabil-
ity, although the impact will be smaller in the real repositories. Even so, these
packages are the ones that should reasonably be considered for these preventive
actions.

It is also feasible to employ costly but very effective measures, such as hu-
man code reviews or audits to reduce the probability of defect presence and
propagation in some specific packages. The option of providing additional fi-
nancial or human resources to development teams could also be considered, in
line with recent initiatives such as the OSSF “Securing Critical Packages” tech-
nical working group, that seeks to identify “critical projects we all rely on” and
provide them with enhanced support [25]. These actions should focus on (i)
detecting or preventing defects in a package and its transitive dependencies or
(ii) reducing the number of direct package dependencies. In this case, it is nec-
essary to select a small set of key packages. We have shown that this problem
is computationally intractable and must be tackled with approximate methods.
We have proposed an initial set of techniques that allow significant reductions
of vulnerability for such small sets.

There are other interesting implications of the results for repository users
and the software industry. Developers that use software repositories should be
aware of the problems related to the package dependency, among other rea-
sons, because the growth of the dependencies seems to be exponential in many
repositories and therefore the potential issues related to them [63].

In this context, it is easier to understand the growing interest in the de-
velopment of tools for scanning software, for example assessing vulnerability
to security issues in the dependencies of a project, e.g. npm-audit, Eclipse
Steady [64]. Recalling that our approach to vulnerability goes beyond security
failures, some metrics proposed in our work could complement any vulnerability
analysis. Moreover, we can combine these measures with other statistics, such
as defect introduction rates, to compare different repositories. This could help
decision-makers in the software industry to assess the risks associated with us-
ing a repository, by quantifying the probability that packages imported into a
project incorporate defects.

Finally, we would discuss some research questions that arise from results and
can be interesting for scholars. We have seen that vulnerability is significantly
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conditioned by the presence of a giant SCC in the dependency network. Not all
repositories have a dominant SCC, in our work, for example, we have proved
that there is a giant SCC in Maven and npm but not in PyPI. The question is
to explain the causes of the appearance of a large SCC. Our results show that
the size of the repository is correlated to the existence of a giant SCC, but this
fact does not mean that size is the cause. As in other networked phenomena
already studied [65], we can expect that there is a critical point in the evolution
of a repository that separates the absence/existence of a giant SCC. According
to our results, PyPI would not have passed this point while Maven and npm
would have. However, we do not know the formation mechanism for this type of
dependency network that could be related to the practices and behaviour of the
community of developers [17, 66, 67]. The possible answers to this question are
also of interest to managers and developers, who, as we have already pointed
out, have important incentives to avoid the emergence of this sort of structure.

The results of the three repositories analysed should be discussed in the
light of the assumptions made in the construction of their models. This leads
to some limitations in their interpretation. Thus, the vulnerability measures
should be interpreted as upper bounds of the real values on the reference of
the historical snapshot used. These values, although cautious, can provide an
order of magnitude on the cost implications of dependencies, for example, as a
proxy of the revision costs that a bug in a package can cause in the develop-
ment of a software project. More accuracy could be achieved by modelling the
network using versioning and dependency resolution, considering function-level
calls, usage patterns, semantic dependency types, package release dynamics or
any other concept [68]. However, taking into account the complexity of solving
the dependency problem [54] grows with the level of detail and must be resolved
by using approximate techniques that do not guarantee a unique solution, which
may hinder the interpretation and generalisation of the results.

Another interesting question is the optimization problem of choosing a group
of packages that maximizes the reduction of vulnerability. We have proved
the complexity of this problem and shown that by using simple heuristics it
is feasible to get quite good results. However, there is room for improvement,
considering the size of some repositories, e.g. npm. Further study of this opti-
mization problem would be necessary. The development of more sophisticated
and efficient heuristics would be of interest to repository managers.

The asymmetric bow-tie structure in Maven and npm raises an interesting
question about the nature of this macroscopic pattern. The SCC may corre-
spond to packages with general or abstract functionalities. Its global utility
increases the probability of cycles, since the implemented functionality will end
up incorporated directly or transitively in a large number of packages, including
those that eventually fall within the SCC. The OUT module may correspond
to more specialized packages less likely to be reused. Since in a given domain
there are by definition fewer possible functionalities that are abstract than spe-
cialized, this argument could also explain a limiting factor to the growth of the
largest SCC. Clearly the concept of functionality is very dependent on the type
of repository and would require further research to validate this hypothesis.

There would be a final research question related to the nature of failures
and errors in repositories. All results of this work are based on the assumption
of random errors. The analysis could be different if we considered intentional
failures that, for example, pretended to cause damage to the repository [69].
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The study of the vulnerability of software package repositories to this type of
attack is also an interesting research line.

6 Conclusions

The widespread use of centralised package repositories in software development
is of increasing concern in a world that is entirely dependent on software prod-
ucts. In our view, this concern is not caused by the massive reuse of components,
which is desirable and has enabled enormous technological development in this
century. The underlying issue is the pressing sense that there are no clearly
defined processes or controls in place to assure quality, nor do we have a fun-
damental understanding of the structure and dynamics of these repositories on
which we critically depend.

With this work, we want to join the growing number of voices warning of
the situation and the urgent need for appropriate action. Our contribution is a
formal model which analyses the vulnerability to failures of software repositories,
in a conceptually similar way as previous work has modelled the vulnerability
of other complex technological, biological or social networks. By studying the
potential for random defect replication through the dependency structure, our
model makes it possible to quantify the vulnerability of any repository, carry
out comparative studies, and explain why some repositories are much more
vulnerable than others. Our vulnerability model could be applied to other
phenomena that share a similar dependency structure, for example, metabolic
networks [70] financial networks [71], and distribution networks [72].

We have shown in the paper that simple metrics are not sufficient to explain
the vulnerability of a software repository due to the structure of the dependency
network. Most of the vulnerability is due to the presence of a large strongly
connected component (SCC), a set of packages in which all depend transitively
on each other. Our knowledge of other complex networks leads us to suspect
that this structure does not appear gradually, but that there is a breaking point
where a large SCC emerges rapidly, causing the vulnerability of the network
to skyrocket. We have discussed some approaches for repository managers to
detect and prevent the emergence of a large SCC. Also, if it is present, to reduce
its size, which can drastically cut down the propagation of defects within the
repository and to external projects.

We hope our results will be useful not only to repository managers, but to
many of the agents that interact with repositories, such as package developers,
final users and scholars. Still, we acknowledge their limitations and propose
some possible lines of future work, such as higher granularity representations,
the use of weighted cost functions or the study of vulnerability to attacks. We
have also formulated some open research questions such as the causes of the
emergence of a large SCC and the optimization problem of choosing a group of
packages that maximizes the reduction of vulnerability.
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