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Abstract. This paper analyzes the variable selection problem in the context of Linear Regression 
for large databases. The problem consists in selecting a small subset of independent variables 
that can perform the prediction task optimally. This problem has a wide range of applications. 
One important type of application is the design of composite indicators in various areas 
(sociology and economics, for example). Other important applications of variable selection in 
linear regression can be found in fields such as chemometrics, genetics, and climate prediction, 
among many others.  For this problem, we propose a Branch & Bound method. This is an exact 
method and therefore guarantees optimal solutions. We also provide strategies that enable this 
method to be applied in very large databases (with hundreds of thousands of cases) in a 
moderate computation time. A series of computational experiments shows that our method 
performs well compared with well-known methods in the literature and with commercial 
software. 
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1. Introduction 

1.1. Motivation 

Research very often involves analyze datasets with one dependent variable and multiple 
independent variables (“response” variable and “predictor” variables), giving a dataset that 
is multivariate and multidimensional. Frequently these analyses have been based on 
traditional models such as Multiple Linear Regression.  Other more recent methods are based 
on neural networks, support vector machines, nearest neighbor, etc. In the simplest case, 
multiple linear regression involves a regression of the dependent variable with respect to the 
set of predictor variables. Although this full model regression approach might seem logical, 
there are several key problems. One of the most important is the following: having multiple 
predictors in a model adds noise to the analysis, with the effect that non-significant results 
may be returned, even when the model contains significant predictors (Mundry and Nunn 
2009). Moreover, it is commonly assumed that only a small proportion of the predictor 
variables are truly influential to the response (Wang and Feng, 2019). 

Recent improvements to data-collection technologies have resulted in complex regression 
problems in which the number of candidate predictor variables explaining the response 
variable may be very large. However, not all of the variables are equally relevant to this task 
and many of them repeat the information that they contribute. So, in regression, when the 
predictor vector contains many variables, variable selection becomes necessary, to improve 
the precision of a model fit. The variable selection process attempts to identify the ‘‘best’’ 
subset of predictors and simultaneously remove those variables that are redundant. The 
major benefits of variable selection are as follows (Sayed et al. (2018)): (i) improving the 
predictive performance of a statistical model by preventing overfitting; (ii) identifying a 
model that captures the essence of a system; and (iii) providing a computationally efficient 
set of explanatory variables. The problem of variable selection in linear regression is also 
known as Sparse Linear Regression.  

In addition to these advantages, variable selection in linear regression has interesting 
applications. One of its main applications is updating composite indicators. Suppose a 
composite indicator consists of a large set of variables. If the set of variables that forms the 
composite indicator is too large it could be advisable (both from the economic point of view 
and from the point of view of understanding) to reduce the number of variables that explain 
the indicator, while maximizing the approximation (correlation) to the indicator initially 
obtained. In other words, the objective is to select a smaller subset of variables that is able 
to explain most of the information from the initial composite indicator (that is, the one 
obtained with all the original variables).  

Composite indicators are also used in several areas (economy, society, quality of life, nature, 
technology, etc.) as measures of the evolution of regions or countries in such areas. The 
importance of composite indicators is explained in Nardo et al. (2005a and 2005b) and 
Bandura (2008), among other studies. More recent references concerning the importance of 
composite indicators can be found in Blancas et al. (2010) and Parada et al. (2015). 



Other interesting fields of application of this problem are, for example, musical audio 
denoising (Févotte et al., 2008 and Févotte et al., 2006 ), wireless communications (Mateos 
et al., 2010), spectral analysis of images (Iordache et al., 2014, Bioucas-Dias et al., 2012, and 
Bioucas-Dias and Plaza, 2010), chemometrics (Filzmoser et al., 2012 ), genetics (Vounou et 
al., 2010 and Li et al., 2015), climate prediction (Chatterjee et al., 2012) and computer 
network diagnosis, neuroimaging analysis, and compressed sensing (Rish and Grabarnik, 
2014), among others.  

As explained in the foregoing paragraphs, variable selection in linear regression is an 
interesting process that could provide important benefits and also has interesting 
applications. In related literature, various methods have been proposed for this task. In this 
study we propose an exact method which guarantees the optimal solution. In addition, this 
method can find this optimal solution in very large databases (with hundreds of thousands 
of cases and moderate numbers of variables) in a moderate computation time. There are 
some interesting exact methods in the literature; however, to the best of our knowledge 
there have so far been no previous references that propose exact methods in large 
databases. 

1.2 Related Literature 

Variable selection procedures are important in applied data analysis (since in many cases a 
large number of variables are measured) in order to detect all the variables that have no 
influence on the response to be predicted and to eliminate them from the prediction 
algorithm (Aneiros et al., 2015). Models that include all the covariates are difficult to 
interpret and irrelevant variables increase the variance (Gijbels and Vrinssen, 2015).  In the 
literature several variable selection methods are proposed for multiple linear regression 
models. Conventional variable selection strategies involving sequential searches (forward 
selection, backward elimination, or stepwise selection) use a range of goodness-of-fit 
measures, such as adjusted R2, Akaike Information Criterion (AIC), Bayesian Information 
Criteria (BIC), and Mallows Cp. These methods have various shortcomings, as is explained in 
Fan and Li (2001): they will not always provide the best subset, they become increasingly 
ineffective in higher dimensions, and they show high sensitivity to small changes in the data. 
Despite their weaknesses, they are still the first choice in routine data analysis and are 
applied in large databases because of their simplicity (Luo and Ghosal, 2016). The 
Nonnegative Garrote (Breiman, 1995) uses a penalty on shrinkage factors of the regression 
coefficients. In Tibshirani (1996), the Least Absolute Shrinkage and Selection Operator 
(LASSO) method is proposed. This method is a version of ordinary least squares (OLS) that 
constrains the sum of the absolute regression coefficients. Finally, Least Angle Regression, 
LARS (Efron et al., 2004), is a refinement of the LASSO algorithm that is easy to implement. 
Specifically, LARS sequences the candidate predictors in order of importance.  

In general, these previous methods tend to get trapped in locally optimal models and face 
design problems with complex patterns of multicollinearity, specifically in large datasets 
(Hans and Dobra, 2007). To avoid these disadvantages several metaheuristic techniques have 
been introduced for solving large problems, such as Simulated Annealing (Meiri and Zahavi, 
2006) and Genetic algorithms (Kilinc et al., 2016; Sayed et al., 2019). Metaheuristic 



techniques are appropriate for solving the problem of variable selection in regression 
because from a computational point of view it is an NP-Hard problem. Examples of exact 
variable selection methods in other prediction and/or classification models may be found in 
Brusco and Steinley (2011) and Brusco et al. (2009). In this study we propose an exact method 
which guarantees the optimal solution. It can find this optimal solution in very large 
databases (with hundreds of thousands of cases). 

1.3. Contribution 

This paper proposes a Branch & Bound method for the variable selection problem in 
regression models. The method has been designed to solve this problem in databases with a 
very large number of cases. In addition, various tools and strategies are proposed for 
improving this method. These tools and strategies consist in using the information from a 
previously executed heuristic method. Incorporating these modifications produces a variant 
of the original method that is more efficient and effective 

Both the original method and the variant obtain the optimal solution in acceptable 
computation times in databases with a moderate number of variables. When databases with 
a larger number of variables are involved, the computation time can be excessive. The 
methods therefore have to be interrupted after a certain period of time and it is not 
guaranteed that the optimal solution will be obtained. Nevertheless, in these cases the 
solution these methods reach (especially the variant) is of high quality.  

Moreover, it must be pointed out that in our methods the computational complexity does 
not depend on the number of cases, making it possible to work with databases with a very 
large number of cases. This represents an additional advantage over other known methods. 
Details are given in Appendix 2. 

We have conducted a series of computational experiments, using several artificial databases 
(matrices) and databases from a well-known repository. The experiments include 
comparisons with other well-known variable selection methods from the literature, as well 
as with commercial software. The results include statistical tests and demonstrate the high 
performance of both the original method and its variant. Specifically, the variant clearly 
outperformed the other methods analyzed. 

In summary the main contributions are the following: a) The development of exact methods 
capable of finding better solutions than traditional methods in feature selection for linear 
regression and that can be applied in large databases; b) The design of tools to improve the 
performance of these methods. These tools are based on the use of information provided by 
some fast heuristic methods. This strategy could be used in similar problems. 

The remainder of this paper is organized as follows. Section 2 outlines the definition of the 
problem. In section 3, the basic Branch & Bound method is explained, and the various tools 
for accelerating the Branch & Bound method are analyzed in Section 4. Section 5 contains a 
description of the simple and fast heuristic method. The computational experiments are 
discussed in section 6. The last section presents the final conclusions of the study and related 
future lines of research. 



2. Definition and formulation 

Consider a data matrix, 𝑋𝑋, corresponding to m cases and characterized by 𝑛𝑛 variables. We shall 
label the set of variables 𝑉𝑉 = {1, 2, … ,𝑛𝑛} (the variables are identified by their indices for the 
sake of simplicity). 

Let 𝑥𝑥𝑖𝑖𝑖𝑖  be the value of variable 𝑗𝑗 in the case 𝑖𝑖, 𝑖𝑖 = 1, … ,𝑚𝑚; 𝑗𝑗 = 1, … ,𝑛𝑛; Let 𝒙𝒙𝒋𝒋 be the column 
vector with the values of variable 𝑗𝑗; in other words  

𝒙𝒙𝒋𝒋 = �

𝑥𝑥1𝑖𝑖
𝑥𝑥2𝑖𝑖
⋮

𝑥𝑥𝑚𝑚𝑖𝑖

�      𝑗𝑗 = 1, … ,𝑛𝑛. 

It is known that = �𝑥𝑥𝑖𝑖𝑖𝑖�𝑖𝑖=1,…,𝑚𝑚;𝑖𝑖=1,…,𝑛𝑛
 = (𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 … 𝒙𝒙𝒏𝒏). Let 𝑦𝑦𝑖𝑖  be the value of a variable 𝑌𝑌 

in the case 𝑖𝑖, 𝑖𝑖 = 1, … ,𝑚𝑚. 

For any subset of variables 𝑆𝑆 ⊂ 𝑉𝑉, let us define: 

𝑓𝑓(𝑆𝑆) =  R-squared (R2) value of the linear regression model with 𝑌𝑌 as the dependent 
variable and 𝑆𝑆 as the set of independent variables. 

 Let 𝑝𝑝 ∈ 𝑁𝑁, verifying that 1 ≤ 𝑝𝑝 ≤ 𝑛𝑛, so that the problem may be defined as:   

Maximize 𝑓𝑓(𝑆𝑆)      (1) 

subject to: 

|𝑆𝑆|  =  𝑝𝑝      (2) 

𝑆𝑆 ⊂ 𝑉𝑉       (3) 

The optimal solution and the value corresponding to the problem defined by (1)–(3) are 
respectively denoted by 𝑆𝑆𝑝𝑝∗ and 𝑔𝑔(𝑝𝑝), that is, 𝑔𝑔(𝑝𝑝)  =  𝑓𝑓(𝑆𝑆𝑝𝑝∗).  

3. Description of the basic Branch & Bound method 

Let 𝑝𝑝0 (𝑝𝑝0 ≤ 𝑛𝑛) a fixed value, the initially proposed exact method finds the optimal solution 𝑆𝑆𝑝𝑝∗ 
and 𝑔𝑔(𝑝𝑝), ∀ 𝑝𝑝, 1 ≤ 𝑝𝑝 ≤ 𝑝𝑝0. This method (denoted by BnB) is an algorithm based on a Branch & 
Bound strategy. Therefore, it involves the recursive exploration in the set of solutions. This set 
is represented by a search tree. Each node of the tree corresponds to a specific set of solutions. 
In the exploration of each node, it is checked if any of the solutions of the corresponding set 
could improve the best solution found for some 𝑝𝑝 value. If not, the exploration of that node 
ends. Otherwise, the exploration of that node continues. In this case, the set of solutions of this 
node is divided into two subsets corresponding to two new nodes, and these new nodes are 
explored. 

More specifically, each node 𝐶𝐶 is defined by two subsets of variables 𝐴𝐴 and 𝐵𝐵, 𝐴𝐴,𝐵𝐵 ⊂  𝑉𝑉, so that 
the solutions of node 𝐶𝐶 are all the solutions 𝑆𝑆 that contain all the variables of 𝐴𝐴 ("fixed 
variables"), and do not contain any variable of 𝐵𝐵 ("forbidden variables "). Obviously, 𝐴𝐴 ∩  𝐵𝐵 =



∅. To divide the set of solutions of 𝐶𝐶, an element 𝑎𝑎 ∈ 𝑉𝑉–𝐴𝐴–𝐵𝐵 is selected. The first of the subsets 
of solutions (“left branch”) adds 𝑎𝑎 as a fixed variable, and the second of the subsets (“right 
branch”) adds 𝑎𝑎 as a forbidden variable. Figure 1 illustrates this division process ("Branch 
Process"). This strategy is very similar to those used for other variable selection problems 
(Brusco and Steinley, 2011; Pacheco et al., 2013). 

 

.  
Figure 1. Branch process 

The procedure for exploring the node corresponding to two subsets 𝐴𝐴 and 𝐵𝐵 such us 𝐴𝐴, 𝐵𝐵 ⊂ 𝑉𝑉, 
and 𝐴𝐴 ∩ 𝐵𝐵 = ∅ is denoted by ExplorationNode and is described in Pseudocode 1. The BnB 
method is described in Pseudocode 2. Note that BnB starts with the exploration of the initial 
node that corresponds to the whole set of solutions, (𝐴𝐴 =  𝐵𝐵 =  ∅, i.e., there are no fixed or 
forbidden variable). 

 

Procedure ExplorationNode(𝐴𝐴, 𝐵𝐵) 

If 𝑓𝑓(𝐴𝐴) > 𝑔𝑔(|𝐴𝐴|) then make 𝑆𝑆|𝐴𝐴|
∗ = 𝐴𝐴 and 𝑔𝑔(|𝐴𝐴|) = 𝑓𝑓(𝐴𝐴)    

If 𝑓𝑓(𝑉𝑉–𝐵𝐵) > 𝑔𝑔(|𝑉𝑉–𝐵𝐵|) then make 𝑆𝑆|𝑉𝑉–𝐵𝐵|
∗ = 𝑉𝑉–𝐵𝐵 and 𝑔𝑔(|𝑉𝑉–𝐵𝐵|) = 𝑓𝑓(𝑉𝑉–𝐵𝐵) 

If (|𝐴𝐴| = 𝑝𝑝0)  or  (𝐴𝐴 ∪ 𝐵𝐵 = 𝑉𝑉) then Exit (end Exploration of the node)    

If 𝑔𝑔(|𝐴𝐴|) ≥ 𝑓𝑓(𝑉𝑉–𝐵𝐵) then Exit (end Exploration of the node)   (4) 

Determine 𝑎𝑎 = 𝑎𝑎𝑎𝑎𝑔𝑔𝑚𝑚𝑎𝑎𝑥𝑥 { 𝑓𝑓(𝐴𝐴 ∪ {𝑣𝑣}) / 𝑣𝑣 ∈ 𝑉𝑉–𝐴𝐴–𝐵𝐵 }    (5) 

Make 𝐴𝐴’ = 𝐴𝐴 ∪ {𝑎𝑎} and 𝐵𝐵’ = 𝐵𝐵 

Execute ExplorationNode (𝐴𝐴’, 𝐵𝐵’) 
Make 𝐴𝐴’’ = 𝐴𝐴 and 𝐵𝐵’’ = 𝐵𝐵 ∪ {𝑎𝑎} 

Execute ExplorationNode (𝐴𝐴’’, 𝐵𝐵’’) 

 
Pseudocode 1. ExplorationNode Procedure 

 

Method BnB 

Node

Node Node 



Make 𝑔𝑔(𝑝𝑝)  =  0, ∀ 𝑝𝑝 ≤ 𝑝𝑝0       (6) 

Make 𝐴𝐴 = ∅, 𝐵𝐵 = ∅ 

Execute ExplorationNode(𝐴𝐴, 𝐵𝐵) 

 
Pseudocode 2. BnB Method 

Some points are explained below: 

- It has to be said that although 𝑆𝑆𝑝𝑝∗ and 𝑔𝑔(𝑝𝑝) are respectively defined as the optimum solution 
to problem (1) – (3) (section 2) and its corresponding value, in the description of the algorithm 
they are the corresponding approaches found during the search. Obviously, at the end of the 
execution of the BnB method 𝑆𝑆𝑝𝑝∗ and 𝑔𝑔(𝑝𝑝) correspond with this optimum and its objective 
function value. 

- Note that if the condition of line (4) is verified, that is, 𝑔𝑔(|𝐴𝐴|) ≥ 𝑓𝑓(𝑉𝑉–𝐵𝐵), then it can be 
concluded that no solution of that node can improve the best solution found for any 𝑝𝑝 value. 
Indeed, every solution 𝑆𝑆 in that node verifies 𝐴𝐴 ⊂ 𝑆𝑆 ⊂ 𝑉𝑉–𝐵𝐵, therefore 𝑓𝑓(𝑆𝑆) ≤ 𝑓𝑓(𝑉𝑉–𝐵𝐵) ≤
𝑔𝑔(|𝐴𝐴|). On the other hand, by Appendix 1, 𝑔𝑔(|𝐴𝐴|) ≤ 𝑔𝑔(|𝑆𝑆|) then 𝑓𝑓(𝑆𝑆) ≤ 𝑔𝑔(|𝑆𝑆|); so, 𝑆𝑆 cannot 
improve 𝑔𝑔(|𝑆𝑆|). 

- Note that line (5) establishes the criterion for choosing 𝑎𝑎, in this case the element that most 
improves the objective function 𝑓𝑓. 

- As we can see in pseudocodes 1 and 2, the algorithm solves problem (1) – (3) for all the values 
of 𝑝𝑝 such that 𝑝𝑝 ≤ 𝑝𝑝0. It must be pointed out that all the values 𝑔𝑔(𝑝𝑝), 𝑝𝑝 ≤ 𝑝𝑝0 are important for 
the algorithm to function properly. In fact, high values of 𝑔𝑔(𝑝𝑝) enable the restriction in line (4) 
of the ExplorationNode procedure to be met, and unnecessary explorations are therefore 
avoided. If only the value of g(p0) is updated, but the values 𝑔𝑔(𝑝𝑝) for 𝑝𝑝 < 𝑝𝑝0 are not updated, 
then 𝑔𝑔(𝑝𝑝) = 0 will remain true, for 𝑝𝑝 < 𝑝𝑝0. So, this restriction may never be satisfied and 
therefore the exploration of the corresponding node will have to continue, even though it 
contains no reliable solutions. Therefore, to avoid high computation time, it is important that 
the algorithm updates all the values of g(p), for 𝑝𝑝 ≤ 𝑝𝑝0, even though we are ultimately 
interested only in determining 𝑆𝑆𝑝𝑝0

∗  and 𝑔𝑔(𝑝𝑝0). 

In this sense, a strategy to reduce the computation time (to be explained in more detail in section 
4) is not to start the algorithm with 𝑔𝑔(𝑝𝑝) = 0 in line (6), but with good approximations to 𝑔𝑔(𝑝𝑝) 
and 𝑆𝑆𝑝𝑝∗. Specifically, values obtained by a rapid heuristic method will be proposed as initial values 
of 𝑔𝑔(𝑝𝑝) and 𝑆𝑆𝑝𝑝∗. In this way, fulfilment of the restriction in line (4) is favored from the start and 
unnecessary explorations are therefore avoided. In section 6, the effect of using this strategy is 
analyzed through the computational experiments with the variant of the Branch & Bound 
method described in section 4 

4. Description of various tools and a new variant 

In order to reduce the computation time of the basic Branch & Bound method, we propose some 
modifications. These consist in adding certain tools (use of information from heuristics) and 



result in a variant of the original method. The following describes both the modifications and 
the corresponding variant: 

- As explained above, the expression of line (4) can help to identify and avoid unnecessary 
explorations. However, the values of 𝑔𝑔(𝑝𝑝) are initially set a 0, as indicated in the expression of 
line (6). This value means that there is no compliance with the condition of line (4) in the first 
iterations, and the corresponding explorations are therefore not interrupted. Subsequently, 
compliance with this condition is increasingly forthcoming as the values of 𝑔𝑔(𝑝𝑝) are updated 
and increased. 

Therefore, one idea that may help to increase the proportion of times that compliance with the 
condition of line (4) is forthcoming, and thereby to reduce the explorations, is to find initial 
values of 𝑔𝑔(𝑝𝑝) that are as high as possible as quickly as possible. In this respect, various heuristic 
algorithms have demonstrated that they can find good solutions to variable selection problems. 
Among the most recent references, the works of Pacheco et al. (2009), Brusco et al. (2009), and 
Brusco (2014) may be mentioned. In addition, these heuristic methods required a much shorter 
computing time than the exact methods. Heuristic strategies can therefore be good options for 
obtaining good (high) initial values of 𝑔𝑔(𝑝𝑝) (and the corresponding approximations to 𝑆𝑆𝑝𝑝∗). 

- Moreover, the execution of a heuristic method can provide further useful information to be 
used efficiently in executing the Branch & Bound method. Specifically, this information may be 
used to select element a in line (5) for ramification. In particular, the object is to determine ∀𝑎𝑎 ∈
𝑉𝑉  

𝑚𝑚𝑎𝑎𝑥𝑥𝑣𝑣(𝑎𝑎) = 𝑚𝑚𝑎𝑎𝑥𝑥{𝑓𝑓(𝑆𝑆):𝑎𝑎 ∈ 𝑆𝑆, |𝑆𝑆| = 𝑝𝑝0,   𝑆𝑆 solution visited in the execution of the heuristic} 

These values were found during the execution of the heuristic. Subsequently, in the execution 
of the Branch & Bound method, the element 𝑎𝑎 ∈ 𝑉𝑉–𝐴𝐴–𝐵𝐵 with the highest 𝑚𝑚𝑎𝑎𝑥𝑥𝑣𝑣(𝑎𝑎) in each 
exploration is chosen in line (5). In doing so, it is not necessary to calculate the 𝑓𝑓 function to 
determine this element, at the same time as a logical rather than an arbitrary criterion is 
employed. In fact, the elements that belong to the solution 𝑆𝑆𝑝𝑝0

∗  obtained by the heuristic will be 
selected in the first explorations. 

We propose a variant of the original BnB method that consists in adding the following two 
modifications: 

a) In line (6) of the BnB method, replace:  

  Make 𝑔𝑔(𝑝𝑝) = 0, for 𝑝𝑝 ≤ 𝑝𝑝0       

with 

  Read the values of 𝑔𝑔(𝑝𝑝) and the corresponding 𝑆𝑆𝑝𝑝∗ values obtained by the  
  heuristic method 

b) replace line (5) of the ExplorationNode procedure with the following line (5a)  

 Determine 𝑎𝑎 = 𝑎𝑎𝑎𝑎𝑔𝑔𝑚𝑚𝑎𝑎𝑥𝑥 { 𝑚𝑚𝑎𝑎𝑥𝑥𝑣𝑣(𝑣𝑣) / 𝑣𝑣 ∈ 𝑉𝑉–𝐴𝐴–𝐵𝐵 } (5a). 



The effect of these modifications (using information contributed by a heuristic method) will be 
examined in section 6.  

5. A simple and fast heuristic algorithm 

As explained in section 4, a heuristic method should be run before executing VariantBnB. We 
have designed a fast heuristic method to solve the problem defined by (1) – (3), for different 
values of 𝑝𝑝 (𝑝𝑝 ≤ 𝑝𝑝0). The Heuristic algorithm that we propose in this section obtains the 
approximations to the values of 𝑔𝑔(𝑝𝑝) (and those corresponding to 𝑆𝑆𝑝𝑝∗) gradually; that is, 
beginning with 𝑝𝑝 = 1 and ending with 𝑝𝑝 = 𝑝𝑝0. Moreover, the solution obtained for 𝑝𝑝 − 1 is used 
as prior information to find the initial solution for 𝑝𝑝. The set of solutions for the different values 
of 𝑝𝑝 are stored in the vector 𝑺𝑺, 𝑺𝑺 = �𝑆𝑆1∗,𝑆𝑆2∗, … , 𝑆𝑆𝑝𝑝0

∗ � and the corresponding values of 𝑔𝑔 are stored 
in 𝑮𝑮, 𝑮𝑮 = (𝑔𝑔(1),𝑔𝑔(2), … ,𝑔𝑔(𝑝𝑝0)). The Heuristic algorithm is described in pseudocode 3. 

 

Heuristic Algorithm (input: 𝑝𝑝0; var: 𝑺𝑺,𝑮𝑮) 

1. Determine 𝑖𝑖∗ = 𝑎𝑎𝑎𝑎𝑔𝑔𝑚𝑚𝑎𝑎𝑥𝑥 { 𝑓𝑓({𝑖𝑖}) ∶  𝑖𝑖 ∈ 𝑉𝑉 } 

2. Do 𝑆𝑆1∗ = {𝑖𝑖∗}, 𝑔𝑔(1) = 𝑓𝑓(𝑆𝑆1∗) 

3. For 𝑝𝑝 = 2 to 𝑝𝑝0 do 

   Begin 

 4.Do 𝑆𝑆𝑎𝑎𝑛𝑛𝑎𝑎 = 𝑆𝑆𝑝𝑝−1∗  

 5.Determine 𝑖𝑖∗ = 𝑎𝑎𝑎𝑎𝑔𝑔𝑚𝑚𝑎𝑎𝑥𝑥 { 𝑓𝑓(𝑆𝑆𝑎𝑎𝑛𝑛𝑎𝑎 ∪ {𝑖𝑖}) ∶ 𝑖𝑖 ∈ 𝑉𝑉– 𝑆𝑆𝑎𝑎𝑛𝑛𝑎𝑎,𝑆𝑆𝑎𝑎𝑛𝑛𝑎𝑎 ∪ {𝑖𝑖} 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑓𝑓𝑓𝑓𝑎𝑎𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑓𝑓𝑠𝑠 } 

 6.Make 𝑆𝑆 = 𝑆𝑆𝑎𝑎𝑛𝑛𝑎𝑎 ∪ {𝑖𝑖∗} 

 7.Execute LocalSearch(𝑝𝑝, 𝑆𝑆) 

 8.Do 𝑆𝑆𝑝𝑝∗ = 𝑆𝑆 and 𝑔𝑔(𝑝𝑝) = 𝑓𝑓(𝑆𝑆𝑝𝑝∗) 

 end  

 
Pseudocode 3. Heuristic Algorithm 

As we can see, the heuristic algorithm obtains the initial solution for 𝑝𝑝 = 1, which is trivial. 
Subsequently, it uses the solution obtained for 𝑝𝑝 – 1 (𝑆𝑆𝑎𝑎𝑛𝑛𝑎𝑎) in each iteration to complete a rapid 
initial solution 𝑆𝑆 for 𝑝𝑝. This initial solution is improved by a local search procedure (LocalSearch) 
and the approximation to 𝑆𝑆𝑝𝑝∗ and 𝑔𝑔(𝑝𝑝) is thereby obtained. 

The LocalSearch procedure is an iterative method. It works as follows: in each iteration the set 
of the “neighborhood solutions” of the current solution 𝑆𝑆 is explored; if the current solution 𝑆𝑆 is 
improved by its best neighborhood solution, 𝑆𝑆’, then the current solution moves to 𝑆𝑆’. The 
process ends if none of the neighborhood solutions improves the current solution. The set of 
the “neighborhood solutions” of the current solution 𝑆𝑆 is denoted as 𝑁𝑁(𝑆𝑆). The LocalSearch 
procedure is described in Pseudocode 4. 

 

 



 

Procedure LocalSearch (input: 𝑝𝑝0, var 𝑆𝑆) 

Repeat 

 1. 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑓𝑓(𝑆𝑆) 

 2. Determine 𝑆𝑆’ = 𝑎𝑎𝑎𝑎𝑔𝑔𝑚𝑚𝑎𝑎𝑥𝑥 { 𝑓𝑓(𝑆𝑆’’) ∶ 𝑆𝑆’’ ∈ 𝑁𝑁(𝑆𝑆) } 

 3. If 𝑓𝑓(𝑆𝑆′) >  𝑓𝑓(𝑆𝑆) then do 𝑆𝑆 = 𝑆𝑆’ 

until 𝑓𝑓(𝑆𝑆′) ≤ 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜 

 
Pseudocode 4. LocalSearch Procedure 

𝑁𝑁(𝑆𝑆) is the set of feasible solutions that can be reached from 𝑆𝑆 by neighborhood moves 
(neighboring moves are thus identified with the solutions they generate). In this case, each move 
is defined by exchanging an element of 𝑆𝑆 for an element outside it. 

6. Computational experiments 

To analyze the performance of the basic Branch & Bound method and its variant, we performed 
a set of computational experiments. For this purpose we designed set of X and Y matrices . The 
process of designing these matrices is described in subsection 6.1. In addition, a set of databases 
from the well-known UCI (University of California, Irvine) repository is presented in subsection 
6.2. 

Two sets of computational experiments were performed. In sub-sections 6.3 and 6.4 we describe 
these experiments and their corresponding results. The first set analyzed the efficiency of the 
tools proposed in section 4 for reducing the computation time of the Branch & Bound method. 
The second set compared the performance of our Branch & Bound method (specifically the 
variant proposed in section 4) with some well-known methods for feature selection in linear 
regression. 

It should be noted that all the algorithms, methods, and procedures described in this study were 
implemented in Object Pascal using the Delphi compiler and the Rad Studio (10.3 – Rio) 
development environment. All the experiments were performed on an i7 7700 CPU 4.20 GHz PC 
using the same compiler. 

6.1 Design of data matrices 

A set of data matrices were generated for the various computational tests. These matrices are 
composed of the 𝑋𝑋 matrix of the independent variables, and (column) 𝑌𝑌 for the dependent 
variable. The process of generating these matrices (similar to those used in Brusco et al. 2009 
and Pacheco et al. 2013) consists of designing population correlation matrices 𝐿𝐿 with size 𝑛𝑛; a 
set of 𝑚𝑚 vectors following the normal distribution with the 𝐿𝐿 correlation matrix is generated 
from each population correlation matrix 𝐿𝐿; these m vectors make up the 𝑋𝑋 matrix (each vector 
is a row), and finally the 𝑌𝑌 column is obtained from 𝑋𝑋. In Pacheco et al. (2013) it is explained 
how to generate vectors following the distribution 𝑁𝑁(𝟎𝟎, 𝐿𝐿). 



The population correlation matrices 𝐿𝐿 follow a simple pattern: the correlations between the 
different variables can have two values: a high value (0.7) and a low value (0.2). Specifically, 
variables 1, 2, 3 have high correlation values with each other and a low correlation value with 
the rest, variables 4, 5, 6 have high correlation values with each other and a low correlation 
value with the rest, and so on. As an example, a correlation population matrix 𝐿𝐿 is shown below 
with 𝑛𝑛 = 12. 













































17.07.02.02.02.02.02.02.02.02.02.0
7.017.02.02.02.02.02.02.02.02.02.0
7.07.012.02.02.02.02.02.02.02.02.0
2.02.02.017.07.02.02.02.02.02.02.0
2.02.02.07.017.02.02.02.02.02.02.0
2.02.02.07.07.012.02.02.02.02.02.0
2.02.02.02.02.02.017.07.02.02.02.0
2.02.02.02.02.02.07.017.02.02.02.0
2.02.02.02.02.02.07.07.012.02.02.0
2.02.02.02.02.02.02.02.02.017.07.0
2.02.02.02.02.02.02.02.02.07.017.0
2.02.02.02.02.02.02.02.02.0077.01

 

As explained above, for each correlation population matrix 𝐿𝐿 a set of 𝑚𝑚 vectors (cases) is 
generated following the distribution 𝑁𝑁(𝟎𝟎,𝐿𝐿). A value of 𝑚𝑚 = 100000 was used. These 𝑚𝑚 vectors 
(cases) make up the matrix 𝑋𝑋. 

Finally, the values of 𝑦𝑦𝑖𝑖  , 𝑖𝑖 = 1, … ,𝑚𝑚, are obtained in the following way: 

𝑦𝑦𝑖𝑖 = 𝛽𝛽1 · 𝑥𝑥𝑖𝑖1 + 𝛽𝛽2 · 𝑥𝑥𝑖𝑖2 +··· + 𝛽𝛽𝑛𝑛 · 𝑥𝑥𝑖𝑖𝑛𝑛 + 0.5 · 𝜀𝜀 

where 𝜀𝜀 is a vector generated from the normal distribution 𝑁𝑁(0,1). The values of 𝛽𝛽𝑖𝑖 are assigned 
as follows:  

𝛽𝛽1 = 0,𝛽𝛽2 = 0.3,𝛽𝛽3 = 1,𝛽𝛽4 = 0,𝛽𝛽5 = 0.3,𝛽𝛽6 = 1,𝛽𝛽7 = 0,𝛽𝛽8 = 0.3,𝛽𝛽9 = 1, … 

and so on.  

Following this process, 19 matrices (𝑋𝑋 | 𝑌𝑌), with different values of 𝑛𝑛, were generated (one for 
each value). For each matrix a range of values of 𝑝𝑝 was considered. The lowest value of 𝑝𝑝 was 
defined as ⌊𝑛𝑛 · 0.1⌋ + 1, and the highest as ⌊𝑛𝑛 · 0.2⌋+ 1. The problem was to be solved for each 
of the values of 𝑝𝑝 in this range, in each matrix. These values are shown in Table 1. 

Matrix # 𝑛𝑛 𝑝𝑝 range Matrix # 𝑛𝑛 𝑝𝑝 range 
1 18 2 – 4 11 48 5 – 10 
2 21 3 – 5 12 51 6 – 11 
3 24 3 – 5 13 54 6 – 11 
4 27 3 – 6 14 57 6 – 12 
5 30 4 – 7 15 60 7 – 13 
6 33 4 – 7 16 63 7 – 13 



Matrix # 𝑛𝑛 𝑝𝑝 range Matrix # 𝑛𝑛 𝑝𝑝 range 
7 36 4 – 8 17 66 7 – 14 
8 39 4 – 8 18 69 7 – 14 
9 42 5 – 9 19 72 8 – 15 

10 45 5 – 10    
Table 1. Matrices and values of 𝑝𝑝 considered 

The parameters related to the design of the population matrix, 𝑋𝑋, follow the same structure and 
values as in Pacheco et al. (2013). The parameters of the linear model used to obtain the vector 
𝑦𝑦 follow similar patterns as in other recent works (for example Gijbels and Vrinssen, 2015).  

6.2. Databases from the literature 

As well as the matrices described in subsection 6.1, 10 databases from the well-known UCI 
repository (Dua and Graff, 2019) at https://archive.ics.uci.edu/ml/index.php were used for the 
computational  experiments. Table 2 shows these databases and their features: number of cases 
(𝑚𝑚) and number of variables (𝑛𝑛). It also indicates the range of values of 𝑝𝑝 to be used (the same 
criterion was followed as in subsection 6.1) 

# Database 𝒎𝒎 𝒏𝒏 𝒑𝒑 range 
1 YearPredictionMsdn  515345 90 10 – 19 
2 

Buzz in social media 
TomsHardware  28179 96 10 – 20 

3 Twitter  583250 77 8 – 16 
4 Parkinson Speech Dataset with Multiple 

Types of Sound Recordings  1040 27 3 – 6 

5 Geographical Original of Music 1059 68 7 – 14 
6 

Facebook Comment 
Volume Dataset 

Feature_Variant_1  40949  
53 6 – 11 7 Feature_Variant_2  81312 

8 Feature_Variant_3  121098 
9 Superconductivity Data 21263 81 9 – 17 

10 Parkinson Telemonitoring  5875 20 3 – 5 
Table 2. Databases used 

The data used were the same as those that appear in the UCI repository; in other words, they 
were not transformed or manipulated in any way. Only in the Geographical Original of Music 
database were some changes made. This database uses two dependent variables, latitude and 
longitude (geodesic coordinates), indicating the location of each case. We found the middle 
value of these variables, that is, the location of the “midpoint” of all cases. We then calculated 
the Euclidean distance from each case to this midpoint. This distance to the midpoint was taken 
as a new dependent variable and the original dependent variables (latitude and longitude) were 
ignored. Nevertheless, the data used are available to interested readers. 

6.3 Computational results: comparison of the Branch & Bound methods 

This subsection presents computational tests comparing the method described in section 3 
(which we shall denote as BnB Original) and the variant described in section 4 (which we shall 
call BnB Variant). For both methods a maximum computation time of 1800 seconds was set for 
each database. The object was to avoid excessive computation times. Both methods are exact, 
and if they end without reaching this maximum time they guarantee that the optimal solution is 
obtained. The design of both methods ensures that they find the solution for all values of 𝑝𝑝 ≤

https://archive.ics.uci.edu/ml/index.php


𝑝𝑝0. Therefore, when they are executed taking 𝑝𝑝0 as the maximum value in the range considered 
for each matrix (database), they find the solution for all the values of 𝑝𝑝 in this range. Table 3 
shows the results for the matrices generated, described in subsection 6.1 (hereinafter “fictitious 
matrices”). For each of these matrices, the computation time in seconds (time) of both methods 
and the value of the objective function (𝒇𝒇) for each value of 𝑝𝑝 in the range considered are shown. 
In the case of the variant, the computation time includes the time used by the heuristic method 
executed beforehand. For the matrices in which the maximum computation time was reached, 
the results achieved up to that point are shown. In these cases it is not guaranteed that the 
solutions are optimal and the best value is indicated in bold type. 

𝒏𝒏 𝒑𝒑 
BnB Original BnB Variant 

time 𝒇𝒇 time 𝒇𝒇 

18 
2 

0.211 
0.54267 

0.114 
0.54267 

3 0.69606 0.69606 
4 0.81110 0.81110 

21  
3 

1.256 
0.65949 

0.766 
0.65949 

4 0.76851 0.76851 
5 0.85269 0.85269 

24  
3 

3.307 
0.63320 

1.841 
0.63320 

4 0.73722 0.73722 
5 0.81792 0.81792 

27  

3 

19.851 

0.61118 

12.410 

0.61118 
4 0.71220 0.71220 
5 0.79005 0.79005 
6 0.85219 0.85219 

30  

4 

107.749 

0.69208 

77.329 

0.69208 
5 0.76798 0.76798 
6 0.82844 0.82844 
7 0.87801 0.87801 

33  

4 

294.822 

0.67477 

191.636 

0.67477 
5 0.74914 0.74914 
6 0.80806 0.80806 
7 0.85630 0.85630 

36  

4 

1617.791 

0.66261 

1220.798 

0.66261 
5 0.73451 0.73451 
6 0.79233 0.79233 
7 0.83947 0.83947 
8 0.87850 0.87850 

39  

4 

1800* 

0.64955 

1800* 

0.64955 
5 0.72105 0.72105 
6 0.77763 0.77763 
7 0.82393 0.82393 
8 0.86273 0.86273 

42  

5 

1800* 

0.70964 

1800* 

0.70964 
6 0.76520 0.76520 
7 0.81105 0.81105 
8 0.84907 0.84907 
9 0.88116 0.88116 

45  

5 

1800* 

0.70046 

1800* 

0.70046 
6 0.75609 0.75609 
7 0.80077 0.80077 
8 0.83806 0.83806 
9 0.86954 0.86954 



𝒏𝒏 𝒑𝒑 
BnB Original BnB Variant 

time 𝒇𝒇 time 𝒇𝒇 
10 0.89654 0.89654 

48  

5 

1800* 

0.69201 

1800* 

0.69201 
6 0.74630 0.74630 
7 0.79068 0.79068 
8 0.82773 0.82773 
9 0.85916 0.85916 

10 0.88585 0.88585 

51  

6 

1800* 

0.73570 

1800* 

0.73570 
7 0.77994 0.77994 
8 0.81687 0.81687 
9 0.84808 0.84808 

10 0.87477 0.87477 
11 0.89778 0.89780 

54  

6 

1800* 

0.73073 

1800* 

0.73073 
7 0.77405 0.77405 
8 0.81019 0.81019 
9 0.84091 0.84091 

10 0.86721 0.86721 
11 0.88999 0.88999 

57  

6 

1800* 

0.72443 

1800* 

0.72443 
7 0.76742 0.76742 
8 0.80340 0.80340 
9 0.83374 0.83374 

10 0.85963 0.85973 
11 0.88201 0.88236 
12 0.90162 0.90196 

60  

7 

1800* 

0.76180 

1800* 

0.76180 
8 0.79709 0.79717 
9 0.82704 0.82706 

10 0.85275 0.85275 
11 0.87503 0.87506 
12 0.89449 0.89449 
13 0.91166 0.91176 

63  

7 

1800* 

0.75669 

1800* 

0.75669 
8 0.79182 0.79182 
9 0.82176 0.82176 

10 0.84731 0.84731 
11 0.86910 0.86910 
12 0.88833 0.88833 
13 0.90528 0.90529 

66 

7 

1800* 

0.75217 

1800* 

0.75217 
8 0.78713 0.78713 
9 0.81647 0.81650 

10 0.84143 0.84186 
11 0.86329 0.86367 
12 0.88242 0.88258 
13 0.89927 0.89946 
14 0.91417 0.91434 

69 

7 

1800* 

0.74599 

1800* 

0.74644 
8 0.78074 0.78119 
9 0.81008 0.81053 

10 0.83536 0.83562 
11 0.85726 0.85749 



𝒏𝒏 𝒑𝒑 
BnB Original BnB Variant 

time 𝒇𝒇 time 𝒇𝒇 
12 0.87623 0.87640 
13 0.89297 0.89326 
14 0.90791 0.90820 

72  

8 

1800* 

0.77640 

1800* 

0.77640 
9 0.80562 0.80562 

10 0.83068 0.83068 
11 0.85237 0.85237 
12 0.87131 0.87134 
13 0.88810 0.88811 
14 0.90302 0.90302 
15 0.91626 0.91626 

Table 3. Comparison of the two Branch & Bound methods in the 
fictitious matrices 

The following conclusions can be drawn from Table 3: 

- The two Branch & Bound methods managed to reach a conclusion in data matrices of up to 36 
variables inclusive. In these matrices the optimal solutions were found for each of the values of 
𝑝𝑝 considered. However, we can see that in all these matrices the computation time taken by the 
variant was clearly shorter. Table 4 shows the percentage reduction in computation time for the 
databases in which both methods reached a conclusion (𝑛𝑛 ≤ 36). As we can see, this percentage 
reduction ranged from 24% to nearly 46%. 

- For matrices with more variables (𝑛𝑛 ≥ 39), the execution of both methods was interrupted 
when they reached the set time of 1800 seconds. In these cases it is not guaranteed that the 
solutions obtained are the optimal ones. Nevertheless, in all these matrices we can see that the 
results obtained by the variant are always better than or as good as those obtained by the BnB 
Original method. Specifically, of the 79 instances (combinations of matrices and values of 𝑝𝑝) they 
reached the same value in 54 and the value obtained by the variant was strictly better in 25. 

𝒏𝒏 % reduction 𝒏𝒏 % reduction 
18 45.97 30 28.23 
21 39.01 33 35.00 
24 44.33 36 24.54 
27 37.48   

Table 4. Time reductions achieved by 
BnB Variant 

Analogous tests were performed with the databases from the literature. Table 5 shows the 
results obtained. 

Base 𝒑𝒑 
BnB Original BnB Variant 

time 𝒇𝒇 time 𝒇𝒇 

 
YearPredictionMsdn 

10 

1800* 

0.19744 

1800* 

0.20038 
11 0.20173 0.20321 
12 0.20469 0.20609 
13 0.20689 0.20842 
14 0.20889 0.21104 
15 0.21078 0.21271 
16 0.21257 0.21428 



Base 𝒑𝒑 
BnB Original BnB Variant 

time 𝒇𝒇 time 𝒇𝒇 
17 0.21448 0.21594 
18 0.21616 0.21743 
19 0.21758 0.21885 

Buzz in social media- 
TomsHardware 

10 

1800* 

0.96050 

1800* 

0.96050 
11 0.96072 0.96078 
12 0.96109 0.96110 
13 0.96142 0.96144 
14 0.96178 0.96178 
15 0.96195 0.96195 
16 0.96214 0.96220 
17 0.96246 0.96264 
18 0.96266 0.96266 
19 0.96277 0.96292 
20 0.96291 0.96306 

Buzz in social media- 
Twitter 

8 

1800* 

0.93380 

1800* 

0.93380 
9 0.93423 0.93423 

10 0.93454 0.93454 
11 0.93456 0.93471 
12 0.93456 0.93489 
13 0.93476 0.93497 
14 0.93491 0.93505 
15 0.93500 0.93508 
16 0.93508 0.93524 

Parkinson Speech 
Dataset  

3 

0.629 

0.38551 

0.314 

0.38551 
4 0.40038 0.40038 
5 0.40650 0.40650 
6 0.41360 0.41360 

Geographical Original 
of Music 

7 

1800* 

0.16314 

1800* 

0.16314 
8 0.17114 0.17202 
9 0.18107 0.18165 

10 0.19030 0.19030 
11 0.19657 0.19710 
12 0.20444 0.20471 
13 0.20970 0.21178 
14 0.21428 0.21606 

Facebook Comment 
Volume Dataset - 

Feature_Variant_1 

6 

38.084 

0.31653 

33.738 

0.31653 
7 0.31813 0.31813 
8 0.31980 0.31980 
9 0.32139 0.32139 

10 0.32199 0.32199 
11 0.32260 0.32260 

Facebook Comment 
Volume Dataset - 

Feature_Variant_2 

6 

63.297 

0.31946 

19.313 

0.31946 
7 0.32249 0.32249 
8 0.32357 0.32357 
9 0.32439 0.32439 

10 0.32519 0.32519 
11 0.32587 0.32587 

Facebook Comment 
Volume Dataset - 

Feature_Variant_3 

6 

122.466 

0.34604 

16.477 

0.34604 
7 0.34720 0.34720 
8 0.34822 0.34822 
9 0.34902 0.34902 

10 0.34956 0.34956 
11 0.35002 0.35002 



Base 𝒑𝒑 
BnB Original BnB Variant 

time 𝒇𝒇 time 𝒇𝒇 

Superconductivity 
Data 

9 

1800* 

0.66388 

1800* 

0.67094 
10 0.67094 0.67866 
11 0.67477 0.68126 
12 0.67840 0.68469 
13 0.68133 0.68860 
14 0.68678 0.69165 
15 0.68839 0.69450 
16 0.69374 0.69901 
17 0.69682 0.69939 

Parkinson 
Telemonitoring 

3 
0.019 

0.19317 
0.008 

0.19317 
4 0.21508 0.21508 
5 0.22935 0.22935 

Table 5. Comparison of the two Branch & Bound methods for the databases 

The conclusions from Table 5 are very similar to those from Table 3:  

- The two Branch & Bound methods managed to reach a conclusion in databases 4, 6, 7, 8 and 
10, which are those with the lowest numbers of variables. In these databases both methods 
obtained all the optimal solutions. However, with these databases we can also see that BnB 
Variant always manages to reduce the computation time taken by BnB Original. Table 6 shows 
the percentage reduction. As we can see, this percentage reduction ranges from 11% to nearly 
87%. 

- For the remaining databases the execution of both methods was interrupted when they 
reached the set time of 1800 seconds, and therefore the optimal result is not guaranteed. 
Nevertheless, in all these databases we can see that the results obtained by BnB Variant are 
always better than or as good as those obtained by the BnB Original method. Specifically, of the 
47 instances the same value was reached in 9 and the value obtained by BnB Variant was strictly 
better in the other 38. 

DataBase % reduction 
Parkinson Speech Dataset with Multiple Types of Sound Recordings 50.08 

Facebook Comment Volume Dataset - Feature_Variant_1 11.41 
Facebook Comment Volume Dataset - Feature_Variant_2 69.49 
Facebook Comment Volume Dataset - Feature_Variant_3 86.55 

Parkinson Telemonitoring 57.89 
Table 6. Time reductions achieved by BnB Variant in the databases 

where the execution was not interrupted 

In conclusion, it can be seen that in instances with a moderate number of variables (𝑛𝑛 ≤ 36 in 
the matrices and as much as 𝑛𝑛 = 53 in the databases from the literature) both Branch & Bound 
methods manage to finish and therefore to reach the optimal solution, although BnB Variant is 
faster in reaching the solution in a substantially shorter time. For the instances with a higher 
number of variables (n > 36 in the fictitious matrices and n ≥ 68 in the databases from the 
literature) neither of the two Branch & Bound methods guarantees that the optimal solution is 
obtained, since the procedure was interrupted to avoid excessive computation times. 
Nevertheless, in these instances BnB Variant always achieved the better result. The BnB Original 
method, in turn, reached the best result in 63 of the total of 126 instances (79 simulated and 47 



from the literature). In other words, BnB Variant was strictly better than BnB Original in half of 
the total of 126 instances and the two methods were equally good in the other half of the 
instances. In short, using the information supplied by a heuristic executed beforehand (such as 
the one proposed in section 5) makes the resulting Branch & Bound method (in this case BnB 
Variant) more efficient and effective than the original method. 

6.4 Comparison of the Branch & Bound method (BnB Variant) with other variable selection 
strategies 

In this subsection the results obtained by the BnB Variant method are compared with other well-
known methods and selection strategies in the literature for regression, as well as with general-
purpose optimization software. Specifically, the methods with which it is compared are the 
following: 

- Forward (Fwd): This method, Efroymson (1960), is a very well-known classical method present 
in well-known statistical software such as SPSS, StatGraphics, etc. 

- GARROTE: As indicated in subsection 1.2 this method was proposed in Breiman (1996). In our 
case we used the algorithm proposed by Yuan and Lin (2006, 2007). 

- LASSO: As indicated in subsection 1.2 this method was proposed in Tibshirani (1996). In this 
study the adaptation of the Coordinate Descent algorithm proposed in Wu and Lange (2009) 
was implemented. 

- LARS: As indicated in subsection 1.2 this method was proposed in Efron et al. (2004).  

- LocalSolver: In this case, the commercial software LocalSolver (version 8.0 Academic-Desktop) 
optimizer was chosen, since it has been used successfully in various fields, as presented in 
www.localsolver.com. LocalSolver uses its own programming language with data structures that 
are especially useful in routing problems.  

Table 7 shows the results obtained by the BnB Variant method and these 4 classical methods for 
the matrices defined in subsection 6.1. The best result in indicated in bold type. 

𝒏𝒏 𝒑𝒑 BnB Variant Fwd GARROTE LASSO LARS LocalSolver 

18 
2 0.54267 0.54267 0.54066 0.54066 0.54066 0.43903 
3 0.69606 0.69593 0.69593 0.69593 0.69593 0.65868 
4 0.81110 0.81062 0.81062 0.81062 0.81062 0.74651 

21 
3 0.65949 0.65949 0.65949 0.65949 0.65949 0.56768 
4 0.76851 0.76851 0.76765 0.76765 0.76765 0.68873 
5 0.85269 0.85269 0.85191 0.85191 0.85191 0.67849 

24 
3 0.63320 0.63320 0.63194 0.63194 0.63194 0.56213 
4 0.73722 0.73722 0.73524 0.73524 0.73524 0.59255 
5 0.81792 0.81792 0.81640 0.81640 0.81640 0.69482 

 
27 

3 0.61118 0.61118 0.60829 0.60975 0.60975 0.57576 
4 0.71220 0.71220 0.71010 0.71010 0.71010 0.66636 
5 0.79005 0.79005 0.78828 0.78838 0.78838 0.66949 
6 0.85219 0.85216 0.85097 0.85097 0.85097 0.73062 

30 
4 0.69208 0.69208 0.69108 0.69108 0.69108 0.64478 
5 0.76798 0.76798 0.76688 0.76688 0.76688 0.70922 
6 0.82844 0.82840 0.82758 0.82681 0.82681 0.71688 

http://www.localsolver.com/


𝒏𝒏 𝒑𝒑 BnB Variant Fwd GARROTE LASSO LARS LocalSolver 
7 0.87801 0.87788 0.87660 0.87660 0.87660 0.73669 

33 

4 0.67477 0.67472 0.67205 0.67205 0.67205 0.62256 
5 0.74914 0.74850 0.74740 0.74740 0.74740 0.62966 
6 0.80806 0.80757 0.80631 0.80689 0.80689 0.70167 
7 0.85630 0.85586 0.85436 0.85519 0.85519 0.75820 

 
36 

4 0.66261 0.66261 0.65935 0.66087 0.66087 0.53197 
5 0.73451 0.73451 0.73273 0.73273 0.73273 0.61930 
6 0.79233 0.79233 0.79176 0.79176 0.79176 0.66214 
7 0.83947 0.83930 0.83909 0.83909 0.83909 0.70202 
8 0.87850 0.87850 0.87850 0.87850 0.87850 0.81362 

39 

4 0.64955 0.64955 0.64919 0.64919 0.64919 0.53442 
5 0.72105 0.72040 0.71948 0.71896 0.71896 0.65749 
6 0.77763 0.77733 0.77580 0.77580 0.77580 0.69195 
7 0.82393 0.82393 0.82261 0.82261 0.82261 0.73780 
8 0.86273 0.86273 0.86188 0.86188 0.86188 0.75304 

 
42 

5 0.70964 0.70964 0.70766 0.70766 0.70766 0.66351 
6 0.76520 0.76520 0.76307 0.76307 0.76307 0.72921 
7 0.81105 0.81105 0.80938 0.80856 0.80856 0.68832 
8 0.84907 0.84891 0.84722 0.84722 0.84722 0.70835 
9 0.88116 0.88088 0.88015 0.88015 0.88015 0.80192 

45 

5 0.70046 0.70030 0.69927 0.69927 0.69927 0.61609 
6 0.75609 0.75609 0.75515 0.75515 0.75515 0.64211 
7 0.80077 0.80074 0.80049 0.79980 0.79980 0.73821 
8 0.83806 0.83798 0.83707 0.83695 0.83755 0.77931 
9 0.86954 0.86954 0.86887 0.86887 0.86887 0.75767 

10 0.89654 0.89654 0.89532 0.89532 0.89532 0.75821 

 
48 

5 0.69201 0.69161 0.68951 0.68951 0.68951 0.63415 
6 0.74630 0.74597 0.74423 0.74423 0.74423 0.64660 
7 0.79068 0.79063 0.78935 0.78935 0.78935 0.73581 
8 0.82773 0.82773 0.82645 0.82716 0.82716 0.74157 
9 0.85916 0.85916 0.85833 0.85867 0.85867 0.73368 

10 0.88585 0.88585 0.88541 0.88543 0.88543 0.78585 

51 

6 0.73570 0.73537 0.73360 0.73383 0.73383 0.63479 
7 0.77994 0.77976 0.77849 0.77849 0.77849 0.69594 
8 0.81687 0.81675 0.81468 0.81468 0.81468 0.74895 
9 0.84808 0.84800 0.84586 0.84586 0.84586 0.73550 

10 0.87477 0.87463 0.87304 0.87304 0.87304 0.80737 
11 0.89780 0.89760 0.89615 0.89615 0.89615 0.79860 

 
54 

6 0.73073 0.73033 0.72933 0.72933 0.72933 0.64310 
7 0.77405 0.77393 0.77256 0.77242 0.77242 0.67321 
8 0.81019 0.81012 0.80876 0.80876 0.80876 0.70052 
9 0.84091 0.84077 0.84019 0.83909 0.83909 0.73799 

10 0.86721 0.86716 0.86583 0.86583 0.86583 0.80871 
11 0.88999 0.88999 0.88879 0.88879 0.88879 0.78571 

57 

6 0.72443 0.72443 0.72213 0.72213 0.72213 0.69335 
7 0.76742 0.76742 0.76502 0.76502 0.76502 0.69931 
8 0.80340 0.80313 0.80088 0.80088 0.80088 0.75657 
9 0.83374 0.83337 0.83198 0.83191 0.83191 0.73174 

10 0.85973 0.85928 0.85861 0.85861 0.85861 0.78841 
11 0.88236 0.88181 0.88130 0.88130 0.88130 0.81375 
12 0.90196 0.90147 0.90064 0.90119 0.90119 0.81888 

60 
7 0.76180 0.76145 0.76004 0.76004 0.76004 0.70807 
8 0.79717 0.79703 0.79597 0.79597 0.79597 0.71227 



𝒏𝒏 𝒑𝒑 BnB Variant Fwd GARROTE LASSO LARS LocalSolver 
9 0.82706 0.82702 0.82608 0.82570 0.82570 0.73724 

10 0.85275 0.85263 0.85148 0.85148 0.85148 0.81139 
11 0.87506 0.87495 0.87413 0.87383 0.87383 0.75926 
12 0.89449 0.89449 0.89358 0.89348 0.89348 0.81451 
13 0.91176 0.91164 0.91067 0.91062 0.91062 0.83932 

63 

7 0.75669 0.75631 0.75469 0.75469 0.75469 0.72183 
8 0.79182 0.79180 0.78927 0.78927 0.78927 0.72149 
9 0.82176 0.82155 0.81912 0.81912 0.81912 0.77438 

10 0.84731 0.84731 0.84527 0.84487 0.84487 0.78130 
11 0.86910 0.86910 0.86749 0.86749 0.86749 0.82835 
12 0.88833 0.88833 0.88649 0.88649 0.88649 0.78806 
13 0.90529 0.90528 0.90416 0.90416 0.90416 0.83055 

66 

7 0.75217 0.75184 0.74989 0.74989 0.74989 0.67840 
8 0.78713 0.78664 0.78401 0.78401 0.78401 0.69603 
9 0.81650 0.81608 0.81441 0.81441 0.81441 0.77959 

10 0.84186 0.84128 0.84020 0.84020 0.84020 0.74353 
11 0.86367 0.86322 0.86204 0.86204 0.86204 0.76765 
12 0.88258 0.88242 0.88137 0.88137 0.88137 0.80298 
13 0.89946 0.89927 0.89832 0.89832 0.89832 0.83559 
14 0.91434 0.91417 0.91358 0.91358 0.91358 0.84046 

69 

7 0.74644 0.74558 0.74428 0.74428 0.74428 0.67092 
8 0.78119 0.78028 0.77928 0.77928 0.77928 0.70632 
9 0.81053 0.80961 0.80895 0.80895 0.80895 0.75631 

10 0.83562 0.83488 0.83384 0.83384 0.83384 0.79285 
11 0.85749 0.85680 0.85605 0.85577 0.85577 0.77502 
12 0.87640 0.87586 0.87508 0.87508 0.87508 0.80975 
13 0.89326 0.89275 0.89232 0.89232 0.89232 0.82294 
14 0.90820 0.90778 0.90752 0.90752 0.90752 0.79817 

72 

8 0.77640 0.77640 0.77558 0.77558 0.77558 0.71184 
9 0.80562 0.80562 0.80523 0.80523 0.80523 0.71434 

10 0.83068 0.83068 0.83012 0.83012 0.83012 0.75642 
11 0.85237 0.85237 0.85108 0.85108 0.85108 0.76582 
12 0.87134 0.87131 0.87007 0.87007 0.87007 0.80658 
13 0.88811 0.88810 0.88691 0.88691 0.88691 0.79588 
14 0.90302 0.90302 0.90183 0.90183 0.90183 0.82840 
15 0.91626 0.91626 0.91516 0.91516 0.91516 0.85412 

Table 7. Comparison of the BnB Variant method with the Fwd, 
GARROTE, LASSO, LARS and LocalSolver methods in the fictitious 

matrices 

From Table 7 the following conclusions can be drawn: 

- Of the 105 instances analyzed the BnB Variant method achieved the best solution in all of them. 
In the instances where the execution of this method ended within the maximum time set (𝑛𝑛 ≤
36) this result is obvious, since the solutions it obtained are optimal. However, it is interesting 
that it also achieved the best results in all the instances where its execution was interrupted 
(𝑛𝑛 ≥ 39) and where it was not guaranteed that the optimal result was obtained. 

- The results obtained by the remaining methods are worse. Only the Fwd method obtained the 
best result in an acceptable number of cases (41) while LARS, LASSO and GARROTE only achieved 



the best result in 2 and LocalSolver in none. Table 8 shows the number of instances in which 
each method obtained the best solution. 

BnB Variant Fwd GARROTE LASSO LARS LocalSolver 
105 41 2 2 2 0 

Table 8. Number of instances in which each method 
obtained the best solution in the matrices 

To determine whether the solutions obtained by the BnB Variant method are significantly 
better, various tests of means (t-tests) were conducted with the values obtained in Table 7. 
Specifically, 5 tests were performed, one for each method with which the BnB Variant was 
compared. Table 9 shows the results of these tests. As we can see, the differences are significant 
in all 4 comparisons. 

Test Mean std t-statistic p-value 
BnB Variant versus Fwd 0.00018019 0.00023465 7.869 < 0.001 

BnB Variant versus GARROTE 0.00142981 0.00063621 23.029 < 0.001 
BnB Variant versus LASSO 0.00142981 0.00063621 23.029 < 0.001 
BnB Variant versus LARS 0.00142981 0.00063621 23.029 < 0.001 

BnB Variant versus LocalSolver 0.08424790 0.02927326 29.491 < 0.001 
Table 9. T-tests to compare the results of BnB Variant with those of 

the other methods (in the matrices) 

In order to show more clearly some results of Table 7, two figures have been added (Figures 2 
and 3). These figures correspond respectively with the instances of values 𝑛𝑛 = 66, 𝑝𝑝 = 14, and 𝑛𝑛 
= 69, 𝑝𝑝 = 14. 

 
Figure 2. Results obtained by different methods with 𝑛𝑛 = 66, 𝑝𝑝 = 14 
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Figure 3. Results obtained by different methods with 𝑛𝑛 = 69, 𝑝𝑝 = 14 

Finally, analogous tests were performed with the databases described in subsection 6.2. Table 
10 shows the results. 

Bases 𝒑𝒑 BnB Variant Fwd GARROTE LASSO LARS LocalSolver 

 
YearPredictionMsdn 

10 0.20038 0.19679 0.11615 0.11055 0.18660 0.06749 
11 0.20321 0.20173 0.11913 0.11232 0.18782 0.11100 
12 0.20609 0.20469 0.12014 0.11328 0.19157 0.11101 
13 0.20842 0.20689 0.12033 0.11437 0.19303 0.07807 
14 0.21104 0.20874 0.12135 0.11542 0.19315 0.11164 
15 0.21271 0.21078 0.15439 0.11644 0.19574 0.08520 
16 0.21428 0.21215 0.15506 0.11915 0.19736 0.08527 
17 0.21594 0.21405 0.15620 0.15429 0.20164 0.05492 
18 0.21743 0.21560 0.15704 0.15433 0.20282 0.05611 
19 0.21885 0.21758 0.15779 0.15546 0.20320 0.05891 

Buzz in social media- 
TomsHardware 

10 0.96050 0.95970 0.95311 0.95777 0.95391 0.77995 
11 0.96078 0.96051 0.95311 0.95778 0.95391 0.81097 
12 0.96110 0.96093 0.95312 0.95778 0.95392 0.87183 
13 0.96144 0.96142 0.95312 0.95778 0.95398 0.80413 
14 0.96178 0.96151 0.95312 0.95784 0.95462 0.80768 
15 0.96195 0.96163 0.95312 0.95790 0.95485 0.87744 
16 0.96220 0.96176 0.95312 0.95791 0.95501 0.92331 
17 0.96264 0.96212 0.95312 0.95804 0.95501 0.88705 
18 0.96266 0.96232 0.95313 0.95815 0.95512 0.81928 
19 0.96292 0.96272 0.95313 0.95896 0.95513 0.90233 
20 0.96306 0.96283 0.95313 0.95910 0.95537 0.92878 

Buzz in social media- 
Twitter 

8 0.93380 0.93310 0.92327 0.92044 0.93124 0.86851 
9 0.93423 0.93347 0.92359 0.92061 0.93156 0.83065 

10 0.93454 0.93391 0.92360 0.92131 0.93358 0.82844 
11 0.93471 0.93429 0.92360 0.92132 0.93360 0.89971 
12 0.93489 0.93451 0.92360 0.92132 0.93384 0.89352 
13 0.93497 0.93469 0.92360 0.92136 0.93390 0.92516 
14 0.93505 0.93479 0.92360 0.92150 0.93391 0.91923 
15 0.93508 0.93487 0.92360 0.92150 0.93394 0.88079 
16 0.93524 0.93501 0.92360 0.92163 0.93427 0.92437 

Parkinson Speech 
Dataset 

3 0.38551 0.38551 0.38380 0.37728 0.38551 0.36817 
4 0.40038 0.39093 0.38835 0.38435 0.39016 0.00885 
5 0.40650 0.39490 0.38970 0.38476 0.39430 0.05730 
6 0.41360 0.41360 0.39216 0.38491 0.40044 0.05026 
7 0.16314 0.15560 0.10447 0.10104 0.15031 0.09945 
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Bases 𝒑𝒑 BnB Variant Fwd GARROTE LASSO LARS LocalSolver 

Geographical 
Original of Music 

8 0.17202 0.17037 0.10579 0.10878 0.16089 0.08168 
9 0.18165 0.17994 0.10735 0.10899 0.17455 0.06500 

10 0.19030 0.18870 0.11046 0.10981 0.18027 0.07874 
11 0.19710 0.19533 0.11181 0.12520 0.18357 0.08605 
12 0.20471 0.20217 0.11339 0.12669 0.18996 0.10874 
13 0.21178 0.20970 0.11772 0.12737 0.19345 0.11381 
14 0.21606 0.21389 0.11852 0.12766 0.20281 0.10766 

Facebook Comment 
Volume Dataset - 

Feature_Variant_1 

6 0.31653 0.31653 0.29373 0.00058 0.00078 0.13749 
7 0.31813 0.31813 0.29438 0.00058 0.00081 0.13750 
8 0.31980 0.31959 0.29616 0.00098 0.00084 0.16228 
9 0.32139 0.32139 0.31171 0.00103 0.00087 0.16571 

10 0.32199 0.32199 0.31193 0.00103 0.02027 0.17638 
11 0.32260 0.32260 0.31199 0.00104 0.03658 0.27331 

Facebook Comment 
Volume Dataset - 

Feature_Variant_2 

6 0.31946 0.31654 0.29409 0.00035 0.00045 0.14157 
7 0.32249 0.31742 0.29560 0.00035 0.00055 0.14159 
8 0.32357 0.31829 0.31051 0.00059 0.00057 0.17901 
9 0.32439 0.31904 0.31208 0.00060 0.00057 0.18541 

10 0.32519 0.31963 0.31210 0.00061 0.00062 0.18863 
11 0.32587 0.32470 0.31322 0.00062 0.04576 0.27267 

Facebook Comment 
Volume Dataset - 

Feature_Variant_3 

6 0.34604 0.34469 0.32079 0.00059 0.00074 0.16549 
7 0.34720 0.34551 0.32111 0.00059 0.00098 0.16550 
8 0.34822 0.34659 0.32294 0.00101 0.00101 0.18558 
9 0.34902 0.34750 0.33927 0.00114 0.00107 0.18812 

10 0.34956 0.34832 0.33954 0.00115 0.00117 0.19416 
11 0.35002 0.34888 0.33957 0.00117 0.03881 0.29946 

Superconductivity 
Data 

9 0.67094 0.65799 0.49645 0.59077 0.63812 0.52677 
10 0.67866 0.66353 0.50139 0.59132 0.64373 0.48502 
11 0.68126 0.66736 0.50139 0.59515 0.65042 0.47507 
12 0.68469 0.67161 0.50498 0.60245 0.66113 0.60153 
13 0.68860 0.67625 0.50499 0.60827 0.66983 0.62785 
14 0.69165 0.67990 0.52905 0.60876 0.67219 0.47725 
15 0.69450 0.68617 0.52982 0.61103 0.67219 0.56584 
16 0.69901 0.68853 0.54157 0.61212 0.67315 0.57063 
17 0.69939 0.69281 0.55827 0.61282 0.67497 0.55451 

Parkinson 
Telemonitoring 

3 0.19317 0.19317 0.17146 0.17146 0.19317 0.02816 
4 0.21508 0.21508 0.17243 0.17441 0.21508 0.10168 
5 0.22935 0.22935 0.17499 0.17499 0.22935 0.12257 

Table 10. Comparison of the BnB Variant method with the Fwd, 
GARROTE, LASSO, LARS and LocalSolver methods in the databases 

The conclusions obtained from Table 10 are similar to those obtained from Table 7: the BnB 
Variant method achieved the best results in all the databases analyzed and for all the values of 
𝑝𝑝 considered. Only the Fwd and LARS methods managed to reach the best value in some cases 
(10 and 4 respectively). The remaining methods, as shown in Table 11, did not achieve the best 
value in any cases. 

BnB Variant Fwd GARROTE LASSO LARS LocalSolver 
72 10 0 0 4 0 
Table 11. Number of instances in which each method 

obtained the best solution in the databases 



As with the matrices, to determine whether the solutions obtained by the BnB Variant method 
are significantly better, various tests of means (t-tests) were conducted with the values obtained 
in Table 10. The results of these tests are shown in Table 12. As we can see, the differences are 
significant in all 5 comparisons. 

Tests mean std t-statistic p-value 
BnB Variant versus Fwd 0.00288319 0.00404840 6.043 < 0.001 

BnB Variant versus GARROTE 0.04968625 0.05360251 7.865 < 0.001 
BnB Variant versus LASSO 0.11795000 0.12730407 7.862 < 0.001 
BnB Variant versus LARS 0.08912236 0.13605584 5.558 < 0.001 

BnB Variant versus LocalSolver 0.12635014 0.07185972 14.920 < 0.001 
Table 12. T-tests to compare the results of BnB Variant with those of 

the other methods (databases)  

In short, the BnB Variant method always obtained the best results. Only in a few instances did 
some of the proposed methods manage to equal this best result (especially Fwd). Moreover, the 
statistical tests show that the mean results obtained by BnB Variant are also significantly better. 
Figure 4 shows the results corresponding to the database Buzz in social media – TomsHardware 
and 𝑝𝑝 = 20. 

 
Figure 4. Results obtained by different methods with the Buzz 

in social media – TomsHardware database and 𝑝𝑝 = 20 

It is important to point out that in our method, unlike others, the computational complexity 
does not depend on the number of cases (as explained in the Appendix), which makes it possible 
to work with databases containing a large number of cases (10000 cases in the simulated data 
and more than 500000 in some of the databases from the literature).  

In addition, it should be noted that since most applications of this problem (statistical studies of 
various kinds) do not require obtaining solutions immediately, a moderate maximum execution 
time can be set. In our case a maximum time of 1800 seconds was considered appropriate. 

6.5 Experiments in high dimension matrices 

The matrices and databases used in the previous sub-sections have different dimensions. Thus 
the matrices defined in sub-section 6.1 have a number of cases 𝑚𝑚 = 100000 and the number of 
variables varies from 𝑛𝑛 = 18 to 𝑛𝑛 = 72.  Among the databases defined in subsection 6.2, the 
smallest are Parkinson Speech Dataset with Multiple Types of Sound Recordings (𝑚𝑚 = 1040, 𝑛𝑛 = 
27), and Parkinson Telemonitoring (𝑚𝑚 = 5875, 𝑛𝑛 = 20). While the largest databases are 
YearPredictionMsdn (𝑚𝑚 = 515345, 𝑛𝑛 = 90) and Buzz in social media-Twitter (𝑚𝑚 = 583250, 𝑛𝑛 = 77). 
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That is, the two largest databases have about 45-46 million real numbers. In short, some of the 
matrices and databases have a dimension that can be considered high or at least moderately 
high. However, in many real applications, larger databases are used. It would be interesting to 
check the performance of our method in these larger databases or matrices.  

Thus, in this section we perform some experiments with the aim of checking the performance 
of our method in larger databases. For this purpose, a set of 4 matrices are designed in the same 
way as those designed in sub-section 6.1, but with the following differences: the number of 
cases is 𝑚𝑚 = 1000000 – that is, 10 times more than the matrices defined in sub-section 6.1; and 
the number of variables varies from 𝑛𝑛 = 120 to 𝑛𝑛 = 210. So the number of real numbers varies 
from 120 million to 210 million. 

As in previous sections values of 𝑝𝑝 was considered from ⌊𝑛𝑛 · 0.1⌋ + 1 to ⌊𝑛𝑛 · 0.2⌋+ 1. These 
values are shown in Table 13. 

Matrix # 𝑛𝑛 𝑝𝑝 range 
1 120 13 – 25 
2 150 16 – 3 1 
3 180 19 – 37 
4 210 22 – 43 

Table 13. Matrices and values of 𝑝𝑝 considered 

Table 14 shows the results obtained in theses matrices by the BnB Variant method and the 4 
classical methods considered in previous sections. The best result is indicated in bold type. 

𝒏𝒏 𝒑𝒑 BnB Variant Fwd GARROTE LASSO LARS 

120 

13 0.80527 0.80522 0.80442 0.80442 0.80450 
14 0.81893 0.81891 0.81824 0.81817 0.81817 
15 0.83116 0.83116 0.83045 0.83045 0.83046 
16 0.84216 0.84216 0.84128 0.84128 0.84150 
17 0.85209 0.85209 0.85134 0.85133 0.85152 
18 0.86111 0.86111 0.86022 0.86018 0.86061 
19 0.86936 0.86935 0.86859 0.86847 0.86876 
20 0.87692 0.87692 0.87617 0.87607 0.87632 
21 0.88387 0.88387 0.88317 0.88315 0.88335 
22 0.89029 0.89029 0.8896 0.88952 0.88976 
23 0.89623 0.89623 0.89554 0.89550 0.89580 
24 0.90176 0.90176 0.90107 0.90097 0.90133 
25 0.90689 0.90689 0.90631 0.90627 0.90650 

150 

16 0.83991 0.83989 0.83907 0.83899 0.83907 
17 0.84980 0.84980 0.84901 0.84886 0.84892 
18 0.85878 0.85878 0.85794 0.85790 0.85798 
19 0.86695 0.86695 0.86620 0.86605 0.86619 
20 0.87446 0.87444 0.87366 0.87365 0.87377 
21 0.88138 0.88133 0.88062 0.88050 0.88069 
22 0.88776 0.88769 0.88698 0.88697 0.88700 
23 0.89366 0.89358 0.89290 0.89276 0.89285 
24 0.89913 0.89905 0.89844 0.89819 0.89834 
25 0.90423 0.90416 0.90351 0.90350 0.90353 
26 0.90899 0.90891 0.90826 0.90819 0.90833 
27 0.91345 0.91336 0.91273 0.91271 0.91287 



𝒏𝒏 𝒑𝒑 BnB Variant Fwd GARROTE LASSO LARS 
28 0.91762 0.91753 0.91699 0.91696 0.91707 
29 0.92155 0.92146 0.92092 0.92091 0.92108 
30 0.92525 0.92515 0.92469 0.92454 0.92479 
31 0.92873 0.92863 0.92825 0.92812 0.92825 

180 

19 0.86354 0.86350 0.86288 0.86281 0.86288 
20 0.87108 0.87101 0.87035 0.87022 0.87035 
21 0.87799 0.87791 0.87725 0.87715 0.87725 
22 0.88437 0.88428 0.88363 0.88358 0.88363 
23 0.89025 0.89018 0.88948 0.88946 0.88961 
24 0.89572 0.89567 0.89502 0.89485 0.89502 
25 0.90083 0.90077 0.90010 0.89999 0.90011 
26 0.90559 0.90552 0.90485 0.90478 0.90487 
27 0.91004 0.90997 0.90929 0.90917 0.90931 
28 0.91420 0.91415 0.91352 0.91347 0.91354 
29 0.91812 0.91807 0.91746 0.91738 0.91746 
30 0.92180 0.92177 0.92121 0.92100 0.92116 
31 0.92527 0.92523 0.92469 0.92454 0.92469 
32 0.92855 0.92851 0.92800 0.92788 0.92797 
33 0.93165 0.93161 0.93111 0.93105 0.93107 
34 0.93457 0.93455 0.93406 0.93399 0.93404 
35 0.93735 0.93734 0.93684 0.93674 0.93684 
36 0.93999 0.93998 0.93950 0.93940 0.93950 
37 0.94250 0.94249 0.94202 0.94201 0.94205 

210 

22 0.88130 0.88126 0.88043 0.88038 0.88050 
23 0.88717 0.88713 0.88637 0.88628 0.88637 
24 0.89263 0.89258 0.89183 0.89163 0.89183 
25 0.89771 0.89767 0.89696 0.89680 0.89697 
26 0.90243 0.90242 0.90175 0.90158 0.90175 
27 0.90687 0.90686 0.90615 0.90599 0.90619 
28 0.91101 0.91101 0.91029 0.91028 0.91033 
29 0.91490  0.91491 0.91421 0.91400 0.91421 
30 0.91857 0.91856 0.91790 0.91769 0.91790 
31 0.92202 0.92200 0.92135 0.92117 0.92135 
32 0.92528 0.92525 0.92459 0.92450 0.92469 
33 0.92837 0.92833 0.92774 0.92763 0.92775 
34 0.93129 0.93125 0.93066 0.93065 0.93072 
35 0.93406 0.93402 0.93345 0.93338 0.93350 
36 0.93669 0.93665 0.93615 0.93597 0.93615 
37 0.93919 0.93916 0.93865 0.93856 0.93867 
38 0.94157 0.94154 0.94101 0.94098 0.94106 
39 0.94387 0.94381 0.94332 0.94319 0.94340 
40 0.94604 0.94598 0.94555 0.94547 0.94555 
41 0.94811 0.94806 0.94763 0.94755 0.94765 
42 0.95009 0.95005 0.94963 0.94942 0.94966 
43 0.95199 0.95194 0.95154 0.95149 0.95156 

Table 14. Comparison of the BnB Variant method with the 
Fwd, GARROTE, LASSO and LARS 



The conclusions obtained from Table 14 are similar to those obtained in sub-section 6.4: the BnB 
Variant method achieved the best results in almost all the matrices analyzed and for all the 
values of 𝑝𝑝 considered (69 of 70 instances). Only the Fwd method managed to reach the best 
value in some cases (15). The remaining methods, as shown in Table 15, did not achieve the best 
value in any cases. 

BnB Variant Fwd GARROTE LASSO LARS 
69 15 0 0 0 

Table 15. Number of instances in which each method 
obtained the best solution in the matrices 

As in previous sections, to determine whether the solutions obtained by the BnB Variant method 
are significantly better, various tests of means (t-tests) were conducted with the values obtained 
in Table 14. The results of these tests are shown in Table 16. As we can see, the differences are 
significant in all 4 comparisons 

Test Mean std t-statistic p-value 
BnB Variant versus Fwd 0.00003771 0.00003051 10.342 < 0.0001 

BnB Variant versus GARROTE 0.00067529 0.00011173 50.568 < 0.0001 
BnB Variant versus LASSO 0.00076085 0.00011939 53.318 < 0.0001 
BnB Variant versus LARS 0.00062629 0.00012120 43.232 < 0.0001 

Table 16. T-tests to compare the results of BnB Variant with those of 
the other methods (in the matrices) 

In short, the BnB Variant method always obtained the best results. Only in a few instances did 
some of the proposed methods manage to equal this best result (especially Fwd). Moreover, the 
statistical tests show that the mean results obtained by BnB Variant are also significantly better. 
Figures 5 and 6 show the results corresponding respectively with the instances of values 𝑛𝑛 = 150, 
𝑝𝑝 = 31, and 𝑛𝑛 = 210, 𝑝𝑝 = 43. 

 
Figure 6. Results obtained by different methods with 𝑛𝑛 = 150, 𝑝𝑝 = 31 
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Figure 7. Results obtained by different methods with 𝑛𝑛 = 210, 𝑝𝑝 = 43 

As mentioned above, the objective of our method is not so much to find the most relevant 
variables, but rather the subset of variables that achieve the highest prediction accuracy. 
However, sometimes it can also be important to determine the most relevant variables. It is 
therefore interesting to examine the ability of our method to select the most relevant variables. 
From the definition of the coefficients 𝛽𝛽𝑖𝑖 and the correlation population matrix 𝐿𝐿 (see sub-
section 6.1) the most significant variables are 3, 6, 9, 12, .... The variables selected by our method 
in the tests of this section have been recorded and, in fact, all of them have been verified as 
belonging to this set (index variables multiple of 3). Therefore, we understand that our method 
is also capable of selecting the most relevant variables. 

7. Conclusions 

This study deals with the variable selection problem for linear regression. This model has a wide 
range of applications, as explained in detail in the introduction. In this study, two Branch & 
Bound methods have been proposed to obtain optimum solutions: an original method and a 
variant. The computational effort of both methods does not depend on the number of cases. It 
allows for the use of these methods in large database. In addition, these methods obtain the 
optimal solution in a short time in databases with a moderate number of initial variables. The 
main difference with respect to the original method is that the variant uses the information 
provided by a fast heuristic executed beforehand. Computational experiments show that the 
use of this information makes the variant a more efficient and effective method. 

On the other hand, several computational experiments show that our Branch & Bound variant 
performs better compared with other well-known feature selection methods for linear 
regression. 

In summary, appropriate use of the information provided by a heuristic can improve the 
effectiveness and efficiency of some exact methods. This statement has been proved for the 
problem of variable selection in linear regression in this paper. A challenge for the future is to 
apply this idea to other complex problems. 
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Appendix 1. Corollary used by our Branch & Bound methods 

Corollary 

∀ 𝑝𝑝,𝑝𝑝’ ∈ {1, … ,𝑛𝑛 }, if 𝑝𝑝 < 𝑝𝑝’ then  𝑔𝑔(𝑝𝑝) ≤ 𝑔𝑔(𝑝𝑝’). 

Proof:  

By simplifying, we can define 𝑝𝑝’ = 𝑝𝑝 + 1, and 𝑆𝑆𝑝𝑝∗ = {1, . . ,𝑝𝑝}.  

Let us also define 𝑆𝑆’ = {1, … ,𝑝𝑝, 𝑝𝑝 + 1}. Obviously,  𝑆𝑆𝑝𝑝∗ ⊂ 𝑆𝑆′. Therefore  



𝑔𝑔(𝑝𝑝) = 𝑓𝑓�𝑆𝑆𝑝𝑝∗� ≤ 𝑓𝑓(𝑆𝑆’) ≤ 𝑚𝑚𝑎𝑎𝑥𝑥 {𝑓𝑓(𝑆𝑆): 𝑆𝑆 ⊂ 𝑉𝑉, |𝑆𝑆| = 𝑝𝑝 + 1} = 𝑔𝑔(𝑝𝑝 + 1). 

Appendix 2. Calculation of the objective function 

a) Pre-process for calculating the objective function 

To facilitate the calculation of the objective function 𝑓𝑓(𝑆𝑆) a pre-calculation is initially performed 
before beginning to execute the algorithms. The matrix of independent variables 𝑋𝑋 and the 
vector of the dependent variable 𝑌𝑌 are considered, as defined in section 2. In other words 

𝑋𝑋 = �𝑥𝑥𝑖𝑖𝑖𝑖�𝑖𝑖=1,…,𝑚𝑚;𝑖𝑖=1,…,𝑛𝑛
 e 𝑌𝑌 = (𝑦𝑦𝑖𝑖)𝑖𝑖=1,…,𝑚𝑚 

The pre-process consists of the following steps: 

- The matrix 𝑋𝑋∗ = �𝑥𝑥𝑖𝑖𝑖𝑖∗ �𝑖𝑖=1,…,𝑚𝑚;𝑖𝑖=1,…,𝑛𝑛
 is calculated 

where 𝑥𝑥𝑖𝑖𝑖𝑖∗ = �𝑥𝑥𝑖𝑖𝑖𝑖−𝑥𝑥𝑖𝑖
√𝑚𝑚·𝑠𝑠𝑖𝑖

�, 𝑖𝑖 = 1, … ,𝑚𝑚; 𝑗𝑗 = 1, … ,𝑛𝑛  

and 𝑥𝑥𝑖𝑖 and 𝑖𝑖𝑖𝑖2 are respectively the mean and the sample variance of the variable 𝑗𝑗; 𝑗𝑗 = 1, … , 𝑛𝑛. 

- The matrix 𝑌𝑌∗ = (𝑦𝑦𝑖𝑖∗)𝑖𝑖=1,…,𝑚𝑚 is calculated 

where 𝑦𝑦𝑖𝑖∗ = � 𝑦𝑦−𝑦𝑦
√𝑚𝑚·𝑠𝑠𝑦𝑦

�, 𝑖𝑖 = 1, … ,𝑚𝑚; 

and 𝑦𝑦 and 𝑖𝑖𝑦𝑦2 are respectively the mean and the sample variance of the variable 𝑌𝑌. 

- The matrix 𝑅𝑅 = 𝑋𝑋∗′ · 𝑋𝑋∗  and the vector 𝐻𝐻 = 𝑋𝑋∗′ · 𝑌𝑌∗ are calculated. Note that 𝑅𝑅 is the matrix 
of correlations of the independent variables. We denote the elements of 𝑅𝑅, 𝑗𝑗, 𝑗𝑗′ = 1, … ,𝑛𝑛, as 
𝑎𝑎𝑖𝑖𝑖𝑖′ l; and the elements of 𝐻𝐻, 𝑗𝑗 = 1, … ,𝑛𝑛, as ℎ𝑖𝑖. 

The matrix 𝑅𝑅 and the vector 𝐻𝐻 will be used in calculating 𝑓𝑓(𝑆𝑆) for the various sets 𝑆𝑆 in the 
algorithms proposed in this paper. This pre-process requires Θ(𝑛𝑛2 · 𝑚𝑚) operations. However, it 
is executed only once. 

b) Calculation of the objective function 𝑓𝑓(𝑆𝑆) 

Let there be a set 𝑆𝑆 ⊂ 𝑉𝑉  of size 𝑝𝑝. We denote 𝑆𝑆 = {𝑖𝑖(1), 𝑖𝑖(2), … , 𝑖𝑖(𝑝𝑝)}. The calculation of 𝑓𝑓(𝑆𝑆) 
consists of the following steps: 

- The matrix 𝑅𝑅𝑆𝑆 = (𝑎𝑎𝑖𝑖𝑖𝑖′𝑆𝑆 ) is constructed, where 𝑎𝑎𝑖𝑖𝑖𝑖′𝑆𝑆 = 𝑎𝑎𝑆𝑆(𝑖𝑖)𝑆𝑆(𝑖𝑖′),  𝑗𝑗, 𝑗𝑗′ = 1, … ,𝑝𝑝;   

- The vector 𝐻𝐻𝑆𝑆 = �ℎ𝑖𝑖𝑆𝑆�, where ℎ𝑖𝑖𝑆𝑆 = ℎ𝑆𝑆(𝑖𝑖)  𝑗𝑗 = 1, … ,𝑝𝑝; 

- Find the inverse of the matrix 𝑅𝑅𝑆𝑆: (𝑅𝑅𝑆𝑆)−1 

- Calculate the vector of coefficients Β = (𝑅𝑅𝑆𝑆)−1 · 𝐻𝐻𝑆𝑆. We denote the elements of Β,  𝑗𝑗 =
1, … ,𝑝𝑝 as 𝛽𝛽𝑖𝑖. 

- Calculate the  value of 𝑓𝑓(𝑆𝑆) = ∑ ∑ 𝛽𝛽𝑖𝑖 · 𝛽𝛽𝑖𝑖′ · 𝑎𝑎𝑖𝑖𝑖𝑖′𝑆𝑆
𝑝𝑝
𝑖𝑖′=1

𝑝𝑝
𝑖𝑖=1  . 



This calculation requires Θ(𝑝𝑝2) operations and is therefore independent of the number of cases 
𝑚𝑚 and of the initial number of variables 𝑛𝑛. 

Appendix 3. Analysis of the complexity of our Branch & Bound methods 

As described in Section 3, the Branch & Bound methods are based on a recursive exploration in 
the set of solutions. This set is represented by a search tree. Each node of this tree corresponds 
with a subset of solutions. In the exploration of the set of solutions corresponding to a node 
(Pseudocode 1), a variable 𝑎𝑎 is selected and the corresponding set is divided into two subsets: 
one with the variable 𝑎𝑎 fixed and another with the variable 𝑎𝑎 forbidden. The process is then 
repeated with each subset. Since at most 𝑝𝑝0 variables are selected (𝑝𝑝0 fixed variables), there are 
𝑝𝑝0 divisions until a solution with maximum size 𝑝𝑝0 is reached. Therefore, 𝜃𝜃(2𝑝𝑝0) nodes are 
explored. On the other hand, the number of variables that are examined to be selected is limited 
by 𝑛𝑛, so determining the variable 𝑎𝑎 assumes 𝜃𝜃(𝑛𝑛) calculations of the function 𝑓𝑓 (line 5 of 
Pseudocode 1). Therefore, the Branch & Bound methods calculate the objective function of 
𝜃𝜃(𝑛𝑛 · 2𝑝𝑝0) solutions 𝑆𝑆, with |𝑆𝑆| ≤ 𝑝𝑝0. As the calculation of each 𝑓𝑓(𝑆𝑆) requires 𝜃𝜃(|𝑆𝑆|2) 
operations, the complexity of our methods is 𝜃𝜃(𝑝𝑝02 · 𝑛𝑛 · 2𝑝𝑝0). 

 

Appendix 4. Basic ideas of traditional methods and our Branch & Bound methods 

- Our Branch & Bound methods find the global optimum solution to the problem defined by (1) 
– (3) in Section 2. 

- The Forward Method finds a solution to the same problem defined by (1) – (3), but this solution 
is and approximate solution (not necessarily the global optimal). The method works as follows: 

1. Do 𝑆𝑆 = ∅ 

Repeat 

 2. Determine 𝑖𝑖∗ = 𝑎𝑎𝑎𝑎𝑔𝑔𝑚𝑚𝑎𝑎𝑥𝑥 { 𝑓𝑓(𝑆𝑆 ∪ {𝑖𝑖}): 𝑖𝑖∈𝑉𝑉 − 𝑆𝑆} 

 3. Make 𝑆𝑆 = 𝑆𝑆 ∪ {𝑖𝑖∗}  

Until |𝑆𝑆| = 𝑝𝑝 

 

Note that the problem defined by (1) - (3) can also be defined compactly as: 

𝑚𝑚𝑖𝑖𝑛𝑛𝛽𝛽 ‖𝑌𝑌 − 𝑋𝑋∗𝛽𝛽‖2 

subject to:  

‖𝛽𝛽‖0 = 𝑝𝑝 

where  

𝑋𝑋∗ = (𝟏𝟏|𝑋𝑋) and 𝟏𝟏𝒕𝒕 = (1,1, … 1) ∈ 𝑅𝑅𝑚𝑚, that is 𝑋𝑋∗ is matrix 𝑋𝑋 extended with vector 1 

𝛽𝛽𝑎𝑎 = (𝛽𝛽0,𝛽𝛽1,···,𝛽𝛽𝑛𝑛) is the vector of the coefficients of the variables and the independent 
coefficient  



‖‖𝑟𝑟 = 𝑎𝑎 - Norme 

 

- The LASSO Method solves the following model: 

𝑚𝑚𝑖𝑖𝑛𝑛𝛽𝛽  ‖𝑌𝑌 − 𝑋𝑋∗𝛽𝛽‖2 + 𝜆𝜆 · ‖𝛽𝛽‖1 

where 𝜆𝜆 is a previously established positive parameter. The higher the value of 𝜆𝜆 the fewer the 
variables with a coefficient 𝛽𝛽𝑖𝑖 ≠ 0 are selected – that is, the fewer variables are selected. To find 
the solution, methods based on the Coordinate Descent algorithm are usually used. 

 

- The LARS method solves the same model as LASSO but using strategies analogous to the 
Forward method – that is, selecting in each step a variable to enter in the solution. 

- The GARROTE method calculates its coefficients 𝛽𝛽𝑖𝑖
𝑔𝑔 as follows: 

 

𝛽𝛽𝑖𝑖
𝑔𝑔 = �1 −

𝜆𝜆

�𝛽𝛽𝑖𝑖𝑟𝑟�
2�
+

· 𝛽𝛽𝑖𝑖𝑟𝑟 

where the values 𝛽𝛽𝑖𝑖𝑟𝑟 are the coefficients of the linear regression model with all variables, [𝑧𝑧]+ is 
the positive part of a real number 𝑧𝑧, and 𝜆𝜆 is a previously established positive parameter. As in 
previous model, the higher the value of 𝜆𝜆 the fewer the variables with coefficient 𝛽𝛽𝑖𝑖 ≠ 0 –  that 
is, the fewer variables are selected. 
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