# Variable neighborhood search approach to face-shield delivery during pandemic periods 

Joaquín Pacheco* (ID) and Silvia Casado*<br>Applied Economy, University of Burgos, Burgos 09001, Spain<br>E-mail: jpacheco@ubu.es [Pacheco]; scasado@ubu.es [Casado]

Received 22 March 2023; received in revised form 24 August 2023; accepted 6 November 2023


#### Abstract

In 2020, the COVID-19 pandemic and its rapid spread shook health authorities worldwide at the regional and national levels. Healthcare systems had difficulty acquiring important supplies, such as face shields, which at that time were essential for healthcare staff. The need for this material increased with the spread of the pandemic. In most areas, warehouses did not have a sufficient stock of this product. This situation has occurred in the cities and provinces of Burgos (Spain). Volunteers (citizens and small companies) owning three-dimensional printers offered themselves to manufacture face shields. These volunteers are called "makers." Similarly, different organizations (mainly Civil Protection) took charge of transport activities (delivery of material to the makers, collection of face shields, and delivery of the latter to hospitals and other entities). In this study, we were tasked with developing a system for planning and rationalizing these activities. The problems that were solved included a vehicle routing problem with different characteristics compared with other models in the literature. A previuous work described this problem, and the heuristic method used for the planning. However, it is necessary to develop tools that are as efficient as possible for similar situations. In this study, we propose a mathematical formulation of the problem and a method based on the metaheuristic strategies variable neighborhood search and greedy randomize adaptative search procedure on a multistart framework. Different tests with real instances used during the period in which these activities were conducted show that the new method improves the results obtained by the previous method as well as the commercial software.


Keywords: coronavirus; sanitary logistics; heuristic optimization; variable neighborhood search
*Corresponding author.

[^0]
## 1. Introduction

### 1.1. Context

At the beginning of March 2020, a health crisis caused by SARS-CoV-2 occurred. Spain and Italy (where massive contagion started a few weeks before) were the most affected European countries in the first weeks of the pandemic (the highest rates of contagion, death, and ICU bed occupancy). Furthermore, the rapid spread of the virus revealed a scarcity of key supplies, such as protective equipment for healthcare staff. Specifically, face shields have become essential for healthcare workers, and the need to acquire sufficient numbers is critical for different authorities. This situation occurred in different regions of Spain, such as the city and province of Burgos, where there were no nearby factories manufacturing face shields or warehouses with sufficient stocks of the product. In this context, the Scientific Culture Unit (UCC in Spain) of the University of Burgos (UBU) initiated and coordinated an initiative to produce these shields and distribute them to healthcare centers and hospices. The UCC obligated certain manufacturers in the city and surrounding areas (i.e., individual citizens and small companies that owned three-dimensional printers) to manufacture face shields and contacted institutions, such as the Civil Protection, City Hall, and Red Cross, to collect, distribute, and store face shields. A small technology company (Abadía Tecnología) also collaborated to manufacture and store this item. This initiative by the UCC of the UBU was successful both for the manufacturers who responded to the request and for the quantities delivered. With respect to similar initiatives, the number of face shields delivered per citizen in Burgos and its province was seven times larger than in the rest of the Spanish territory as a whole (Table 1).

To improve the efficiency of this initiative, our research team developed a system for the daily planning of distribution tasks. This system determined the routes traveled by the members of the above-mentioned institutions to collect face shields at the homes of the manufacturers and deliver them to healthcare centers and hospices. Such deliveries have expanded to pharmacies and smalland medium-sized companies. Visits to manufacturers included the delivery of raw materials for the manufacture of face shields. The development of this system was quick, considering the circumstances and the critical nature of the situation. Pacheco and Laguna (2020) described the steps and schedule for developing, implementing, and using this system. The use of this system generated different advantages, such as time saved when planning, availability of detailed routing sheets and maps, consistency between the planned and real route times, shorter times in each route, and greater balance at stated times. The reduction in the time taken to calculate the routes to a few minutes allowed the routes to be initiated and thus finalized earlier. Furthermore, it allowed planning

Table 1
Comparison of face shields delivered in Spain and Burgos (city and province) from the last week of March to the first week of June 2020 (source: UCC-UBU)

|  | Population | Face shields <br> delivered | Percentage of population <br> with face shields |
| :--- | :--- | :--- | :--- |
| Spain | $46,934,632$ | 685,664 | 1.46 |
| Burgos | 355,420 | 37,311 | 10.50 |

© 2023 The Authors.
International Transactions in Operational Research published by John Wiley \& Sons Ltd on behalf of International Federation of Operational Research Societies.
to include last-minute requests for face shields. In addition, the shorter times of each route and the balance between said times were advantageous; as explained below, it allowed the drivers to coordinate and perform other social tasks when the routes ended. Figure 1 shows the screenshots of different maps and routing sheets obtained by the system for the distribution of face shields in Burgos.

This system has been used in local and regional newspapers (Andrés, 2020; García, 2020). Moreover, the system was granted the "Innovation against the virus" initiative, which was promoted by the Regional Government of Castile and Leon, in the social and humanitarian modality, which was also shown in the national press (Antolín, 2020; Blanco, 2020).

This system consists of a graphic interface (for data entry, editing, and route visualization, as shown in Fig. 1) and an algorithm to obtain the optimal solutions, or at least the best possible solutions. The algorithm was developed as an adaptation of a previously developed commercial logistics algorithm that we already had. The resulting algorithm has been described in detail by Pacheco and Laguna (2020). The choice of adapting an already existing algorithm rather than developing an ad hoc algorithm was based on the need to have the system available immediately, considering the critical nature of the situation. As aforementioned, the manually obtained results improved and also delivered other advantages. However, it is important to investigate whether, with a longer time, the development of an ad hoc algorithm for this specific problem can generate better results than the algorithm used. It must be considered that similar situations could be repeated in the future. Therefore, developing more efficient tools is the main motivation for this work.

The present study proposes a new algorithm or method based on the metaheuristic strategies of variable neighborhood search (VNS) and greedy randomized adaptative search procedure (GRASP) on a multistart (MS) framework. Different tests, with real instances used during the period in which these activities were conducted, show that the new method improves the results obtained by the previous method as well as the results obtained by commercial software. In summary, the differences with the previous work (Pacheco and Laguna; 2020) are as follows:

- In Pacheco and Laguna (2020), the method described is a fast adaptation to this problem of methods for commercial logistics because of the circumstances mentioned. In the current work, without so much time pressure, an ad hoc tool is developed for this problem to obtain better solutions for possible similar situations in the future.
- Both methods are MS strategies that use the same constructive method and the same neighborhood structures. However, they have notable differences such as the improvement procedures or the organization of the neighborhood structures that turn out to be more efficient in the new method.
- In addition, the current work incorporates a problem formulation, tests to check the suitability/necessity of the different components, and tests to compare the solutions against commercial software and the previous method.


### 1.2. Characteristics of the problem

The aim of this study was to solve the problem of collecting face shields from the homes of manufacturers and delivering them to the centers that required them (healthcare centers, hospices,
© 2023 The Authors.
International Transactions in Operational Research published by John Wiley \& Sons Ltd on behalf of International Federation of Operational Research Societies.

(C) 2023 The Authors.

International Transactions in Operational Research published by John Wiley \& Sons Ltd on behalf of International Federation of Operational Research Societies.
pharmacies, and small and medium companies). Thus, it is a vehicle routing problem with the following characteristics:

- More than one institution may be involved in distribution tasks. During the first few days, these tasks were conducted only through Civil Protection. Thereafter, the Red Cross and City Hall of Burgos joined, although, in the last few days, Civil Protection conducted the distribution tasks alone. For 35 days, there was only one institution involved; for 16 days, two institutions were involved, while for three days, three institutions were involved.

Therefore, the origin-destination pairs may be different for different routes. These pairs are the same for the vehicles of the same institution. However, there may be different for other institutions.

In relation to the above-mentioned factors, routes can be opened, closed, or both on the same day. For instance, the origins and destinations of Civil Protection coincided (closed routes). The same was true for the Red Cross. However, in the case of the City Hall, the starting and ending points were different (open routes). However, in the final days, the routes began in the headquarters of Civil Protection and ended in Abadía Tecnología (open routes), where the face shields were stored.

- There are no capacity restrictions because the capacity of each vehicle (van) is sufficient to carry all the face shields gathered each day.
- There are no time windows or similar constraints; collection and delivery points are available throughout the distribution period. In addition, the maximum driving time was sufficiently long.

On each route, the face-shield gathering points must be located before the delivery points. Moreover, the collected amount must be equal to or greater than the amount delivered. Spare face shields were stored at the endpoints of each route for subsequent delivery to the three largest hospitals in the city (University Hospital, Provincial Hospital, and Red Cross Hospital).

- The main target function is the minimization of the longest route's duration ("social" objective), because the drivers of each institution, in addition to distributing the face shields, perform different social tasks in collaboration with each other (transporting and assembling beds in hospices, disinfecting certain facilities, etc.). Thus, they must wait until the arrival of the last driver at their institution to begin performing the next task. Excessive time on the route for some of them would force the rest to wait. In contrast, if all drivers finish earlier, they can start the next task earlier, with all the advantages that this entails.

The use of the total distance traveled ("economic" objective) as a main target can cause an imbalance between the times of the different routes. This is evident in the real instance of April 2, 2020. With this "economic" objective, the longest route had a duration of 252 minutes, although the other three routes ended earlier ( 16,17 , and 107 minutes), and the drivers had to wait. Considering the "social" objective, routes of 112-115 minutes were obtained, thereby substantially reducing the waiting time. In summary, considering the "social" objective, the drivers could start the next task over two hours earlier ( 137 minutes) compared to when the "economic" objective was considered. Therefore, the main objective was to minimize the longest route duration, and the secondary objective was to minimize the total distance traveled.
(C) 2023 The Authors.

International Transactions in Operational Research published by John Wiley \& Sons Ltd on behalf of International Federation of Operational Research Societies.

### 1.3. Contributions

This study analyzed a healthcare logistics problem based on the real problem of the daily delivery of face shields in the city and province of Burgos during the first wave of the COVID-19 pandemic. These activities were conducted between the end of March and the beginning of June 2020. Specifically, this study formulates this problem as an integer-mixed mathematical program and proposes a method based on the metaheuristic VNS strategy in an MS framework to solve this problem. The performance of this model was analyzed using 54 real instances corresponding to 54 days of face shield delivery in the city of Burgos and its surrounding areas. Computational tests showed that this new method obtained better or similar solutions than the method used to obtain the routes employed during this period (Pacheco and Laguna, 2020). It also obtained better results than two known general-purpose solvers. The tests also analyzed the need and opportunity for the different components of the method. Different results were analyzed using statistical tests. Thus, this study makes the following contributions:

- analysis of the real problem of face-shield delivery during the pandemic,
- formulation of the problem as a mixed-integer mathematical model, and
- design and development of a new solution method that improves previous models for this problem and commercial software.

The provision of 54 real instances corresponding to the daily distribution of these face shields in the city of Burgos and its surrounding areas from the end of March to the beginning of June 2020.

The remainder of the paper is organized as follows: Section 2 is devoted to a literature review. Section 3 defines the notation used and proposes the mathematical scheduling model. Section 4 describes the new MS-VNS model and its components. Section 5 presents different computational tests to analyze the performance of this new method. Finally, Section 6 presents the conclusions.

## 2. Literature review

### 2.1. State of the art of real-life health logistics problems during the COVID-19 pandemic

In addition to the previously mentioned work of Pacheco and Laguna (2020), with the appearance of the COVID-19 pandemic, other real transportation, logistics, and distribution problems have emerged, owing to the limitation of resources and unusual time pressure. Singgih (2020) considered the problem of deploying mobile laboratories that could conduct tests to address over-demand in Indonesia during the pandemic. Zhang et al. (2020) studied the problem of transporting high-risk individuals for medical isolation in epidemic areas of China, where the number of available quarantine vehicles was limited. Guevara and Peñas (2020) considered the problem of healthcare route planning for people infected with the virus to reduce its spread and the number of people infected. Gao et al. (2020) addressed a distribution problem with unmanned vehicles. Chen et al. (2020) analyzed the contactless distribution of food. Majzoubi et al. (2021) approached the problem of patient transportation. Breitbarth et al. (2021) addressed the problem of distributing healthcare materials to the homes of vulnerable people. Tsai et al. (2021) also addressed the problem of

[^1]evacuation during emergencies. Chen et al. (2021) analyzed the use of drones in last-mile delivery. Zhao et al. (2022) addressed a similar problem using a bi-objective approach. Jiang et al. (2021) addressed the problem of fresh food distribution. Similarly, Wang et al. (2021) explored a case of interregional and intraregional emergency distribution with traffic restrictions. Tlili et al. (2022) considered the problem of managing sample collection from patients at home. Yang et al. (2022) aimed to minimize the total cost of pharmaceutical cold chain distribution. Finally, Contardo and Costa (2022) addressed the problem of the distribution of rooms (in this case, dining rooms) to optimize their use. Shen et al. (2022) reviewed healthcare logistics problems during the pandemic.

Focusing on Spanish populations and regions, there are some interesting works on the use of healthcare logistics models during the COVID-19 pandemic. Quintanilla García et al. (2021) describe a system for the distribution of medical products using drones in Valencia. Tordecilla et al. (2021) analyze the distribution of hospital supplies in Barcelona. Finally, the work of GarciaVicuña et al. (2022) focuses on forecasting and provisioning hospital beds in cities in the regions of La Rioja and Navarra.

### 2.2. State of the art of $V N S$ in healthcare resource logistics and management

The VNS is a metaheuristic method used to solve combinatory and global optimization problems. Its key idea is the systematic change of neighborhoods within the local search (Mladenovic and Hansen, 1997). Metaheuristic methods based on the VNS have been successfully applied to various problems and applications in healthcare resource management. Many of these contributions relate to staff schedule planning. Gomes et al. (2017), Rahimian et al. (2017), and Zheng et al. (2017) have used this strategy to solve nurse rostering problems. Recently, Lan et al. (2022) solved the physician planning and scheduling problem.

Regarding the problems of patient transportation and home healthcare planning, it is important to highlight the works of Frifita et al. (2017) and Detti et al. (2017). In the former, a VNS was used to optimize the allocation of visits to home caregivers as well as to sequence the execution of such visits. In the latter, a VNS was used to solve the real problem of nonurgent patient transportation in an Italian region, considering heterogeneous vehicles, restrictions of vehicle-patient compatibility, service quality requirements, patient preferences, and fees as a function of the vehicles on hold.

With respect to the recycling of medical waste, Zhang et al. (2022) analyzed the routing problem of medical waste vehicles with time windows to reduce risk and carbon emissions during transportation.

In a different study, Dellaert and Jeunet (2017) addressed the problem of planning surgical operations. Specifically, they developed a medium-term patient admission plan. They aimed to balance the use of resources, such as operating rooms, beds, and nursing wards. Lan et al. (2021) reviewed the main works, focusing on the applications of the metaheuristic strategy of VNS in the scope of healthcare.

Finally, with regard to works specifically related to the COVID-19 pandemic, Goodarzian et al. (2021) used VNS to solve a drug distribution problem, considering the drug production and delivery periods as a function of their perishable nature. Dai et al. (2022) proposed a planning model to guarantee that surgical operations could be performed safely during a pandemic.

## 3. Notation and formulation

To formalize the problem and solution approaches, we define the following terms:
$s$ Number of institutions
$m_{l}$ : Number of vehicles used by $l$ th the institution, $l \in\{1,2, \ldots, s\}$
$P$ : Set of $n_{1}$ pickup points such that $P=\left\{1,2, \ldots, n_{1}\right\}$
$Q:$ Set of $n_{2}$ delivery points such that $Q=\left\{n_{1}+1, n_{1}+2, \ldots, n_{t}\right\}$ and $n_{t}=n_{1}+n_{2}$
$O$ : Set of origins such that $O=\left\{n_{t}+1, n_{t}+2, \ldots, n_{t}+s\right\}$
$E$ : Set of endpoints such that $E=\left\{n_{t}+s+1, n_{t}+s+2, \ldots, n_{t}+2 s\right\}$
That is, $n t+l$ is the starting point of the routes of institution $l$, and $n_{t}+s+l$ is their ending point.
$t_{i j}$ : Travel time between $i$ and $j, \forall i, j \in V$ where $V=P \cup Q \cup O \cup E$. These times already include the stop/service times at point $i$ (if $i \in P \cup Q$ ).
$d_{i j}$ : Distance between $i$ and $j \forall i, j \in V$
$p_{i}$ : Quantity picked at point $i \in P$
$q_{i}$ : Quantity delivered at point $i \in Q$
The problem is formulated as follows:

$$
\begin{equation*}
\min \sum_{i \in O \cup P \cup Q} \sum_{j \in P \cup Q \cup E} \mathrm{~d}_{i j} x_{i j}, \tag{1}
\end{equation*}
$$

subject to

$$
\begin{align*}
& \sum_{j \in P \cup Q \cup E} x_{i j} \leq m_{l} \quad \begin{array}{r}
\forall i \in O \\
l=i-n t
\end{array},  \tag{3}\\
& \sum_{j \in O \cup P \cup Q} x_{j i^{\prime}}=\sum_{j \in P \cup Q \cup E} x_{i j}  \tag{4}\\
& \forall l \in\{1,2, \ldots, s\} \\
& i=n_{t}+l \\
& i^{\prime}=n_{t}+s+l \\
& \sum_{j \in P \cup Q} x_{i j}=1  \tag{5}\\
& \forall i \in P \cup Q, \\
& j \in P \cup Q \cup E \\
& j \neq i \\
& \sum_{j \in O \cup P \cup Q} x_{j i}=1  \tag{6}\\
& j \neq i
\end{align*}
$$

(C) 2023 The Authors.

International Transactions in Operational Research published by John Wiley \& Sons Ltd on behalf of International Federation of Operational Research Societies.

$$
\begin{array}{lc}
\sum_{l=1}^{s} h_{i l}=1 & \forall i \in P \cup Q, \\
h_{i l} \geq x_{j i} & \forall i \in P \cup Q \\
& \forall j \in O ; l=j-n t, \\
h_{i l} \geq x_{i j} & \forall i \in P \cup Q \\
h_{j l} \geq x_{i j}+h_{i l}-1 & \forall j \in E ; l=j-n t-s, \\
u_{j} \geq u_{i}+t_{i j}-\left(1-x_{i j}\right) \cdot(B i g T) & \forall i, j \in P \cup Q ; j \neq i, \\
T m a x \geq u_{i} & \forall i \in O \cup P \cup Q \\
u_{j} \geq u_{i}+B i g T-\left(1-x_{i j}\right) \cdot(2 \cdot B i g T) & \forall j \in P \cup Q \cup E ; j \neq i, \\
w_{i} \leq 0 & \forall i \in E, \\
w_{j} \leq w_{i}+p_{j}+\left(1-x_{i j}\right) \cdot(B i g Q) & \forall i \in Q ; \forall j \in P, \\
w_{j} \leq w_{i}-q_{j}+\left(1-x_{i j}\right) \cdot(B i g Q) & \forall i \in O \cup P \cup Q ; \forall j \in Q ; j \neq i, \\
x_{i j} \in\{0,1\} & \forall i \in O \cup P \cup Q \\
& \forall j \in P \cup Q \cup E ; j \neq i, \\
h_{i l} \in R^{+} & \forall i \in P \cup Q ; \\
u_{i} \in R^{+} & \forall l \in\{1,2, \ldots, s\}, \\
w_{i} \in R^{+} & \forall i \in V, \\
& \forall i \in O \cup P \cup Q
\end{array}
$$

Tmax $\in R^{+}$.
The variable $x_{i j}$ has a value of one if arc $(i, j)$ is used; otherwise, its value is zero. The variable $h_{i l}$ has a value of 1 if point $i$ is visited by a vehicle of institution $l$. Variable $u_{i}$ indicates the time of arrival at each point $i$. Variable $w_{i}$ indicates the remaining load in each vehicle after visiting point $i$. Finally, variable Tmax is the longest duration among all routes.

Expressions (1) and (2) correspond to the "social objective" (minimizing the duration of the longest route) and "economic objective" (minimizing the total distance traveled), respectively. Restriction (3) ensures that for each institution, all available vehicles belonging to the institution are used. Restriction (4) ensures that for each institution, the number of vehicles leaving the starting point of the institution is equal to the number of vehicles arriving at the destination. Restrictions (5) and (6) ensure that each collection and delivery point is visited only once. Restrictions (7)-(10)


Fig. 2. "Cross" situation in routes $r_{2}$ and $r_{3}$ in red.
prevent the starting and ending points of different institutions from "cross"; specifically, they ensure that the starting and ending points of a single route are not from different institutions. This "cross" situation is depicted in Fig. 2.

Figure 2 shows examples of these two institutions. The first institution has two vehicles and the start-end pair $\left(A^{+}, A^{-}\right)$, and the second institution has one vehicle and the start-end pair $\left(B^{+}, B^{-}\right)$. As can be observed, the start-end pairs have "crossed" in routes $r_{2}$ and $r_{3}$. To prevent this, restrictions (7)-(10) are used. Restriction (7) ensures that each visit point is covered by a single institution. Restrictions (8) and (9) ensure that if a particular point is the first or last (respectively) visiting point of a route, it is served by an institution that corresponds to the starting or ending point of the route, respectively. Restriction (10) ensures that two consecutive visiting points along a route are served by the same institution. Moreover, restrictions (7)-(10) allow for the linearizing of variables $h_{i l}$. Restriction (11) prevents cycles and helps to determine the value of variable $u_{i}$. Restriction (12), along with the minimization of function (1), ensures that Tmax is the duration of the longest route. Restriction (13) ensures that collection points arrive before delivery points. Restrictions (14)-(16) determine the value of the variable $w_{i}$ and ensure that after each visit, the balance between the number of face shields collected and delivered is positive.

## 4. Description of an MS-VNS method

To describe the model, we use $S$ to represent a generic solution. Each solution $S$ is a set of $n r$ routes, where $n r$ is the total number of routes; that is, $n r=\sum_{l=1}^{s} m_{l}$. Each route is represented as an ordered sequence of points, where the first and last points correspond to the start and end points, respectively.

For solution $S, f_{1}(S)$ represents the first target function (which corresponds to expression (1) of the problem formulation) and $f_{2}(S)$ represents the second target function (which corresponds to Equation (2)). In this problem, the first target prefers the second. Therefore, considering the two solutions $S_{1}$ and $S_{2}, S_{1}$ is better than $S_{2}$ if one of these two conditions occurs:
(a) $f_{1}\left(S_{1}\right)<f_{1}\left(S_{2}\right)$;
(b) $f_{1}\left(S_{1}\right)=f_{1}\left(S_{2}\right)$ and $f_{2}\left(S_{1}\right)<f_{2}\left(S_{2}\right)$.

Pseudocode 1. MultiStarV NS method.

```
Method MultiStarV \(N S\left(\operatorname{var} S_{\text {best }}\right)\)
iterms \(=0\), iterbestms \(=0, S_{\text {best }}=\emptyset\)
Repeat
    iterms \(=\) iterms +1
    \(S=\) Constructive \((\alpha)\);
    \(S=V N S(S)\)
    If \(S\) improves \(S_{\text {best }}\) then: \(S_{\text {best }}=S\), iterbestms \(=\) iterms
untiliterms \(>\) iterbestms + maxiterms
```

Pseudocode 2. Procedure Constructive.

```
Procedure Constructive ( \(\alpha\) )
    1. Initialize \(S, f_{1}(S)\) and \(f_{2}(S)\)
2. \(\mathrm{Sel}=P \cup Q\)
WhileSel \(\neq \emptyset\) do
    begin
    3. Build \(L\) the set of feasible insertions of points in Sel into \(S\)
    4. From \(L\) extract \(C L\) the subset of insertions in \(L\) which, if executed, would not increase the value of \(f_{1}(S)\)
    5. If \(C L=\emptyset\) then \(C L=L\)
    6. From \(C L\) extract \(R C L\) the subset of the insertions that differ less than \(\alpha \%\) from the best insertion (considering the
    increase in the duration of the corresponding route)
    7. Randomly select an insertion from \(R C L\)
    8. Execute the selected insertion
    9. Update \(\mathrm{Sel}, S, f_{1}(S)\) and \(f_{2}(S)\)
    end
```

In all operations of the different procedures that comprise the method, the following aspects must be considered to guarantee feasible solutions: all points must be visited; each point must only be visited by one vehicle/route; for each route, the collection points $P$ must precede the delivery points $Q$, and the amounts collected must be greater than or equal to the amounts delivered.

As previously commented, we propose a method (named MultiStarVNS) that combines the VNS and GRASP (Feo and Resende, 1995) strategies on an MS framework (Martí, 2003). In each iteration, this method generates a different solution, which is subsequently improved using a procedure based on the VNS. This process ends when the stopping criterion is satisfied. Pseudocode 1 illustrates the process.

In each iteration, solution $S$ is created using the procedure Constructive, and is subsequently improved by the VNS procedure. For variable $S_{\text {best }}$, the best solution (i.e., the output of the method) is saved. Variable iterms is the iteration counter, and variable iterbestms indicates the iteration with the best solution. The method terminates when maxiterms iterations occur without improving $S_{\text {best }}$. Subsequently, we present the two procedures that comprise our MultiStarVNS method: Constructive and VNS.

The construction procedure Constructive proposed in Pacheco and Laguna (2020) is briefly described below (Pseudocode 2).
(C) 2023 The Authors.

Pseudocode 3. Procedure $V N S$.

```
Procedure \(V N S(\operatorname{var} S)\)
1. \(S=V N D(S)\)
2. Do: iter \(=0\); iterbest \(=0\)
Repeat
    3. iter \(=\) iter +1
    4. \(k=0\)
    Repeat
        5. \(k=k+1\)
        6. \(S_{1}=\operatorname{Shaking}(k, S)\)
        7. \(S_{1}=V N D\left(S_{1}\right)\)
        8. If \(S_{1}\) is better than \(S\), then: \(S=S_{1}\), iterbest \(=\) iter, \(k=0\);
    until \(k=n r\)
untiliter \(>\) iterbest + maxiter
```

As indicated in Section 3, $P$ and $Q$ are the sets of pickup points and delivery points, respectively. To initialize solution $S$, routes $n r$ were created with only the corresponding starting and ending points for each route. The distance and time for each route were initialized. The values of $f_{1}(S)$ and $f_{2}(S)$ were obtained from the distances and times of the routes. One insertion was performed in each iteration. Specifically, all possible insertions (routes and positions) of Sel (the set of noninserted points in the subsequent steps) were analyzed. In particular, set $L$ of feasible insertions is constructed and the $C L$ of the solutions that do not increase the value of $f_{1}(S)$ is extracted. If $C L=\emptyset$, it is redefined as $C L=L$. From $C L$, set $R C L$ of the insertions that differ by less than $\alpha \%$ from the best insertion is obtained, considering the time increase. From this set $R C L$, an insertion is randomly selected and executed. Parameter $\alpha$ measures the degree of avidity-randomness of the process: If $\alpha=0$, then $R C L$ only includes the best insertion; if $\alpha=1$, then $R C L=C L$. This way of constructing solutions (the use of a list with the best $R C L$ insertions and the random choice of one of them) is based on the GRASP strategy.

The $V N S$ follows the general VNS strategy. Pseudocode 3 describes the procedure.
An initial solution is read and then improved using an improvement procedure called $V N D$ (variable neighborhood descent). Subsequently, in each step, a solution $S_{1}$ is obtained by "shaking" the current solution $S$ (i.e., changing some elements of $S$ ). Solution $S_{1}$ is improved by the $V N D$ procedure. The "shaking" is performed with the Shaking procedure, which depends on parameter $k$ : small values correspond to small shakings (the obtained solution $S_{1}$ is similar to $S$ ), and high values correspond to large shakings ( $S_{1}$ is different from $S$ ). Each iteration begins with $k=1$ and increases in the following steps. If the obtained solution $S_{1}$ improves $S$, then $S$ is replaced with $S_{1}$, and $k=1$. The iteration ends when $k$ reaches the value of $n r$. The procedure ends when maxiter consecutive iterations elapse without improving $S$.

Subsequently, we explain the improvement of the $V N D$ procedure and the Shaking procedure. The $V N D$ procedure is a neighborhood search method that improves the starting solution $S_{x}$. For this solution, a set of neighborhoods $N_{j}\left(S_{x}\right), j=1$..jmax is defined, which is consecutively explored until a solution $S^{\prime}$ that improves $S_{x}$ is obtained. In this case, $S_{x}$ is replaced with $S^{\prime}$ and the process is restarted. The procedure ends when no solution improves $S_{x}$ in any neighborhood. Pseudocode 4 describes the procedure.

Pseudocode 4. . Procedure VND.

```
Procedure \(V N D\left(\operatorname{var} S_{x}\right)\)
1. \(j=0\)
Repeat
    2. \(j=j+1\)
    3. Determine if \(S^{\prime}\) is the best solution of \(N_{j}\left(S_{x}\right)\)
    4. If \(S^{\prime}\) is better than \(S_{x}\), then: \(S_{x}=S^{\prime}\) and \(j=0\)
until \(j=j\) max
```




Generalized-Or


Move


Fig. 3. Neighborhood movements used.

Neighborhoods consist of feasible solutions that are reached through different movements or changes made to the current solution. Different neighborhoods $N_{j}\left(S_{x}\right), j=1$..jmax use four types of movements: Or-moves, Generalized-Or, Interchange, and Move. The Or-moves movements consist of exchanging two consecutive chains of points of the same route, the Generalized-Or movements consist of exchanging two nonconsecutive chains, the Interchange movements consist of exchanging two different route chains, and the Move movements consist of moving a chain from one route to another. These movements have demonstrated good performances in studies with similar objectives (Pacheco et al., 2013; Pacheco and Laguna, 2020). Figure 3 shows the four types of movements. Thus, in the example of Or-moves movements, chains B-C and D-E-F are exchanged; in the example of Generalized-Or, chains $\mathrm{B}-\mathrm{C}$ and $\mathrm{F}-\mathrm{G}$ are exchanged, with chain $\mathrm{D}-\mathrm{E}$ remaining between them; in the example of Interchange, routes B-C-D and V-W-X are exchanged between the routes that include them; finally, in the example of Move, chain V-W-X changes the route.

Specifically, $N_{j}\left(S_{x}\right)$ represents the set of solutions reached from $S_{x}$ with the previous movements, where the maximum size of the chains involved is $j$. Thus, in the example of $O R$-moves, the chains involved are B-C (size 2) and D-E-F (size 3). Therefore, the solution reached belongs to $N_{3}\left(S_{x}\right)$. Similarly, the solution that would be reached with the example of Generalized-Or belongs to $N_{2}\left(S_{x}\right)$





Fig. 4. Example of "shaking" with $k=3$.
(the three chains involved are of size 2), and the solutions that correspond to the examples of Interchange and Move belong to $N_{3}\left(S_{x}\right)$. The value of jmax is considered as sufficiently large as to ensure that all changes of the previous types are verified ( jmax $=n t-1$ ). This way of structuring the neighborhoods has been chosen because it has been observed that with chains of size one, that is, $N_{1}$, significant improvements are achieved and also the cardinal of $N_{1}$ is smaller than that of $N_{2}$. In turn, the cardinal of $N_{2}$ is smaller than that of $N_{3}$. Significantly, we have observed a notable difference between the checking time of $N_{1}$ versus that of $N_{2}$. Therefore, within the $V N D$ procedure: first $N_{1}$ is checked, and if there is no improvement then $N_{2}$ is checked, etc.

The Shaking $(k)$ typically consists of randomly choosing $k$ routes $r_{1}, r_{2}, \ldots, r_{k}$, (the order is also random), selecting one chain from each of the chosen routes (also randomly) and exchanging the selected chains in the following manner: the chain of route $r_{1}$ is inserted in route $r_{2}$, the chain of route $r_{2}$ is inserted in route $r_{3}$, etc.; finally, the chain of route $r_{k}$ is inserted in route $r_{1}$. Figure 4 graphically illustrates this process for $k=3$.

In the example in Fig. 4, three routes ( $r_{1}, r_{2}$, and $r_{3}$ ) are randomly selected; from route $r_{1}$ chain $\mathrm{C}-\mathrm{D}$ is extracted, from route $r_{2}$ chain $\mathrm{V}-\mathrm{W}-\mathrm{X}$ is extracted and from route $r_{3}$ chain N is extracted. These three chains were randomly selected. Chains C-D are inserted in route $r_{2}$, chains $\mathrm{V}-\mathrm{W}-\mathrm{X}$ are inserted in route $r_{3}$, and chain N is inserted in route $r_{1}$. The following observations were made:

The chains are randomly placed between positions that lead to feasible routes with respect to precedence restrictions (i.e., the collection points precede the delivery points). These feasible positions depend on whether the chain to be relocated only has (a) collection points, (b) delivery points, or (c) both. In the first case, the chain can be inserted from after the starting point to after the last collection point of the destination route. In the second case, it can be inserted from after the last collection point of the destination route to immediately before the ending point. In the third case, it can only be placed immediately after the last collection point of the destination route. Figure 3 shows three possible situations in the relocation of chains $\mathrm{V}-\mathrm{W}-\mathrm{X}$ in route $r_{3}$.

As shown in Fig. 5, in route $r_{3}, \mathrm{~K}$ is the starting point, P is the ending point, L (light blue)

[^2]

Fig. 5. Example of feasible relocations.
is the collection point, and M and O (yellow) are the delivery points. In the first case, the three points of chains $\mathrm{V}-\mathrm{W}-\mathrm{X}$ are collection points; therefore, they can be relocated after K or L . Other relocations (after M or O ) would be infeasible with respect to the precedence restrictions (collection before delivery). In the second case, the three points of chain $\mathrm{V}-\mathrm{W}-\mathrm{X}$ are delivery points; therefore, they can be relocated after L, M, or O. Finally, in the last case, V and W are collection points, and X is a delivery point; thus, chain $\mathrm{V}-\mathrm{W}-\mathrm{X}$ can only be relocated after L .

This process could generate infeasible routes with respect to restrictions that require the number of face shields collected in each route to be equal to or greater than the amount delivered. To restore the feasibility, an iterative process of $0-1$ exchanges (changing a point from one route to another) and $1-1$ exchanges (exchanging two points on two different routes) is performed. In each step, the best exchange is searched and executed (in this case, the one that reduces infeasibility). The process ends when feasibility is recovered and is measured as follows: for each $r=1, \ldots, n r$, $\operatorname{SumP(r)}$ and $\operatorname{Sum} Q(r)$ are defined as the sums of the amounts collected and delivered, respectively. The infeasibility was measured using the following equation:

$$
\text { Infeasib }=\sum_{r=1}^{n r} \max (0, \operatorname{Sum} Q(r)-\operatorname{SumP}(r))
$$

The exchange that mostly reduces this infeasibility is immediately determined, and the points or points involved are inserted in the position that least increases the duration of the route from among all the feasible positions with respect to the precedence restrictions (i.e., collections before deliveries).

- Finally, it is important to demonstrate that when $k=1$, the Shaking procedure consists of relocating a chain of one route to another feasible position of the same route. Pseudocode 5 describes the procedure.

Pseudocode 5. Procedure Shaking.

```
Procedure Shaking \(\left(k, S\right.\), var \(\left.S_{1}\right)\)
1. Copy \(S\) in \(S_{1}\)
2. Randomly select k indices \(r_{1}, r_{2}, \ldots, r_{k} \in\{1, \ldots, n r\}\)
3. \(\forall l=1\).. \(k\) : Randomly select a chain \(C h_{l}\) of route \(r_{l}\) and extract it from said route
4. \(\forall l=1 . . k-1\) : Randomly insert \(C h_{l}\) in a feasible position of route \(r_{l+1}\)
            Randomly insert \(C h_{k}\) in a feasible position of route \(r_{1}\)
WhileInfeasib > 0 do
    begin
    5. Analyze all the \(0-1\) and \(1-1\) exchanges and determine which reduces In feasib the most
    6. Execute said exchange inserting the points involved in the best feasible positions
End
```


## 5. Computational tests

This section describes the computational tests used to evaluate the performance of the MultiStarV NS method. Subsection 5.1 describes the real instances that were used to conduct these tests in the following subsections. Subsection 5.2 analyzes the fit of the parameters of this method. Subsection 5.3 explores the need for the different components of the method. Subsection 5.4 compares the results of our method with those of previous methods and commercial software. All methods, procedures, and variants were implemented using the Object-Pascal programming language and Rad Studio development framework (v10 and v11). All the tests were performed on a computer with an i9-10920X processing unit and 128 GB of RAM.

### 5.1. Real instances

The instances used in this section are the real instances of daily planning performed by the system described by Pacheco and Laguna (2020) from the end of March to the beginning of June 2020. This subsection presents the instances recorded from March 30 to June 8, 2020. It is important to highlight that face-shielded delivery activities began a few days earlier. In the first week, they were delivered daily (including weekends). Later, they were delivered only on weekdays. In total, 54 instances were recorded. Table 2 lists the data for these instances: the number of collection points $\left(n_{1}\right)$, the number of delivery points $\left(n_{2}\right)$, the number of institutions involved in the delivery ( $s$ ), the number of routes involved in the delivery ( $m_{1}$ and, if applicable, $m_{2}$ and $m_{3}$ ), the total number of face shields collected ( $\operatorname{Tot} P$ ), and the total number of face shields delivered (TotQ).

As shown in Table 2, these activities were more intense in the first week, both in the number of points visited and face shields collected/delivered. Subsequently, the numbers progressively decreased. Files with these instances and a description of their formats are available at www.ubu.es/metaheuristicos-grinubumet/ejemplos-y-datos-de-problemas.

[^3]Table 2
Description of the real instances used.

| \# | $n_{1}$ | $n_{2}$ | $s$ | $m_{1}$ | $m_{2}$ | $m_{3}$ | Tot $P$ | Totq |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 13 | 44 | 1 | 4 |  |  | 1775 | 1318 |
| 2 | 12 | 31 | 1 | 4 |  |  | 1350 | 963 |
| 3 | 12 | 41 | 1 | 4 |  |  | 1650 | 1223 |
| 4 | 16 | 18 | 1 | 4 |  |  | 975 | 467 |
| 5 | 11 | 38 | 1 | 4 |  |  | 1550 | 1104 |
| 6 | 16 | 42 | 1 | 4 |  |  | 2475 | 1309 |
| 7 | 10 | 35 | 1 | 4 |  |  | 1325 | 1105 |
| 8 | 15 | 39 | 1 | 4 |  |  | 2100 | 1202 |
| 9 | 15 | 49 | 1 | 4 |  |  | 1800 | 1454 |
| 10 | 14 | 36 | 1 | 4 |  |  | 1900 | 1087 |
| 11 | 14 | 46 | 1 | 4 |  |  | 1750 | 1286 |
| 12 | 13 | 33 | 1 | 4 |  |  | 1600 | 1031 |
| 13 | 13 | 43 | 1 | 4 |  |  | 750 | 436 |
| 14 | 18 | 47 | 1 | 4 |  |  | 1175 | 496 |
| 15 | 12 | 39 | 1 | 4 |  |  | 625 | 377 |
| 16 | 17 | 44 | 2 | 4 | 2 |  | 1125 | 428 |
| 17 | 8 | 27 | 2 | 4 | 2 |  | 625 | 286 |
| 18 | 12 | 29 | 2 | 4 | 2 |  | 750 | 297 |
| 19 | 8 | 25 | 2 | 4 | 2 |  | 525 | 269 |
| 20 | 11 | 28 | 2 | 4 | 2 |  | 650 | 276 |
| 21 | 10 | 35 | 2 | 4 | 2 |  | 600 | 346 |
| 22 | 10 | 26 | 2 | 3 | 2 |  | 475 | 262 |
| 23 | 10 | 32 | 2 | 3 | 2 |  | 475 | 306 |
| 24 | 10 | 24 | 2 | 3 | 2 |  | 725 | 206 |
| 25 | 9 | 31 | 2 | 3 | 2 |  | 600 | 324 |
| 26 | 13 | 32 | 2 | 3 | 2 |  | 825 | 342 |
| 27 | 8 | 29 | 2 | 3 | 2 |  | 425 | 264 |
| 28 | 12 | 31 | 3 | 3 | 1 | 1 | 775 | 288 |
| 29 | 8 | 27 | 3 | 3 | 1 | 1 | 425 | 274 |
| 30 | 11 | 29 | 3 | 3 | 1 | 1 | 550 | 269 |
| 31 | 8 | 28 | 2 | 3 | 1 |  | 450 | 306 |
| 32 | 8 | 20 | 2 | 3 | 1 |  | 550 | 209 |
| 33 | 8 | 26 | 2 | 3 | 1 |  | 525 | 270 |
| 34 | 7 | 18 | 2 | 3 | 1 |  | 500 | 186 |
| 35 | 7 | 24 | 1 | 3 |  |  | 375 | 248 |
| 36 | 6 | 17 | 1 | 3 |  |  | 375 | 184 |
| 37 | 7 | 22 | 1 | 3 |  |  | 550 | 232 |
| 38 | 9 | 25 | 1 | 3 |  |  | 600 | 267 |
| 39 | 6 | 20 | 1 | 3 |  |  | 350 | 191 |
| 40 | 9 | 23 | 1 | 3 |  |  | 525 | 249 |
| 41 | 5 | 19 | 1 | 3 |  |  | 325 | 191 |
| 42 | 8 | 21 | 1 | 3 |  |  | 350 | 195 |
| 43 | 8 | 27 | 1 | 3 |  |  | 500 | 253 |
| 44 | 7 | 20 | 1 | 3 |  |  | 350 | 221 |
| 45 | 5 | 18 | 1 | 3 |  |  | 300 | 160 |

© 2023 The Authors.
International Transactions in Operational Research published by John Wiley \& Sons Ltd on behalf of International Federation of Operational Research Societies.

Table 2
(Continued)

| $\#$ | $n_{1}$ | $n_{2}$ | $s$ | $m_{1}$ | $m_{2}$ | $m_{3}$ | Tot $P$ | Tot $q$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 46 | 4 | 10 | 1 | 3 |  |  | 225 | 108 |
| 47 | 5 | 15 | 1 | 2 |  | 275 | 136 |  |
| 48 | 7 | 19 | 1 | 2 |  | 450 | 199 |  |
| 49 | 4 | 14 | 1 | 2 | 250 | 133 |  |  |
| 50 | 6 | 17 | 1 | 2 |  | 350 | 183 |  |
| 51 | 3 | 12 | 1 | 2 | 200 | 123 |  |  |
| 52 | 6 | 15 | 1 | 2 |  | 375 | 138 |  |
| 53 | 3 | 10 | 1 | 2 |  | 225 | 107 |  |
| 54 | 5 | 14 | 1 | 2 | 350 | 148 |  |  |

### 5.2. Parameter Fine-tuning

As can be observed, the MultiStarVNS method contains three parameters: maxiterms (from the main method), $\alpha$ (from the Constructive procedure), and maxiter (from the VNS procedure). To determine the most suitable combination of their values, six instances were selected: two from the first days, with the largest number of points visited (instances 01 and 09); two instances from the intermediate days, where more than one institution intervened in the distribution tasks (instance 23 , with two institutions; and 29 , with three institutions); and finally two instances from the final days, with the smallest number of points visited (instances 51 and 53). Moreover, the maxiter and maxiterms were established as stopping criteria. Thus, we initially set their values at maxiter $=20$ and maxiterms $=10$, and then analyzed the values of $\alpha$. Specifically, we considered values that corresponded to totally random or quasi-totally random constructions ( $\alpha=$ $0,0.1$ ), quasi-deterministic constructions ( $\alpha=0.9,0.99$ ), and intermediate values $(\alpha=0.5)$. The tests show that the best results were obtained with $\alpha=0.99$. With this value of $\alpha$, the values of maxiter and maxiterms were analyzed. The tests indicated that, with values above maxiter $=50$ and maxiterms $=10$, there were barely any improvements. Furthermore, these parameters allow for quick solutions to be obtained.

### 5.3. Analysis of the components of the MultiStarV NS method

This subsection explores the effects of the strategies used and the components of the MultiStarV NS method. Specifically, we analyzed the effects of using the MS strategy and of the $V N D$ and Shaking procedures. The aim was to determine whether the use of this strategy and these procedures favored the results obtained. To this end, we considered three variants of our MultiStarVNS in which we discarded this strategy and its components. Next, we will describe the variants.

- Variant 1 ("Nonmultistart"): In this variant, we discarded the MS strategy, that is, we only used the constructive method once (in this case, with $\alpha=1$ ) to generate the initial solution. Specifically,

[^4]the method consisted of only one iteration of the sequence Constructive $+V N S$. The $V N S$ procedure ends when the stopping criterion is reached.

- Variant 2 ("Nonshaking"): In this variant, we discarded the Shaking procedure. In particular, this variant involves repeating the sequence Constructive $+V N D$ until a stopping criterion is reached.
- Variant 3 ("Non-VND"): In this variant, we discarded the $V N D$ procedure. To this end, Step 7 of the $V N S$ procedure was removed (Pseudocode 3).

Once these variants were implemented, the tests were designed as follows. For each instance, we first executed our MultiStarVNS method and recorded the computation time used. Subsequently, the three variants described were executed, considering the computation time used by MultiStarVNS as the stopping criterion. Table 3 presents the obtained results, showing the values of the two target functions ( $f_{1}$ in minutes and $f_{2}$ in kilometers) for the obtained solution. Table 3 shows the computation time (C.T.) (in seconds) used by MultiStarVNS. The best solutions are indicated in bold.

From Table 3, the following conclusions can be drawn:
Our MultiStarVNS method obtained the best solution for all instances. Moreover, the calculation time was reasonable, as it never exceeded one minute (the longest execution time was 58 seconds). This was advisable, considering the need to rapidly obtain good planning.

- Variant 1 obtained the best solution (matching MultiStarVNS) in 43 of the 54 instances. Moreover, in the 11 instances where worse results were obtained, the values of both functions were similar to those of MultiStarVNS. Therefore, the effect of using an MS strategy did not worsen the results and slightly improved the results in some cases.
- Variant 2 obtained the best solution in 12 of 54 instances. In some instances, the differences in the values of MultiStarV NS were noticeable. Thus, the effect of using the Shaking procedure was highly positive.
- Variant 3 did not yield the best solution in any instance. Moreover, the results obtained were significantly different from many of the best results for each instance. The results are relatively close to the best results for some small instances. Therefore, the use of the $V N D$ procedure or a similar local search procedure is essential for obtaining quality solutions.

Employing the MS strategy and especially the use of the Shaking and $V N D$ procedures had a positive effect on the MultiStarV NS method and seemed to be necessary to obtain quality solutions. For a clearer and more concise view of the results in Table 3, Fig. 6 is added. This chart shows the mean percentage deviations of the solutions obtained by each of the three variants with respect to MultiStarVNS. The left shows the gaps with respect to $f_{1}$ and the right with respect to $f_{2}$.

### 5.4. VNS compared to previous methods and commercial software

This subsection compares the performance of the proposed MultiStarVNS method with that of the method proposed by Pacheco and Laguna (2020). As was previously commented, this method was designed "round the clock," adapting a previous method for commercial logistics problems. This method (MSTabu) uses a tabu search procedure in an MS framework and is the basis
(C) 2023 The Authors.

Table 3
Results of MultiStarV NS and its variants

| \# | MultiStarVNS |  |  | Variant 1 |  | Variant 2 |  | Variant 3 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $f_{1}$ | $f_{2}$ | C.T. | $f_{1}$ | $f_{2}$ | $f_{1}$ | $f_{2}$ | $f_{1}$ | $f_{2}$ |
| 1 | 162.298 | 225.357 | 31.806 | 162.298 | 225.357 | 162.298 | 228.129 | 206.120 | 282.511 |
| 2 | 79.614 | 66.072 | 7.792 | 79.614 | 66.072 | 84.972 | 80.512 | 90.552 | 89.011 |
| 3 | 93.749 | 68.716 | 17.796 | 93.749 | 68.716 | 94.269 | 72.386 | 98.494 | 82.809 |
| 4 | 110.982 | 159.904 | 5.081 | 110.982 | 161.821 | 110.982 | 161.821 | 142.814 | 229.747 |
| 5 | 93.242 | 81.227 | 12.064 | 93.437 | 83.727 | 96.504 | 90.045 | 103.565 | 107.428 |
| 6 | 109.274 | 91.847 | 25.821 | 109.274 | 91.847 | 109.274 | 91.847 | 118.001 | 116.205 |
| 7 | 86.637 | 80.370 | 8.305 | 86.637 | 80.370 | 87.245 | 82.386 | 97.424 | 104.974 |
| 8 | 94.598 | 68.673 | 19.122 | 94.598 | 68.673 | 94.801 | 69.681 | 101.408 | 85.227 |
| 9 | 123.320 | 115.007 | 42.454 | 123.320 | 115.007 | 124.200 | 116.386 | 135.294 | 143.956 |
| 10 | 102.648 | 104.268 | 13.209 | 102.648 | 104.268 | 103.195 | 105.058 | 113.647 | 133.445 |
| 11 | 125.026 | 131.569 | 31.608 | 125.026 | 131.569 | 125.026 | 131.569 | 142.893 | 164.220 |
| 12 | 105.025 | 120.816 | 9.424 | 105.025 | 121.059 | 105.141 | 122.289 | 117.327 | 156.157 |
| 13 | 97.428 | 70.845 | 22.156 | 97.428 | 70.845 | 97.500 | 72.872 | 107.866 | 85.482 |
| 14 | 165.290 | 214.317 | 58.580 | 165.29 | 214.317 | 165.290 | 215.875 | 216.443 | 293.137 |
| 15 | 98.165 | 86.101 | 14.974 | 98.165 | 86.101 | 98.485 | 89.058 | 108.511 | 111.955 |
| 16 | 77.720 | 100.875 | 19.889 | 77.720 | 100.875 | 78.767 | 104.014 | 92.850 | 133.418 |
| 17 | 50.144 | 79.153 | 1.618 | 50.144 | 79.153 | 50.638 | 82.007 | 54.589 | 81.743 |
| 18 | 61.056 | 105.824 | 3.249 | 61.056 | 105.824 | 62.594 | 104.522 | 63.032 | 109.530 |
| 19 | 49.693 | 81.265 | 1.210 | 49.693 | 81.265 | 49.693 | 81.265 | 52.479 | 89.259 |
| 20 | 56.773 | 93.589 | 2.658 | 56.773 | 93.589 | 59.293 | 95.678 | 71.988 | 122.982 |
| 21 | 88.239 | 115.352 | 5.448 | 88.239 | 115.352 | 88.239 | 116.649 | 104.404 | 145.146 |
| 22 | 157.104 | 168.397 | 2.823 | 157.104 | 168.783 | 157.104 | 168.783 | 171.087 | 196.071 |
| 23 | 60.330 | 58.655 | 4.396 | 60.330 | 58.655 | 60.330 | 58.655 | 65.457 | 66.789 |
| 24 | 157.104 | 165.857 | 2.071 | 157.104 | 165.857 | 157.104 | 165.879 | 181.676 | 194.851 |
| 25 | 62.792 | 71.871 | 3.538 | 62.792 | 71.871 | 62.911 | 72.698 | 67.687 | 86.915 |
| 26 | 66.397 | 69.995 | 5.838 | 66.397 | 69.995 | 71.445 | 82.551 | 71.700 | 88.594 |
| 27 | 73.176 | 114.371 | 2.859 | 73.176 | 114.371 | 78.120 | 119.220 | 86.755 | 142.555 |
| 28 | 84.129 | 116.735 | 5.428 | 84.129 | 116.735 | 84.129 | 123.317 | 114.426 | 140.606 |
| 29 | 61.889 | 86.015 | 2.097 | 61.889 | 86.015 | 62.737 | 87.064 | 67.417 | 104.840 |
| 30 | 83.508 | 118.739 | 3.898 | 83.508 | 118.739 | 83.508 | 119.541 | 110.922 | 141.173 |
| 31 | 80.966 | 94.065 | 3.067 | 80.966 | 94.065 | 80.966 | 94.065 | 96.801 | 108.193 |
| 32 | 57.849 | 58.463 | 0.971 | 57.849 | 58.463 | 57.849 | 58.463 | 62.453 | 69.139 |
| 33 | 66.674 | 63.15 | 2.241 | 66.674 | 63.150 | 69.200 | 66.863 | 69.742 | 67.530 |
| 34 | 57.651 | 70.036 | 0.559 | 57.651 | 70.036 | 58.559 | 71.741 | 63.708 | 83.027 |
| 35 | 84.320 | 61.551 | 2.062 | 84.320 | 61.551 | 84.330 | 61.986 | 86.990 | 68.437 |
| 36 | 68.322 | 59.719 | 0.630 | 68.322 | 59.719 | 68.322 | 59.719 | 80.890 | 83.535 |
| 37 | 78.016 | 58.439 | 1.581 | 78.016 | 58.439 | 80.540 | 60.548 | 82.805 | 62.005 |
| 38 | 83.423 | 48.800 | 3.049 | 83.503 | 51.135 | 83.976 | 51.985 | 86.552 | 58.901 |
| 39 | 64.738 | 39.842 | 0.917 | 64.738 | 39.842 | 64.738 | 39.842 | 68.726 | 49.515 |
| 40 | 85.057 | 60.532 | 2.431 | 85.057 | 60.532 | 85.057 | 60.532 | 88.080 | 66.816 |
| 41 | 65.232 | 47.690 | 0.654 | 65.232 | 48.951 | 66.374 | 46.923 | 69.965 | 54.177 |
| 42 | 78.754 | 60.047 | 1.451 | 78.921 | 60.065 | 79.499 | 61.387 | 81.216 | 64.455 |
| 43 | 89.310 | 60.453 | 3.734 | 89.310 | 60.453 | 89.310 | 60.453 | 92.192 | 64.207 |
| 44 | 89.504 | 86.103 | 1.072 | 89.504 | 86.103 | 91.888 | 92.016 | 96.572 | 100.855 |
| 45 | 66.652 | 53.066 | 0.525 | 66.652 | 53.066 | 74.459 | 64.183 | 73.665 | 67.213 |

Continued
© 2023 The Authors.
International Transactions in Operational Research published by John Wiley \& Sons Ltd on behalf of International Federation of Operational Research Societies.

Table 3
(Continued)

| \# | MultiStarV NS |  |  | Variant 1 |  | Variant 2 |  | Variant 3 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $f_{1}$ | $f_{2}$ | C.T. | $f_{1}$ | $f_{2}$ | $f_{1}$ | $f_{2}$ | $f_{1}$ | $f_{2}$ |
| 46 | 42.080 | 33.156 | 0.062 | 43.017 | 30.485 | 43.423 | 30.756 | 43.017 | 30.485 |
| 47 | 85.898 | 47.332 | 0.389 | 86.438 | 46.111 | 90.614 | 48.480 | 90.231 | 52.499 |
| 48 | 104.270 | 51.249 | 1.351 | 104.270 | 51.249 | 109.108 | 58.658 | 108.653 | 56.304 |
| 49 | 81.437 | 48.099 | 0.239 | 82.169 | 49.258 | 82.874 | 50.115 | 87.783 | 56.792 |
| 50 | 90.507 | 41.547 | 0.788 | 90.507 | 41.547 | 90.507 | 41.547 | 95.614 | 49.748 |
| 51 | 133.576 | 104.387 | 0.083 | 133.576 | 104.387 | 133.576 | 104.387 | 160.868 | 110.450 |
| 52 | 92.381 | 53.155 | 0.486 | 92.381 | 53.155 | 92.581 | 53.289 | 96.174 | 58.044 |
| 53 | 60.723 | 36.631 | 0.055 | 60.723 | 36.631 | 60.777 | 35.386 | 85.313 | 34.499 |
| 54 | 84.631 | 49.177 | 0.295 | 84.790 | 49.142 | 84.852 | 49.780 | 84.905 | 49.815 |



Fig. 6. Mean gaps (\%) of the values of the solutions of the three variants with respect to MultiStarVNS.
of the system used to conduct delivery planning. Furthermore, we compared the results of the MultiStarV NS method with those obtained using two known commercial optimization programs, CPLEX (v22.1.1) and LocalSolver (v11.5). To conduct this comparison, the MSTabu method, CPLEX, and LocalSolver programs were executed in 54 real instances (for our MultiStarV NS method, the results obtained in Subsection 4.3 were used). The MSTabu method uses the computation time of MultiStarVNS as the stopping criterion, whereas CPLEX and LocalSolver use a computation time of 600 s . CPLEX uses the formulation proposed in Section 2 but aggregates the two objectives. To maintain the hierarchy between the two objectives, the first objective has a weight of $10^{6}$ and the second has a weight of 1 . We can find a short code used by LocalSolver to read instances and solve this problem at the following website: www.ubu.es/metaheuristicos-grinubumet/ejemplos-y-datos-de-problemas

The results are presented in Table 4. The values of the two target functions of the obtained solutions are shown for each method and software. The computation time (C.T.) (in seconds) used by MultiStarVNS (the same as that in Table 3) is also shown. The best solutions are indicated in bold.

From Table 4, the following conclusions can be drawn:
(C) 2023 The Authors.

Table 4
Results of MultiStarV NS, MSTabu, CPLEX, and LocalSolver

| \# | MultiStarVNS |  |  | MSTabu |  | CPLEX |  | LocalSolver |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $f_{1}$ | $f_{2}$ | C.T. | $f_{1}$ | $f_{2}$ | $f_{1}$ | $f_{2}$ | $f_{1}$ | $f_{2}$ |
| 1 | 162.298 | 225.357 | 31.806 | 162.298 | 228.129 | 167.862 | 237.160 | 163.362 | 217.604 |
| 2 | 79.614 | 66.072 | 7.792 | 79.614 | 66.072 | 90.146 | 90.139 | 84.064 | 64.687 |
| 3 | 93.749 | 68.716 | 17.796 | 93.940 | 72.284 | 104.685 | 91.391 | 97.852 | 67.441 |
| 4 | 110.982 | 159.904 | 5.081 | 115.588 | 190.118 | 110.982 | 161.476 | 113.94 | 84.832 |
| 5 | 93.242 | 81.227 | 12.064 | 93.664 | 83.427 | 103.093 | 106.830 | 96.636 | 79.531 |
| 6 | 109.274 | 91.847 | 25.821 | 109.274 | 91.847 | 120.570 | 117.975 | 111.550 | 91.725 |
| 7 | 86.637 | 80.370 | 8.305 | 87.001 | 80.079 | 179.674 | 85.392 | 90.278 | 73.159 |
| 8 | 94.598 | 68.673 | 19.122 | 94.801 | 69.681 | 105.155 | 88.641 | 113.940 | 84.832 |
| 9 | 123.320 | 115.007 | 42.454 | 124.200 | 116.386 | 126.332 | 116.197 | 128.009 | 112.884 |
| 10 | 102.648 | 104.268 | 13.209 | 103.195 | 105.058 | 115.984 | 140.460 | 107.617 | 105.020 |
| 11 | 125.026 | 131.569 | 31.608 | 125.026 | 131.569 | 141.289 | 165.171 | 127.798 | 127.445 |
| 12 | 105.025 | 120.816 | 9.424 | 105.141 | 122.289 | 108.123 | 126.636 | 106.491 | 114.746 |
| 13 | 97.428 | 70.845 | 22.156 | 97.500 | 72.872 | 106.455 | 89.184 | 101.463 | 70.223 |
| 14 | 165.290 | 214.317 | 58.580 | 165.290 | 215.875 | 178.456 | 252.924 | 166.485 | 210.281 |
| 15 | 98.165 | 86.101 | 14.974 | 98.165 | 86.101 | 102.222 | 96.826 | 99.456 | 80.382 |
| 16 | 77.720 | 100.875 | 19.889 | 78.767 | 104.014 | 88.360 | 130.746 | 81.250 | 101.372 |
| 17 | 50.144 | 79.153 | 1.618 | 50.276 | 79.516 | 52.182 | 83.393 | 54.515 | 76.138 |
| 18 | 61.056 | 105.824 | 3.249 | 62.594 | 104.522 | 65.865 | 116.611 | 66.277 | 102.602 |
| 19 | 49.693 | 81.265 | 1.210 | 49.693 | 81.265 | 54.895 | 102.682 | 53.781 | 79.695 |
| 20 | 56.773 | 93.589 | 2.658 | 57.188 | 91.234 | 63.386 | 101.742 | 60.705 | 90.619 |
| 21 | 88.239 | 115.352 | 5.448 | 88.239 | 115.352 | 91.402 | 130.240 | 92.885 | 113.354 |
| 22 | 157.104 | 168.397 | 2.823 | 157.104 | 168.783 | 157.104 | 169.419 | 161.164 | 166.593 |
| 23 | 60.330 | 58.655 | 4.396 | 60.330 | 58.655 | 91.402 | 120.199 | 65.260 | 59.138 |
| 24 | 157.104 | 165.857 | 2.071 | 157.104 | 165.879 | 157.104 | 166.480 | 161.164 | 165.176 |
| 25 | 62.792 | 71.871 | 3.538 | 62.911 | 72.698 | 69.990 | 85.140 | 66.428 | 68.129 |
| 26 | 66.397 | 69.995 | 5.838 | 68.858 | 76.231 | 72.597 | 99.983 | 70.750 | 68.784 |
| 27 | 73.176 | 114.371 | 2.859 | 75.054 | 123.321 | 81.885 | 136.627 | 78.031 | 118.824 |
| 28 | 84.129 | 116.735 | 5.428 | 84.129 | 123.317 | 96.641 | 140.993 | 89.643 | 113.990 |
| 29 | 61.889 | 86.015 | 2.097 | 62.737 | 85.322 | 65.550 | 96.112 | 65.562 | 84.956 |
| 30 | 83.508 | 118.739 | 3.898 | 83.508 | 119.541 | 88.816 | 138.082 | 88.328 | 116.577 |
| 31 | 80.966 | 94.065 | 3.067 | 80.966 | 94.065 | 89.968 | 116.162 | 85.714 | 93.973 |
| 32 | 57.849 | 58.463 | 0.971 | 57.849 | 58.463 | 59.535 | 63.782 | 63.054 | 58.463 |
| 33 | 66.674 | 63.15 | 2.241 | 67.822 | 63.09 | 69.417 | 63.863 | 70.405 | 62.157 |
| 34 | 57.651 | 70.036 | 0.559 | 57.651 | 70.036 | 58.588 | 71.382 | 61.998 | 67.821 |
| 35 | 84.320 | 61.551 | 2.062 | 84.320 | 61.551 | 84.596 | 61.022 | 88.505 | 60.544 |
| 36 | 68.322 | 59.719 | 0.630 | 68.322 | 59.719 | 71.038 | 59.990 | 73.404 | 59.891 |
| 37 | 78.016 | 58.439 | 1.581 | 80.540 | 60.548 | 79.182 | 59.533 | 82.621 | 58.569 |
| 38 | 83.423 | 48.800 | 3.049 | 83.589 | 50.225 | 83.538 | 49.402 | 86.856 | 50.186 |
| 39 | 64.738 | 39.842 | 0.917 | 64.738 | 39.842 | 65.820 | 44.356 | 69.359 | 39.566 |
| 40 | 85.057 | 60.532 | 2.431 | 85.057 | 60.532 | 85.802 | 141.749 | 89.282 | 61.968 |
| 41 | 65.232 | 47.690 | 0.654 | 66.374 | 46.923 | 66.336 | 51.893 | 71.194 | 49.833 |
| 42 | 78.754 | 60.047 | 1.451 | 79.499 | 61.387 | 79.826 | 61.952 | 82.571 | 57.627 |
| 43 | 89.310 | 60.453 | 3.734 | 89.310 | 60.453 | 90.754 | 62.431 | 93.516 | 60.170 |
| 44 | 89.504 | 86.103 | 1.072 | 91.888 | 92.016 | 91.657 | 92.307 | 95.017 | 89.495 |
| 45 | 66.652 | 53.066 | 0.525 | 68.548 | 52.022 | 67.851 | 55.828 | 70.709 | 53.824 |

Continued
© 2023 The Authors.
International Transactions in Operational Research published by John Wiley \& Sons Ltd on behalf of International Federation of Operational Research Societies.

Table 4
(Continued)

| \# | MultiStarVNS |  |  | MSTabu |  | CPLEX |  | LocalSolver |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $f_{1}$ | $f_{2}$ | C.T. | $f_{1}$ | $f_{2}$ | $f_{1}$ | $f_{2}$ | $f_{1}$ | $f_{2}$ |
| 46 | 42.080 | 33.156 | 0.062 | 43.017 | 30.485 | 42.080 | 33.156 | 46.690 | 31.471 |
| 47 | 85.898 | 47.332 | 0.389 | 87.888 | 48.18 | 85.898 | 47.332 | 91.188 | 45.888 |
| 48 | 104.270 | 51.249 | 1.351 | 107.205 | 56.231 | 104.270 | 51.249 | 109.730 | 53.157 |
| 49 | 81.437 | 48.099 | 0.239 | 82.169 | 49.258 | 81.437 | 48.099 | 87.390 | 49.416 |
| 50 | 90.507 | 41.547 | 0.788 | 90.507 | 41.547 | 90.507 | 41.547 | 96.980 | 41.547 |
| 51 | 133.576 | 104.387 | 0.083 | 133.576 | 104.387 | 133.576 | 104.387 | 141.891 | 103.513 |
| 52 | 92.381 | 53.155 | 0.486 | 92.581 | 53.289 | 93.808 | 53.093 | 98.310 | 53.155 |
| 53 | 60.723 | 36.631 | 0.055 | 60.777 | 35.386 | 60.777 | 35.379 | 66.200 | 38.997 |
| 54 | 84.631 | 49.177 | 0.295 | 84.852 | 49.78 | 84.748 | 48.789 | 89.853 | 49.382 |

Table 5
Results of the Wilcoxon signed rank tests.

|  | $n^{*}$ | $W^{+}$ | $W^{-}$ | $\min W$ | p-tail | Z score | p-tail z |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| MSTabu - MultiStarVNS | 31 | 496 | 0 | 0 | $<0.001$ | 4.860 | $<0.00001$ |
| CPLEX - Mult iStarV NS | 45 | 1035 | 0 | 0 | $<0.001$ | 5.841 | $<0.00001$ |
| LocalSolver - MultiStarV NS | 54 | 1485 | 0 | 0 | $<0.001$ | 6.393 | $<0.00001$ |

- Our MultiStarVNS method obtained the best solution for all instances. MSTabu obtained the best solution for 17 instances. In the remaining instances, although this method obtained worse solutions, it was not significantly different from the best results.
- CPLEX obtained the best solution for six instances. These six instances were among the smallest. In general, the solutions were clearly worse in large instances (it is worth highlighting instance 7 with 86.637 vs. 179.674 in $f_{1}$ ) and better in small instances (they were closer to the best solution).
- LocalSolver did not obtain the best solution for any instance. In general, the solutions were clearly worse than the results obtained using MultiStarVNS, although the differences were not significant.

To strengthen the previous conclusions from the results in Table 4, we performed rank tests to determine whether the differences in the main target function $\left(f_{1}\right)$ in favor of our MultiStarVNS method were significant. The results of the tests are presented in Table 5, which shows, for each test, the number of instances in which there is no tie ( $n^{*}$ ); the sum of ranks with a positive difference (i.e., the values in $f_{1}$ of MSTabu, CPLEX, and LocalSolver are larger than those of MultiStarV NS), denoted by $W^{+}$; the sum of ranks with a negative difference ( $W^{-}$); the lowest values of $W^{+}$and $W^{-}(\min W)$, with the corresponding one-tailed probability ( p -tail); and the $z$ value obtained ( $Z$ score), with the corresponding one-tailed probability ( p -tail z ). The results of all the tests showed significant differences in favor of the MultiStarV NS method.
(C) 2023 The Authors.

## 6. Conclusions

The coronavirus (COVID-19) pandemic spread rapidly to Italy and Spain in March 2020. In Spain, the pandemic revealed a scarcity of essential materials for these situations, such as face shields for healthcare staff and vulnerable people. This situation increased with the spread of the virus. However, initiatives were implemented in some provinces to alleviate the situation. This was the case in the province of Burgos, where the Scientific Culture Unit of its University requested "makers" (individuals and small companies who owned three-dimensional printers) to manufacture these face shields. In addition, other institutions collaborated (Civil Protection, the City Hall, and the Red Cross) in the collection and delivery of face shields. In the case of the province of Burgos, this initiative was successful, in that they supplied a considerable percentage of the population with these products (seven times more than the rest of the Spanish territory as a whole).

To improve the efficiency of these activities, a method was developed to optimize the daily distribution of face shields; specifically, we aimed to minimize the duration of the longest route, which allows the drivers to complete the routes earlier, thereby allowing them to start other social tasks earlier (e.g., assembly of beds in hospitals and hospices, disinfection, and repair of certain materials). It is important to consider that these social tasks were conducted in coordination; thus, the remaining drivers had to wait for the last driver to complete the route before pursuing their next task. The development of this method for this problem with this "social" target was performed "round the clock" (owing to these dramatic circumstances), adapting an already existing method designed for commercial logistics. Despite this hurried development, the method is advantageous, especially in saving time during planning and other social tasks.

However, it is important to investigate whether more time and less pressure will allow for the development of ad hoc methods for this "social" problem which generate better solutions, thereby improving the mentioned advantages. In this study, we developed a method based on the metaheuristic strategy of VNS in an MS framework that significantly improved both the method used in these delivery activities and the commercial software. We analyzed the convenience of the different procedures used in this method. All tests were performed on real instances used during face-shield delivery activities.

Finally, to the best of our knowledge, there is a lack of face-shield factories and warehouses in many Spanish cities. Therefore, there is a need for efficient methods (as efficient as possible) to solve this real healthcare logistics problem or similar problems, as has been demonstrated by recent experience.

## Acknowledgments

The authors are grateful to the following entities and projects: The Spanish Research Agency (Projects PID2019-104263RB-C44, PDC2021-121021-C22, and PID2022-139543OB-C44) and the Regional Government of "Castilla y León" and FEDER funds (Project BU056P20)

## References

Andrés, D., 18 May 2020. Las matemáticas al servicio de la lucha contra el coronavirus. From El Correo de Burgos. https://elcorreodeburgos.elmundo.es/articulo/burgos/matematicas-servicio-lucha-coronavirus/ 20200517201134362269.html (Accessed 8 December 2022).

Antolín, M., 13 May 2020. Objetivo: más tiempo solidario para hacer frente al Covid-19. From $A B C$ : https://www.abc.es/espana/castilla-leon/abci-objetivo-mas-tiempo-solidario-para-hacer-frente-covid-19202005131158_noticia.html (Accessed 8 December 2022).
Blanco, J., 12 May 2020. La Universidad de Burgos gana la iniciativa \#innovacionfrentealvirus. From La Razón: https: //www.larazon.es/castilla-y-leon/20200512/duxdtjmc2zaqho4hl56dclipyq.html (Accessed 8 December 2022).
Breitbarth, E., Gro $\beta$, W., Zienau, A., 2021. Protecting vulnerable people during pandemics through home delivery of essential supplies: a distribution logistics model. Journal of Humanitarian Logistics and Supply Chain Management 11, 2, 227-247.
Chen, C., Demir, E., Huang, Y., Qiu, R., 2021. The adoption of self-driving delivery robots in last mile logistics. Transportation Research Part E: Logistics and Transportation Review 146, 102214.
Chen, D., Pan, S., Chen, Q., Liu, J., 2020. Vehicle routing problem of contactless joint distribution service during COVID19 pandemic. Transportation Research Interdisciplinary Perspectives 8, 100233.
Contardo, C., Costa, L., 2022. On the optimal layout of a dining room in the era of COVID-19 using mathematical optimization. International Transactions in Operational Research 29, 6, 3294-3315.
Dai, Z., Wang, J. J., Shi, J. J., 2022. How does the hospital make a safe and stable elective surgery plan during COVID-19 pandemic? Computers \& Industrial Engineering 169, 108210.
Dellaert, N., Jeunet, J., 2017. A variable neighborhood search algorithm for the surgery tactical planning problem. Computers \& Operations Research 84, 216-225.
Detti, P., Papalini, F., de Lara, G. Z. M., 2017. A multi-depot dial-a-ride problem with heterogeneous vehicles and compatibility constraints in healthcare. Omega 70, 1-14.
Frifita, S., Masmoudi, M., Euchi, J., 2017. General variable neighborhood search for home healthcare routing and scheduling problem with time windows and synchronized visits. Electronic Notes in Discrete Mathematics 58, 63-70.
Feo, T. A., \& Resende, M. G. (1995). Greedy randomized adaptive search procedures. Journal of global optimization, 6, 109-133.
Gao, W., Luo, J., Zhang, W., Yuan, W., Liao, Z., 2020. Commanding cooperative UGV-UAV with nested vehicle routing for emergency resource delivery. IEEE Access 8, 215691-215704.
García, B. 23 April 2020. Ahorro de tiempo en el reparto de pantallas protectoras. From Diario de Burgos: https://www.diariodeburgos.es/noticia/Z7F34098E-0816-381C-A50A86B598D1A4C6/Ahorro-de-tiempo-en-el-reparto-de-pantallas-protectoras (Accessed 8 December 2022).
Garcia-Vicuña, D., Esparza, L. \& Mallor, F. (2022) Hospital preparedness during epidemics using simulation: the case of COVID-19. Central European Journal of Operations Research 30, 213-249.
Gomes, R. A., Toffolo, T. A., Santos, H. G., 2017. Variable neighborhood search accelerated column generation for the nurse rostering problem. Electronic Notes in Discrete Mathematics 58, 31-38.
Goodarzian, F., Taleizadeh, A. A., Ghasemi, P., Abraham, A., 2021. An integrated sustainable medical supply chain network during COVID-19. Engineering Applications of Artificial Intelligence 100, 104188.
Guevara, C., Peñas, M. S., 2020. Surveillance routing of COVID-19 infection spread using an intelligent infectious diseases algorithm. IEEE Access 8, 201925-201936.
Jiang, Y., Bian, B., Liu, Y., 2021. Integrated multi-item packaging and vehicle routing with split delivery problem for fresh agri-product emergency supply at large-scale epidemic disease context. Journal of Traffic and Transportation Engineering (English Edition) 8(2), 196-208.
Lan, S., Fan, W., Yang, S., Pardalos, P. M., 2022. A variable neighborhood search algorithm for an integrated physician planning and scheduling problem. Computers \& Operations Research 147, 105969
Lan, S., Fan, W., Yang, S., Pardalos, P. M., Mladenovic, N., 2021. A survey on the applications of variable neighborhood search algorithm in healthcare management. Annals of Mathematics and Artificial Intelligence 89, 741-775.
Majzoubi, F., Bai, L., Heragu, S. S., 2021. The EMS vehicle patient transportation problem during a demand surge. Journal of Global Optimization 79, 989-1006.
(C) 2023 The Authors.

International Transactions in Operational Research published by John Wiley \& Sons Ltd on behalf of International Federation of Operational Research Societies.

Martí, R., 2003. Multistart methods. In Glover, F., Kochenberger, G. (eds.) Handbook on Metaheuristics, Kluwer, Dordrecht, The Netherlands, pp. 355-368.
Mladenović, N., Hansen, P., 1997. Variable neighborhood search. Computers \& Operations Research 24, 1097-1100.
Pacheco, J., Caballero, R., Laguna, M., \& Molina, J. (2013). Bi-objective bus routing: an application to school buses in rural areas. Transportation Science, 47(3), 397-411.
Pacheco, J., Laguna, M., 2020. Vehicle routing for the urgent delivery of face shields during the COVID-19 pandemic. Journal of Heuristics 26(5), 619-635.
Quintanilla García, I., Vera Velez, N., Alcaraz Martínez, P., Vidal Ull, J., Fernandez Gallo, B., 2021. A quickly deployed and UAS-based logistics network for delivery of critical medical goods during healthcare system stress periods: A real use case in Valencia (Spain). Drones 5, 1, 13.
Rahimian, E., Akartunalı, K., Levine, J., 2017. A hybrid integer programming and variable neighbourhood search algorithm to solve nurse rostering problems. European Journal of Operational Research 258(2), 411-423.
Shen, J., Liu, K., Ma, C., Zhao, Y., Shi, C., 2022. Bibliometric analysis and system review of vehicle routing optimization for emergency material distribution. Journal of Traffic and Transportation Engineering (English edition) 9, 6, 893911.

Singgih, I. K., 2020. Mobile laboratory routing problem for COVID-19 testing considering limited capacities of hospitals. In the 3rd International Conference on Mechanical, Electronics, Computer, and Industrial Technology (MECnIT). IEEE, Piscataway, NJ, pp. 80-83.
Tlili, T., Masri, H., Krichen, S., 2022. Towards an efficient collection and transport of COVID-19 diagnostic specimens using genetic-based algorithms. Applied Soft Computing 116, 108264.
Tordecilla, R. D., Martins, L. D. C., Saiz, M., Copado-Mendez, P. J., Panadero, J., Juan, A. A., 2021. Agile computational intelligence for supporting hospital logistics during the COVID-19 crisis. In Computational Management: Applications of Computational Intelligence in Business Management. Springer International Publishing, Cham, pp. 383-407.
Tsai, Y. L., Rastogi, C., Kitanidis, P. K., Field, C. B., 2021. Routing algorithms as tools for integrating social distancing with emergency evacuation. Scientific Reports 11(1), 19623.
Wang, Y., Peng, S., Xu, M., 2021. Emergency logistics network design based on space-time resource configuration. Knowledge-Based Systems 223, 107041.
Yang, Y., Ma, C., Zhou, J., Dong, S., Ling, G., Li, J., 2022. A multi-dimensional robust optimization approach for coldchain emergency medical materials dispatch under COVID-19: a case study of Hubei province. Journal of Traffic and Transportation Engineering (English Edition) 9, 1, 1-20.
Zhang, M. X., Yan, H. F., Wu, J. Y., Zheng, Y. J., 2020. Quarantine vehicle scheduling for transferring high-risk individuals in epidemic areas. International Journal of Environmental Research and Public Health 17, 7, 2275.
Zhang, W., Zeng, M., Guo, P., Wen, K., 2022. Variable neighborhood search for multi-cycle medical waste recycling vehicle routing problem with time windows. International Journal of Environmental Research and Public Health, 19, 19, 12887.
Zhao, L., Bi, X., Dong, Z., Xiao, N., Zhao, A., 2022. Robust traveling salesman problem with drone: Balancing risk and makespan in contactless delivery. International Transactions in Operational Research. https://doi.org/10.1111/itor. 13154
Zheng, Z., Liu, X., Gong, X., 2017. A simple randomized variable neighbourhood search for nurse rostering. Computers \& Industrial Engineering, 110, 165-174.

[^5]
[^0]:    © 2023 The Authors.
    International Transactions in Operational Research published by John Wiley \& Sons Ltd on behalf of International Federation of Operational Research Societies.
    This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

[^1]:    (C) 2023 The Authors.

    International Transactions in Operational Research published by John Wiley \& Sons Ltd on behalf of International Federation of Operational Research Societies.

[^2]:    (C) 2023 The Authors.

    International Transactions in Operational Research published by John Wiley \& Sons Ltd on behalf of International Federation of Operational Research Societies.

[^3]:    (C) 2023 The Authors.

    International Transactions in Operational Research published by John Wiley \& Sons Ltd on behalf of International Federation of Operational Research Societies.

[^4]:    (C) 2023 The Authors.

    International Transactions in Operational Research published by John Wiley \& Sons Ltd on behalf of International Federation of Operational Research Societies.

[^5]:    © 2023 The Authors.
    International Transactions in Operational Research published by John Wiley \& Sons Ltd on behalf of International Federation of Operational Research Societies.

