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Abstract. From multicellular tissues to bacterial colonies, three dimen-
sional cellular structures arise through the interaction of cellular activities and
mechanical forces. Simple bacterial communities provide model systems for
analyzing such interaction. Biofilms are bacterial aggregates attached to wet
surfaces and encased in a self-produced polymeric matrix. Biofilms in flows
form filamentary structures that contrast with the wrinkled layers observed on
air/solid interfaces. We are able to reproduce both types of shapes through
elastic rod and plate models that incorporate information from the biomass
production and differentiations process, such as growth rates, growth tensors or
inner stresses, as well as constraints imposed by the interaction with environ-
ment.

1 Biofilm shapes

Understanding how cellular systems evolve to adopt different shapes is an in-
triguing question which has motivated many theories. Here, we try to unravel
this process in simple living beings: bacterial communities called biofilms. Envi-
ronmental conditions seem to play a key role inducing changes. Biofilms growing
in flows often form filaments constrained by the surrounding geometry. They
may cross the current in corner flows [9] or wrap around tube walls forming he-
lices [11]. Instead, biofilms spreading on semisolid agar surfaces exhibit different
types of wrinkles [5, 20].

To understand the development of a biofilm one must take into account its
nature. In a biofilm, bacteria are glued together and to a surface by a self-
produced polymeric substance: the EPS matrix. Once the biofilm is formed,
it can be seen as a biomaterial whose properties are controlled by the cellular
activity [5, 20]. We discuss here how the material properties of a biofilm influence
its shape in different environments.
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2 Filamentary structures in flows

When spreading in flows, biofilms elongate with the current forming threads.
The shape of the thread adapts to geometrical constraints, seeking to minimize
adequate energies. Its time evolution until an equilibrium shape is reached can
be described by discrete rod models. We tackle here two different experimental
frameworks: biofilms in networks of cylindrical tubes and biofilms in corner
flows.

2.1 Helical biofilms

Consider the typical flow circuits used in medical systems, see Figure 1. Injecting
inside bacteria of the Pseudomonas genus, tubes fill with helical biofilms which
wrap around the walls, see Figure 2. Even if the Reynolds number is fairly small
(Re ∼ 1), the presence of connectors and junctions produces diameter variations,
locally narrowing the passage. Vortices form past the stenosis. Vortical motion
drive bacteria to the walls creating biofilm nucleation sites [11]. The biofilm
then elongates following the streamlines until it undergoes a helical instability.
Figure 3 shows the initial stages of the helical instability.

Elastic energies for filaments admit both straight and helical minimizers
Ê[7]. The presence of constraints that forbid the straight equilibrium prompt
the appearance of helical structures [11]. A coiling effect is usually active at
some end due to the presence of constrictions. When the biofilm hits a surface,
deceleration results in coiling. Also, the presence of vortices at the stenosis may
induce a helical beating of the thread. Additionally, biomass production causes
a continuous length increase of the thread between constrictions. Helical shapes
allow to allocate the excess length. Uninterrupted biomass production fosters
the coarsening of the helical instability until it reaches the tube walls. More
biomass is then allocated by narrowing the helix pitch. Notice that a filament
of length Lf wraps around a tube of radius rt and length Lt forming k steps of
pitch Lt/k when L2

f ∼ L2
t + 4π2r2t k

2.
Figure 4 illustrates this dynamic process. A filament subject to twist de-

velops a helical instability that coarsens until the helix reaches the tube wall
thanks to a continuous length increase. These simulations are performed using
the discrete rod model described in Section 2.2 [11].

Figure 1: Flow circuit. The fluid mixture flows from an initial reservoir to a
pump (or a drip mechanism) that drives the liquid through a network of tubes,
which may merge or split.
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Figure 2: Experimental image showing a biofilm helix wrapped around the tube
wall past the junction. No biofilm is formed in the unperturbed branch. Bacteria
were injected upstream the junction.

[b]

Figure 3: Experimental image showing the onset of a helical instability along a
biofilm thread in a 2mm diameter tube.

(a) (b)

. (c) (d)

Figure 4: Snapshots illustrating the in silico development and coarsening of a
helical instability.

2.2 Discrete rod framework

A filament is a geometric shape whose length is much larger than the rest of its
dimensions. Any deformation of its cross section is expected to be small com-
pared with variations of the total length. This fact motivates the description of
a biofilm thread as a unidimensional curve γ (the centerline, which characterizes
its position), plus a reference system at each point {t,m1,m2} (the material
frame, which measures the twist). With this description, the movement of the
thread can be fully captured: stretching and bending are computed by deform-
ing the centerline, whereas twisting is captured by the orientation of the material
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frame. For dynamic simulations we use a discrete rod model [15, 3]. The fil-
ament is discretized using a sequence of nodes xi, i = 0, . . . , n + 1, along the
curve γ, and a reference system at each one, see Figure 5. This frame is obtained
at each location twisting the Bishop frame (a fixed untwisted frame) a certain
angle θi. The dynamics of the discrete filament is then governed by equations
for the angles θi, and for the node positions xi. We detail the procedure next.

(a)

(b)

Figure 5: (a) Continuous description of a filament [15]. The Bishop frame
{t,u,v} defines the Òrest orientationÓ at any point of the filament centerline
γ(s), parametrized by the arc length in IR3. Rotating {u(s),v(s)} an angle θ(s)
around t(s) we obtain the material frame characterizing the local orientation
{t(s),m1(s),m2(s)}. (b) Discrete description of a filament [3]. The centerline
is discretized as a set of points {x0,x1, . . . ,xn+1} and segments ei = xi+1 −xi.

Setting ti = ei

∥ei∥ , the unit tangent vector per edge, a local orthonormal material

frame {ti,mi
1,m

i
2} is assigned to each point.

2.2.1 Reference frames

We assign to each point a local orthonormal frame (the material frame) {ti,mi
1,m

i
2},

i = 0, . . . , n, describing the centerline orientation as follows. Let us denote
by ei = xi+1 − xi, i = 0, . . . , n, the straight segments joining the points
{x0,x1, ...,xn+1}. The unit tangent vector associated to each edge is then

ti = ei

∥ei∥ , where ∥∥ denotes the euclidean norm. Assuming the Bishop frame

{ti,ui,vi} known, the vectors mi
1,m

i
2 are obtained rotating ui,vi an angle θi

in the plane orthogonal to ti:

mi
1 = cos(θi)ui + sin(θi)vi, mi

2 = − sin(θi)ui + cos(θi)vi. (1)
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To define a Bishop frame we choose u0 ⊥ t0 and set v0 = t0 × u0. The
frames at the remaining edges are constructed by parallel transport [3]. We set

ui = Pi(u
i−1), vi = ti × ui, (2)

where Pi are rotation matrices about the curvature binormal defined by:

Pi(t
i−1) = ti, Pi(t

i−1 × ti) = ti−1 × ti.

If ti−1 = ti, Pi is the identity. The condition u0 ⊥ t0 must be maintained
during the simulation. This is guaranteed when t0 is clamped. Otherwise, it
can be reestablished by parallel transport in time (instead of space).

2.2.2 Equations for the angles

The equations for the angles follow from energy arguments. When the un-
deformed configuration of the filament is straight and its elastic response is
isotropic, the elastic energy due to torsion and bending takes the form [3]:

E =

n∑
i=1

β
(θi − θi−1)2

ℓ
i

+

n∑
i=1

α

2ℓ
i

i∑
j=i−1

∥wj
i −wj

i∥
2, (3)

where α and β are the bending and torsion moduli, respectively. We may set
α = EY I and β = JG, being EY the Young modulus of the thread, I the second
moment of area, G the shear modulus of the thread and J the torsional rigidity
constant. If we consider a thread composed by an isotropic elastic material, the
Young modulus and shear modulus are related by the Poisson coefficient ν as
G = EY

2(1+ν) . For a filled cylinder we have J = I, hence β = EY

2(1+ν)I.

In formula (3), ℓ
i
is the length of the segments ei = xi+1 − xi in a reference

undeformed configuration {x0,x1, ...,xn+1}. The vectors wj
i , w

j
i , j = i − 1, i,

are material curvatures in the deformed and undeformed configurations, respec-
tively:

wj
i =

(
(κb)i ·mj

2,−(κb)i ·mj
1

)t

, (κb)i =
2ei−1 × ei

∥ei−1∥∥ei∥+ ei−1 · ei
, (4)

where κb is the curvature binormal. For an undeformed straight shape wj
i =

0. The general form of the elastic energy for anisotropic rods that adopt a
nonstraight undeformed shape is given in [3].

The material frame is updated in a quasistatic way. Imposing

∂E

∂θi
= 0, (5)

for all segments i not fixed by a boundary condition, this system of equations
determines the angle configuration that minimizes the energy of the thread.
Clamped ends are accounted for assigning the material frame for i = 0, i = n.
No boundary condition corresponds to a stress free end.
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2.2.3 Equations for the positions

We keep track of the filament position displacing the nodes according to New-
ton’s second law:

Md2x

dt2
= −dE

dx
+ F, (6)

where F represents the external forces and −dE
dx the elastic forces. Explicit

formulas for the elastic forces are given in [3]. M denotes the 3(n + 2) ×
3(n + 2) mass matrix, we set M = mI, where I is the identity matrix. x =
(x0, . . . ,xn+1) denotes the ordered sequence of 3D node coordinates. Notice
that xi = (xi

1, x
i
2, x

i
3).

To approximate the solution of system (6), we apply a Verlet integrator to
estimate the displacements and velocities, and then enforce an inextensibility
constraint for each segment by using a manifold projection method [12]. This
constraint facilitates a stable evolution from a numerical point of view.

For each new time tk+1 = tk + h, the Verlet scheme provides the prediction:

ṽk+1 = vk − hM−1F(xk), x̃k+1 = xk + hṽk+1, (7)

starting from previous values xk,vk, where vk = ẋk and h is the time step.
The projection method works as follows. We set y0 = x̃k+1. At each step j, we
compute the next value yj+1 = yj + δyj+1, where

δyj+1 = −h2M−1∇C(yj)
t δℓj+1, (8)

and C(y) defines the system of constraints. The vector δℓj+1 solves the linear
system

h2∇C(yj)M−1∇C(yj)
t δℓj+1 = C(yj). (9)

The iteration stops if ∥C(yj+1)∥ ≤ ε for the desired tolerance ε > 0. The
constraint enforcing velocity and position are then

vk+1 =
1

h
(yj+1 − x̃k+1), xk+1 = xk + hvk+1. (10)

If inextensibility is the only constraint, C is defined by the system of equations
∥ei∥2/∥ei∥ − ∥ei∥ = 0, for each edge i.

2.2.4 Coupling to the flow

The force exerted by a fluid undergoing a given undisturbed flow on a long
slender body is analyzed in [6]. The following asymptotic formula in terms of
the ratio of the of the cross-sectional radius to the body length is given:

f t

2π
= µfλ

∫ 1

0

([ (U−U∗)t

ln κ
+
(U−U∗)t ln(2)

(ln κ)2

]
· [t tt − 2I]+

1
2 (U−U∗)t

(ln κ)2
· [3t tt−2I]

)
ds, (11)
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where f is the force acting on a filamentous body of length λ, U and U∗ are the
velocities of the unperturbed fluid and the thread, respectively, at the position
γ(s) and I is the 3 × 3 identity matrix. We denote by µf the viscosity of the
fluid, γ(s) the position of the thread centerline, s the arclength of the thread

(0 < s < 1), t(s) = dγ(s)
ds the tangent vector at the position γ(s) and κ = r

L
the ratio between cross-sectional radius r to characteristic thread length L.

This relation allows us to directly calculate the fluid force f i acting on each
node of the thread by using the difference of velocities between the fluid and
the thread, the tangent vector on each node and the aspect ratio of the thread,
an idea already exploited for filaments in 2D corner flows in [1]. Notice that, at
each node xi, the thread velocity U∗(xi, t) = vi(t). In absence of other forces,
F = (f0, . . . , fn+1) in equations (6).

Biofilm filaments live inside tubes of a certain shape. A simple way to
incorporate this restriction is a penalty method. The idea is to include in the
force term F in equations (6) additional forces fw supported on the tube walls
that points inside the tube and acts on any node hitting the wall, sending it back
inside. Alternatively, we might set the position equal to the effective maximum
radius and reset the velocity equal to zero.

2.2.5 Increasing the length

Increase in length of a filament can be due to the combined effect of differ-
ent mechanisms: biomass production, biomass adhesion, elastic elongation,
swelling... To reproduce an increase in length at a certain rate we enlarge
the segments joining nodes in a controlled way, redefining the reference lengths
at the same time. Directional mass addition may be represented adding nodes
at an edge and redefining the reference configuration each time a node is added.

In practice, we alternate steps in which we solve the equations for the evolu-
tion of the discrete rod with steps in which we increase the length of the edges
or the number of nodes, and reset the reference configuration before computing
again the evolution of the enlarged filament.

2.2.6 Overall procedure

Summarizing, to compute the evolution of a rod we proceed in the following
steps:

• Initialization:

– Define the Bishop frame at edge 0: (t0,u0,v0).

– Set the position of the undeformed centerline: x0,x1, ...,xn+1.

– Select the initial position and velocity of the centerline: (x0, ẋ0), (x1, ẋ1),
..., (xn+1, ẋn+1).

– Enforce the boundary conditions for the filament at the initial and
final nodes.

– Set the material curvatures using Eq. (4).
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– Set the material frame by means of Eqs. (2), (1) and (5).

• Iteration for each new time step:

– Compute the elastic forces −dE
dx acting on the centerline, and possible

additional forces F (see section 2.2.4).

– Integrate Newton equations for the centerline (6) enforcing inexten-
sibility and possible additional constraints (see section 2.2.3).

– Update the Bishop frame using Eq. (2).

– Update the quasistatic material frame by means of Eqs. (5) and (1).

– Eventually, increase the length of the edges or the number of nodes,
and reset the reference configuration (see section 2.2.5).

The simulations shown in Fig. 4 start from a straight filament placed at the
center of the tube. The initial node positions are randomly perturbed to ensure
a slight initial excess length with respect to the tube length. A twist angle is
imposed at the filament edges. The length of the filament is slowly increased
as the helix develops to foster the coarsening process [11]. The unperturbed
fluid velocity profile obeys a radial Hagen-Poiseuille distribution. However, the
fluid force does not seem to play a role in helix formation, which is driven by
elastic forces. It only causes slow downstream motion of the whole structure.
Therefore, we may set it equal to zero to simplify the study of helix development.
The force term F would only account for the presence of the walls in this case,
constraining the helix radius. On the contrary, fluid forces are essential to
produce the filaments crossing corner flows described in Section 2.3.

2.2.7 Nondimensional equations

It is convenient to nondimesionalize equations (3),(6) and (11) for numerical
purposes. The change of variables x = λx′ , t = Tt′, U = U0U

′, E = α
λE

′,
F = µfλU0F

′ yields:

d2x′

dt′2
= − T 2

mλ2

dE

dx′ +
T 2

mλ
F = −αT 2

mλ3

dE′

dx′ +
µfU0T

2

m
F′, (12)

where the force term includes the force exerted by the fluid f plus possible
penalty forces fw at the walls, that is, F = f + fw. In view of the definition (3)

of the energy E, this change introduces the controlling parameters α′ = αT 2

mλ3 ,

β′ = βT 2

mλ3 and δ′ =
µfU0T

2

m , U0 being a characteristic velocity. Determining
ranges of values of α′, β′ that lead to different types of filamentary structures we
would obtain ranges for α, β whenever the density ρ and radius r of the filaments
are experimentally quantified. Working with one dimensional filaments, we
neglect the cross-sections. A three-dimensional cylindrical thread of density ρ,
radius r, and length L >> r is approximated in this setting by a discrete rod
with n+2 nodes and n+1 edges, with mass m = ρπr2L/(n+1). From identities
(3) and (12), the characteristic time associated to the elastic deformation of
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the thread can be estimated as Telast =
√

mλ3

EY I . If this value is chosen as

characteristic time in our system and we use formula (11) we arrive at:

d2x′

dt′2
= −dE′

dx′ + ηF′, (13)

where η =
µfU0λ
EY I

λ2

is the ratio of viscous forces to elastic forces, see [1].

(a) (b)
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Figure 6: (a) Normalized velocity modulus in the mid-plane of the there dimen-
sional channel. (b) Initial filament configuration in the corner flow simulations.

2.3 Biofilm threads in corner microflows

The situation described in Section 2.1 for helical biofilms is partly reminiscent
of the observations made with Pseudomonas Aeruginosa in a laminar corner
microflow [9]. Bacteria are driven to the wall by small secondary vortices past
the corner, creating nucleation sites. Once a biofilm seed forms, threads made of
bacteria joined by EPS matrix are issued. Initially, they align with the stream-
lines, like streamers. Unlike the case of helical biofilms, which are triggered
by elastic forces and constrained by the tube walls, biofilm threads cross the
streamlines of corner flows driven by the fluid force acting on them, as a result
of the interaction fluid-structure. A two-dimensional model of an elastic filament
in a corner flow shows that under certain conditions filaments cross the main
stream and reach the opposite corner [1]. When the filament is long enough, it
reaches the opposite corner adopting the equilibrium shape of an elastic rod in
a corner flow. As in the case of helices, the final configuration seems to be a
minimum of an elastic energy.

The 3D model summarized in Section 2.2 reproduces this behavior provided
we include in the equations of motion (6) the force due to the fluid [6], given by
(11). The pressure driven fluid velocity field U may be computed using finite
element software such as COMSOL multiphysics in the unperturbed channel
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(a) (b)

100 μm

Figure 7: Effect of the initial thread geometry on its dynamics during the simu-
lation: (a) Length L and (b) angle θ. Parameter values are α′ = 1, β′ = 0.358,
n = 100, η = 3000, κ = 0.05, ∆t′ = 10−3 time units. A final state joining oppo-
site corners is reached depending on the initial orientation and length, although
these constraints may change with the initial velocity of the thread.

geometry, see Fig. 6(a). We use this reference flow field during the whole simu-
lation, ignoring perturbations due to the presence of the thin biofilm thread, as
in [1, 6]. Fig. 6(b) represents the initial biofilm configuration used in the sim-
ulations. Keeping the same parameters as in the experiments [1], we can study
the influence of variables like the initial angle or length on the filament evolu-
tion. Figure 7 shows some possible configurations. To obtain it, we integrated
the evolution equation (13) setting the characteristic spatial length λ = 1µm
and the characteristic time of the system equal to the elastic deformation time
Telas, which yields α′ = 1, β′ = β/α, δ′ = η.

As observed in [1], the parameter η regulates the effect on the fluid on the
thread dynamics. For values of η ≤ 4000, the contact of the thread with the
opposite corner is only dependant of the filament initial position and length.
A minimum length and angle are needed for the thread to reach the opposite
corner. Within the range 4000 < η < 8000 the fluid can substantially modify the
trajectory of the thread. For η > 8000 the fluid strongly drags the thread in the
direction of the stream, avoiding contact with the opposite corner. A steady
position for the thread parallel to the streamlines was found for η ∼ 30000.
These results are obtained setting the initial velocity of the thread equal to
the fluid velocity at the node positions. The initial thread velocity affects the
results. Setting it equal to zero, very low values of η would be required to cross
the streamlines.

If we start from a short thread and implement directional mass increase
adding nodes at an edge and redefining the reference configuration each time
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a node is added, then we can see the filament grow as it moves towards the
opposite corner.

3 Wrinkled biofilms on agar

Whereas biofilms in flows tend to form filamentary structures, biofilms spread-
ing on agar/air interfaces adopt wrinkled shapes [2, 5, 20]. Descriptions of their
behavior may be made more precise than in the previous case due to an in-
creasing amount of experimental evidence. Cell death has been shown to play a
role on the onset of wrinkles in Bacilus Subtilis biofilms. The biofilm is formed
by bacteria immersed in a polymer matrix, which gives the mixture a certain
elastic cohesion. Dividing cells produce compression stresses. In addition, cells
may die due to biochemical stress associated with high cell density, high waste
and toxin concentration, and lack of resources. Dead areas allow to relieve that
stress forming wrinkles. This explains the onset of wrinkles [2] but not the
branching arrangements observed [10]. These arrangements can be understood
incorporating information on cellular activity in mechanical models of biofilm
expansion on a substrate, as we explain next.

3.1 Föppl-Von Karman models

Let us consider a biofilm layer spreading on an agar substratum. We can repro-
duce wrinkle branching in the expanding biofilm resorting to Föppl-Von Karman
descriptions of the interface biofilm/agar [8, 14, 17]:

∂ξ

∂t
=

1− 2νv
2(1− νv)

hv

ηv

[
D(−∆2ξ +∆CM ) + h

∂

∂xβ

(
σα,β(u)

∂ξ

∂xα

)]
− µv

ηv
ξ,(14)

∂u

∂t
=

hvh

ηv
∇ · σ(u)− µv

ηv
u, (15)

where hv is the thickness of the viscoelastic substratum and µv, νv, ηv its rub-
bery modulus, Poisson ratio, and viscosity, respectively. The bending stiffness

is D = Eh3

12(1−ν2) , where E and ν represent the Young are Poisson moduli of the

biofilm, whereas h is the film thickness. In these equations, ξ stands for the out
of plane displacement and u the in plane displacement. α and β stand for x, y
and summation over repeated indices is intended. Stresses σ and strains ε are
defined in terms of in-plane displacements u = (ux, uy) [8, 16]:

εα,β =
1

2

(
∂uα

∂xβ
+

∂uβ

∂xα
+

∂ξ

∂xα

∂ξ

∂xβ

)
+ ε0α,β , (16)

σxx =
E

1− ν2
(εxx + νεyy), σxy =

E

1 + ν
εxy, σyy =

E

1− ν2
(εyy + νεxx). (17)

The residual strains ε0α,β are expressed in terms of the growth tensor [8] as:

ε0α,β = −1

2
(Gαβ + Gβα + GzαGzβ) , (18)
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and should be computed from cellular activity in the spreading biofilm config-
uration.

3.2 Bacterial activity

Bacterial activity can be represented exploiting different agent based models.
Cellular automata descriptions, for instance, provide a simple framework allow-
ing for an easy transfer of information into macroscopic models. The biofilm is
divided in cubic tiles, each of them containing a few cells. To simplify further, we
may identify each tile with one cell. This approach has two advantages. First,
we can use the same grid of tiles to discretize the equations for the relevant
chemical concentrations and the displacements, and then solve them numeri-
cally. Second, we can calculate the growth tensors due to cell division, death,
and other processes, and use them to estimate the residual stresses that enter
the Föppl-Von Karman equations for the deformations. We have to decide for
each cell which is its status. It may secrete chemicals, deactivate, divide creat-
ing a newborn cell that displaces the rest or die, being eventually reabsorbed by
the rest. This may be done resorting to dynamic energy budget descriptions [4]
or according to probabilities that depend on the relevant concentrations [10].

When there is an excess of oxygen, the concentration of nutrients cn becomes
the limiting concentration that restricts biofilm growth. The evolution of the
concentration cn in the biofilm/agar system is governed by

cn,t − div(Dn∇cn) = rn(cn), (19)

where rn(cn) = −k̃n
cn

cn+Kn
, and k̃n is the uptake rate, equal to kn at each

alive cell location and zero otherwise. Dn and Kn denote the diffusion and half-
saturation coefficients. No flux boundary conditions are imposed at the interface
with air. The evolution of the concentration of waste cW in the biofilm/agar
system is governed by

cw,t − div(Dw∇cw) = rw(cw), (20)

where rw(cw) = k̃w, and k̃w is the waste production rate, equal to kw at each
alive cell location and zero otherwise. No flux boundary conditions are imposed
at the interface with air. The diffusion coefficient Dw may vary across the
biofilm/agar system.

In the simplest cellular automata approach, tiles C occupied by alive cells
are assumed to divide with probability [13]:

Pd(C) =
cn(C)

cn(C) + an
, (21)

cn being the limiting concentration and an > 0. Newborn cells inside the biofilm
are reallocated by pushing existing cells in the direction of minimum mechanical
resistance, that is, the shortest distance to the biofilm-air interface. Taking the
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concentration of waste cw at a location as an indicator of death, a cell C is
scheduled to die with probability:

Pw(C) =
cw(C)

cw(C) + aw
, (22)

cw being the waste concentration and aw > 0. Dead cells surrounded by enough
alive neighbors may be reabsorbed by the rest, and its place occupied by a
newborn cell. Otherwise, necrotic regions are created. This process may be
further refined to account for cell differentiation into producers of different types
of autoinducers [10, 4].

For a fixed distribution of cell types, the concentrations cn and cw relax fast
to stationary values, which may be approximated by explicit finite difference
schemes. Once the concentration values are calculated, we go through all the
cells forming the film, creating new cells or killing existing ones with the selected
probabilities. Then, a growth tensor may be defined at each tile by keeping track
of all the new tiles created and the direction in which their predecessors where
shifted. First we introduce a vector w = (w1, w2, w3)a, where a is the tile
size. w1 is evaluated at each location by adding ±1 cumulatively for each tile
shifted in the x direction in the positive or negative sense, respectively. w2 and
w3 are calculated in a similar way, along the y and z directions, respectively.
The resulting vector w is normalized to have norm a. Next, we compute ∇w
approximating the derivatives by finite differences. To estimate the growth
tensor G(x, y) we average all the contributions from ∇w(x, y, z) varying z.

3.3 Residual strains

The residual strains defined in (18) can be computed using the growth tensor G
introduced in Section 3.2. However, stochastic variations make it unsuitable to
be inserted directly in the Föppl-Von Karman equations (14)-(15) because they
cause numerical instability.

To smooth out the residual strains and visualize the underlying spatial vari-
ations, we average them over a number of runs of the step in which new cells
are created or killed according to the selected probabilities, keeping the same
initial configuration in all of them:

ε0,av =
1

N

N∑
j=1

ε0,j , (23)

where ε0,j stands for the residual strain at trial j. Performing such ensemble
averages for N large enough the averaged strains reproduce spatial variations
reflecting cellular activity, see Figure 8 (b)-(c). The resulting average becomes
smoother as the number of runs N increases. However, the computational cost
of this process is high.

Instead, we filter the residual fields using image processing techniques. This
strategy yields smooth approximations with a clear spatial structure averaging
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(a) (b)

(c) (d) (e)

Figure 8: (a) Biofilm containing regions where the cell density is higher. dx
represents the spatial step. (b) ε0,avxx component of the residual strain tensor
due to growth with N = 1. (c) Averaged ε0,avxx component with N = 100.
(d) Filtered ε0,filxx component with N = 1. (e) Filtered ε0,filxx component with
N = 10. The depressions correspond to the initial mounds and appear due to
cell death caused by lack of resources. Strains are higher in the outer ring due
to higher availability of resources, which results in higher division rates. The
same scale of colors is used in all of them ranging from 3 (light yellow) to −3
(dark green).

just a few runs, see Figure 8. The idea is to formulate a denoising problem:
given an observed field fobs = f +n, we seek the underlying smooth structure f
obtained removing the noise n. To solve this problem we apply a split Bregman
method to a ROF (Rudin, Osher, Fatemi) model of the denoising problem [19].
The ROF model consists in solving the variational problem: Find f minimizing∫

|∇f |+ µ

2

∫
|f − fobs|2 = TV (f) +

µ

2
∥f − fobs∥2L2 ,

for µ > 0 large. The split Bregman reformulation adds the constraint d = ∇f ,
sets s(b, f, d) =

∫
|b+∇f − d|2 and introduces the iteration:

(f (k+1), d(k+1)) = Argmin(f,d){|d|+
µ

2
∥fobs − f∥2L2

+
λ

2
s(b(k), f, d)},

b(k+1) = b(k) +∇f (k+1) − d(k+1).
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We split the minimization procedure to solve for each variable separately:

f (k+1) = Argminf{
µ

2
∥fobs − f∥2L2

+
λ

2
s(b(k), f, d(k))},

d(k+1) = Argmind{|d|+
λ

2
s(b(k), f (k+1), d)},

b(k+1) = b(k) +∇f (k+1) − d(k+1).

The first functional is differentiable, therefore, we can write the Euler-Lagrange
equation and evaluate f (k+1) with a Gauss-Seidel method. The second opti-
mization problem can be solved using shrinkage operators:

d(k+1) = shrink(b(k) +∇f (k+1),
1

λ
),

shrink(x, γ) =
x

|x|
max(|x| − γ, 0).

The filtered fields reproduced in Fig. 8 have been produced setting fobs =
ε0,avxx over the 2D grid in the plane XY, relabeling to transform it into a 1D
vector, and using the algorithm:

• Initial guess f (0) = fobs, d(0) = 0, b(0) = 0.

• While ∥f (k) − f (k−1)∥L2
> Tol

– f (k+1) = G(k), where, for j = 1, . . . ,M,

G
(k)
j =

λ

µ+2λ

(
f
(k)
j+1 + f

(k)
j−1−(d

(k)
j −d

(k)
j−1)+(b

(k)
j −b

(k)
j−1)

)
+

µ

µ+2λ
fobs
j ,

with ∇f
(k+1)
j = f

(k+1)
j+1 − f

(k+1)
j ,

– d(k+1) = shrink(b(k) +∇f (k+1), 1
λ ),

– b(k+1) = b(k) +∇f (k+1) − d(k+1).

• If ∥f (k) − f (k−1)∥L2 < Tol, we set ffil = f (k).

The resulting fields are smooth enough to be plugged in equations (14)-
(15) through (16)-(17) without causing numerical instability, allowing us to
reproduce behaviors that resemble observed patterns.

Our simulations of biofilm behavior alternate steps in which we update the
configuration of biofilm tiles, creating and killing cells, and then evaluate the
resulting stresses, with steps in which the biofilm shape is deformed as deter-
mined by the Föppl-Von Karman equations, see [10] for details. Figure 9 shows
wrinkles coarsening and opening up in radial branches. This phenomenon is
associated to compression fronts expanding at certain speeds. Other observed
arrangements, such as wrinkled coronas, that is, a corona of radial wrinkles sur-
rounding a central core [5], can be reproduced varying the Young modulus as
usual in corona instabilities: a swollen corona with diminished Young modulus
around a harder core [10]. Two phase models have been proposed to describe
swelling processes in [18]. However, an adequate way to handle water migration
processes is still missing in our description.
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(a) (b)

Figure 9: In silico wrinkle coarsening and successive branching in a biofilm
spreading on agar. The height of the wrinkles ranges from −5 dx to 5 dx and
the final radius is about 250 dx, dx being the size of the tiles in the spatial
discretization employed to evaluate the cellular activity.

4 Conclusions

Summarizing, we have shown that inserting in plate and rod models information
from the cellular activity and the interaction with the environment we gain
insight on biofilm shapes.

Coupling discrete rod models to the forces exerted by surrounding fluids and
incorporating external constraints such as the presence of walls and constric-
tions, we are able to reproduce experimentally observed filamentary patterns.
Helical biofilms in flows arise as elastic instabilities that coarsen as the length of
the biofilm thread increases due to biomass production and finally wrap around
tube walls reducing their pitch to accommodate more biomass. The main role of
the flow in this case is to promote biofilm filament nucleation past constrictions
and to provide mechanisms for twist at the filament edges. Instead, biofilm
threads are seen to cross 3D corner microflows to join opposite corners as a
result of the interaction fluid/structure, in agreement with previous 2D studies.

Whereas biofilms in flows tend to form filaments, biofilms on agar surfaces
often spread forming wrinkled patterns. Successive radial wrinkle branching is
associated to expanding compression fronts and can be reproduced by inserting
residual stresses caused by cell division and death in Föppl-Von Karman de-
scriptions of the out of plane displacements of the interface biofilm/agar. These
residual stresses are obtained from growth tensors, computed here using the in-
formation on the cellular activity provided by a simple cellular automata model.
To avoid instability caused by stochasticity and be able to visualize the spatial
variations caused by the cellular activity, such residual stresses are smoothed out
combining ensemble averages and denoising algorithms. More realistic models
of cellular activity could be considered at the expense of increasing the com-
putational cost. Additional processes affecting biofilm shapes such as water
migration through the agar/biofilm system are missing in our description and
should be the object of further consideration.
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