

Grouping products for the optimization of production processes: A case in the steel
manufacturing industry

SILVIA CASADO
Universidad de Burgos
scasado@ubu.es

MANUEL LAGUNA
University of Colorado
laguna@colorado.edu

JOAQUÍN PACHECO
Universidad de Burgos
jpacheco@ubu.es

JULIO C. PUCHE
Universidad de Burgos
jcpuche@ubu.es

Abstract

The optimization of a production process is often based on the efficient utilization of the production
facility and equipment. In particular, reducing the time to change from producing one product to another
is critical to the fulfillment of demand at a minimum cost. We study the production of steel coils in the
context of searching for groups of products with similar characteristics in order to create production
batches that minimize the cost of fulfilling production orders originated by a known demand. We
formulate the problem as mixed-integer program and develop a heuristic solution procedure. We show
that a simplified version of the problem is equivalent to the clique partition problem, which in turn is
equivalent to the graph-coloring problem. Computational experiments show that the heuristic procedure
is effective in finding high-quality solutions to both the clique partition problem and the original grouping
problem that includes additional costs.

Keywords: metaheuristics; combinatorial optimization; manufacturing

February 26, 2020

C a s a d o , e t a l . | 2

1. Introduction

Manufacturing processes, in general, consist of three phases: 1) extraction of raw material, 2) conversion
into industrial products (primary process), and 3) manufacture of final products (secondary process).
Production of steel coils is an example of such a process. First, the raw materials (iron ore, and alloys such
as manganese, silicon, carbon, aluminum, and niobium) are extracted. These minerals are combined to
produce steel, which through continuous casting is shaped as steel slabs. A strip mill turns the slabs into
cold roll coils. Other examples of the three-phase production process include the manufacturing of
wooden doors (extraction of wood, wooden board, and door), tiles, aluminum coils, and many others. The
characteristics of the final product determine the characteristics of the industrial product. While, in
principle, a one-to-one correspondence between the industrial and the final product can be established,
there are at least three advantages associated with producing in a setting where the relationship between
industrial and final products is one-to-many:

• In industrial processes with large equipment, the cost of stopping and restarting is very high.
These costs involve labor for adjusting the equipment to meet different product
requirements, energy costs associated with restarting the equipment, production of defective
items upon restart, and loss of production time. Therefore, reducing the number of
changeovers has a direct cost benefit.

• It has also been documented that the activities associated with changeovers of large
production equipment increase the probability of personal injury and machine failure. A
reduction of the number of changeovers reduces the risk of machine breakdowns.

• Inventory management can be improved by reducing the number of industrial products.
There are fewer items to monitor and the storage system and space can be simplified.

In order to create one-to-many mappings of industrial products to final products, it is necessary to group
final products based on a set of relevant attributes. For instance, in the manufacturing of steel coils, the
relevant characteristics may be the width, weight, steel grade, and due date of each coil. We illustrate this
idea with the following example, in which we focus on the width of each coil. Suppose that we want to
produce six types of steel coils with widths of 600, 640, 660, 690, and 710 millimeters (mm). The strip mill
reduces the width of a steel slab between 15 and 80 mm. Therefore, a steel slab with a width between
615 and 680 mm is needed to produce a coil with a width of 600 mm. To produce the other four coils,
steel slabs with widths of 655-720, 675-740, 705-770, and 725-790 mm are required, respectively. Figure
1 shows the steel slab ranges associated with each coil.

The ranges in Figure 1 can be used to determine pairs of “compatible” steel coils. Two steel coils are
compatible if their slab ranges overlap. The overlapping range dictates the width of the steel slab needed
to produce the compatible coils. Thus, coils 1 and 2 are compatible because their slab width range
overlaps. These two coils could be produced with a steel slab with a width between 655 and 680 mm.
Also, coils 1 and 3 overlap and can be produced with a steel slab with a width between 675 and 680 mm.
Likewise, coils 2 and 3 overlap and can be produced with a steel slab with a width between 675 and 720
mm. Because coils 1, 2, and 3 are all pairwise compatible, they can all be produced with a single steel slab
with a width between 675 and 680 mm, which is the overlapping range of all pairs. Neither coil 4 nor coil
5 can be added to the group because they are not pairwise compatible with coil 1. However, they are

C a s a d o , e t a l . | 3

compatible between them and therefore they can form their own group. A steel slab with a width
between 725 and 770 mm could be used to produce coils 4 and 5.

Figure 1. Steel slab ranges for five coil types.

Instead of using five different steel slabs, only two are needed to produce all five coils. Using two instead
of five steel slabs results in a cost reduction and the other benefits mentioned above. Although in this
example we focused only on the width, in a real setting, pairwise compatibility must be determined based
on all characteristics. While there are benefits associated with grouping coils, the tradeoff between these
benefits and additional costs must be analyzed. The additional costs are related to an increase of scrap
and use of higher steel grades. In our example, if a one-to-one mapping of steel slabs and coils is used,
then the waste is a strip of 15 mm regardless of the coil being produced. This is because steel slabs of 615,
655, 675, 705, and 725 mm would be used for coils 1-5, respectively. On the other hand, if the grouping
proposed above is used, then the scrap is 75, 35, and 15 mm for coils 1, 2, and 3, respectively. The scrap
for coils 4 and 5 would be 35 and 15, respectively.

In terms of steel grade, in a one-to-one setting, the slab matches the grade that the coil requires. In a one-
to-many setting, however, the steel slab must be of a grade that matches the maximum grade in the group
of coils. This means that some of the coils would have a steel grade that is higher than what is required.
To illustrate this, we introduce a graphical representation of pairwise compatibility. In particular, coils are
represented by nodes and pairwise compatibility is represented by an edge. Figure 2 shows a set of five
coils and their compatibility is represented by the edges that connects them.

Figure 2. Compatibility graph with steel grades.

615 680

655 720

675 740

705 770

725 790

Coil 1

Coil 2

Coil 3

Coil 4

Coil 5

C a s a d o , e t a l . | 4

The letter next to the nodes in Figure 2 represent the steel grades. Assume that costs are 3, 2, and 1 for
grades A, B, and C, respectively. Also, assume that grade A is higher than B and that grade B is higher than
C. Figure 3 shows two possible groupings of the coils in Figure 2. The steel grades shown in Figure 3
correspond to the highest grade in the group.

Figure 3. Two possible groupings of coils.

The grouping in the left side of Figure 3 employs three steel slabs of grade B and two slabs of grade A. The
total cost is therefore 2*3 + 3*2 = 12. The grouping in the right side of Figure 3 employs three steel slabs
of grade A and two slabs of grade B, with a total cost of 3*3 + 2*2 = 13. Clearly, all other things being
equal, the grouping in the left side of Figure 3 would be preferred.

We are interested in tackling the problem of producing steel coils at a minimum cost. We consider both
the cost of changeover, which is minimized by finding the smallest number of pairwise compatible groups,
and the cost of steel grade and scrap, which is minimized by employing slabs that are as close as possible
to the minimum requirements. We point out that given a compatibility graph, the problem of minimizing
changeovers (ignoring the costs associated with the steel grade and the scrap) is known in the literature
as the clique-partitioning problem (Bhasker & Samad, 1991). What we have been calling a compatible
group is known as a clique in graph theory. Formally, a clique of a graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸), where 𝑉𝑉 is the set of
vertices in the graph and 𝐸𝐸 is the set of edges, is a subset 𝑊𝑊 of 𝑉𝑉 such that for every pair of vertices in 𝑊𝑊
there is an edge in 𝐸𝐸. The clique-partitioning problem consists of finding the smallest number of cliques
in a graph such that every vertex in the graph belongs to only one clique. The clique-partitioning of a graph
𝐺𝐺 is equivalent to the graph-coloring of the complement graph 𝐺𝐺′, where each vertex (edge) in 𝐺𝐺
corresponds to an edge (vertex) in 𝐺𝐺′. The coloring of a graph refers to the problem of finding the smallest
number of colors in such a way that each vertex in the graph is assigned a color and that no pair of
connected vertices has the same color. To the best of our knowledge, the clique-partitioning problem with
a clique cost determined by the product of the maximum node-cost and the size of the clique has not
been addressed in the literature.

Our approach simplifies the cost structure of the actual problem that arises in a hot rolling process. In
particular, we are not considering a production yield cost associated with an increase in the number of
coils to use to fulfill orders. This production cost per coil is independent of weight and width. The cost
increases with the number of coils. Therefore, for an order of a given weight, it is better to make coils that
are as heavy as possible (within the allowed range) and thus fulfill the order with the smallest number of
coils. For instance, suppose that there are two orders, each for a total weight of 1,320 t. Order A is for
coils in the range of 10 to 12 t. Order B is for coils in the range of 9 to 11 t. If the orders are fulfilled

C a s a d o , e t a l . | 5

separately, then to minimize the number of coils, order A would be fulfilled with 110 coils of 12 t and
order B would be fulfilled with 120 coils of 11 t. If instead, to avoid a changeover, we group the orders
and fulfill both with coils of 11 t, then the total number of coils would increase by 10, causing an increase
in the production cost.

The reason for this simplification is that the managers of the company that engaged us to work on this
problem originally wanted groupings of orders that would not cause an “excessive” increase in the
production cost. Therefore, they wanted the production cost to be modeled as a constraint. However,
since they could not agree in the cost-increase limit, we proposed a bi-objective optimization model in
which we would generate a Pareto frontier for the objective of minimizing both the number of cliques and
the production cost. This was done with a multiobjective heuristic optimization code that we adapted for
the problem. Figure 4 shows a Pareto front that we generated for one of their set of orders.

Figure 4. Pareto front approximation for a set of orders.

Figure 4 allowed us to gain two insights on the way the mangers were thinking about this problem. First,
they considered an increase of 1.2% in production cost as a small increase when compared to the savings
in changeover costs. Second, they found the multiobjective optimization approach and the Pareto front
interesting but it became clear that they were focusing on solutions around the minimum number of
cliques. In the case of Figure 4, managers were only looking at solutions with 215, 216, or 217 cliques, all
of which result in about 1% increase in production cost. This is why we discarded the idea of searching for
Pareto fronts and instead we modeled the problem as described in Section 2.

0

0,2

0,4

0,6

0,8

1

1,2

1,4

21
5

21
9

22
3

22
7

23
1

23
5

23
9

24
3

24
7

25
1

25
5

25
9

26
3

26
7

27
1

27
5

27
9

28
3

28
7

29
1

29
5

29
9

%
 in

cr
ea

se
 in

 p
ro

du
ct

io
n

co
st

Number of cliques

C a s a d o , e t a l . | 6

1.1 Relevant Literature

In our literature review we include relevant publications in the management of production as wells as in
clique partitioning and graph coloring. Efficient production planning is of great interest to modern
manufacturing facilities due to global competition and demand uncertainty (Esmaeilian, Behdad, & Wang,
2016). Cost reduction is critical to improving profit margins and making firms competitive in the global
market. The first systematic approaches to production scheduling date back to the mid-1950s. Most of
those efforts assumed that the changeover time could be neglected or simply added to the production
time. This assumption limited the application of those methods, as the variety of products produced in a
single facility increased and the importance of minimizing the time lost to changeovers became clear.

The interest in separating the changeover time from the production time and examining the relationship
of lost production time and production assignment and sequences began in the mid-1960s (Wilbrecht &
Prescott, 1969; Panwalkar, Dudek, & Smith, 1973). In our work, we are more interested in the idea of
grouping products for production than sequencing them. The literature includes some interesting articles
related to grouping (jobs, orders, clients, etc.) in production processes. Chen et al. (2005) present a
clustering procedure for an order-batching problem in a distribution center with a parallel-aisle layout.
They employ an association rule mining approach for order clustering. They provide performance
comparisons for various problems between their approach and previously existing heuristics. Anzanello
and Fogliatto (2011) cluster product types with similar processing needs into families, such that the
efficiency of production programming and resources allocation is maximized. Li et al. (2012) developed a
time-series clustering algorithm to create product families out of thousands of items and in doing so
facilitate the production planning in a semiconductor plant. In the context of cellular manufacturing,
Uddin and Shanker (2002) employ genetic algorithms to tackle the problem of simultaneously assigning
process routes (parts) and machines to cells in order to minimize inter-cell movement, while considering
multiple routings for each part. Potočnik et al. (2013) describe an approach to organize production cells
by means of clustering products into groups with similar properties. These clustering methods are applied
to production data from a Slovenian company. Nananukul (2013) considers a customer-clustering problem
where customer demands must be satisfied in each period of a planning horizon with limited production
and transportation capacity. A practical batching decision problem that arises in the batch annealing
operations of the cold rolling stage of steel production is addressed by Tang et al. (2015). This problem is
faced by most large iron and steel companies in the world. The problem is to select steel coils from a set
of waiting coils to form batches to be annealed in available batch annealing furnaces and to choose a
median coil for each furnace. The objective is to maximize the total reward of the selected coils minus the
total coil–coil and coil–furnace mismatching cost. Additional recent applications of batching in steel
manufacturing are addressed by Ma et al. (2014), Peng et al. (2016), and Tang et al. (2014).

Song (2014) tackles the cast design problem in the steel making industry. A cast is a set of charges, where
a charge is a batch of molten steel (i.e., transformed iron ore). Charges in a cast have similar steel grades
and, therefore, to minimize changeover time (i.e., maximize production efficiency), it is desirable to
configure casts with the largest number of charges. Song approaches the cast design problem in three
stages: charge design, grouping, and sequencing. The charge design consists of two sub-problems, 1) slab
design (a variant of the bin-packing problem) and 2) half-charge matching. The final stage consists of
grouping and sequencing the charges to create efficient casts. The sequencing is formulated as a vehicle
routing problem. A commercial solver is applied to mixed-integer programming formulations of small

C a s a d o , e t a l . | 7

problem instances. Heuristic optimization is applied to larger instances. The heuristic includes a pre-
grouping step that attempts to simplify the problem by identifying compatible orders (based on steel
grade transition rules). Cliques are found in a compatibility graph, where an edge between two orders
represents their compatibility to be sequenced in the same cast. We point out that this step is only trying
to identify cliques and not to solve the clique-partitioning problem, as we propose. Additional relevant
literature in steel production is due to Lopez, Carter, and Gendreau (1998), and Tang et al. (2000; 2001).

When dealing with a large number of products (e.g., in the order of ten thousand) in settings where
scheduling decisions must consider sequence-dependent changeover times, employing an explicit
changeover matrix becomes impractical. Clustering, or grouping, by taking into consideration key product
attributes, can significantly reduce the dimensionality of the changeover matrix. Baykasoğlu and Ozsoydan
(2018) use this approach for the dynamic scheduling of parallel heat treatment furnaces.

Mass customization in manufacturing systems is employed to remain competitive in a marketplace with
shifting demands for products and emerging competition. Mass customization results in an exploding
number of part/product variants (or variants for short). These variants require a number of operations,
whose sequence could be used to group similar variants, that is, those with similar operational flows.
Variants can also be grouped by volume similarity in order to increase machine utilization. Navaei &
ElMaraghy (2016) develop a comprehensive similarity coefficient that takes into consideration operations,
flows, and volume. The coefficients are used by a clustering algorithm, with the average-linkage criterion,
to create groups of variants in a cellular manufacturing environment.

While there is a rich literature on the maximum clique problem, the clique-partitioning problem (CPP)
literature is relatively sparse. It starts with the seminal work reported in (Bhasker & Samad, 1991). This
work presents two theoretical results associated with the clique-partitioning problem. First, it formulates
a new upper bound for the number of cliques in a problem. Then, it shows that an optimal partition
includes a maximal clique. It also shows that the clique-partitioning problem is equivalent to the graph-
coloring problem and therefore a comparison of the clique-partitioning algorithms developed in the
article is made with two of the best graph coloring algorithms known at the time. Several recent
publications tackle the clique-partitioning problem (Oosten, Rutten, & Spieksma, 2001; Jaehn & Pesch,
2013; Sundar & Singh, 2017; Brimberg, Janićijević, Mladenović, & Urošević, 2017). Oosten, Rutten, and
Spieksma (2001) define the clique-partitioning problem on a graph with edge weights. The problem is to
find a partition of the vertices into nonempty, disjoint sets such that these sets form cliques and that the
sum of their edge weight is maximum. They present a procedure, called patching, which is able to
construct new facets by making use of already-known facet-defining inequalities. A variant of this
procedure is shown to run in polynomial time. Jaehn and Pesch (2013) discuss the problem of clustering
the vertices of a complete edge-weighted graph. The objective is to maximize the sum of the edge weights
within the cliques. Real-life applications of this problem include groupings in flexible manufacturing
systems, in biology, and in flight gate assignments. Numerous heuristics and exact approaches as well as
benchmark tests have been presented in the literature for this version of the problem. Most exact
methods use branch and bound with branching over edges. Jaehn and Pesch (2013) developed tighter
upper bounds for each search tree node than those known in the literature at the time; they improved
the constraint propagation techniques for fixing edges in each node, and introduced a new branching
scheme. Sundar and Singh (2017) define the clique-partitioning problem as finding the minimum number
of subsets such that each subset is a clique. The authors developed two metaheuristic techniques based

C a s a d o , e t a l . | 8

on evolutionary computation. Both of the proposed approaches are designed in such a way that the
grouping structure of the CPP is exploited while generating new solutions. They pay special attention to
the design of a neighboring solution generation method utilizing solution components from multiple
solutions. The proposed approaches were tested on 37 publicly available DIMACS graph instances.
Brimberg et al. (2017) show that the clique-partitioning problem can be reformulated as a maximally
diverse grouping problem (MDGP). They modify a skewed general variable neighborhood search (SGVNS)
heuristic that was first developed to solve the MDGP. Similarly as with the MDGP, significant
improvements over the state of the art are obtained when SGVNS is tested on large-scale instances. This
further confirmed the usefulness of a combined approach of diversification afforded with skewed VNS
and intensification afforded with the local search in general VNS.

As we mentioned above, the graph-coloring problem (GCP) is related to the CPP. The GCP has many
practical applications in areas such as scheduling (de Werra, 1996; Burke, McCollum, Meisels, Petrovic, &
Qu, 2007; Ganguli & Siddhartha, 2017; Leighton, 1979; Sabar, Ayob, Qu, & Kendall, 2012; Zais & Laguna,
2016; Wood, 1969; Zufferey, Amstutz, & Giaccari, 2008), timetabling (Yáñez & Ramírez, 2003),
manufacturing (Class, 2002), telecommunications (Demange, Ekim, Ries, & Tanasescu, 2014), register
allocations (Chaitin, 2004; de Werra, Eisenbeis, Lelait, & Marmol, 1999), air traffic flow management
(Barnier & Brisset, 2004), and flight level allocation (Allignol, Barnier, & Gondran, 2012), to name a few.
Exact methods for the GCP have also been proposed (Zhou, Li, Huang, & Xu, 2014). However, most
practical applications employ metaheuristic methodology (Moalic & Gondran, 2018; Zhou, Hao, & Duval,
2016; Avanthay, Hertz, & Zufferey, 2003; Lü & Hao, 2010). Comprehensive surveys of the GCP research
are due to Galinier et al. (2013), Galinier and Hertz (2006), and Malaguti and Toth (2009).

1.2 Contributions

Our contributions are both methodological and practical. We introduce a new problem to the operations
research literature. The problem is introduced in the context of production of steel coil, for which the
authors developed a decision support system that a company in Northern Spain is currently using.
Developing effective and efficient solution methods for this optimization problem yields important
benefits, such as significant reductions in cost, risk, personal injury, and warehouse space.
Implementation of good solutions also results in improved logistics. Specifically, the main contributions
of this work are:

1. We engaged with a company to model a problem that is of extreme relevance to them and
that we found applicable to production processes in general.

2. We propose a mathematical formulation of this problem and analyze the relationship
between the proposed model and problems defined on graphs. In particular, we explore the
connection with the CPP and the GCP.

3. We develop a heuristic method based on tabu search within a multi-start framework. The
solution method is configured to find near-optimal solutions in short computational runs. The
method is designed to find solution to the clique-partitioning problem and to the original
production problem (which includes additional costs).

4. We establish the quality of the solutions obtained by the proposed solution method with
extensive computational experiments. We compare the performance of our method with the
state-of-the-art of heuristic solvers for the CPP and GCP. For the original production problem,

C a s a d o , e t a l . | 9

we assess performance by comparing our results with off-the-shelf optimizers, one based on
mathematical programming (Cplex) and one based on metaheuristics (LocalSolver).

The remainder of the article is organized in the same order as we have listed the contributions. That is,
we start with the mathematical formulation, we establish relationships with the graph problems, we
describe our solution method, and we show our computational experiments.

2. Formulation and Connections with Graph Problems

Assume that there are 𝑛𝑛 products (e.g., steel coils) to be produced in a single facility. For each pair of
products, it is known whether they are compatible or not. The compatibility can be determined by a set
of characteristics associated with the products, as discussed in the introduction. The problem consists of
grouping the products in mutually exclusive and collectively exhaustive subsets. The subsets must be
cliques and the collection of cliques should minimize a cost function. There are two costs, one associated
with the number of cliques, and a second one associated with the membership in each clique. We define
the problem in terms of a graph and then provide a mathematical formulation.

Let 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) be a graph with 𝑛𝑛 vertices, each of them representing a product (i.e., |𝑉𝑉| = 𝑛𝑛). The set of
edges represent the product compatibility. Therefore (𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸 if product 𝑖𝑖 is compatible with product 𝑗𝑗.
There is also a weight 𝑤𝑤𝑖𝑖 associated with each vertex 𝑖𝑖. The weight represents the cost of the material to
produce product 𝑖𝑖. The weight 𝑊𝑊𝑘𝑘 of a clique 𝐶𝐶𝑘𝑘, which represents the cost of producing all the products
in it, is related to the maximum weight of all the products in the clique and it is calculated as follows:

𝑊𝑊𝑘𝑘 = 𝑛𝑛𝑘𝑘 �max
𝑖𝑖∈𝐶𝐶𝑘𝑘

𝑤𝑤𝑖𝑖�

where 𝑛𝑛𝑘𝑘 is the number of vertices assigned to clique 𝐶𝐶𝑘𝑘. All the products in a clique are produced without
changes to the production facility. This means that the same material is used to produce all the products
in the clique. The single material to be used is the one with the highest grade and therefore it is the most
expensive. We formulate the problem as a bi-objective mathematical program with the following three
sets of variables:

𝑥𝑥𝑖𝑖𝑘𝑘: A binary variable that equals one if product 𝑖𝑖 belongs to clique 𝐶𝐶𝑘𝑘

𝑦𝑦𝑘𝑘: A binary variable that equals one if clique 𝐶𝐶𝑘𝑘 is not empty

𝑚𝑚𝑘𝑘: Maximum weight assigned to clique 𝐶𝐶𝑘𝑘, i.e., 𝑚𝑚𝑘𝑘 = max
𝑖𝑖∈𝐶𝐶𝑘𝑘

𝑤𝑤𝑖𝑖

𝑛𝑛𝑘𝑘: Number of vertices assigned to clique 𝐶𝐶𝑘𝑘

The mathematical formulation is:

Minimize 𝑓𝑓1 = ∑ 𝑦𝑦𝑘𝑘𝑘𝑘 (1)

Minimize 𝑓𝑓2 = ∑ 𝑛𝑛𝑘𝑘𝑚𝑚𝑘𝑘𝑘𝑘 (2)

Subject to

C a s a d o , e t a l . | 10

𝑥𝑥𝑖𝑖𝑘𝑘 ≤ 𝑦𝑦𝑘𝑘 ∀𝑖𝑖,𝑘𝑘 (3)

∑ 𝑥𝑥𝑖𝑖𝑘𝑘𝑘𝑘 = 1 ∀𝑖𝑖 (4)

∑ 𝑥𝑥𝑖𝑖𝑘𝑘 ≤ 𝑛𝑛𝑘𝑘𝑛𝑛
𝑖𝑖=1 ∀𝑘𝑘 (5)

∑ 𝑥𝑥𝑖𝑖𝑘𝑘𝑥𝑥𝑗𝑗𝑘𝑘(𝑖𝑖,𝑗𝑗)∈𝐸𝐸 ≥ 𝑛𝑛𝑘𝑘(𝑛𝑛𝑘𝑘 − 1)/2 ∀𝑘𝑘 (6)

𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖𝑘𝑘 ≤ 𝑚𝑚𝑘𝑘 ∀𝑖𝑖,𝑘𝑘 (7)

𝑛𝑛𝑘𝑘 ,𝑚𝑚𝑘𝑘 ≥ 0 ∀𝑘𝑘 (8)

𝑥𝑥𝑖𝑖𝑘𝑘 = {0,1} and 𝑦𝑦𝑘𝑘 = {0,1} ∀𝑖𝑖,𝑘𝑘 (9)

The general model considers two objective functions. Objective function (1) minimizes the number of
cliques, which corresponds to minimizing the number of product groups and therefore the number of
changeovers. The second objective function minimizes the cost of material, calculated as the maximum
cost in a group of products multiplied by the number of products in the group. These two objectives are
in conflict. The minimization of 𝑓𝑓1 calls for creating as few groups as possible, causing an increase in the
size of the groups. On the other hand, large groups tend to deteriorate the value of 𝑓𝑓2 because material
that is more expensive is used to produce more products. In this work, we treat these two objectives
hierarchically, with 𝑓𝑓1 as the primary objective and 𝑓𝑓2 as the secondary objective.

Constraints (3) restrict the assignment of product 𝑖𝑖 to group 𝑘𝑘 only if group 𝑘𝑘 is being used (i.e., if 𝑦𝑦𝑘𝑘 =
1). Constraints (4) specify that every product must be assigned to exactly one group. Constraints (5)
calculate the number of products assigned to group 𝑘𝑘. Constraints (6) ensure that each group 𝑘𝑘 is a clique.
The number of edges in the group should be equal to the number of pairwise combinations of vertices in
the group. Constraints (7) calculate the maximum vertex weight in each group. The model ends with non-
negativity constraints for the continuous variables (8) and the binary restrictions for the assignment
variables (9).

Constraints (6) may be linearized as follows:

∑ 𝑥𝑥𝑗𝑗𝑘𝑘(𝑖𝑖,𝑗𝑗)∈𝐸𝐸 − (𝑥𝑥𝑖𝑖𝑘𝑘 − 1)𝑛𝑛 ≥ 𝑛𝑛𝑘𝑘 − 1 ∀𝑖𝑖,𝑘𝑘 (10)

By eliminating (2) and (7) from the formulation, the problem becomes the clique-partitioning problem
(also known as the minimum clique partition), as defined by Bhasker and Samad (1991). A clique partition
of a graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) is a partition of 𝑉𝑉 such that all subsets in the partition consists of vertices that are
pairwise adjacent. That is, for every pair of vertices 𝑖𝑖 and 𝑗𝑗 in a subset, (𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸. The problem of finding
the minimum cardinality of a clique partition, �̅�𝜒(𝐺𝐺), is NP-Hard in general graphs and as hard to
approximate as the graph-coloring problem (Burke, Mareček, Parkes, & Rudová, 2010). The relationship
between the minimum clique partition and the graph coloring problem is such that �̅�𝜒(𝐺𝐺) = 𝜒𝜒(�̅�𝐺), where
𝜒𝜒(�̅�𝐺) is the minimum number of colors needed to color the complement of the graph 𝐺𝐺.

To the best of our knowledge, the grouping problem that we study here has not been addressed in the
literature. The problem can be considered a variant of the CPP with additional constraints and with a
secondary objective function.

C a s a d o , e t a l . | 11

3. Solution Method

Our solution approach embeds tabu search (TS) in a multi-start framework. It is an iterative process
consisting of constructing solutions and then searching for improved solutions following TS strategies. We
first describe the solution construction method. A solution is a set of cliques 𝑆𝑆 = {𝐶𝐶1, … ,𝐶𝐶𝐾𝐾}, where 𝐾𝐾 is
the number of cliques. We define 𝑈𝑈 as the set of vertices that have not been selected and therefore are
not yet part of the solution. Initially, 𝑈𝑈 = 𝑉𝑉. The construction procedure, creates cliques one at a time.
Suppose that clique 𝐶𝐶𝑘𝑘 is being created. We define 𝑈𝑈′ as those vertices in 𝑈𝑈 that are adjacent to clique 𝐶𝐶𝑘𝑘
if 𝐶𝐶𝑘𝑘 is not empty, that is, 𝑈𝑈′ = {𝑗𝑗 ∈ 𝑈𝑈: (𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸, 𝑖𝑖 ∈ 𝐶𝐶𝑘𝑘}. If 𝐶𝐶𝑘𝑘 is empty, then 𝑈𝑈′ = 𝑈𝑈. We also define 𝐿𝐿𝑖𝑖
as the set of vertices in 𝑈𝑈′ that are adjacent to vertex 𝑖𝑖 ∈ 𝑈𝑈′. That is, 𝐿𝐿𝑖𝑖 = {𝑗𝑗 ∈ 𝑈𝑈′: (𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸}. Only the
vertices 𝑈𝑈′ are eligible to be added to 𝐶𝐶𝑘𝑘. If 𝑈𝑈′ is empty but 𝑈𝑈 is not empty, then a new clique must be
created. If both 𝑈𝑈′ and 𝑈𝑈 are empty, then the procedure terminates. A pseudocode of this procedure is
shown in Algorithm 1.

Algorithm 1. Solution construction.
1. 𝑆𝑆 = ∅,𝑘𝑘 = 0,𝑈𝑈 = 𝑉𝑉

do
2. 𝑘𝑘 = 𝑘𝑘 + 1,𝐶𝐶𝑘𝑘 = ∅,𝑈𝑈′ = 𝑈𝑈

 do
3. 𝐿𝐿𝑖𝑖 = {𝑗𝑗 ∈ 𝑈𝑈′: (𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸}∀𝑖𝑖 ∈ 𝑈𝑈′
4. 𝑖𝑖∗ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑎𝑎𝑥𝑥{|𝐿𝐿𝑖𝑖|: 𝑖𝑖 ∈ 𝑈𝑈′}
5. 𝐶𝐶𝑘𝑘 = 𝐶𝐶𝑘𝑘 + {𝑖𝑖∗}
6. 𝑈𝑈 = 𝑈𝑈\{𝑖𝑖∗}
7. 𝑈𝑈′ = 𝐿𝐿𝑖𝑖∗

 until 𝑈𝑈′ = ∅
until 𝑈𝑈 = ∅

The construction procedure outlined in Algorithm 1 is deterministic; that is, for the same input it always
produces the same set of cliques. However, for a multi-start procedure, it is desirable to generate diverse
solutions that may be subjected to an improvement phase. To this end, we add a greedy function 𝑎𝑎(𝑖𝑖)
that, at each step of the construction process, measures the attractiveness of assigning vertex 𝑖𝑖 ∈ 𝑈𝑈′ to
clique 𝐶𝐶𝑘𝑘. As in Algorithm 1, the attractiveness of vertex 𝑖𝑖 is simply given by its degree, and therefore the
greedy function is defined as:

𝑎𝑎(𝑖𝑖) = |𝐿𝐿𝑖𝑖|

To induce diversification, the selection is made randomly among a candidate list of vertices:

𝐿𝐿𝐶𝐶 = {𝑖𝑖 ∈ 𝑈𝑈′ ∶ 𝑎𝑎(𝑖𝑖) ≥ 𝛼𝛼𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 + (1 − α)𝑎𝑎𝑚𝑚𝑖𝑖𝑛𝑛}

where 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑎𝑎𝑚𝑚𝑖𝑖𝑛𝑛 are the maximum and the minimum values of 𝑎𝑎(𝑖𝑖) for all 𝑖𝑖 ∈ 𝑈𝑈′. The adjustable
parameter 𝛼𝛼 regulates the semi-greedy nature of the procedure. When 𝛼𝛼 = 1, the selection process
becomes totally deterministic (as in step 4 of Algorithm 1), and, when 𝛼𝛼 = 0, the process becomes totally
random.

We also experimented with a more complex greedy function that included two terms, one with a
normalized value of the degree of the candidate vertex, and another one with a normalized value of a

C a s a d o , e t a l . | 12

frequency memory function. Each candidate vertex had a frequency count with respect to all the vertices
already assigned to the clique to which it was being considered. A large frequency value indicated that
the candidate vertex and the already assigned vertices had been in the same clique frequently. That is,
the frequency memory was a simple table in which the element in row 𝑖𝑖 and column 𝑗𝑗 indicated the
number of times that vertex 𝑖𝑖 and vertex 𝑗𝑗 were assigned to the same clique during the search. The
function then discouraged the assignment of vertices to the same clique as their frequency count
increased. An additional parameter was introduced to balance the importance given to this penalty term.
Experiments showed that the best results were obtained when the frequency memory information was
ignored. Therefore, we simplified the greedy function to focus on the degree of a vertex and control
diversification with the value of 𝛼𝛼.

The solutions generated with the semi-greedy process are subjected to an improvement process based
on a short-term memory tabu search (Glover, 1989; Glover, 1990; Glover & Laguna, 1993). This search
explores a neighborhood consisting of all the feasible solutions that can be reached by moving one vertex
from one clique to another. Only feasible moves are considered, that is the solution after a move should
be a set of cliques. A move that takes the search from solution 𝑆𝑆 to solution 𝑆𝑆′ is evaluated using three
criteria:

∆𝑓𝑓1 = 𝑓𝑓1(𝑆𝑆) − 𝑓𝑓1(𝑆𝑆′)
∆𝑠𝑠𝑠𝑠𝑎𝑎 = 𝑠𝑠𝑠𝑠𝑎𝑎(𝑆𝑆) − 𝑠𝑠𝑠𝑠𝑎𝑎(𝑆𝑆′)
∆𝑓𝑓2 = 𝑓𝑓2(𝑆𝑆) − 𝑓𝑓2(𝑆𝑆′)

where 𝑠𝑠𝑠𝑠𝑎𝑎(𝑆𝑆) = ∑ 𝑛𝑛𝑘𝑘2𝐶𝐶𝑘𝑘∈𝑆𝑆 . That is, 𝑠𝑠𝑠𝑠𝑎𝑎(𝑆𝑆) is the sum of the squares of the cardinality of each clique in
the solution. The non-tabu move with the maximum value of ∆𝑓𝑓1 is selected. If all moves have the same
∆𝑓𝑓1 value, then the move with the maximum value of ∆𝑠𝑠𝑠𝑠𝑎𝑎 is selected. Note that 𝑠𝑠𝑠𝑠𝑎𝑎(𝑆𝑆) favors solutions
with a large variance in the cardinality of each clique. This criterion moves the search toward solutions
where some of the cliques are significantly larger than other cliques. This produces a search direction
where subsequent moves could eventually reduce the number of cliques (by emptying cliques with few
vertices). Consider the following three solutions:

𝑆𝑆1 = �{1,2,3,4,5,6}{7,8,9,10}�
𝑆𝑆2 = �{1,2,3,4,5,6}{7,8}{9,10}�
𝑆𝑆3 = �{1,2,3,4}{5,6,7}{8,9,10}�

The best solution is 𝑆𝑆1, because 𝑓𝑓1(𝑆𝑆1) = 2 and 𝑓𝑓1(𝑆𝑆2) = 𝑓𝑓1(𝑆𝑆3) = 3. According to the 𝑠𝑠𝑠𝑠𝑎𝑎 metric, 𝑆𝑆2 is
better than 𝑆𝑆3, since 𝑠𝑠𝑠𝑠𝑎𝑎(𝑆𝑆2) = 62 + 22 + 22 = 44 and 𝑠𝑠𝑠𝑠𝑎𝑎(𝑆𝑆3) = 42 + 32 + 32 = 34.

If a move of vertex 𝑖𝑖 from its current clique 𝑘𝑘 to another clique is executed in iteration 𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎, a short term
memory in the form of a two-dimensional array (𝑇𝑇𝑎𝑎𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑎𝑎) is updated with the iteration number in which
the vertex will be released from its tabu status:

𝑇𝑇𝑎𝑎𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑎𝑎(𝑖𝑖,𝑘𝑘) = 𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎 + 𝑖𝑖𝑖𝑖𝑛𝑛𝑇𝑇𝑎𝑎𝑖𝑖

The value of 𝑖𝑖𝑖𝑖𝑛𝑛𝑇𝑇𝑎𝑎𝑖𝑖 is a search parameter that indicates the number of iterations that vertex 𝑖𝑖 is
prevented from being moved back to clique 𝑘𝑘. Therefore, in a future iteration 𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎, the move of vertex 𝑖𝑖
to clique 𝑘𝑘 is classified tabu if 𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎 ≤ 𝑇𝑇𝑎𝑎𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑎𝑎(𝑖𝑖,𝑘𝑘). This tabu classification is overridden if the move of
vertex 𝑖𝑖 to clique 𝑘𝑘 improves upon the incumbent solution. This is the typical tabu search aspiration

C a s a d o , e t a l . | 13

criterion. Therefore, the neighborhood, 𝑁𝑁(𝑆𝑆), of a solution 𝑆𝑆 consists of all the solutions that can be
reached with non-tabu moves plus any solution that meets the aspiration criterion. The short-term
memory tabu search improvement procedure is summarized in Algorithm 2.

In step 1 of Algorithm 2, the solution 𝑆𝑆 generated by the construction procedure is augmented with an
empty clique 𝐾𝐾 + 1. This is done to give the search procedure the flexibility of creating a solution with
one more clique. Note that the construction procedure focuses on minimizing the number of cliques but
solutions with better values of 𝑓𝑓2 may not necessarily be the ones with the best values of 𝑓𝑓1. Initialization
takes place in steps 2 and 3. Step 5 identifies the best solution in the neighborhood of the current solution.
This is where the evaluation criteria ∆𝑓𝑓1, ∆𝑠𝑠𝑠𝑠𝑎𝑎, and ∆𝑓𝑓2 are used. The chosen move is executed in step 6
and the search moves to solution 𝑆𝑆′. The best solution is updated in step 7. The best solution 𝑆𝑆∗ is with
respect to 𝑓𝑓1 and 𝑓𝑓2 only. That is, the 𝑠𝑠𝑠𝑠𝑎𝑎 criterion does not play a role in this comparison. Step 8 updates
the short term memory and the search ends when 𝑖𝑖𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎 iterations are executed without a change in the
best solution found.

Algorithm 2. Solution improvement: Short-term memory tabu search.
1. 𝑆𝑆 = {𝐶𝐶1, … ,𝐶𝐶𝐾𝐾+1}
2. 𝑆𝑆∗ = 𝑆𝑆, 𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎∗ = 0
3. 𝑇𝑇𝑎𝑎𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑎𝑎(𝑖𝑖,𝑘𝑘) = 0 ∀(𝑖𝑖,𝑘𝑘)

do
4. 𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎 + 1
5. 𝑆𝑆′ = best solution in 𝑁𝑁(𝑆𝑆), reached with move (𝑖𝑖,𝑘𝑘)
6. Move the search to 𝑆𝑆′; that is, 𝑆𝑆 = 𝑆𝑆′
7. if (𝑆𝑆 is better than 𝑆𝑆∗) then 𝑆𝑆∗ = 𝑆𝑆 and 𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎∗ = 𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎
8. 𝑇𝑇𝑎𝑎𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑎𝑎(𝑖𝑖,𝑘𝑘) = 𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎 + 𝑖𝑖𝑖𝑖𝑛𝑛𝑇𝑇𝑎𝑎𝑖𝑖

until 𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎∗ ≥ 𝑖𝑖𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎

In our multi-start procedure, the short-term memory (𝑇𝑇𝑎𝑎𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑎𝑎) is cleared every time the Algorithm 2 is
invoked. The multi-start procedure is summarized in Algorithm 3.

Algorithm 3. Multistart procedure.
1. 𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎∗ = 0

do
2. 𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎 + 1
3. 𝑆𝑆 ← 𝑐𝑐𝑐𝑐𝑛𝑛𝑠𝑠𝑖𝑖𝑎𝑎𝑇𝑇𝑐𝑐𝑖𝑖𝑖𝑖𝑐𝑐𝑛𝑛(𝛼𝛼)
4. 𝑆𝑆′ ← 𝑖𝑖𝑚𝑚𝑖𝑖𝑎𝑎𝑐𝑐𝑖𝑖𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖(𝑖𝑖𝑖𝑖𝑛𝑛𝑇𝑇𝑎𝑎𝑖𝑖, 𝑖𝑖𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎, 𝑆𝑆)
5. if (𝑆𝑆′ is better than 𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) then 𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑆𝑆′ and 𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎∗ = 𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎

until 𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎∗ ≥ 𝑚𝑚𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎

The construction in step 3 of Algorithm 3 is the semi-greedy version of Algorithm 1. The improvement in
step 4 is the short-term memory tabu search in Algorithm 2. The update of the (overall) best solution in
step 5 is made with reference to 𝑓𝑓1 and 𝑓𝑓2. A solution 𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is better than a solution 𝑆𝑆 if 𝑓𝑓1�𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏� < 𝑓𝑓1(𝑆𝑆)
or 𝑓𝑓1�𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏� = 𝑓𝑓1(𝑆𝑆) and 𝑓𝑓2�𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏� < 𝑓𝑓2(𝑆𝑆). This is the same criteria that are used to update the best
solution during the tabu search (see step 7 in Algorithm 2). The multistart procedure is executed until
𝑚𝑚𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎 iterations are performed without a change in the best solution found. We point out that the best
solution in Algorithm 3 is the best overall solution while the best solution in Algorithm 2 refers to the best

C a s a d o , e t a l . | 14

found within the current iteration of the multistart procedure. That is 𝑆𝑆∗ in Algorithm 2 is a “local best”
while 𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 in Algorithm 3 is the global best. Clearly, those two solutions are the same when Algorithm 2
identifies the overall best solution.

4. Computational Experiments

We perform three main experiments. The first one deals with fine tuning three of the two search
parameters, namely, 𝛼𝛼 and 𝑖𝑖𝑖𝑖𝑛𝑛𝑇𝑇𝑎𝑎𝑖𝑖. The search parameters 𝑖𝑖𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎 and 𝑚𝑚𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎 are chosen to produce
competitive execution times. The second experiment is a “reality check” that compares the performance
of our proposed multistart procedure (MSTS) with a state-of-the-art metaheuristics for the clique
partitioning and the graph coloring problems. As we mentioned in Section 2, the literature has favored
the development of solutions methods of the graph-coloring problem over the development of
procedures to minimize the number of cliques. The goal of our experiment is to show that our procedure
is competitive when compared to both graph-coloring and clique-partitioning specialized codes. We then
compare the performance of MSTS against commercial general-purpose solvers: Cplex and LocalSolver.
The goal of this experiment is to justify the development of MSTS to tackle the bi-objective problem. A
customized solution to this problem can only make sense if existing tools are not able to produce similar
results. We end by testing our procedure on a real problem instance provided by steel production facility
of the company for which we did this work. All the experiments were carried out on a workstation with
an Intel processor i7-7700 4.20 GHz and 32 GB of RAM. The codes were programmed in haveObject Pascal
(RAD Studio 10.2). We used LocalSolver 8.0 and Cplex 12.8 in our experiments.

We generated 270 problem instances, for which we varied the size and the density of the graph. In
particular, we generated five instances of each combination of graph density (0.05, 0.10, and 0.20) and
number of vertices ranging from 10 to 1000 (with 18 values of 𝑛𝑛 in total). In a 1000×1000 square, we
generated 𝑛𝑛 points with coordinates (𝑥𝑥,𝑦𝑦), representing the vertices in the graph. We calculated the
Euclidean distance between each pair of points and determined the maximum distance. Then, the edge
(𝑖𝑖, 𝑗𝑗) between vertex 𝑖𝑖 and vertex 𝑗𝑗 is added to the graph if the distance between the two vertices is less
than the maximum distance multiplied by the density. Therefore, the number of edges in the graph
increases with the density value1.

We chose a “training set” of 18 out of the 270 instances for the fine-tuning experiment. This training set
consists of one instance and one density of each size, as shown in Table 1.

Table 1. Instances in the training set.

No. 𝒏𝒏 Density Instance No. 𝒏𝒏 Density Instance No. 𝒏𝒏 Density Instance
1 10 0.05 1 7 50 0.05 2 13 150 0.05 4
2 15 0.10 2 8 60 0.10 3 14 200 0.10 5
3 20 0.20 3 9 70 0.20 4 15 300 0.20 1
4 25 0.05 4 10 80 0.05 5 16 400 0.05 3
5 30 0.10 5 11 100 0.10 1 17 500 0.10 4
6 40 0.20 1 12 120 0.20 3 18 1000 0.20 5

1 All of these instances are available here: https://www.ubu.es/metaheuristicos-grinubumet/ejemplos-y-datos-de-
problemas

https://www.ubu.es/metaheuristicos-grinubumet/ejemplos-y-datos-de-problemas
https://www.ubu.es/metaheuristicos-grinubumet/ejemplos-y-datos-de-problemas

C a s a d o , e t a l . | 15

We employ a sequential fine-tuning process, starting with the value of 𝑖𝑖𝑖𝑖𝑛𝑛𝑇𝑇𝑎𝑎𝑖𝑖 for a fixed value of 𝑖𝑖𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎 =
10𝑛𝑛. The tabu tenure that we considered were 𝑖𝑖𝑖𝑖𝑛𝑛𝑇𝑇𝑎𝑎𝑖𝑖 = 𝑛𝑛/2,𝑛𝑛, 2𝑛𝑛, 5𝑛𝑛. One solution for each instance
in the training set was found with a single run of Algorithm 2 starting from the solution constructed by
Algorithm 1. We compared the average quality of the eighteen solutions obtained with each tabu tenure
and selected the best (𝑖𝑖𝑖𝑖𝑛𝑛𝑇𝑇𝑎𝑎𝑖𝑖 = 2𝑛𝑛).

We then adjusted the value of 𝛼𝛼, the diversification parameter. Recall that 𝛼𝛼 controls the randomization
of the construction procedure, whereby a value of 𝛼𝛼 close to one approaches the deterministic
construction in Algorithm 1, and a value of 𝛼𝛼 close to zero produces random vertex selections at each
step. With fixed values for 𝑚𝑚𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎 = 20, 𝑖𝑖𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎 = 10𝑛𝑛, and 𝑖𝑖𝑖𝑖𝑛𝑛𝑇𝑇𝑎𝑎𝑖𝑖 = 2𝑛𝑛, we tried 𝛼𝛼 = 0,0.5,0.9,0.99,1.
The average solution quality, as a measure of the merit of each 𝛼𝛼 value, resulted in 𝛼𝛼 = 0.99 as the best
value for this parameter.

The large value of 𝛼𝛼 indicates a preference for relatively short candidate lists. These short lists, however,
have been shown to be sufficient in terms generating diversity, particularly as the graphs increase in size.
This observation coincides with similar experiences reported in the literature (Pacheco, Alfaro, Casado, &
García, 2012).

4.1 Performance Comparison against CPP State-of-the-Art

The problem that we are tackling, as formulated in Section 2, can be considered a variant of the CPP with
additional constraints and with a secondary objective function. Because there are no specialized methods
in the literature for this problem, we first compare the performance of our multi-start tabu search
implementation (MSTS) with the state-of-the-art for the CPP. Our literature review revealed that
algorithmic development has focused on solving graph-coloring problems as well as procedures that
address the CPP directly. Therefore, for comparison purposes, we chose both the best graph-coloring
procedure and applied it to �̅�𝐺 and the most recent procedure for the CPP. The chosen graph-coloring
procedure is a memetic algorithm, denoted by MEM, due to Moalic and Gondran (2018). Table 2
summarizes the results of the comparison, using the average value of both objective functions as the
measure of merit.

The best solutions are shown in bold. When comparing the average objective function values, 𝑓𝑓𝐴𝐴 and 𝑓𝑓𝐵𝐵,
of procedures 𝐴𝐴 and 𝐵𝐵, the average solution quality of procedure 𝐴𝐴 is better than 𝐵𝐵 if 𝑓𝑓1𝐴𝐴 < 𝑓𝑓1𝐵𝐵 or 𝑓𝑓1𝐴𝐴 =
𝑓𝑓1𝐵𝐵 and 𝑓𝑓2𝐴𝐴 < 𝑓𝑓2𝐵𝐵. The results in Table 2 indicate that the two procedures find the same solutions to
problem instances with up to 20 vertices and densities of 0.05 and 0.10. For the instances with 30 to 150
vertices, MSTS dominates MEM on both objective functions. The memetic algorithm is able to find
solutions that on average have better 𝑓𝑓1 values than the solutions found by the MSTS procedure in
instances with more than 300 vertices and a density of 0.2. This may be due to the lower density graph-
coloring problem that results from a higher density CPP.

Since MEM is not designed to address 𝑓𝑓2, in all the cases when𝑓𝑓1𝑀𝑀𝐸𝐸𝑀𝑀 < 𝑓𝑓1𝑀𝑀𝑆𝑆𝑀𝑀𝑆𝑆, we observe that 𝑓𝑓2𝑀𝑀𝐸𝐸𝑀𝑀 >
𝑓𝑓2𝑀𝑀𝑆𝑆𝑀𝑀𝑆𝑆. Another way of summarizing the results of this experiment is by counting the number of times
that each procedure obtains the better solution. Out of the 270 instances, MSTS finds a better solution
than MEM 184 times. MEM is able to find better solutions than MSTS in 16 instances. In the remaining 70
instances, both procedures find the same solutions.

C a s a d o , e t a l . | 16

We performed two paired tests on instances for which MEM and MSTS obtain different results. The first
test considers both objective functions and the second one considers 𝑓𝑓1 only. We test the following
hypothesis:

𝐻𝐻0:𝜋𝜋 ≤ 0.5
𝐻𝐻1:𝜋𝜋 > 0.5

Where 𝜋𝜋 is the unknown proportion of times that MSTS obtains better solutions than MEM. In both tests,
we reject the null hypothesis. The 𝑖𝑖-value in the first test is less than 0.0001 and the 𝑖𝑖-value is 0.0048 for
the second test.

The solution times reported in Table 2 correspond to those of MSTS. The execution times for MEM varied
from 4 to 14,264 seconds. Therefore, MEM employs at least two orders of magnitude more time than
MSTS.

Table 2. Average solution quality comparison between MSTS and MEM.

𝒏𝒏 Density MSTS Time MEM 𝒏𝒏 Density MSTS Time MEM
𝑓𝑓1 𝑓𝑓2 𝑓𝑓1 𝑓𝑓2 𝑓𝑓1 𝑓𝑓2 𝑓𝑓1 𝑓𝑓2

10 0.05 9.6 11.2 0.01 9.6 11.2 80 0.05 54.0 104.2 0.37 54.0 105.6
0.10 8.8 11.2 0.01 8.8 11.2 0.10 32.2 115.0 0.54 32.2 125.4
0.20 6.8 13.2 0.01 6.8 13.4 0.20 14.4 142.6 0.46 14.4 152.4

15 0.05 14.4 16.8 0.01 14.4 16.8 100 0.05 65.0 128.6 0.71 65.0 132.2
0.10 12.0 18.0 0.01 12.0 18.0 0.10 36.0 154.8 0.90 36.2 167.8
0.20 8.2 19.8 0.01 8.2 21.6 0.20 15.2 178.0 0.56 15.2 194.0

20 0.05 18.2 20.4 0.02 18.2 20.4 120 0.05 71.6 157.8 1.22 71.6 166.6
0.10 16.2 21.0 0.02 16.2 21.0 0.10 37.0 195.2 1.84 37.0 207.8
0.20 9.8 26.4 0.02 9.8 29.2 0.20 15.4 218.8 1.19 15.4 234.0

25 0.05 22.6 24.2 0.03 22.6 24.2 150 0.05 83.0 208.8 2.71 83.0 219.6
0.10 18.2 28.8 0.02 18.2 29.2 0.10 40.8 249.2 3.03 41.0 265.6
0.20 10.6 34.2 0.03 10.6 36.4 0.20 16.0 276.6 1.67 16.0 299.0

30 0.05 27.0 34.2 0.04 27.0 34.4 200 0.05 97.2 282.2 4.98 97.0 303.2
0.10 21.0 38.2 0.04 21.0 40.6 0.10 42.2 346.0 5.27 42.8 368.0
0.20 11.8 47.0 0.06 11.8 51.0 0.20 16.8 369.8 4.59 16.8 395.6

40 0.05 33.4 49.4 0.08 33.4 49.8 300 0.05 114 451.2 13.67 114.8 485.8
0.10 24.2 54.6 0.06 24.2 55.4 0.10 48.6 534.6 15.87 49.4 569.6
0.20 12.4 63.4 0.07 12.4 68.0 0.20 17.6 569.8 6.45 17.4 599.0

50 0.05 39.8 57.0 0.13 39.8 58.0 400 0.05 128.4 635.6 27.82 129.4 676.8
0.10 25.8 70.6 0.12 25.8 73.6 0.10 52.8 750.6 28.18 54.0 777.4
0.20 14.0 79.4 0.12 14.0 89.8 0.20 18.0 780.2 13.11 17.6 800.0

60 0.05 45.6 70.2 0.19 45.6 70.8 500 0.05 139.6 804.6 51.92 144 864.4
0.10 29.6 86.2 0.25 29.6 92.8 0.10 54.0 958.4 44.29 55.4 984.0
0.20 13.2 102.0 0.22 13.2 109.8 0.20 18.8 994.6 24.84 18.4 998.2

70 0.05 51.2 84.4 0.27 51.2 86.4 1000 0.05 172.4 1828.4 900.45 190.4 1871.0
0.10 31.0 102.4 0.32 31.0 110.0 0.10 63.4 1957.6 199.03 62.8 1997.4
0.20 14.0 116.4 0.30 14.0 132.6 0.20 21.2 1982.2 105.34 20.2 2000.0

As discussed in Section 1.1, Sundar and Singh (2017) developed two procedures for the CPP, one based
on genetic algorithms (SSGGA) and one based on an artificial bee colony (GABC). The results reported in
their article for 37 DIMACS instances are based on 10 runs. MSTS, on the other hand, was executed one
time with the stopping criteria specified above and a maximum running time of 3600 seconds. Table 3
shows, for each instance, the number of vertices and the density. For SSGGA and GABC, the table shows
the objective function for the best solution in the ten runs (Best), average objective function value (Avg.),

C a s a d o , e t a l . | 17

and the average computing time (ACT). The total computational effort of running these procedures is
therefore 10 times ACT. For MSTS we show the objective function value of the best solution found (Value)
and the solution time in seconds (Time). The values in bold indicate instances in which the corresponding
procedure found the best-known solution.

In Table 3, we can observe that only 8 times SSGGA finds a better solution than MSTS and only 4 times
GABC finds a better solution than MSTS.For the four instances that GABC produces better solutions than
MSTS, the SSGGA solutions are better than those produced by GABC. Due to this overlap, we can state
that in only eight instances MSTS fails to produce solutions of equal or better quality as those found by
the competing methods. Clearly, MSTS requires more time than the competing procedures; however, the
additional computational effort is well employed in the sense that it is able to produce improved
outcomes. We note that MSTS was designed and tuned for the problems that we encountered in the real
setting that we studied. In those problems, the graphs are rather sparse. We did not observe graphs with
a density of more than 0.15, and often the density that we encountered was no more than 0.03. In
contrast, only three instances in the DIMACS set have densities of around 0.25. The rest of the instances
have densities above 0.48. Nonetheless, MSTS produced extremely competitive results.

C a s a d o , e t a l . | 18

Table 3. Comparison between CPP procedure by Sundar and Singh (2017) and MSTS.

Instance SSGGA GABC MSTS
Name 𝑛𝑛 Density Best Avg. ACT Best Avg. ACT Value Time
C125.9 125 0.8985 6 6.1 1.25 6 6 0.08 6 0.06
C250.9 250 0.8991 10 10 2.93 10 10 0.5 9 1.71
C500.9 500 0.9005 16 16.5 13.44 15 15.7 5.44 15 1.61
C1000.9 1000 0.9011 26 27.1 63.52 25 25 59.95 24 110.03
C2000.9 2000 0.9002 45 45.9 345.56 42 42 527.8 41 1890.31
C2000.5 2000 0.5002 173 174.1 710.09 178 178.9 1167.49 182 1794.74
C4000.5 4000 0.5002 315 315.8 5227.38 321 322.7 8627.66 329 3198.52
MANN_a27 378 0.9901 4 4 2.12 4 4 2.59 4 0.03
MANN_a45 1035 0.9963 4 4 11.82 4 4 60.89 4 0.51
MANN_a81 3321 0.9988 4 4 108.96 4 4 2726.52 4 21.33
brock200_2 200 0.4963 25 25.9 2.47 27 27.4 1.29 27 5.54
brock200_4 200 0.6577 18 18.5 2.52 19 19.4 1.04 19 5.13
brock400_2 400 0.7492 25 25.5 10.99 25 25.4 7.54 25 7.45
brock400_4 400 0.7489 25 25.9 11.44 25 25.4 7.07 25 10.31
brock800_2 800 0.6513 57 57.7 51.59 58 58.4 72.11 58 1621.50
brock800_4 800 0.6497 57 58 46.59 58 58.3 74.51 59 118.13
gen200_p0.9_44 200 0.9000 9 9 1.41 8 8.6 0.29 8 0.14
gen200_p0.9_55 200 0.9000 7 7.6 1.63 7 7.5 0.23 7 1.05
gen400_p0.9_55 400 0.9000 14 14.2 7.03 14 14 3.41 13 5.74
gen400_p0.9_65 400 0.9000 13 13.9 6.88 13 13.9 2.74 12 2.41
gen400_p0.9_75 400 0.9000 13 13.8 5.83 13 13.1 3.03 12 41.07
hamming8-4 256 0.6392 16 16 7.03 16 16 1.18 16 12.97
hamming10-4 1024 0.8289 38 38 62.89 37 37.2 107.48 35 83.91
keller4 171 0.6491 20 20.2 2.14 21 21.3 0.82 20 10.04
keller5 776 0.7515 44 45.5 39.98 47 47.1 68.85 44 1584.43
keller6 3361 0.8182 100 101.5 1537.98 103 103.1 4459.84 95 614.32
p_hat300-1 300 0.2438 66 66.5 3.61 70 70.8 2.56 65 266.35
p_hat300-2 300 0.4889 45 45.6 4.07 45 46.4 3.1 44 320.75
p_hat300-3 300 0.7445 22 22.5 4.21 22 22.7 3.11 21 124.53
p_hat700-1 700 0.2493 135 137.4 19.93 146 147.4 36.63 133 467.27
p_hat700-2 700 0.4976 93 94.1 19.29 93 94 35.44 90 965.56
p_hat700-3 700 0.7480 44 44.3 25.31 43 44.2 32.86 41 654.41
p_hat1500-1 1500 0.2534 271 271.8 120.12 284 285.4 263.04 257 1601.79
p_hat1500-2 1500 0.5061 175 176.4 103.6 176 177.7 254.52 169 1490.55
p_hat1500-3 1500 0.7536 80 81.2 160.47 79 79.8 290.49 76 182.04
DSJC500_5 500 0.5020 54 54.4 14.72 56 56.7 20.16 57 18.35
DSJC1000_5 1000 0.5002 96 97.3 76.08 100 101 143.92 100 3294.70

4.2 Performance Comparison against Cplex

We created a linear, single-objective, model in order to compare the performance of MSTS with a
commercial mixed-integer programming solver such as Cplex. The linear model consists of substituting
constraint (6) with its linearized version (10). We construct the objective function with a big 𝑀𝑀 method,
where 𝑀𝑀 is calculated as follows:

𝑀𝑀 = 𝑛𝑛 �max
𝑖𝑖∈𝑉𝑉

𝑤𝑤𝑖𝑖�

The objective function becomes:

Minimize 𝑓𝑓3 = 𝑀𝑀∑ 𝑦𝑦𝑘𝑘𝑘𝑘 + ∑ 𝑊𝑊𝑘𝑘𝑘𝑘

C a s a d o , e t a l . | 19

The following constraint is added to the model to calculate 𝑊𝑊𝑘𝑘:

𝑊𝑊𝑘𝑘 ≥ 𝑤𝑤𝑖𝑖𝑛𝑛𝑘𝑘 − (1 − 𝑥𝑥𝑖𝑖𝑘𝑘)𝑀𝑀 ∀𝑖𝑖,𝑘𝑘 (11)

The objective function 𝑓𝑓3 gives preference to solutions with minimum number of cliques. The second
element of the objective function, i.e., the sum of the weights, acts as a tiebreaker for solutions with the
same number of cliques. Since the optimal number of cliques is unknown, we set an upper bound of 𝐾𝐾
cliques that corresponds to the number of cliques found with our heuristic approach.

Table 4 shows the results of the experiment that compares the linearized single-objective model solved
with Cplex and MSTS. Both procedures were given a time limit of 3600 seconds. We use the random
instances that we generated for the comparison with MEM. However, we only perform experiments with
up to 120 vertices, given that Cplex was not able to handle any larger instances. The 𝑓𝑓1 and 𝑓𝑓2 columns
show the average objective function values obtained by each method. The “Sol” column shows the
number of instances for which Cplex is able to find at least one feasible solution. The “Opt” column shows
the number of times that Cplex is able to find and confirm an optimal solution before the time limit.

Clearly, solving the linearized model with off-the-shelf software is the preferred methods for problems
with up to 60 vertices. Even though, Cplex is not able to confirm optimality, MSTS is not able to find better
solutions than Cplex for instances with up to 60 vertices. For larger instances, Cplex struggles to find
feasible solutions as evidenced by the decreasing trend in the “Sol” values.

C a s a d o , e t a l . | 20

Table 4. Comparison between Cplex and MSTS.

𝒏𝒏 Density
MSTS Cplex MSTS

Best
Cplex
Best 𝑓𝑓1 𝑓𝑓2 Time Sol 𝑓𝑓1 (1) 𝑓𝑓2 (1) Opt Time (2)

10 0.05 9.6 11.2 0.01 5 9.6 11.2 5 0.10 0 0
0.10 8.8 11.2 0.01 5 8.8 11.2 5 0.19 0 0
0.20 6.8 13.2 0.01 5 6.8 13.2 5 0.13 0 0

15 0.05 14.4 16.8 0.01 5 14.4 16.8 5 0.56 0 0
0.10 12.0 18.0 0.01 5 12.0 18.0 5 0.63 0 0
0.20 8.2 19.8 0.01 5 8.2 19.8 5 0.39 0 0

20 0.05 18.2 20.4 0.02 5 18.2 20.4 5 2.05 0 0
0.10 16.2 21.0 0.02 5 16.2 21.0 5 2.02 0 0
0.20 9.8 26.4 0.02 5 9.8 26.4 5 1.47 0 0

25 0.05 22.6 24.2 0.03 5 22.6 24.2 5 5.81 0 0
0.10 18.2 28.8 0.02 5 18.2 28.8 5 8.19 0 0
0.20 10.6 34.2 0.03 5 10.6 34.2 5 4.24 0 0

30 0.05 27.0 34.2 0.04 5 27.0 34.2 5 482.55 0 0
0.10 21.0 38.2 0.04 5 21.0 38.2 5 268.56 0 0
0.20 11.8 47.0 0.06 5 11.8 47.0 5 18.72 0 0

40 0.05 33.4 49.4 0.08 5 33.4 49.4 4 53.30 0 0
0.10 24.2 54.6 0.06 5 24.2 54.6 3 64.56 0 0
0.20 12.4 63.4 0.07 5 12.4 63.4 4 178.13 0 0

50 0.05 39.8 57.0 0.13 5 39.8 57.0 0 - 0 0
0.10 25.8 70.6 0.12 5 25.8 70.6 0 - 0 0
0.20 14.0 79.4 0.12 5 14.0 79.4 4 490.08 0 0

60 0.05 45.6 70.2 0.19 5 45.6 70.2 0 - 0 0
0.10 29.6 86.2 0.25 5 29.6 86.2 0 - 0 0
0.20 13.2 102 0.22 5 13.2 102.0 2 1787.14 0 0

70 0.05 51.2 84.4 0.27 5 51.2 84.4 0 - 0 0
0.10 31.0 102.4 0.32 5 31.0 102.8 0 - 1 0
0.20 14.0 116.4 0.30 5 14.0 116.0 1 3302.73 0 1

80 0.05 54.0 104.2 0.37 5 54.0 105.6 0 - 2 0
0.10 32.2 115.0 0.54 5 32.4 117.4 0 - 4 0
0.20 14.4 142.6 0.46 4 14.0 141.8 4 1940.23 1 0

100 0.05 65.0 128.6 0.71 5 77.2 105.4 0 - 4 0
0.10 36.0 154.8 0.90 5 38.2 160.6 0 - 5 0
0.20 15.2 178.0 0.56 5 15.2 183.2 1 696.13 2 0

120 0.05 71.6 157.8 1.22 5 96.0 125.8 0 - 5 0
0.10 37.0 195.2 1.84 5 49.2 169.2 0 - 5 0
0.20 15.4 218.8 1.19 3 15.7 213.7 0 - 5 0

150 0.05 83.0 208.8 2.71 5 123.2 195.4 0 - 5 0
0.10 40.8 249.2 3.03 5 53.2 257.2 0 - 5 0
0.20 16.0 276.6 1.67 2 16.5 291.5 0 - 5 0

200 0.05 97.2 282.2 4.98 1 198.0 85.0 0 - 5 0
0.10 42.2 346.0 5.27 1 98.0 50.0 0 - 5 0
0.20 16.8 369.8 4.59 0 - - 0 - 5 0

(1) Average values include only the instances for which Cplex found a feasible solution.
(2) Computational time includes only those instances for which Cplex terminated before the time limit.

C a s a d o , e t a l . | 21

4.3 Performance Comparison against LocalSolver

In the interest of assessing the performance of MSTS on both objective functions taken separately, we
compare our results with those found with a LocalSolver model. LocalSolver2 is a well-established
optimization platform based on metaheuristic technology. LocalSolver models may include more than one
objective function and the solution process treats them hierarchically. The LocalSolver model use for this
experiment is shown in the Appendix.

Table 5 shows the comparison of the average quality of the solutions found with MSTS and LocalSolver.
Both procedures find the same solutions for problem instances with up to 40 vertices. For low density
graphs, LocalSolver is able to match MSTS in problem instances with up to 120 vertices. For larger
instances (𝑛𝑛 ≥ 150), LocalSolver solutions are such that on average 𝑓𝑓1𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝐿𝐿𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿𝑏𝑏𝐿𝐿 > 𝑓𝑓1𝑀𝑀𝑆𝑆𝑀𝑀𝑆𝑆. However, we
note that in all those cases 𝑓𝑓2𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝐿𝐿𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿𝑏𝑏𝐿𝐿 < 𝑓𝑓2𝑀𝑀𝑆𝑆𝑀𝑀𝑆𝑆. This shows the conflicting nature of the two objective
functions, in the sense that significantly better values of 𝑓𝑓2 are possible at the expense of deteriorating
𝑓𝑓1.

Table 5. Average solution quality comparison between MSTS and LocalSolver.

𝒏𝒏 Density
MSTS LocalSolver 𝒏𝒏 Density

MSTS LocalSolver
𝑓𝑓1 𝑓𝑓2 𝑓𝑓1 𝑓𝑓2 𝑓𝑓1 𝑓𝑓2 𝑓𝑓1 𝑓𝑓2

10 0.05 9.6 11.2 9.6 11.2 80 0.05 54.0 104.2 54.0 104.2
0.10 8.8 11.2 8.8 11.2 0.10 32.2 115.0 33.0 112.2
0.20 6.8 13.2 6.8 13.2 0.20 14.4 142.6 15.4 133.0

15 0.05 14.4 16.8 14.4 16.8 100 0.05 65.0 128.6 65.2 128.2
0.10 12.0 18.0 12.0 18.0 0.10 36.0 154.8 37.4 149.4
0.20 8.2 19.8 8.2 19.8 0.20 15.2 178.0 18.0 152.8

20 0.05 18.2 20.4 18.2 20.4 120 0.05 71.6 157.8 71.6 157.8
0.10 16.2 21.0 16.2 21.0 0.10 37.0 195.2 39.8 178.8
0.20 9.8 26.4 9.8 26.4 0.20 15.4 218.8 19.4 183.8

25 0.05 22.6 24.2 22.6 24.2 150 0.05 83.0 208.8 83.8 205.8
0.10 18.2 28.8 18.2 28.8 0.10 40.8 249.2 46.8 216.4
0.20 10.6 34.2 10.6 34.2 0.20 16.0 276.6 22.8 210.6

30 0.05 27.0 34.2 27.0 34.2 200 0.05 97.2 282.2 99.4 274.4
0.10 21.0 38.2 21.0 38.2 0.10 42.2 346.0 49.4 295.0
0.20 11.8 47.0 12.0 46.6 0.20 16.8 369.8 24.2 310.2

40 0.05 33.4 49.4 33.4 49.4 300 0.05 114.0 451.2 119.2 424.0
0.10 24.2 54.6 24.2 54.6 0.10 48.6 534.6 62.4 432.4
0.20 12.4 63.4 12.4 63.4 0.20 17.6 569.8 37.2 423.8

50 0.05 39.8 57.0 39.8 57.0 400 0.05 128.4 635.6 135.4 593.6
0.10 25.8 70.6 26.0 69.2 0.10 52.8 750.6 75.8 549.2
0.20 14.0 79.4 14.8 72.8 0.20 18.0 780.2 45.2 568.8

60 0.05 45.6 70.2 45.6 70.2 500 0.05 139.6 804.6 156.2 697.8
0.10 29.6 86.2 29.6 86.2 0.10 54.0 958.4 81.8 691.2
0.20 13.2 102.0 13.4 100.8 0.20 18.8 994.6 46.6 738.6

70 0.05 51.2 84.4 51.2 84.4 1000 0.05 172.4 1828.4 220.0 1410.0
0.10 31.0 102.4 31.4 100.6 0.10 63.4 1957.6 127.0 1259.6
0.20 14.0 116.4 14.4 113.8 0.20 21.2 1982.2 - -

LocalSolver was set up to run a minimum of 5 seconds and no more than twice the time taken by MSTS.
For problem instances with one thousand vertices and density of 0.20, LocalSolver was not able to find

2 LocalSolver is a commercial software developer of optimization and decision support systems
(https://www.localsolver.com/)

C a s a d o , e t a l . | 22

feasible solutions within the allotted time. With respect to number of best solutions, out of the 270
instances, MSTS found better solutions than LocalSolver in 127 of them, while LocalSolver did not
generate a single better solution than MSTS. In 138 instances, both methods found the same solutions,
and in five instances, there is no form of comparison because LocalSolver could not find feasible solutions.
These results establish the merit of creating a specialized method for the problem that we are trying to
solve.

4.4 Experiment with Real Data

In our final experiment, we use a data set from the company consisting of 478 orders. We first established
the order compatibility, using the criteria mentioned in the introduction. This resulted in a graph with
3,037 edges. Therefore, this real problem instance has a density of about 0.03. Figure 5 shows the changes
of the value of 𝑓𝑓1 for the best solution found throughout the search. The profile of this plot is typical of a
metaheuristic search. A well-designed search quickly improves upon a starting point and then, as the
quality of the best solution improves, the time between improvements increases.

Figure 5. Evolution of the best solution value throughout the search.

The search started from a solution with objective function values of (𝑓𝑓1,𝑓𝑓2) = (219,1302) and finished
with the solution with objective function values of (𝑓𝑓1,𝑓𝑓2) = (206,1315). We could not obtain a feasible
solution for this problem when solving the linearized model with Cplex. We ran LocalSolver with a time
limit of 3600 seconds and obtained a solution with objective function values of (𝑓𝑓1,𝑓𝑓2) = (208,1242).
Given the cost of performing changeovers, the reduction from fulfilling each order individually to

1302

1315

204

206

208

210

212

214

216

218

220

0 100 200 300 400 500 600

N
um

be
r o

f c
liq

ue
s

Computational Time

C a s a d o , e t a l . | 23

combining then into groups represents significant savings for the company. Our procedure is able to
reduce the number of changes from 478 (that is, each order in its own group) to 206.

5. Conclusions and Extensions

Many manufacturing processes consist of three production stages. The second stage, known as the
primary process, represents a significant fraction of the total manufacturing cost. We described a model
that aims at reducing these costs by grouping final products. The main idea is to create groups of final
products that can all be manufactured from identical primary products.

The grouping of products yields great benefits. In particular, it enables production continuity by
minimizing interruptions. The cost reductions associated with fewer changeovers is significant, as it
includes increased production time and a decreased machine repairs and workforce accidents. Product
grouping also increases logistic efficiency, by simplifying inventory management and provider operations.
Our model seeks to minimize the number of groups (cliques) and it also takes into consideration specific
production costs associated with the grouping of products, i.e., the cost of the raw material and waste.

To the best of our knowledge, the optimization problem, as we modeled, with two hierarchical objective
functions has not be addressed in the literature. However, we discussed the connections of our
optimization problem with the clique partitioning problem and the graph coloring problem that result
from dropping the second objective function (i.e., the one related to the weight of each clique). To find
high-quality solutions for problems with hundreds of products, we developed a specialized solution
procedure based on semi-greedy constructions and short-term memory tabu search. We assessed the
performance of the proposed method by comparing our results with those from specialized state-of-the-
art clique partitioning and graph coloring methods as well as general-purpose mixed-integer programming
and metaheuristic solvers. The experiments showed the merit of our proposal.

Although this was not the original purpose for our work, a byproduct of our efforts is the development of
an alternative method for finding high-quality solutions to CPP and graph-coloring instances. Finally, we
believe that our solution method is flexible enough to accommodate additional cost considerations as
well as different approaches to handle the conflicting objective functions. For instance, the solution
procedure could be easily adapted to treat the model as a bi-objective optimization problem.

Acknowledgments

This work was partially supported by FEDER funds and the Spanish Ministry of Economy and
Competitiveness (Projects ECO2013-47129-C4-3-R and ECO2016-76567-C4-2-R), the Regional
Government of Castilla y León, Spain (Project BU329U14 and BU071G19), and the Regional Government
of Castilla y León and FEDER funds (Project BU062U16).

C a s a d o , e t a l . | 24

References

Allignol, C., Barnier, N., & Gondran, A. (2012). Optimized flight level allocation at the continental scale.
International Conference on Research in Air Transportation, (pp. 22-25). Berkeley, California,
USA.

Anzanello, M. J., & Fogliatto, F. S. (2011). Selecting the best clustering variables for grouping mass-
customized products involving workers' learning. International Journal of Production Economics,
130(2), 268-276.

Avanthay, C., Hertz, A., & Zufferey, N. (2003). A variable neighborhood search for graph coloring.
European Journal of Operational Research, 151(2), 379–388.

Barnier, N., & Brisset, P. (2004, August). Graph coloring for air traffic flow management. Annals of
Operations Research, 130(1-4), 163-178.

Baykasoğlu, A., & Ozsoydan, F. B. (2018). Dynamic scheduling of parallel heat treatment furnaces: A case
study at a manufacturing system. Journal of Manufacturing Systems, 46, 152-162.

Bhasker, J., & Samad, T. (1991). The clique-partitioning problem. Computers and Mathematics with
Applications, 22(6), 1-11.

Brimberg, J., Janićijević, S., Mladenović, N., & Urošević, D. (2017). Solving the clique partitioning problem
as a maximally diverse grouping problem. Optimization Letters, 11(6), 1123-1135.

Burke, E. K., Mareček, J., Parkes, A. J., & Rudová, H. (2010, September). A supernodal formulation of
vertex colouring with applications in course timetabling. Annals of Operations Research, 179(1),
105-130.

Burke, E., McCollum, B., Meisels, A., Petrovic, S., & Qu, R. (2007, January). A graph-based hyperheuristic
for educational timetabling problems. European Journal of Operational Research, 176(1), 177-
192.

Chaitin, G. J. (2004, April). Register allocation and spilling via graph coloring. ACM SIGPLAN Notices,
39(4), 66-74.

Chen, M.-C., Huang, C.-L., Chen, K.-Y., & Wu, H.-P. (2005). Aggregation of orders in distribution centers
using data mining. Expert Systems with Applications, 28, 453-460.

Class, C. (2002). Bag rationalisation for a food manufacture. Journal of the Operational Research Society,
5, 544-551.

de Werra, D. (1996). Extensions of coloring models for scheduling purposes. European Journal of
Operations Research, 92(3), 474-492.

de Werra, D., Eisenbeis, C., Lelait, S., & Marmol, B. (1999, July). On a graph-theoretical model for cyclic
register allocation. Discrete Applied Mathematics, 93(2-3), 191-203.

Demange, M., Ekim, T., Ries, B., & Tanasescu, C. (2014). On some applications of the selective graph
coloring problem. European Journal of Operational Research, 240(2), 307-314.

C a s a d o , e t a l . | 25

Esmaeilian, B., Behdad, S., & Wang, B. (2016). The evolution and future of manufacturing: A review.
Journal of Manufacturing Systems, 39, 79-100.

Galinier, P., & Hertz, A. (2006, September). A survey of local search methods for graph coloring.
Computers and Operations Research, 33(9), 2547-2562 .

Galinier, P., Hamiez, J.-P., Hao, J.-K., & Porumbel, D. (2013). Recent advances in graph vertex coloring. In
I. Zelinka, V. Snásel, & A. Abraham (Eds.), Handbook of Optimization (pp. 505-528). Berlin:
Springer.

Ganguli, R., & Siddhartha, R. (2017). A study on course timetable scheduling using graph coloring
approach. International Journal of Computational and Applied Mathematics, 12(2), 469-485.

Glover, F. (1989). Tabu Search - Part I. INFORMS Journal on Computing, 1(3), 190-206.

Glover, F. (1990). Tabu Search - Part II. INFORMS Journal on Computing, 2(1), 4-32.

Glover, F., & Laguna, M. (1993). Tabu Search. New York: Springer.

Jaehn, F., & Pesch, E. (2013). New bounds and constraint propagation techniques for the clique
partitioning problem. Discrete Applied Mathematics, 161(13-14), 2025-2037.

Leighton, F. (1979). A graph coloring algorithm for large scheduling problems. Journal of Research of the
National Bureau of Standards, 84(6), 489-506.

Li, B., Li, J., Li, W., & Shirodkar, S. A. (2012). Demand forecasting for production planning decision-
making based on the new optimised fuzzy short time-series clustering. Production Planning &
Control, 23(9), 663-673.

Lopez, L., Carter, M. W., & Gendreau, M. (1998). The hot strip mill production scheduling problem: A
tabu search approach. European Journal of Operational Research, 106(2-3), 317–335.

Lü, Z., & Hao, J.-K. (2010). A memetic algorithm for graph coloring. European Journal of Operational
Research, 203(1), 241-250.

Ma, T., Luo, X., & Chai, T. (2014). Modeling and hybrid optimization of batching planning system for
steelmaking-continuous casting process. IEEE/CAA Journal of Automatica Sinica, 1(2), 113-126.

Malaguti, E., & Toth, P. (2009, December). A survey on vertex coloring problems. International
Transactions in Operations Research, 17(1), 1-34.

Moalic, L., & Gondran, A. (2018). Variations on memetic algorithms for graph coloring problems. Journal
of Heuristics, 24(1), 1-24.

Nananukul, N. (2013). Clustering model and algorithm for production inventory and distribution
problem. Applied Mathematical Modelling, 37(24), 846-9857.

Navaei, J., & ElMaraghy, H. (2016). Grouping part/product variants based on networked operations
sequence. Journal of Manufacturing Systems, 38, 63-76.

Oosten, M., Rutten, J. H., & Spieksma, F. C. (2001). The clique partitioning problem: Facets and patching
facets. Networks, 38(4), 209-226.

C a s a d o , e t a l . | 26

Pacheco, J., Alfaro, E., Casado, S., & García, N. (2012). A GRASP method for building classification trees.
Expert Systems with Applications, 39(3), 3241-3248.

Panwalkar, S. S., Dudek, R. A., & Smith, M. L. (1973). Sequencing research and the industrial scheduling
problem. In S. E. Elmaghraby (Ed.), Symposium on the Theory of Scheduling and Its Applications.
Lecture Notes in Economics and Mathematical Systems (Operations Research, Computer Science,
Social Science) (Vol. 86, pp. 29-38). Berlin, Heidelberg: Springer.

Peng, K., Zhang, K., You, B., Dong, J., & Wang, Z. (2016). A quality-based nonlinear fault diagnosis
framework focusing on industrial multimode batch processes. IEEE Transactions on Industrial
Electronics, 63(4), 2615-2624.

Potočnik, P., Berlec, T., Starbek, M., & Govekar, E. (2013). Self-organizing neural network-based
clustering and organization of production cells. Neural Computing and Applications, 22(1), 113-
124.

Sabar, N. R., Ayob, M., Qu, R., & Kendall, G. (2012). A graph coloring constructive hyper-heuristic for
examination timetabling problems. Applied Intelligence, 37(1), 1-11.

Song, S. H. (2014). An integrated formulation for hierarchical cast design problems in the steel making
industry. International Journal of Production Research, 52(5), 1443-1454.

Sundar, S., & Singh, A. (2017). Two grouping-based metaheuristics for clique partitioning problem.
Applied Intelligence, 47(2), 430-442.

Tang, L., Liu, J., Rong, A., & Yang, Z. (2000). A mathematical programming model for scheduling
steelmaking-continuous casting production. European Journal of Operational Research, 120(2),
423-435.

Tang, L., Liu, J., Rong, A., & Yang, Z. (2001). A review of planning and scheduling systems and methods
for integrated steel production. European Journal of Operational Research, 133(1), 1-20.

Tang, L., Meng, Y., Chen, Z. L., & Liu, J. (2015). Coil batching to improve productivity and energy
utilization in steel production. Manufacturing & Service Operations Management, 18(2), 262-
279.

Tang, L., Wang, G., & Chen, Z.-L. (2014). Integrated charge batching and casting width selection at
Baosteel. Operations Research, 62(4), 772-787.

Uddin, M. K., & Shanker, K. (2002). Grouping of parts and machines in presence of alternative process
routes by genetic algorithm. International Journal of Production Economics, 76, 219-228.

Wilbrecht, J. K., & Prescott, W. B. (1969). The influence of setup time on job shop performance.
Management Science, 16(4), B274-B280.

Wood, D. C. (1969, January). A technique for coloring a graph applicable to large-scale timetabling
problems. The Computer Journal, 12(4), 317-319.

Yáñez, J., & Ramírez, J. (2003). The robust coloring problem. European Journal of Operational Research,
148(3), 546-558.

C a s a d o , e t a l . | 27

Zais, M., & Laguna, M. (2016). A graph coloring approach to the deployment scheduling and unit
assignment problem. Journal of Scheduling, 19(1), 73-90.

Zhou, Y., Hao, J.-K., & Duval, B. (2016, December). Reinforcement learning based local search for
grouping problems: A case study on graph coloring. Expert Systems with Applications, 64, 412-
422.

Zhou, Z., Li, C. M., Huang, C., & Xu, R. (2014, November). An exact algorithm with learning for the graph
coloring problem. Computers & Operations Research, 51, 282-301.

Zufferey, N., Amstutz, P., & Giaccari, P. (2008). Graph colouring approaches for a satellite range
scheduling problem. Journal of Scheduling, 11(4), 263-277.

C a s a d o , e t a l . | 28

Appendix

The LocalSolver model uses a single set of binary decision variables. These variables assign vertices to
cliques. The maximum number of cliques 𝐾𝐾 is an input parameter. In our experiments, we set K as twice
the value found by MSTS. This gives enough flexibility to LocalSolver. The assignment constraints are the
same as the model in Section 2. The clique constraints are non-linear, which LocalSolver is able to handle.
The n[k] values are calculated from the decision variables and c[i][j] = 1 if there is an edge between
𝑖𝑖 and 𝑗𝑗. The number of cliques in a solution are all those for which n[k] > 0. The maximum weight in
each clique is calculated with a max function and the decision variables. The two objective functions are
declared in hierarchical order. In the interest of briefness, we do not include the input and output
functions but the entire LSP file is available from the authors upon request.

function model()
{
 // x[i][k] = 1 if item i is assigned to clique k. K is the maximum number of cliques
 x[i in 0..nodes-1][k in 0..K-1] <- bool();

 // Assignment constraints
 for[i in 0..nodes-1]
 constraint sum[k in 0..K-1] (x[i][k]) == 1;

 // Clique constraints
 n[k in 0..K-1] <- sum[i in 0..nodes-1] (x[i][k]);
 for[k in 0..K-1]
 constraint sum[i in 0..nodes-1][j in 0..nodes-1]
 (c[i][j] * x[i][k] * x[j][k]) >= n[k] * (n[k] - 1) / 2;

 // Objective functions are the total number of cliques and the total weight
 numberOfCliques <- sum[k in 0..K-1] (n[k] > 0);
 m[k in 0..K-1] <- max[i in 0..nodes-1](w[i] * x[i][k]);
 totalWeight <- sum[k in 0..K-1](n[k] * m[k]);
 minimize numberOfCliques;
 minimize totalWeight;
}

	1. Introduction
	1.1 Relevant Literature
	1.2 Contributions

	2. Formulation and Connections with Graph Problems
	3. Solution Method
	4. Computational Experiments
	4.1 Performance Comparison against CPP State-of-the-Art
	4.2 Performance Comparison against Cplex
	4.3 Performance Comparison against LocalSolver
	4.4 Experiment with Real Data

	5. Conclusions and Extensions
	Appendix

