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Abstract

The ever-increasing complexity of robots causes failures of them as a side effect. Successful detection of anomalies in robotic
systems is a key issue in order to improve their maintenance and consequently reducing economic costs and downtime. Going one
step further in the detection of anomalies in robots, different mechanisms to deal with data irregularities are proposed and validated
in present paper in order to increase detection rates. More precisely, strategies to overcome missing values and class imbalance are
considered as complementary tools to get better one-class classification results. The effect of such strategies is evaluated through
cross-validation when applying a standard supervised learning model, the Support Vector Machine. Experiments are run on an
up-to-date and public dataset that contains some examples of different software anomalies that the middleware of the robot under
analysis may experience.

Keywords: component-based robot, missing values, data balancing, anomaly detection, supervised learning, support vector
machine

1. Introduction

It is widely acknowledged that in present fourth industrial revolution, knowledge extraction from large volumes
of data is a crucial task. There are different facilitators [1] to support the transfer to Industry 4.0 [2], that include
Artificial Intelligence in general and Machine Learning (ML) in particular. Among all the resources associated to the
smart and future factories, robots play a key role [3]. There has been a 31% increase of industrial robots, reaching
384,000 units in the world in just one year, as reported by the Industrial Federation of Robotics [4]. Furthermore, the
annual sales volume of industrial robots have been increasing from last 6 years (2013-2018). In parallel to the increase
of sale figures, the complexity of robots is constantly growing over time. Additionally, the demands for robustness
and reliability are increasing as well. However, as any cyber-physical system, robots suffer from failures and finding
anomalies is required in order to allow recovery and continuous operation. Further effort must be devoted to anomaly
detection in robots as little attention has been paid to it by the international research community until now [5].

Present paper addresses the detection of performance anomalies experienced by the software of a robotic system.
Due to the widely acknowledged importance of data pre-processing, different such mechanisms (mainly data balancing
and handling of missing values - MV) have been applied in order to better identify anomalies. Based on previous work
on the same real-life dataset [6], [7], experiments are conducted by means of the One-Class Support Vector Machine
(SVM), that is discussed in section 4.

The successful detection (and identification in multiclass cases) of anomalies/faults is a challenging task that does
not only apply to robots [8], [9], [10]. For the benefit of industrial companies in general [11], and for the automatic
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anomaly detection in particular, ML techniques have been successfully applied in different fields [12] up to now.
Among the vast amount of classifiers that exist, SVM is one of the most widely applied ones for anomaly/fault

detection as it has proved to be a successful model. In [13] it is applied to a multi-sensor motor after preprocessing data
by means of the FShort-Time Fourier Transform. The aim is reducing maintenance costs of the electro-mechanical
system of the motor. More recently, Zidi et al. [14] proposed the use of SVM in the Wireless Sensor Networks field
where anomalies could come from different sources, such as software, hardware or the communication system. SVM
was benchmarked against some other well-known classifiers such as Naive Bayes (NB) or Hidden Markov Models,
obtaining positive results.

Within the stage of data preprocessing, necessary before the pattern recognition one, data irregularities are usually
found and must be overcame [15]. Present paper focuses on two of these irregularities, namely MV [16] and data
imbalance [17]. There have been previous proposals to deal with the MV in robot data, such as the one proposed
by Twala [18], in which a probabilistic approach is used, based on the a-priori probability of each value determined
from the instances in that node which have specified values. Robot failures are detected by applying a well-known
classifier: a Decision Tree (DT). The classifier is applied to all available data collected from the sensors of the robot;
it does not matter the type of attribute (whether numeric or nominal). The author applied and compared different
imputation techniques for handling the MV. As opposed to this previous work, present paper deals with the software
of a robot and strategies for discarding MV rather than imputing them, due to the induced error of imputation.

The imbalanced class distribution is another important issue that must be addressed before applying supervised
learning techniques. Several approaches to deal with this problem [17], [19] have been proposed up to now. Dataspace
weighting [20] was proposed in order to balance the classes by assigning different weights to instances of different
classes. As a result, classes have the same total weigh, with a positive impact on classification rate. On the other
hand, Cerqueira et al. [21] adopted an approach for dealing with MV similar to the one in present research: deleting
them. Additionally, they used the Synthetic Minority Over-sampling Technique (SMOTE) to get a class-balanced
distribution of data that improved the classification performance. The aim of such classification was carrying out
a predictive maintenance (that is, detecting anomalies) on the air pressure system of heavy trucks. More recently,
another study [22] has been published where SMOTE is applied for anomaly detection. In order to detect abnormal
events in an assembly line, data are processed (to remove outliers) with DBSCAN and then SMOTE is applied for
data balancing. Finally, Random Forest (RF) is used as the learning model for anomaly prediction. RF is also applied
in [23] to detect and classify failures of a vehicle fleet. Additionally, a parameter tuning framework is proposed to
overcome the class imbalance problem. Similarly, Luo et al. [24] considered the problem of imbalanced data and
its implications in anomaly detection. In order to solve it, they generated new synthetic data samples by means of
a technique called Triangle Syntethic Data, that is an extended version of SMOTE. They have used some standard
classifiers, such as DT, Logistic Regression, SVM, and NB, so they can verify the universality of the algorithms.
Rather than proposing the application of one balancing method, such as SMOTE, present paper is a comprehensive
study of the application of different balancing methods to improve anomaly detection.

One-class classification has been also addressed before, together with data balancing techniques. In [25] authors
analyze the effect that the imbalance of classes can have in seven one-class and two multiclass datasets. Six classi-
fication models, such as NB or SVM are compared when applying the Totem-Links undersampling technique. The
model finally proposed by the authors, based on the SVM classifier, managed to improve the tendency of the minority
class without affecting the majority class.

In the case of robotic systems, most previous work has been focused on the detection of hardware anomalies while
few papers deal with software anomalies, which have been largely ignored. Software failures often occur in robotic
systems and their automatic detection requires training data. The problem comes from the difficulty of obtaining the
data either because of the lack of execution traces or because the existing registers do not refer to the exact moment in
which they are produced. That is why it is difficult to find a dataset generated in a controlled environment where all
the information is available. One of the pioneer works on the detection of software anomalies within the framework
of component-based robots is [7]. In that paper, authors propose the only publicly-available dataset (further details
in section 3) that gathers data from different performance indicators of a robot. The dataset [26] has been used in
present paper as a benchmark dataset due to its interest and novelty. Authors of the dataset applied [27] One-Class
SVM (OCSVM) in order to compare its performance with that obtained when using another model. Thus, present
paper focuses on the effect of data irregularities on classification by OCSVM.

In the doctoral dissertation [28] associated to this dataset, compiling all the previous papers by these authors, they
2
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explored two alternatives. Firstly, they considered methods to understand and systematize resource control, for which
a set of tools was developed. On the other hand, they studied the topic that leads to present work: the use of different
ML techniques to detect anomalies and allow automatic reactions in execution time, based on the use of component
resources.

The rest of this paper is organized as follows: the proposed framework for anomaly detection (comprising the
applied classifier, the pre-processing strategies and the performance metrics) is described in section 2 while the case
study and its associated dataset is described in section 3. The setup of performed experiments and the obtained results
are presented in section 4. Finally, section 5 introduces the main conclusions derived from present research and points
outs some proposals for future work.

2. Proposed Framework for Anomaly Detection

Detection of anomalies is known as the problem of finding certain patterns in the data that do not conform to
a expected behavior [8]. This “anomalous” behaviour may be associated to failures or malfunctioning of any kind.
Anomaly detection in the software of a robotic system is addressed in present paper by using the framework that is
described in this section. The SVM classifier (see section 2.1) is used as the learning method to be trained on the
analyzed dataset (described in section 3). The applied pre-processing techniques are then explained in section 2.2 and
the different metrics that have been observed in order to compare the performance are described in section 2.3.

2.1. Learning Method

The SVM [29], [30] is a widely-applied classifier that implements the Statistical Learning Theory. The purpose
of this shallow ML model is to identify the hyperplane that maximizes the separation margin of data, according to
the defined classes in the training dataset. For generalization purposes, it tries to universalize the archetype that will
be used to classify the new data samples. This is the Structural Risk Minimization perspective, as opposed to the
Empirical Risk Minimization one, that is implemented in other models such as neural networks. SVM for one-class
classification (as the anomaly detection in present paper) is a learning model whose loss function is the Hinge function,
defined as:

L[y, f (x)] = max[0, 1 − y f (x)] (1)

Being x one of the observations taken from the input data, and y is the class x belongs to. f(x) is the output of the
SVM itself. During training, the SVM identifies the support vectors that are those data samples that maximize the
separation of data. Being S the set of support vectors, α the coefficients of the classifier, and β the coefficients of the
predictor, once trained the SVM can be defined as in equation 2.

f (x) = Σiεsα · yi · 〈xi, x〉 + β0 (2)

In present paper, a SVM equipped with a sigmoidal kernel function has been used. This function is defined as:

k(x, y) = tanh(axT y + c) (3)

2.2. Data Pre-processing

As previously stated, two data irregularities are addressed in present work. MV is an issue mainly when working
in a field where sensors are involved (as present case study). It is even more important due to the fact that most
supervised learning methods (SVM included) can not deal with MV. In present paper, MV are removed from the data
in order to apply the mentioned classifier. There are mainly two ways of removing MV: deleting those data instances
containing at least one of these values for any of the features or deleting those features containing at least one of these
values for any of the data instances. The former causes a reduction in the number of data samples while the latter
causes a reduction in the number of features, contributing the two of them to negative effects in the learning of the
classifier. In order to find an equilibrium, present paper proposes establishing permissiveness ratios for MV when
removing data features. That is, features containing a percentage of MV below the threshold are kept while all the
others are removed. For those features that are below the threshold and contain any MV, data instances comprising

3



N. Basurto et al. / Neurocomputing 00 (2024) 1–19 4

such MV are subsequently removed. Consequently, by increasing the MV ratio more features are considered by the
classifier but less instances and vice versa. To empirically set up such ratio, values of 0%, 10%, 25%, and 50% have
been tested in the conducted experiments (see section 4).

On the other hand, the imbalance of classes often appears in datasets for anomaly detection. It results on the
majority class (“normal” status of systems) getting a benefit from the classifier and being prejudicial to the results for
the minority class (anomalies/failures). In order to deal with this problem, different solutions (known as balancing
methods) have been proposed so far [19]. They are aimed at ensuring that the different classes have a similar number
of instances. The different methods to get such a class balance can be classified in 3 main categories [19] by taking
into account how do they get a similar number of instances: undersampling, oversampling, and hybrid methods. The
methods belonging to each one of these categories that have been applied in present research are:

• Undersampling methods: their strategy to get a balanced number of instances per class is creating a new
subset by removing some instances. Usually, the data instances to be removed are from the majority classes,
so their prominence is reduced in favor of minority classes. The most common and widely used method of
undersampling is known as Random Under Sampling (RUS). It is a simple non-heuristic method that gets a
class-balanced subset by randomly selecting those instances to be deleted.

• Oversampling methods: their strategy to get a balanced number of instances per class is creating a superset
by artificially generating data instances. Usually, these new instances are from the minority classes, so their
prominence is increased. As in the case of undersampling, there is a common and widely used method of
oversampling, known as Random Over Sampling (ROS) that randomly selects the data instances to be dupli-
cated. A more advanced oversampling method is Synthetic Minority Oversampling TEchnique (SMOTE) [31].
It introduces synthetic data samples created by interpolating different minority-class instances. In order to se-
lect these reference instances, k-Nearest Neighbors (KNN) algorithm is applied, as graphically explained in
Figure 1. SMOTE initially selects an xi minority class instance as a basis for creating new instances of the
minority class. By considering Euclidean distance, multiple data samples (Nearest Neighbors) of the minority
class (points from xi1 to xi4) are chosen from the dataset. Finally, an interpolation is performed in order to
obtain new instances ranging from r1 to r4.

Figure 1. Syntethic data creation with SMOTE. Adapted from [19].

• Hybrid methods: they combine the use of oversampling and undersampling techniques in order to reduce the
impact in only one of the classes that the single methods have. One of the hybrid methods that have been
applied in present work is ROS + RUS, that combines the two simplest methods of data balancing, previously
introduced. Additionally, in keeping with the idea in [31], SMOTE is combined with RUS, generating synthetic
instances of the minority class while randomly eliminating instances of the majority one at the same time.
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2.3. Performance Metrics
The performance of SVM when detecting the anomalies is validated through the standard metrics for supervised

learning methods. These metrics are described in this subsection and are calculated from the figures associated to a
one-class classification. These figures are the ones usually presented in a confusion matrix, that in anomaly detection
are:

• False Positives (FP): normal data that are mistakenly classified as anomalous.

• False Negatives (FN): anomalies that are mistakenly classified as normal data.

• True Positives (TP): anomalies that are correctly classified as such.

• True Negatives (TN): normal data that are correctly classified as such.

Based on these basic statistics that have been previously defined, some useful metrics can be calculated:

2.3.1. Accuracy
It can be seen as the global hit ratio, without taking into account whether the data is anomalous or not. It is defined

as:

Accuracy =
T P + T N

T P + T N + FP + FN
(4)

2.3.2. Precision
It is designed to reflect the proportion of data that the given classifier successfully labels as anomalous. This

proportion is calculated by taking into account the total number of data labelled as anomalous (TP + FP). It is defined
as:

Precision =
T P

T P + FP
(5)

2.3.3. True Positive Rate (TPR)
This metric, also known as Recall, focuses on the relevant data of the problem that, in anomaly detection, are the

anomalies. It is similar to Precision but the proportion is now calculated by taking into account the total number of
truly anomalous data (TP + FN). It is defined as:

T PR =
T P

T P + FN
(6)

2.3.4. False Positive Rate (FPR)
This metric reflects the proportion of “normal” data that is mistakenly classified as anomalous. This proportion is

calculated by taking into account the total number of “normal” data (FP + TN):

FPR =
FP

FP + T N
(7)

2.3.5. F1 Score
As there are strong dependencies between some of the metrics that has been introduced so far, a new one was

conceived in order to reflect a balance between the different aspects to be evaluated. This is the reason to introduce
the F1 Score, that is defined as:

F1 = 2 ∗
Precision ∗ Recall
Precision + Recall

(8)
5



N. Basurto et al. / Neurocomputing 00 (2024) 1–19 6

2.3.6. ROC Curve
The well-known Receiver Operating Characteristic (ROC) curve confronts TPR with FPR in a probabilistic way.

It is used to depict the performance of a classifier in a 2D representation. Thus, it supports easily finding the best
operating point in order to balance the two metrics (TPR and FPR). Based on this curve, the most important metric
for present paper is calculated: the area under the curve (AUC) [32]. Although the previous metrics have also been
calculated in all the experiments conducted in present study, it is AUC the top one as it is fair for evaluating classifi-
cation results on imbalance datasets [17] [33] and it was the one used by authors of the dataset under analysis [27].
As AUC is calculated as a portion of the area of the perfect classification (unit square) it takes values in the range [0,
1]. As a result, the closer the AUC value is to 1, the better.

3. Real-life Case Study

As previously stated, present work addresses the detection of performance anomalies in the middleware of a
component-based robot. It is done by analyzing a dataset [7] that was generated by researchers from the Bielefeld
University (Germany) and is available at [26]. Data were recorded from the ToBi robot, whose base is PatrolBot, built
upon the research platform GuiaBot, by MobileRobots. As a participant in the RoboCup@Home competition in 2015,
its mission was to carry out different tasks related to a waiter’s job, such as recognizing clients, asking them about
the drink or serving. To complete these tasks, the robot has different components such as two RGBD cameras for
person/object recognition, an arm for manipulating objects, and a speech recognition sensor, among others. Through
a message-oriented, event-based middleware called Robotics Service Bus (RSB) [34], all the robot components are
connected. Data from this RSB associated to different system executions have been captured at runtime thanks to a
tool called rsbag.

For the induction of anomalies, the authors of the dataset firstly surveyed researchers, university students, and
workers through a questionnaire. As a result, the most usual software anomalies for the platform were identified.
Then, the anomalies were induced in ToBi and were activated through RSB middleware in order to know the precise
moment they were produced. 11 anomalies were induced and are present in the dataset, namely: armServerAlgo,
legDetectorSkippable, objectBuilderSkippable, clafuSleep, pocketSphinxLeak, btlAngleAlgo, bonsaiParticipantLeak,
bonsaiTalkTimeout, facerecSkippable, clockShift and SpreadLatency. Differentiating from previous work [6], where
only one of them (armServerAlgo) was addressed, present paper addresses 9 of them. In order to set a common
criteria, anomalies affecting more than one robot component (spreadLatency and clockshift) have been discarded for a
fair comparison. Those anomalies analyzed in present work are shown in Table 1. For the sake of brevity and clarity,
a code has been assigned to each one of them, as shown in the first column.

Table 1. Selected anomalies to be analyzed.

Code Name Description

A1 armServerAlgo Certain movements of the arm are performed from known valid poses
A2 legDetectorSkippable The ‘legdetector’ processed each scan multiple times
A3 objectbuilderSkippable The person tracking performed transformations for each person multiple times
A4 clafuSleep The results are returned only after a delay of 5 seconds
A5 pocketSphinxLeak The speech recognition component accumulates memory for each sound
A6 btlAngleAlgo Adds a mathematical error used to track people
A7 bonsaiParticipantLeak Participants are not cleaned up properly
A8 bonsaiTalkTimeout Configuring a wrong RSB scope for the text-to-speech engine
A9 fecrecSkippable Temporarily removes a throttling of the main loop of the ‘facerec’ component

The dataset comprises 71 trials, being each one of them an attempt of the robot to perform some of the tasks.
Not all trials are included in present work; analyzed trials are those that do not have undetected faults and that are
considered valid by the dataset authors. Each trial comprises a file linked to each component of the robot and the
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different data associated to it. These data refer to the interaction of the robot with its environment during a given
time interval and duration varies between trials. Each data instance from the dataset is a sampling of the different
data sources at a certain time. Two data sources are used to get information about the performance of the robot
software: Features and Counters. The authors of the dataset provided a third set, events, whose information is found
in Features. It contains information about the relevant events that occurred in the component, including the size of
sending and receiving information. On the other hand, Counters are the raw export of the performance counters for the
component, whereas Features are a combination of performance counters and events with the timing of the counters.
Further details on data sources are available at [26].

The dataset has the following structure, as described in Figure 2: the information of each one of the 71 trials
is available. There is the information gathered from the different components and (in a faults file) all the induced
anomalies, with the starting and ending time as well as its type. For each one of the components, the three sources
of data (Features, Counters and Events) are available. Additionally, there is another file that indicates if there is an
anomaly induced in this component and which is the affected time frame.

Figure 2. Structure of the dataset under analysis.

Table 2. Occurrences of each anomaly and distribution per trials. In bold, the trials selected for the one-trial experiments.

Anomaly 1 time 2 times 3 times 4 times

A1 28, 32, 36, 41, 45, 57, 65, 71 21 23
A2 19, 21, 24, 31, 36, 55, 57, 64, 66, 68, 70 71
A3 20, 38, 41, 42, 54, 55, 57, 64, 65, 66 18 63
A4 21, 27, 32, 41, 42, 51, 55, 56 49, 63, 65, 66
A5 28, 29, 31, 32, 35, 37, 38, 41, 45, 68 69
A6 19, 21, 39, 70, 71 29, 37, 45
A7 19, 20, 32, 35, 51, 56, 64 24, 68, 70
A8 23, 24, 28, 35, 36, 38, 39, 42, 45, 49, 56 18, 51
A9 19, 20, 27, 29, 31, 32, 36, 42, 49, 51, 54, 64

7
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In order to evaluate the impact of the proposed strategies, experiments were conducted comprising only one trial
and all the trials containing examples of a certain anomaly. The underlying idea was to know if the performance of the
applied classifier will significantly vary depending on the amount of trials to be considered and the balancing of them.
The number of occurrences (from 1 to 4) of each anomaly and the related trials are shown in Table 2. In bold there
can be identified those trials that have been selected for the one-trial experiments. Among all the trials containing
examples of an anomaly, those that have a greatest relevance for each one of them were selected individually. The
selection criteria of the trial has been firstly the one with the highest number of anomaly occurrences. Secondly, for
those trials with the same number of occurrences, it has been selected the one with the longest period of time between
each two anomalies. The main reason is to maximize the time between occurrences in order to let the robot recover
from the first occurrence.

Table 3. Missing values in the dataset per anomaly and data source, with its percentage to total values.

Anomaly Features Counters Features + Counters

A1 366166 (20.4%) 26025 (8.5%) 392191 (19.06%)
A2 17447(4.43%) 24163 (10.03%) 41610 (7.04%)
A3 16492 (3.59%) 23206 (11.78%) 39698 (6.48%)
A4 66308 (11.65%) 24630 (8.04%) 90938 (10.93%)
A5 67884 (6.74%) 25264 (8.25%) 93148 (7.33%)
A6 469662 (9.17%) 19308 (5.88%) 488970 (9.05%)
A7 469662 (9.17%) 19308 (5.88%) 488970 (9.05%)
A8 469662 (9.17%) 19308 (5.88%) 488970 (9.05%)
A9 175074 (21.62%) 48109 (14.65%) 223183 (20.39%)

Table 4. Class distribution of data per anomaly and trial in the dataset.

Anomaly
All Trials One Trial

Normal Anomaly Anomaly Normal Anomaly Anomaly
Class Class Percentage Class Class Percentage

A1 20832 1055 5.06% 462 233 50.43%
A2 20765 1127 5.43% 439 206 46.92%
A3 20515 1375 6.70% 445 209 46.97%
A4 20547 1345 6.55% 427 160 37.47%
A5 20738 1147 5.53% 316 320 101.27%
A6 20934 951 4.54% 553 186 33.63%
A7 20837 1048 5.03% 522 160 30.65%
A8 20685 1200 5.80% 554 160 28.88%
A9 20847 1036 4.97% 500 88 17.60%

Since data irregularities are important in present work, some figures about them are provided. Firstly, the total
amount of MV in all the trials affected by each anomaly are shown in Table 3 per anomaly and data source. As it
can be seen from this table, the amount of MV significantly varies from one anomaly to the other ones. It is worth
mentioning the case of A6, A7, and A8 anomalies as MV amount to 488,970 in all of them, when considering both
Features and Counters. This is because they all affect the same robot component, namely statemachine. A study has
been conducted to know whether the presence of MV adjusts to a given pattern, but no relevant evidences have been
found.

Additionally, it can be observed in Table 4 the distribution of data in the two classes (normal/anomaly) for the
8
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different anomalies and the percentage of data from the minority class (anomalous). These figures are calculated by
setting a MV ratio of zero and this is the reason why the number of instances is the highest one. In the right part
of this Table 4, it can be seen the data distribution in classes for the individual trials. As indicated, these subsets of
the data are much more balanced (higher percentage of anomalies) that in the case of the whole dataset (all trials).
Furthermore, in the case of A5 anomaly, there are few more instances of the anomaly class than that of the normal
class. Then, the effect of applying the pre-processing techniques is checked for similar data in slightly and strongly
unbalanced datasets.

Finally, figures about the size of the different datasets are provided in Table 5. The row-wise datasets are presented
per anomaly and data-source and the number of both rows and columns are included. The applied MV ratio (varying
from 0% to 50%) is indicated in the case of all trials and in the case of the one trial, there is only one value associated
to the 0% MV ratio.

Table 5. Size of the different datasets per anomaly and data source.

Rows Columns
0 0.1 0.25 0.5 1 Trial 0 0.1 0.25 0.5 1 Trial

Fe
at

ur
es

A1 21887 20591 14429 7350 695 35 47 58 68 77
A2 21892 21892 21892 21892 645 17 17 17 17 17
A3 21890 21890 21890 21890 654 20 20 20 20 20
A4 21892 21892 21892 21892 587 22 22 22 22 22
A5 21885 21885 17175 17175 636 42 42 43 43 43
A6 21885 18608 5772 - 739 175 189 207 - 213
A7 21885 18608 5772 2583 682 175 189 207 212 214
A8 21885 18608 5772 2583 714 175 189 207 212 214
A9 21883 21883 21883 21883 588 28 28 28 28 29

Rows Columns
0 0.1 0.25 0.5 1 Trial 0 0.1 0.25 0.5 1 Trial

C
ou

nt
er

s

A1 21887 21887 18530 18350 695 11 11 13 13 11
A2 21892 21892 18534 18534 645 8 8 10 10 10
A3 21890 21890 18533 18533 654 6 6 8 8 8
A4 21892 21892 18534 18534 587 11 11 13 13 13
A5 21885 21885 17175 17175 636 12 12 13 13 13
A6 21885 21885 21885 - 739 14 14 14 - 14
A7 21885 21885 21885 21885 682 14 14 14 14 14
A8 21885 21885 21885 21885 714 14 14 14 14 14
A9 21883 21883 21883 21883 588 12 12 12 12 13

Rows Columns
0 0.1 0.25 0.5 1 Trial 0 0.1 0.25 0.5 1 Trial

Fe
at

ur
es

+
C

ou
nt

er
s

A1 21887 20591 11762 5974 695 44 56 69 79 86
A2 21982 21892 18534 18534 645 23 23 25 25 25
A3 21890 21890 18533 18533 654 24 24 26 26 26
A4 21982 21892 18534 18534 587 31 31 33 33 33
A5 21885 21885 17175 17175 636 52 52 54 54 54
A6 21885 18608 5772 - 739 187 201 219 - 225
A7 21885 18608 5772 2583 682 187 201 219 224 226
A8 21885 18608 5772 2583 714 187 201 219 224 226
A9 21883 21883 21883 21883 588 38 38 38 38 40
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4. Experiments and Results

In this section, the results obtained after the execution of the different experiments are shown. 30 of them have
been carried out for each one of the anomaly, which amount to 270 experiments in total (9 anomalies are studied).
They have been conducted on different subsets of the original dataset (see section 3): on the one hand, the most
significant trial for each one of the anomalies (see Table 2) has been analyzed (results in section 4.1) while all the
trials have been also analyzed (results in section 4.2). The best results are presented in each case, regardless the data
source (Features, Counters, and both of them). At the end of the section, results associated to the different data sources
are presented (see Figure 5) and discussed.

For each one of these subsets of data, several experiments have been performed with different combinations of the
data-preprocessing methods explained in section 2.2. With regard to the MV issue, different values of the previously
explained MV ratio have been applied when analyzing all trials. Once MV had been removed, different experiments
have been carried out with a great variety of data balancing methods, namely ROS, RUS, both at the same time (ROS
+ RUS), SMOTE, and SMOTE with RUS. All in all, one undersampling, two oversampling, and two hybrid methods
have been applied for data balancing. Additionally, the obtained performance results are also compared with that for
the originally imbalanced dataset without applying any of data-balancing method (referenced as “None”).

All the results presented in this section have been obtained by training a SVM (see section 2.1) on 75% of the
available data while validating on the 25% remaining data. For the validation, the well-known technique of k-fold
Cross Validation (with the value k = 10) has been applied. Additionally, 10 executions have been carried out per each
experiment in order to obtain more statistically significant results. Average results for these 10 executions are shown
in present section.

In order to validate the results obtained with the different models and datasets, the non-parametric Wilcoxon
Signed-Ranks Test [35] [36] has been used, as it suits present work (compare different models on different dataset
without a-priori assumptions). This test supports selecting the best methods on the varied situations under analysis
(different datasets and combinations of methods).

4.1. One-Trial Experiments
As previously mentioned, experiments were carried out on one single trial per anomaly (that containing most

examples of the anomaly as stated in Table 2). The same pre-processing methods have been applied in the one-trial
and all-trial experiments. However, in the one-trial experiments only one MV ratio was tested: 0%. The reason for
that is that none of the selected trials contains MV.

Obtained metrics, calculated on the different data and methods, are shown in the following tables. In Table 6 it is
shown the obtained F1 values, while the AUC ones are shown in Table 7.

Table 6. Obtained F1 values per anomaly and data-balancing method in the one-trial experiments.

None ROS SMOTE RUS ROS + SMOTE +

RUS RUS

A1 0.3194 0.4128 0.4140 0.4229 0.4135 0.4242
A2 0.9415 0.9387 0.9492 0.9424 0.9397 0.9362
A3 0.8187 0.8226 0.7918 0.8324 0.8194 0.8061
A4 0.5486 0.5373 0.5755 0.5529 0.5656 0.5595
A5 0.6888 0.7149 0.7152 0.6981 0.6907 0.6805
A6 0.4680 0.5995 0.5837 0.6388 0.6114 0.6628
A7 0.5853 0.5881 0.5532 0.5789 0.5796 0.5396
A8 0.1296 0.2985 0.2774 0.2954 0.2825 0.3225
A9 0.7932 0.9034 0.8320 0.8093 0.8339 0.8909

When analyzing the F1-score metric (Table 6), it can be clearly seen that the application of balancing techniques
has greatly improved the obtained values. SMOTE (rather applied in isolation or in connection with RUS) has got
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Table 7. Obtained AUC values per anomaly and data-balancing method in the one-trial experiments.

None ROS SMOTE RUS ROS + SMOTE +

RUS RUS

A1 0.5354 0.5592 0.5712 0.5808 0.5515 0.5737
A2 0.9588 0.9622 0.9656 0.9646 0.9582 0.9558
A3 0.8738 0.8796 0.8524 0.8806 0.8800 0.8656
A4 0.6926 0.6904 0.7084 0.6916 0.7040 0.7061
A5 0.7019 0.7188 0.7086 0.6969 0.6986 0.6857
A6 0.6491 0.7584 0.7390 0.7781 0.7571 0.7903
A7 0.7353 0.7464 0.7277 0.7544 0.7444 0.7188
A8 0.4432 0.5828 0.5894 0.5762 0.5885 0.5486
A9 0.8878 0.9594 0.9414 0.9546 0.9360 0.9540

the highest F1 values in 5 cases (out of 9). On the other hand, none of the highest values has been obtained with the
original dataset (no balancing method applied). Results are greatly improved in the case of the A8 anomaly, varying
from 0.1296 (no balancing method) to 0.3225 (obtained with SMOTE + RUS).

The AUC scores (Table 7) are also provided. As it is the key metric (see section 2.3), a bar graph (see Figure 3) has
been generated in order to ease the comparison of results. Thus, the best AUC scores for each one of the anomalies
obtained by each one of the applied methods can be observed. Additionally, the results of statistical test for these two
metrics are shown in Tables 8 and 9.

Figure 3. AUC values per anomaly in the one-trial experiments.

When considering these results, some facts are worth highlighting:

• Analysis by anomaly: AUC values strongly vary from some anomalies to the other ones. While in the case of
A1 and A8 anomalies the obtained values are close to 0.5, for most of the anomalies they are in the range [0.6 -
0.9]. In the case of A2 and A9, values higher than 0.9 have been obtained. The case of the A5 anomaly is worth
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mentioning; it is the only balanced anomaly and as a result, AUC scores are not improved with the balancing
techniques. Actually, worst results have been obtained with all the undersampling combinations (RUS, ROS +

RUS, and SMOTE + RUS) than that obtained with the original data.

• Analysis by balancing method: when comparing the results obtained with the balancing methods and those
obtained from the original dataset, similar values have been obtained except in the anomalies A6, A8, and
A9. For these three anomalies, the AUC values from the original dataset are much lower than those obtained
with any of the balancing methods. As it can be seen in the Table 4, these anomalies are three of the most
unbalanced ones, except for the A7 anomaly. Going into more detail it has been observed that Features and
Features + Counters follow this same pattern but it is not followed in the case of Counters itself. This trial
has fewer instances than the other two anomalies with the same component, A6 and A8. In all anomalies, the
best AUC scores are obtained with a balancing method and not with the original data. However, there is not a
balancing method that gets better AUC values in all anomalies.

As previously stated, the Wilcoxon Signed-Ranked Test has been carried out to get more statistically significant
conclusions from the one-trial experiments. It has been applied to the obtained values for the F1 score (Table 8) and
AUC (Table 9) metrics.

Table 8. p-values obtained by the non-parametric Wilcoxon Signed-Ranked Test pairwaise on the one-trial experiments per balancing method for
the F1 values.

None ROS SMOTE RUS ROS + RUS SMOTE +

RUS

None - ≥ 0.2 ≥ 0.2 ≥ 0.2 ≥ 0.2 ≥ 0.2
ROS 0.0546 - ≥ 0.2 ≥ 0.2 ≥ 0.2 ≥ 0.2

SMOTE 0.1132 ≥ 0.2 - ≥ 0.2 ≥ 0.2 ≥ 0.2
RUS 0.0195 ≥ 0.2 ≥ 0.2 - ≥ 0.2 ≥ 0.2

ROS + RUS 0.0546 ≥ 0.2 ≥ 0.2 ≥ 0.2 - ≥ 0.2
SMOTE + RUS ≥ 0.2 ≥ 0.2 ≥ 0.2 ≥ 0.2 ≥ 0.2 -

Table 9. p-values obtained by the non-parametric Wilcoxon Signed-Ranked Test pairwaise on the one-trial experiments per balancing method for
the AUC values.

None ROS SMOTE RUS ROS + RUS SMOTE +

RUS

None - ≥ 0.2 ≥ 0.2 ≥ 0.2 ≥ 0.2 ≥ 0.2
ROS 0.0078 - ≥ 0.2 ≥ 0.2 ≥ 0.2 ≥ 0.2

SMOTE 0.0976 ≥ 0.2 - ≥ 0.2 ≥ 0.2 ≥ 0.2
RUS 0.0195 ≥ 0.2 ≥ 0.2 - ≥ 0.2 ≥ 0.2

ROS + RUS 0.0195 ≥ 0.2 ≥ 0.2 ≥ 0.2 - ≥ 0.2
SMOTE + RUS ≥ 0.2 ≥ 0.2 ≥ 0.2 ≥ 0.2 ≥ 0.2 -

According to the values in the Table 8 (F1 values) and the values of R+ and R−, H0 for None is not rejected just
in the cases of SMOTE and SMOTE + RUS. For all the other balancing methods, it can be said that SMOTE and
SMOTE + RUS do not outperform None. The same happens when considering both the R+ and R− values and p-
values (Table 9) related to AUC. As a result, it can be concluded that in the case of one-trial experiments, ROS, RUS,
and ROS + RUS outperform all the other methods (None included) but any of them can be identified as the best one
in all cases.
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4.2. All-Trials Experiments

As it has been previously explained, same experiments have been run on data subsets containing all the trials for
each one of the anomalies. That is, data from all the trials listed in each row of Table 2 have been merged. As a result,
highly unbalanced datasets have been generated, as can be seen in Table 4.

Differentiating from the experiments on the one-trial datasets, for the all-trials ones 4 different MV ratios have
been considered: 0%, 10%, 25%, and 50%. Obviously, with a 0% MV rate, the datasets with the highest number of
instances and the lowest number of features (the ones in Table 4) have been obtained. For the sake of brevity, in the
case of all-trials datasets, only best AUC scores for each combination of parameters are shown. Obtained values are
compiled in Table 10 for the MV ratios of 0%, 10%, 25%, and 50% respectively, and all data sources.

From the obtained results, it can be stated that the worst performance has been obtained with the original datasets
(no balancing method) for all the anomalies. On the other hand, from these results no clear conclusion can be drawn
as to which balancing method works best when stating a 0% MV ratio. With this MV threshold, SMOTE and RUS
stand out, being the best ones for 3 of the anomalies each, while the combination of them (SMOTE + RUS) has not
obtained the best result for any of the anomalies.

When increasing the MV ratio to 10% (see second section of Table 10), it can be observed with greater clarity
that oversampling methods (ROS and SMOTE) stand out from the rest of balancing methods and the original datasets.
Actually, the highest AUC value (0.9822) of all the performed experiments in present work has been obtained with
the 10% MV ratio and ROS balancing method for the A2 anomaly. The AUC values for the A9 anomaly are very
similar to those with the 0% MV ratio (they only vary for the undersampling methods) because there is no change in
the number of MV and hence instances. That is, there is not any original feature containing less than 10% MV. In
the case of the 10% MV ratio, it is ROS that stands out (best one for 4 anomalies). Once again, the combination of
SMOTE and RUS (SMOTE + RUS) has never obtained the best results, as it has happened with the original data.

From the results with a 25% MV ratio (see third section Table 10), as opposed to what was pointed our for the 10%
MV ratio, the RUS method stands out from the other ones (best results in 5 out of 9 anomalies). As an exception, it has
got the worst result of a balancing method in the case of the A6 anomaly. When combined with the SMOTE method
(SMOTE + RUS) it has also obtained the highest value for the A1 anomaly. For this anomaly, this combination is
the only method that has improved the AUC values when compared with that obtained from the original (unbalanced)
data. SMOTE is the second best method, obtaining the highest AUC scores in 2 anomalies. The hybridization of ROS
+ RUS has not obtained the best value for any anomaly.

Finally, results obtained when applying a 50% MV ratio (see last section Table 10) are discussed. No results
are available for the A6 anomaly because when pre-processing it with that threshold of MV, many instances are
eliminated. It causes that none from the anomaly class is kept and hence all the ones remaining in the dataset belong
are from the normal class. For the other anomalies, it can be pointed out that, as it happened for the 25% MV ratio,
RUS outperforms the other methods, being the best one 4 times. SMOTE has obtained the best results 3 times and the
hybrid methods have not obtained the highest AUC value for any anomaly.

Obtained p-values when applying the Wilcoxon Signed-Ranked Test are calculated per balancing method (Ta-
ble 11) and MV ratio (Table 12). In the case of the balancing methods, the null hypothesis is rejected in all cases for
None. Thus, we can conclude that all classifiers obtain a better rank than None. On the other hand, when comparing
all the balancing methods, none of them can be designated as the best one for all the datasets in present study as there
are not statistical differences.

When analyzing the results per MV ratio, in none of the cases the null hypothesis is rejected, either because of the
R or p-value scores. As a result, it can be said that there are no significant statistical differences between the different
MV ratios.

As in the case of the one-trial experiments, a bar plot has been generated showing the obtained AUC values for
each anomaly, balancing method and MV ratio. In order to also contribute to easily interpret the obtained AUC results,
several boxplots have been generated. They are presented, summarizing information according to different criteria:
balancing method and MV ratio (Figure 4), data sources (Figure 5 a), b), and c)), and anomalies (Figure 5 d)).

From all these results and figures, it can be seen that the variance of AUC values is pretty similar for the results
obtained with all the balancing methods. On the other hand, the median values are similar as well; those obtained by
SMOTE and RUS are the two highest ones. Paradoxically, it is the combination of these two the one that has obtained
the lowest variance.

13



N. Basurto et al. / Neurocomputing 00 (2024) 1–19 14

Table 10. Obtained AUC values per anomaly and data-balancing method. All-trial experiments with 0%, 10%, 25%, and 50% MV ratio.

None ROS SMOTE RUS ROS + SMOTE +

RUS RUS

0%

A1 0.5255 0.5747 0.5841 0.5639 0.5798 0.5574
A2 0.8855 0.9805 0.9797 0.9785 0.9821 0.9798
A3 0.7268 0.7842 0.7765 0.7919 0.7700 0.7786
A4 0.5067 0.5704 0.5667 0.5603 0.5722 0.5697
A5 0.4993 0.6945 0.7053 0.6994 0.6968 0.6857
A6 0.5041 0.5354 0.5149 0.5144 0.5202 0.5263
A7 0.5946 0.6770 0.6837 0.6871 0.6842 0.6709
A8 0.4879 0.5225 0.5424 0.5479 0.5319 0.5358
A9 0.6557 0.9059 0.9110 0.9098 0.9054 0.9097

10
%

A1 0.5155 0.5531 0.5368 0.5480 0.5415 0.5225
A2 0.8855 0.9822 0.9797 0.9788 0.9810 0.9814
A3 0.7268 0.7774 0.7765 0.7947 0.7852 0.7719
A4 0.5067 0.5775 0.5667 0.5636 0.5683 0.5740
A5 0.4993 0.6945 0.7053 0.7050 0.6927 0.7013
A6 0.5067 0.5158 0.5226 0.5183 0.5260 0.5243
A7 0.5701 0.6806 0.6712 0.6803 0.6751 0.6796
A8 0.4884 0.5196 0.5344 0.5334 0.5329 0.5315
A9 0.6557 0.9059 0.9110 0.9210 0.9104 0.9086

25
%

A1 0.5423 0.5309 0.5289 0.5322 0.5118 0.5524
A2 0.8719 0.9717 0.9702 0.9745 0.9702 0.9709
A3 0.7056 0.7726 0.7711 0.7928 0.7835 0.7646
A4 0.4874 0.5765 0.5701 0.5700 0.5693 0.5744
A5 0.5082 0.6917 0.7079 0.6993 0.6891 0.6924
A6 0.5063 0.7891 0.8010 0.7213 0.7704 0.7866
A7 0.4962 0.6776 0.6744 0.6837 0.6823 0.6811
A8 0.4726 0.5257 0.5386 0.5825 0.5438 0.5344
A9 0.6557 0.9059 0.9051 0.9210 0.9104 0.9086

50
%

A1 0.5379 0.5670 0.5699 0.5646 0.5479 0.5516
A2 0.8719 0.9717 0.9702 0.9745 0.9702 0.9709
A3 0.7056 0.7726 0.7711 0.7928 0.7835 0.7646
A4 0.4874 0.5765 0.5701 0.5700 0.5693 0.5744
A5 0.5082 0.6917 0.7079 0.6993 0.6891 0.6924
A6 - - - - - -
A7 0.4967 0.9090 0.9178 0.7015 0.8458 0.8859
A8 0.4784 0.6417 0.6472 0.6671 0.6439 0.6453
A9 0.6557 0.9083 0.9095 0.9161 0.9159 0.9085

In Figure 4 it can be seen the effect of modifying the MV ratio. The median value is higher with a 50% Missing
Values ratio. On this same boxplot it is seen as the third and the first quartile are considerably higher than on the rest,
especially in the case of the third quartile. The general trend is that at a higher percentage of Missing Values in the
data set both the first, the third quartile and the median increase. However, in the case of 10% of Missing Values the
third quartile and the median reach values similar to 0% and on the other hand the first quartile gets a slightly smaller
value.
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Table 11. p-values obtained by the non-parametric Wilcoxon Signed-Ranked Test pairwaise on the all-trials experiments per balancing method for
the AUC values.

None ROS SMOTE RUS ROS +

RUS
SMOTE +

RUS

None - ≥ 0.2 ≥ 0.2 ≥ 0.2 ≥ 0.2 ≥ 0.2
ROS 0.0039 - ≥ 0.2 ≥ 0.2 ≥ 0.2 ≥ 0.2

SMOTE 0.0039 0.1641 - ≥ 0.2 ≥ 0.2 ≥ 0.2
RUS 0.0039 ≥ 0.2 ≥ 0.2 - ≥ 0.2 ≥ 0.2

ROS + RUS 0.0039 ≥ 0.2 ≥ 0.2 ≥ 0.2 - ≥ 0.2
SMOTE + RUS ≥ 0.2 ≥ 0.2 ≥ 0.2 ≥ 0.2 ≥ 0.2 -

Table 12. p-values obtained by the non-parametric Wilcoxon Signed-Ranked Test pairwaise on the all-trials experiments per MV ratio for the AUC
values.

0% 10% 25% 50%

0% - ≥ 0.2 ≥ 0.2 ≥ 0.2
10% ≥ 0.2 - ≥ 0.2 ≥ 0.2
25% ≥ 0.2 ≥ 0.2 - ≥ 0.2
50% ≥ 0.2 ≥ 0.2 ≥ 0.2 -

Figure 4. Boxplot of the obtained AUC values in the all-trials experiments: a) per balancing method and b) per MV ratio.

A continuity in the values obtained in the different data sources is observed in Figure 5, where the most different
one from the other two is Counters. In the case of this data source, the variance is higher for the majority of anomalies.
Additionally, the case of A6 anomaly is worth mentioning as the variance is drastically reduced for the Counters when
compared to the other two data sources (Features and Features + Counters). After a thorough analysis, it has been
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Figure 5. Boxplot of the obtained AUC values per anomaly in the all-trials experiments in each data source. a) Features, b) Counters, c) Features
+ Counters, and d) All data sources.

identified the results causing this phenomenon, that have been obtained with the 25% MV ratio (note that no results
are available for this anomaly when applying the 50% MV ratio). It can be seen in the Table 5 that there is a big
difference in the number of features between the 10% and 25% MV ratios in the case of the A6 anomaly for the
Features and Features + Counters data sources.

Results are also discussed per anomaly, summarizing all the figures for the different MV ratios and balancing
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methods (boxplot d) in Figure 5). Very concentrated AUC values (comprising few “abnormal” ones) have been
obtained for the A2, A3, A4, A5, A7, and A9 anomalies. Results associated to the A1 and A8 anomalies have a
greater variance and lower median. The A6 anomaly is the one with the lowest median, very distant from the third
quartile and close to the first quartile. This is mainly due to those results that has been previously highlighted from
the last section of Table 10: with a 50% MV ratio, no result can be obtained given the absence of instances of the
anomalous class.

When analyzing results obtained from the different data sources, the following ideas can be observed:

• Features: the most prominent algorithm is RUS (best one for 4 of the anomalies) followed by ROS and SMOTE
(for 2 anomalies), whereas SMOTE + RUS ha attained the best results for 1 anomaly. With regard to the MV
ratio, it should be noted that the same results for the A2 and A3 anomalies have been obtained with 50% and
25% values as the size of the dataset persists (see Table 5). The 50% MV ratio is the one associated to most
best results (5 out of 9 anomalies).

• Counters: the method of balancing with best results has been ROS (for 4 anomalies), followed by RUS (for
3 anomalies) and SMOTE (for 2 anomalies). There were 3 anomalies attaining the same best results with 2
different MV ratios: A3 with 0% and 10%, A5 with 25% and 50%, and A9 with 10% and 25%. As previously
mentioned in the case of Features, the datasets are the same in all cases. What is different in this case is that the
0% MV ratio is associated to best results for 6 of the anomalies.

• Features + Counters: when combining the two data sources, the methods obtaining best results are RUS and
SMOTE (for 4 anomalies each) while the combination of them (SMOTE + RUS) is the best one for an anomaly.
In this case, a MV ratio is not clearly the best one for any anomaly: 50% for 3 anomalies, 25% for 2 anomalies,
10% for 3 anomalies, and 0% for 1 anomaly.

To sum up, a brief summary of the individual results is presented: the SMOTE algorithm has outperformed all the
other ones for 4 anomalies, RUS for 2 and ROS for 2 as well. It is worth highlighting the fact that none of the hybrid
balancing techniques have achieved the best AUC result for any anomaly. When taking into account the MV ratio, the
0% value is associated to the best results in 1 occasion, 10% and 25% in 3 occasions and 50% in 2 occasions. Finally,
each one of the data sources is associated to the best results for 3 of the anomalies. On the other hand, the worst results
(from those presented in previous tables) have always been associated to the A8 anomaly, being the lowest one that
with a 0.5 MV ratio and Features + Counters as data sources.

5. Conclusions and Future Work

In present paper, different alternatives for data preprocessing (management of MV and class-balancing methods)
have been validated for the detection of anomalies in a component-based robotic system. Obtained results when
training and testing the same learning model (SVM) are presented and compared in section 4 to validate the effect of
pre-processing. All these figures have been obtained on a real-life and brand new dataset.

From the one-trial experiments it can be concluded that, as expected, the more balanced datasets are, the higher
AUC values are obtained for the great majority of anomalies. However, in a real-life setting, anomalies are not
frequent and unbalanced datasets are usual. Thus, experiments on more unbalanced and hence more real datasets have
been also conducted. When analyzing the balancing methods by means of the statistical test, ROS and RUS, together
with its combination are the ones that outperforms the no-balancing alternative. However, none of them can be clearly
identified as the best one.

From the all-trials experiments when considering the balancing method, it must be highlighted the results obtained
with SMOTE (grey box in Figure 4.a), which has stood out from the rest of methods. When individually analyzing
the results (Table 10), RUS is the balancing technique obtaining the highest AUC rates in most occasions (40%).
Complementary, from the point of view of the the MV ratio, it can be concluded that the least restrictive value (a
50% ratio) means better AUC values in general terms (box in the right side of Figure 4.b). As previously mentioned
in section 4.2 when discussing the results in Table 4, the best results for the anomalies with a lower percentage of
anomalous data (except the case of the A9) have been obtained with a high MV ratio (25% or 50%). For the other
anomalies, best results have been obtained with the lowest ratios (0% and 10%).

17



N. Basurto et al. / Neurocomputing 00 (2024) 1–19 18

As far as data sources are concerned, generally the best values are obtained with the combination of both (Features
+ Counters), whereas the highest median of values is the one associated to Counters. Results with Features greatly
vary, depending on the MV ratio, while those with Counters are more constant.

All in all, it can be concluded that the proposed data-preprocessing techniques greatly contribute to increase the
detection rate of anomalies, outperforming previous work [27]. However, the balancing method, MV ratio and data
source must be carefully selected in each case as there is not a combination of them that outperforms the other ones
in all cases, according to statistical tests.

Further work will be focused on covering all the anomalies and therefore analyzing those affecting more than
one component. Additionally, due to the high number of features (columns) in the dataset, the application of feature
selection techniques will also be explored. An alternative way of dealing with MV such as data imputation will also
be considered, as well as benchmarking with additional learning models. The effect of the different strategies for
handling data irregularities will also be considered for other supervised learning models in addition to SVM. Finally,
some other alternatives for handling data imbalance (such as class weighting) will also be studied.
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