
VARIABLE SELECTION FOR LINEAR REGRESSION IN LARGE DATABASES: EXACT METHODS

Joaquín Pacheco, jpacheco@ubu.es

Silvia Casado, scasado@ubu.es

Department of Applied Economics

University of Burgos

Abstract. This paper analyzes the variable selection problem in the context of Linear Regression
for large databases. The problem consists in selecting a small subset of independent variables
that can perform the prediction task optimally. This problem has a wide range of applications.
One important type of application is the design of composite indicators in various areas
(sociology and economics, for example). Other important applications of variable selection in
linear regression can be found in fields such as chemometrics, genetics, and climate prediction,
among many others. For this problem, we propose a Branch & Bound method. This is an exact
method and therefore guarantees optimal solutions. We also provide strategies that enable this
method to be applied in very large databases (with hundreds of thousands of cases) in a
moderate computation time. A series of computational experiments shows that our method
performs well compared with well-known methods in the literature and with commercial
software.

Keywords: variable selection, linear regression, Branch & Bound methods, heuristics

July 21, 2020

mailto:jpacheco@ubu.es
mailto:scasado@ubu.es

1. Introduction

1.1. Motivation

Research very often involves analyze datasets with one dependent variable and multiple
independent variables (“response” variable and “predictor” variables), giving a dataset that
is multivariate and multidimensional. Frequently these analyses have been based on
traditional models such as Multiple Linear Regression. Other more recent methods are based
on neural networks, support vector machines, nearest neighbor, etc. In the simplest case,
multiple linear regression involves a regression of the dependent variable with respect to the
set of predictor variables. Although this full model regression approach might seem logical,
there are several key problems. One of the most important is the following: having multiple
predictors in a model adds noise to the analysis, with the effect that non-significant results
may be returned, even when the model contains significant predictors (Mundry and Nunn
2009). Moreover, it is commonly assumed that only a small proportion of the predictor
variables are truly influential to the response (Wang and Feng, 2019).

Recent improvements to data-collection technologies have resulted in complex regression
problems in which the number of candidate predictor variables explaining the response
variable may be very large. However, not all of the variables are equally relevant to this task
and many of them repeat the information that they contribute. So, in regression, when the
predictor vector contains many variables, variable selection becomes necessary, to improve
the precision of a model fit. The variable selection process attempts to identify the ‘‘best’’
subset of predictors and simultaneously remove those variables that are redundant. The
major benefits of variable selection are as follows (Sayed et al. (2018)): (i) improving the
predictive performance of a statistical model by preventing overfitting; (ii) identifying a
model that captures the essence of a system; and (iii) providing a computationally efficient
set of explanatory variables. The problem of variable selection in linear regression is also
known as Sparse Linear Regression.

In addition to these advantages, variable selection in linear regression has interesting
applications. One of its main applications is updating composite indicators. Suppose a
composite indicator consists of a large set of variables. If the set of variables that forms the
composite indicator is too large it could be advisable (both from the economic point of view
and from the point of view of understanding) to reduce the number of variables that explain
the indicator, while maximizing the approximation (correlation) to the indicator initially
obtained. In other words, the objective is to select a smaller subset of variables that is able
to explain most of the information from the initial composite indicator (that is, the one
obtained with all the original variables).

Composite indicators are also used in several areas (economy, society, quality of life, nature,
technology, etc.) as measures of the evolution of regions or countries in such areas. The
importance of composite indicators is explained in Nardo et al. (2005a and 2005b) and
Bandura (2008), among other studies. More recent references concerning the importance of
composite indicators can be found in Blancas et al. (2010) and Parada et al. (2015).

Other interesting fields of application of this problem are, for example, musical audio
denoising (Févotte et al., 2008 and Févotte et al., 2006), wireless communications (Mateos
et al., 2010), spectral analysis of images (Iordache et al., 2014, Bioucas-Dias et al., 2012, and
Bioucas-Dias and Plaza, 2010), chemometrics (Filzmoser et al., 2012), genetics (Vounou et
al., 2010 and Li et al., 2015), climate prediction (Chatterjee et al., 2012) and computer
network diagnosis, neuroimaging analysis, and compressed sensing (Rish and Grabarnik,
2014), among others.

As explained in the foregoing paragraphs, variable selection in linear regression is an
interesting process that could provide important benefits and also has interesting
applications. In related literature, various methods have been proposed for this task. In this
study we propose an exact method which guarantees the optimal solution. In addition, this
method can find this optimal solution in very large databases (with hundreds of thousands
of cases and moderate numbers of variables) in a moderate computation time. There are
some interesting exact methods in the literature; however, to the best of our knowledge
there have so far been no previous references that propose exact methods in large
databases.

1.2 Related Literature

Variable selection procedures are important in applied data analysis (since in many cases a
large number of variables are measured) in order to detect all the variables that have no
influence on the response to be predicted and to eliminate them from the prediction
algorithm (Aneiros et al., 2015). Models that include all the covariates are difficult to
interpret and irrelevant variables increase the variance (Gijbels and Vrinssen, 2015). In the
literature several variable selection methods are proposed for multiple linear regression
models. Conventional variable selection strategies involving sequential searches (forward
selection, backward elimination, or stepwise selection) use a range of goodness-of-fit
measures, such as adjusted R2, Akaike Information Criterion (AIC), Bayesian Information
Criteria (BIC), and Mallows Cp. These methods have various shortcomings, as is explained in
Fan and Li (2001): they will not always provide the best subset, they become increasingly
ineffective in higher dimensions, and they show high sensitivity to small changes in the data.
Despite their weaknesses, they are still the first choice in routine data analysis and are
applied in large databases because of their simplicity (Luo and Ghosal, 2016). The
Nonnegative Garrote (Breiman, 1995) uses a penalty on shrinkage factors of the regression
coefficients. In Tibshirani (1996), the Least Absolute Shrinkage and Selection Operator
(LASSO) method is proposed. This method is a version of ordinary least squares (OLS) that
constrains the sum of the absolute regression coefficients. Finally, Least Angle Regression,
LARS (Efron et al., 2004), is a refinement of the LASSO algorithm that is easy to implement.
Specifically, LARS sequences the candidate predictors in order of importance.

In general, these previous methods tend to get trapped in locally optimal models and face
design problems with complex patterns of multicollinearity, specifically in large datasets
(Hans and Dobra, 2007). To avoid these disadvantages several metaheuristic techniques have
been introduced for solving large problems, such as Simulated Annealing (Meiri and Zahavi,
2006) and Genetic algorithms (Kilinc et al., 2016; Sayed et al., 2019). Metaheuristic

techniques are appropriate for solving the problem of variable selection in regression
because from a computational point of view it is an NP-Hard problem. Examples of exact
variable selection methods in other prediction and/or classification models may be found in
Brusco and Steinley (2011) and Brusco et al. (2009). In this study we propose an exact method
which guarantees the optimal solution. It can find this optimal solution in very large
databases (with hundreds of thousands of cases).

1.3. Contribution

This paper proposes a Branch & Bound method for the variable selection problem in
regression models. The method has been designed to solve this problem in databases with a
very large number of cases. In addition, various tools and strategies are proposed for
improving this method. These tools and strategies consist in using the information from a
previously executed heuristic method. Incorporating these modifications produces a variant
of the original method that is more efficient and effective

Both the original method and the variant obtain the optimal solution in acceptable
computation times in databases with a moderate number of variables. When databases with
a larger number of variables are involved, the computation time can be excessive. The
methods therefore have to be interrupted after a certain period of time and it is not
guaranteed that the optimal solution will be obtained. Nevertheless, in these cases the
solution these methods reach (especially the variant) is of high quality.

Moreover, it must be pointed out that in our methods the computational complexity does
not depend on the number of cases, making it possible to work with databases with a very
large number of cases. This represents an additional advantage over other known methods.
Details are given in Appendix 2.

We have conducted a series of computational experiments, using several artificial databases
(matrices) and databases from a well-known repository. The experiments include
comparisons with other well-known variable selection methods from the literature, as well
as with commercial software. The results include statistical tests and demonstrate the high
performance of both the original method and its variant. Specifically, the variant clearly
outperformed the other methods analyzed.

In summary the main contributions are the following: a) The development of exact methods
capable of finding better solutions than traditional methods in feature selection for linear
regression and that can be applied in large databases; b) The design of tools to improve the
performance of these methods. These tools are based on the use of information provided by
some fast heuristic methods. This strategy could be used in similar problems.

The remainder of this paper is organized as follows. Section 2 outlines the definition of the
problem. In section 3, the basic Branch & Bound method is explained, and the various tools
for accelerating the Branch & Bound method are analyzed in Section 4. Section 5 contains a
description of the simple and fast heuristic method. The computational experiments are
discussed in section 6. The last section presents the final conclusions of the study and related
future lines of research.

2. Definition and formulation

Consider a data matrix, 𝑋𝑋, corresponding to m cases and characterized by 𝑛𝑛 variables. We shall
label the set of variables 𝑉𝑉 = {1, 2, … ,𝑛𝑛} (the variables are identified by their indices for the
sake of simplicity).

Let 𝑥𝑥𝑖𝑖𝑖𝑖 be the value of variable 𝑗𝑗 in the case 𝑖𝑖, 𝑖𝑖 = 1, … ,𝑚𝑚; 𝑗𝑗 = 1, … ,𝑛𝑛; Let 𝒙𝒙𝒋𝒋 be the column
vector with the values of variable 𝑗𝑗; in other words

𝒙𝒙𝒋𝒋 = �

𝑥𝑥1𝑖𝑖
𝑥𝑥2𝑖𝑖
⋮

𝑥𝑥𝑚𝑚𝑖𝑖

� 𝑗𝑗 = 1, … ,𝑛𝑛.

It is known that = �𝑥𝑥𝑖𝑖𝑖𝑖�𝑖𝑖=1,…,𝑚𝑚;𝑖𝑖=1,…,𝑛𝑛
 = (𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 … 𝒙𝒙𝒏𝒏). Let 𝑦𝑦𝑖𝑖 be the value of a variable 𝑌𝑌

in the case 𝑖𝑖, 𝑖𝑖 = 1, … ,𝑚𝑚.

For any subset of variables 𝑆𝑆 ⊂ 𝑉𝑉, let us define:

𝑓𝑓(𝑆𝑆) = R-squared (R2) value of the linear regression model with 𝑌𝑌 as the dependent
variable and 𝑆𝑆 as the set of independent variables.

 Let 𝑝𝑝 ∈ 𝑁𝑁, verifying that 1 ≤ 𝑝𝑝 ≤ 𝑛𝑛, so that the problem may be defined as:

Maximize 𝑓𝑓(𝑆𝑆) (1)

subject to:

|𝑆𝑆| = 𝑝𝑝 (2)

𝑆𝑆 ⊂ 𝑉𝑉 (3)

The optimal solution and the value corresponding to the problem defined by (1)–(3) are
respectively denoted by 𝑆𝑆𝑝𝑝∗ and 𝑔𝑔(𝑝𝑝), that is, 𝑔𝑔(𝑝𝑝) = 𝑓𝑓(𝑆𝑆𝑝𝑝∗).

3. Description of the basic Branch & Bound method

Let 𝑝𝑝0 (𝑝𝑝0 ≤ 𝑛𝑛) a fixed value, the initially proposed exact method finds the optimal solution 𝑆𝑆𝑝𝑝∗
and 𝑔𝑔(𝑝𝑝), ∀ 𝑝𝑝, 1 ≤ 𝑝𝑝 ≤ 𝑝𝑝0. This method (denoted by BnB) is an algorithm based on a Branch &
Bound strategy. Therefore, it involves the recursive exploration in the set of solutions. This set
is represented by a search tree. Each node of the tree corresponds to a specific set of solutions.
In the exploration of each node, it is checked if any of the solutions of the corresponding set
could improve the best solution found for some 𝑝𝑝 value. If not, the exploration of that node
ends. Otherwise, the exploration of that node continues. In this case, the set of solutions of this
node is divided into two subsets corresponding to two new nodes, and these new nodes are
explored.

More specifically, each node 𝐶𝐶 is defined by two subsets of variables 𝐴𝐴 and 𝐵𝐵, 𝐴𝐴,𝐵𝐵 ⊂ 𝑉𝑉, so that
the solutions of node 𝐶𝐶 are all the solutions 𝑆𝑆 that contain all the variables of 𝐴𝐴 ("fixed
variables"), and do not contain any variable of 𝐵𝐵 ("forbidden variables "). Obviously, 𝐴𝐴 ∩ 𝐵𝐵 =

∅. To divide the set of solutions of 𝐶𝐶, an element 𝑎𝑎 ∈ 𝑉𝑉–𝐴𝐴–𝐵𝐵 is selected. The first of the subsets
of solutions (“left branch”) adds 𝑎𝑎 as a fixed variable, and the second of the subsets (“right
branch”) adds 𝑎𝑎 as a forbidden variable. Figure 1 illustrates this division process ("Branch
Process"). This strategy is very similar to those used for other variable selection problems
(Brusco and Steinley, 2011; Pacheco et al., 2013).

.
Figure 1. Branch process

The procedure for exploring the node corresponding to two subsets 𝐴𝐴 and 𝐵𝐵 such us 𝐴𝐴, 𝐵𝐵 ⊂ 𝑉𝑉,
and 𝐴𝐴 ∩ 𝐵𝐵 = ∅ is denoted by ExplorationNode and is described in Pseudocode 1. The BnB
method is described in Pseudocode 2. Note that BnB starts with the exploration of the initial
node that corresponds to the whole set of solutions, (𝐴𝐴 = 𝐵𝐵 = ∅, i.e., there are no fixed or
forbidden variable).

Procedure ExplorationNode(𝐴𝐴, 𝐵𝐵)

If 𝑓𝑓(𝐴𝐴) > 𝑔𝑔(|𝐴𝐴|) then make 𝑆𝑆|𝐴𝐴|
∗ = 𝐴𝐴 and 𝑔𝑔(|𝐴𝐴|) = 𝑓𝑓(𝐴𝐴)

If 𝑓𝑓(𝑉𝑉–𝐵𝐵) > 𝑔𝑔(|𝑉𝑉–𝐵𝐵|) then make 𝑆𝑆|𝑉𝑉–𝐵𝐵|
∗ = 𝑉𝑉–𝐵𝐵 and 𝑔𝑔(|𝑉𝑉–𝐵𝐵|) = 𝑓𝑓(𝑉𝑉–𝐵𝐵)

If (|𝐴𝐴| = 𝑝𝑝0) or (𝐴𝐴 ∪ 𝐵𝐵 = 𝑉𝑉) then Exit (end Exploration of the node)

If 𝑔𝑔(|𝐴𝐴|) ≥ 𝑓𝑓(𝑉𝑉–𝐵𝐵) then Exit (end Exploration of the node) (4)

Determine 𝑎𝑎 = 𝑎𝑎𝑎𝑎𝑔𝑔𝑚𝑚𝑎𝑎𝑥𝑥 { 𝑓𝑓(𝐴𝐴 ∪ {𝑣𝑣}) / 𝑣𝑣 ∈ 𝑉𝑉–𝐴𝐴–𝐵𝐵 } (5)

Make 𝐴𝐴’ = 𝐴𝐴 ∪ {𝑎𝑎} and 𝐵𝐵’ = 𝐵𝐵

Execute ExplorationNode (𝐴𝐴’, 𝐵𝐵’)
Make 𝐴𝐴’’ = 𝐴𝐴 and 𝐵𝐵’’ = 𝐵𝐵 ∪ {𝑎𝑎}

Execute ExplorationNode (𝐴𝐴’’, 𝐵𝐵’’)

Pseudocode 1. ExplorationNode Procedure

Method BnB

Node

Node Node

Make 𝑔𝑔(𝑝𝑝) = 0, ∀ 𝑝𝑝 ≤ 𝑝𝑝0 (6)

Make 𝐴𝐴 = ∅, 𝐵𝐵 = ∅

Execute ExplorationNode(𝐴𝐴, 𝐵𝐵)

Pseudocode 2. BnB Method

Some points are explained below:

- It has to be said that although 𝑆𝑆𝑝𝑝∗ and 𝑔𝑔(𝑝𝑝) are respectively defined as the optimum solution
to problem (1) – (3) (section 2) and its corresponding value, in the description of the algorithm
they are the corresponding approaches found during the search. Obviously, at the end of the
execution of the BnB method 𝑆𝑆𝑝𝑝∗ and 𝑔𝑔(𝑝𝑝) correspond with this optimum and its objective
function value.

- Note that if the condition of line (4) is verified, that is, 𝑔𝑔(|𝐴𝐴|) ≥ 𝑓𝑓(𝑉𝑉–𝐵𝐵), then it can be
concluded that no solution of that node can improve the best solution found for any 𝑝𝑝 value.
Indeed, every solution 𝑆𝑆 in that node verifies 𝐴𝐴 ⊂ 𝑆𝑆 ⊂ 𝑉𝑉–𝐵𝐵, therefore 𝑓𝑓(𝑆𝑆) ≤ 𝑓𝑓(𝑉𝑉–𝐵𝐵) ≤
𝑔𝑔(|𝐴𝐴|). On the other hand, by Appendix 1, 𝑔𝑔(|𝐴𝐴|) ≤ 𝑔𝑔(|𝑆𝑆|) then 𝑓𝑓(𝑆𝑆) ≤ 𝑔𝑔(|𝑆𝑆|); so, 𝑆𝑆 cannot
improve 𝑔𝑔(|𝑆𝑆|).

- Note that line (5) establishes the criterion for choosing 𝑎𝑎, in this case the element that most
improves the objective function 𝑓𝑓.

- As we can see in pseudocodes 1 and 2, the algorithm solves problem (1) – (3) for all the values
of 𝑝𝑝 such that 𝑝𝑝 ≤ 𝑝𝑝0. It must be pointed out that all the values 𝑔𝑔(𝑝𝑝), 𝑝𝑝 ≤ 𝑝𝑝0 are important for
the algorithm to function properly. In fact, high values of 𝑔𝑔(𝑝𝑝) enable the restriction in line (4)
of the ExplorationNode procedure to be met, and unnecessary explorations are therefore
avoided. If only the value of g(p0) is updated, but the values 𝑔𝑔(𝑝𝑝) for 𝑝𝑝 < 𝑝𝑝0 are not updated,
then 𝑔𝑔(𝑝𝑝) = 0 will remain true, for 𝑝𝑝 < 𝑝𝑝0. So, this restriction may never be satisfied and
therefore the exploration of the corresponding node will have to continue, even though it
contains no reliable solutions. Therefore, to avoid high computation time, it is important that
the algorithm updates all the values of g(p), for 𝑝𝑝 ≤ 𝑝𝑝0, even though we are ultimately
interested only in determining 𝑆𝑆𝑝𝑝0

∗ and 𝑔𝑔(𝑝𝑝0).

In this sense, a strategy to reduce the computation time (to be explained in more detail in section
4) is not to start the algorithm with 𝑔𝑔(𝑝𝑝) = 0 in line (6), but with good approximations to 𝑔𝑔(𝑝𝑝)
and 𝑆𝑆𝑝𝑝∗. Specifically, values obtained by a rapid heuristic method will be proposed as initial values
of 𝑔𝑔(𝑝𝑝) and 𝑆𝑆𝑝𝑝∗. In this way, fulfilment of the restriction in line (4) is favored from the start and
unnecessary explorations are therefore avoided. In section 6, the effect of using this strategy is
analyzed through the computational experiments with the variant of the Branch & Bound
method described in section 4

4. Description of various tools and a new variant

In order to reduce the computation time of the basic Branch & Bound method, we propose some
modifications. These consist in adding certain tools (use of information from heuristics) and

result in a variant of the original method. The following describes both the modifications and
the corresponding variant:

- As explained above, the expression of line (4) can help to identify and avoid unnecessary
explorations. However, the values of 𝑔𝑔(𝑝𝑝) are initially set a 0, as indicated in the expression of
line (6). This value means that there is no compliance with the condition of line (4) in the first
iterations, and the corresponding explorations are therefore not interrupted. Subsequently,
compliance with this condition is increasingly forthcoming as the values of 𝑔𝑔(𝑝𝑝) are updated
and increased.

Therefore, one idea that may help to increase the proportion of times that compliance with the
condition of line (4) is forthcoming, and thereby to reduce the explorations, is to find initial
values of 𝑔𝑔(𝑝𝑝) that are as high as possible as quickly as possible. In this respect, various heuristic
algorithms have demonstrated that they can find good solutions to variable selection problems.
Among the most recent references, the works of Pacheco et al. (2009), Brusco et al. (2009), and
Brusco (2014) may be mentioned. In addition, these heuristic methods required a much shorter
computing time than the exact methods. Heuristic strategies can therefore be good options for
obtaining good (high) initial values of 𝑔𝑔(𝑝𝑝) (and the corresponding approximations to 𝑆𝑆𝑝𝑝∗).

- Moreover, the execution of a heuristic method can provide further useful information to be
used efficiently in executing the Branch & Bound method. Specifically, this information may be
used to select element a in line (5) for ramification. In particular, the object is to determine ∀𝑎𝑎 ∈
𝑉𝑉

𝑚𝑚𝑎𝑎𝑥𝑥𝑣𝑣(𝑎𝑎) = 𝑚𝑚𝑎𝑎𝑥𝑥{𝑓𝑓(𝑆𝑆):𝑎𝑎 ∈ 𝑆𝑆, |𝑆𝑆| = 𝑝𝑝0, 𝑆𝑆 solution visited in the execution of the heuristic}

These values were found during the execution of the heuristic. Subsequently, in the execution
of the Branch & Bound method, the element 𝑎𝑎 ∈ 𝑉𝑉–𝐴𝐴–𝐵𝐵 with the highest 𝑚𝑚𝑎𝑎𝑥𝑥𝑣𝑣(𝑎𝑎) in each
exploration is chosen in line (5). In doing so, it is not necessary to calculate the 𝑓𝑓 function to
determine this element, at the same time as a logical rather than an arbitrary criterion is
employed. In fact, the elements that belong to the solution 𝑆𝑆𝑝𝑝0

∗ obtained by the heuristic will be
selected in the first explorations.

We propose a variant of the original BnB method that consists in adding the following two
modifications:

a) In line (6) of the BnB method, replace:

 Make 𝑔𝑔(𝑝𝑝) = 0, for 𝑝𝑝 ≤ 𝑝𝑝0

with

 Read the values of 𝑔𝑔(𝑝𝑝) and the corresponding 𝑆𝑆𝑝𝑝∗ values obtained by the
 heuristic method

b) replace line (5) of the ExplorationNode procedure with the following line (5a)

 Determine 𝑎𝑎 = 𝑎𝑎𝑎𝑎𝑔𝑔𝑚𝑚𝑎𝑎𝑥𝑥 { 𝑚𝑚𝑎𝑎𝑥𝑥𝑣𝑣(𝑣𝑣) / 𝑣𝑣 ∈ 𝑉𝑉–𝐴𝐴–𝐵𝐵 } (5a).

The effect of these modifications (using information contributed by a heuristic method) will be
examined in section 6.

5. A simple and fast heuristic algorithm

As explained in section 4, a heuristic method should be run before executing VariantBnB. We
have designed a fast heuristic method to solve the problem defined by (1) – (3), for different
values of 𝑝𝑝 (𝑝𝑝 ≤ 𝑝𝑝0). The Heuristic algorithm that we propose in this section obtains the
approximations to the values of 𝑔𝑔(𝑝𝑝) (and those corresponding to 𝑆𝑆𝑝𝑝∗) gradually; that is,
beginning with 𝑝𝑝 = 1 and ending with 𝑝𝑝 = 𝑝𝑝0. Moreover, the solution obtained for 𝑝𝑝 − 1 is used
as prior information to find the initial solution for 𝑝𝑝. The set of solutions for the different values
of 𝑝𝑝 are stored in the vector 𝑺𝑺, 𝑺𝑺 = �𝑆𝑆1∗,𝑆𝑆2∗, … , 𝑆𝑆𝑝𝑝0

∗ � and the corresponding values of 𝑔𝑔 are stored
in 𝑮𝑮, 𝑮𝑮 = (𝑔𝑔(1),𝑔𝑔(2), … ,𝑔𝑔(𝑝𝑝0)). The Heuristic algorithm is described in pseudocode 3.

Heuristic Algorithm (input: 𝑝𝑝0; var: 𝑺𝑺,𝑮𝑮)

1. Determine 𝑖𝑖∗ = 𝑎𝑎𝑎𝑎𝑔𝑔𝑚𝑚𝑎𝑎𝑥𝑥 { 𝑓𝑓({𝑖𝑖}) ∶ 𝑖𝑖 ∈ 𝑉𝑉 }

2. Do 𝑆𝑆1∗ = {𝑖𝑖∗}, 𝑔𝑔(1) = 𝑓𝑓(𝑆𝑆1∗)

3. For 𝑝𝑝 = 2 to 𝑝𝑝0 do

 Begin

 4.Do 𝑆𝑆𝑎𝑎𝑛𝑛𝑎𝑎 = 𝑆𝑆𝑝𝑝−1∗

 5.Determine 𝑖𝑖∗ = 𝑎𝑎𝑎𝑎𝑔𝑔𝑚𝑚𝑎𝑎𝑥𝑥 { 𝑓𝑓(𝑆𝑆𝑎𝑎𝑛𝑛𝑎𝑎 ∪ {𝑖𝑖}) ∶ 𝑖𝑖 ∈ 𝑉𝑉– 𝑆𝑆𝑎𝑎𝑛𝑛𝑎𝑎,𝑆𝑆𝑎𝑎𝑛𝑛𝑎𝑎 ∪ {𝑖𝑖} 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑓𝑓𝑓𝑓𝑎𝑎𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑓𝑓𝑠𝑠 }

 6.Make 𝑆𝑆 = 𝑆𝑆𝑎𝑎𝑛𝑛𝑎𝑎 ∪ {𝑖𝑖∗}

 7.Execute LocalSearch(𝑝𝑝, 𝑆𝑆)

 8.Do 𝑆𝑆𝑝𝑝∗ = 𝑆𝑆 and 𝑔𝑔(𝑝𝑝) = 𝑓𝑓(𝑆𝑆𝑝𝑝∗)

 end

Pseudocode 3. Heuristic Algorithm

As we can see, the heuristic algorithm obtains the initial solution for 𝑝𝑝 = 1, which is trivial.
Subsequently, it uses the solution obtained for 𝑝𝑝 – 1 (𝑆𝑆𝑎𝑎𝑛𝑛𝑎𝑎) in each iteration to complete a rapid
initial solution 𝑆𝑆 for 𝑝𝑝. This initial solution is improved by a local search procedure (LocalSearch)
and the approximation to 𝑆𝑆𝑝𝑝∗ and 𝑔𝑔(𝑝𝑝) is thereby obtained.

The LocalSearch procedure is an iterative method. It works as follows: in each iteration the set
of the “neighborhood solutions” of the current solution 𝑆𝑆 is explored; if the current solution 𝑆𝑆 is
improved by its best neighborhood solution, 𝑆𝑆’, then the current solution moves to 𝑆𝑆’. The
process ends if none of the neighborhood solutions improves the current solution. The set of
the “neighborhood solutions” of the current solution 𝑆𝑆 is denoted as 𝑁𝑁(𝑆𝑆). The LocalSearch
procedure is described in Pseudocode 4.

Procedure LocalSearch (input: 𝑝𝑝0, var 𝑆𝑆)

Repeat

 1. 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑓𝑓(𝑆𝑆)

 2. Determine 𝑆𝑆’ = 𝑎𝑎𝑎𝑎𝑔𝑔𝑚𝑚𝑎𝑎𝑥𝑥 { 𝑓𝑓(𝑆𝑆’’) ∶ 𝑆𝑆’’ ∈ 𝑁𝑁(𝑆𝑆) }

 3. If 𝑓𝑓(𝑆𝑆′) > 𝑓𝑓(𝑆𝑆) then do 𝑆𝑆 = 𝑆𝑆’

until 𝑓𝑓(𝑆𝑆′) ≤ 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜

Pseudocode 4. LocalSearch Procedure

𝑁𝑁(𝑆𝑆) is the set of feasible solutions that can be reached from 𝑆𝑆 by neighborhood moves
(neighboring moves are thus identified with the solutions they generate). In this case, each move
is defined by exchanging an element of 𝑆𝑆 for an element outside it.

6. Computational experiments

To analyze the performance of the basic Branch & Bound method and its variant, we performed
a set of computational experiments. For this purpose we designed set of X and Y matrices . The
process of designing these matrices is described in subsection 6.1. In addition, a set of databases
from the well-known UCI (University of California, Irvine) repository is presented in subsection
6.2.

Two sets of computational experiments were performed. In sub-sections 6.3 and 6.4 we describe
these experiments and their corresponding results. The first set analyzed the efficiency of the
tools proposed in section 4 for reducing the computation time of the Branch & Bound method.
The second set compared the performance of our Branch & Bound method (specifically the
variant proposed in section 4) with some well-known methods for feature selection in linear
regression.

It should be noted that all the algorithms, methods, and procedures described in this study were
implemented in Object Pascal using the Delphi compiler and the Rad Studio (10.3 – Rio)
development environment. All the experiments were performed on an i7 7700 CPU 4.20 GHz PC
using the same compiler.

6.1 Design of data matrices

A set of data matrices were generated for the various computational tests. These matrices are
composed of the 𝑋𝑋 matrix of the independent variables, and (column) 𝑌𝑌 for the dependent
variable. The process of generating these matrices (similar to those used in Brusco et al. 2009
and Pacheco et al. 2013) consists of designing population correlation matrices 𝐿𝐿 with size 𝑛𝑛; a
set of 𝑚𝑚 vectors following the normal distribution with the 𝐿𝐿 correlation matrix is generated
from each population correlation matrix 𝐿𝐿; these m vectors make up the 𝑋𝑋 matrix (each vector
is a row), and finally the 𝑌𝑌 column is obtained from 𝑋𝑋. In Pacheco et al. (2013) it is explained
how to generate vectors following the distribution 𝑁𝑁(𝟎𝟎, 𝐿𝐿).

The population correlation matrices 𝐿𝐿 follow a simple pattern: the correlations between the
different variables can have two values: a high value (0.7) and a low value (0.2). Specifically,
variables 1, 2, 3 have high correlation values with each other and a low correlation value with
the rest, variables 4, 5, 6 have high correlation values with each other and a low correlation
value with the rest, and so on. As an example, a correlation population matrix 𝐿𝐿 is shown below
with 𝑛𝑛 = 12.

17.07.02.02.02.02.02.02.02.02.02.0
7.017.02.02.02.02.02.02.02.02.02.0
7.07.012.02.02.02.02.02.02.02.02.0
2.02.02.017.07.02.02.02.02.02.02.0
2.02.02.07.017.02.02.02.02.02.02.0
2.02.02.07.07.012.02.02.02.02.02.0
2.02.02.02.02.02.017.07.02.02.02.0
2.02.02.02.02.02.07.017.02.02.02.0
2.02.02.02.02.02.07.07.012.02.02.0
2.02.02.02.02.02.02.02.02.017.07.0
2.02.02.02.02.02.02.02.02.07.017.0
2.02.02.02.02.02.02.02.02.0077.01

As explained above, for each correlation population matrix 𝐿𝐿 a set of 𝑚𝑚 vectors (cases) is
generated following the distribution 𝑁𝑁(𝟎𝟎,𝐿𝐿). A value of 𝑚𝑚 = 100000 was used. These 𝑚𝑚 vectors
(cases) make up the matrix 𝑋𝑋.

Finally, the values of 𝑦𝑦𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑚𝑚, are obtained in the following way:

𝑦𝑦𝑖𝑖 = 𝛽𝛽1 · 𝑥𝑥𝑖𝑖1 + 𝛽𝛽2 · 𝑥𝑥𝑖𝑖2 +··· + 𝛽𝛽𝑛𝑛 · 𝑥𝑥𝑖𝑖𝑛𝑛 + 0.5 · 𝜀𝜀

where 𝜀𝜀 is a vector generated from the normal distribution 𝑁𝑁(0,1). The values of 𝛽𝛽𝑖𝑖 are assigned
as follows:

𝛽𝛽1 = 0,𝛽𝛽2 = 0.3,𝛽𝛽3 = 1,𝛽𝛽4 = 0,𝛽𝛽5 = 0.3,𝛽𝛽6 = 1,𝛽𝛽7 = 0,𝛽𝛽8 = 0.3,𝛽𝛽9 = 1, …

and so on.

Following this process, 19 matrices (𝑋𝑋 | 𝑌𝑌), with different values of 𝑛𝑛, were generated (one for
each value). For each matrix a range of values of 𝑝𝑝 was considered. The lowest value of 𝑝𝑝 was
defined as ⌊𝑛𝑛 · 0.1⌋ + 1, and the highest as ⌊𝑛𝑛 · 0.2⌋+ 1. The problem was to be solved for each
of the values of 𝑝𝑝 in this range, in each matrix. These values are shown in Table 1.

Matrix # 𝑛𝑛 𝑝𝑝 range Matrix # 𝑛𝑛 𝑝𝑝 range
1 18 2 – 4 11 48 5 – 10
2 21 3 – 5 12 51 6 – 11
3 24 3 – 5 13 54 6 – 11
4 27 3 – 6 14 57 6 – 12
5 30 4 – 7 15 60 7 – 13
6 33 4 – 7 16 63 7 – 13

Matrix # 𝑛𝑛 𝑝𝑝 range Matrix # 𝑛𝑛 𝑝𝑝 range
7 36 4 – 8 17 66 7 – 14
8 39 4 – 8 18 69 7 – 14
9 42 5 – 9 19 72 8 – 15

10 45 5 – 10
Table 1. Matrices and values of 𝑝𝑝 considered

The parameters related to the design of the population matrix, 𝑋𝑋, follow the same structure and
values as in Pacheco et al. (2013). The parameters of the linear model used to obtain the vector
𝑦𝑦 follow similar patterns as in other recent works (for example Gijbels and Vrinssen, 2015).

6.2. Databases from the literature

As well as the matrices described in subsection 6.1, 10 databases from the well-known UCI
repository (Dua and Graff, 2019) at https://archive.ics.uci.edu/ml/index.php were used for the
computational experiments. Table 2 shows these databases and their features: number of cases
(𝑚𝑚) and number of variables (𝑛𝑛). It also indicates the range of values of 𝑝𝑝 to be used (the same
criterion was followed as in subsection 6.1)

Database 𝒎𝒎 𝒏𝒏 𝒑𝒑 range
1 YearPredictionMsdn 515345 90 10 – 19
2

Buzz in social media
TomsHardware 28179 96 10 – 20

3 Twitter 583250 77 8 – 16
4 Parkinson Speech Dataset with Multiple

Types of Sound Recordings 1040 27 3 – 6

5 Geographical Original of Music 1059 68 7 – 14
6

Facebook Comment
Volume Dataset

Feature_Variant_1 40949
53 6 – 11 7 Feature_Variant_2 81312

8 Feature_Variant_3 121098
9 Superconductivity Data 21263 81 9 – 17

10 Parkinson Telemonitoring 5875 20 3 – 5
Table 2. Databases used

The data used were the same as those that appear in the UCI repository; in other words, they
were not transformed or manipulated in any way. Only in the Geographical Original of Music
database were some changes made. This database uses two dependent variables, latitude and
longitude (geodesic coordinates), indicating the location of each case. We found the middle
value of these variables, that is, the location of the “midpoint” of all cases. We then calculated
the Euclidean distance from each case to this midpoint. This distance to the midpoint was taken
as a new dependent variable and the original dependent variables (latitude and longitude) were
ignored. Nevertheless, the data used are available to interested readers.

6.3 Computational results: comparison of the Branch & Bound methods

This subsection presents computational tests comparing the method described in section 3
(which we shall denote as BnB Original) and the variant described in section 4 (which we shall
call BnB Variant). For both methods a maximum computation time of 1800 seconds was set for
each database. The object was to avoid excessive computation times. Both methods are exact,
and if they end without reaching this maximum time they guarantee that the optimal solution is
obtained. The design of both methods ensures that they find the solution for all values of 𝑝𝑝 ≤

https://archive.ics.uci.edu/ml/index.php

𝑝𝑝0. Therefore, when they are executed taking 𝑝𝑝0 as the maximum value in the range considered
for each matrix (database), they find the solution for all the values of 𝑝𝑝 in this range. Table 3
shows the results for the matrices generated, described in subsection 6.1 (hereinafter “fictitious
matrices”). For each of these matrices, the computation time in seconds (time) of both methods
and the value of the objective function (𝒇𝒇) for each value of 𝑝𝑝 in the range considered are shown.
In the case of the variant, the computation time includes the time used by the heuristic method
executed beforehand. For the matrices in which the maximum computation time was reached,
the results achieved up to that point are shown. In these cases it is not guaranteed that the
solutions are optimal and the best value is indicated in bold type.

𝒏𝒏 𝒑𝒑
BnB Original BnB Variant

time 𝒇𝒇 time 𝒇𝒇

18
2

0.211
0.54267

0.114
0.54267

3 0.69606 0.69606
4 0.81110 0.81110

21
3

1.256
0.65949

0.766
0.65949

4 0.76851 0.76851
5 0.85269 0.85269

24
3

3.307
0.63320

1.841
0.63320

4 0.73722 0.73722
5 0.81792 0.81792

27

3

19.851

0.61118

12.410

0.61118
4 0.71220 0.71220
5 0.79005 0.79005
6 0.85219 0.85219

30

4

107.749

0.69208

77.329

0.69208
5 0.76798 0.76798
6 0.82844 0.82844
7 0.87801 0.87801

33

4

294.822

0.67477

191.636

0.67477
5 0.74914 0.74914
6 0.80806 0.80806
7 0.85630 0.85630

36

4

1617.791

0.66261

1220.798

0.66261
5 0.73451 0.73451
6 0.79233 0.79233
7 0.83947 0.83947
8 0.87850 0.87850

39

4

1800*

0.64955

1800*

0.64955
5 0.72105 0.72105
6 0.77763 0.77763
7 0.82393 0.82393
8 0.86273 0.86273

42

5

1800*

0.70964

1800*

0.70964
6 0.76520 0.76520
7 0.81105 0.81105
8 0.84907 0.84907
9 0.88116 0.88116

45

5

1800*

0.70046

1800*

0.70046
6 0.75609 0.75609
7 0.80077 0.80077
8 0.83806 0.83806
9 0.86954 0.86954

𝒏𝒏 𝒑𝒑
BnB Original BnB Variant

time 𝒇𝒇 time 𝒇𝒇
10 0.89654 0.89654

48

5

1800*

0.69201

1800*

0.69201
6 0.74630 0.74630
7 0.79068 0.79068
8 0.82773 0.82773
9 0.85916 0.85916

10 0.88585 0.88585

51

6

1800*

0.73570

1800*

0.73570
7 0.77994 0.77994
8 0.81687 0.81687
9 0.84808 0.84808

10 0.87477 0.87477
11 0.89778 0.89780

54

6

1800*

0.73073

1800*

0.73073
7 0.77405 0.77405
8 0.81019 0.81019
9 0.84091 0.84091

10 0.86721 0.86721
11 0.88999 0.88999

57

6

1800*

0.72443

1800*

0.72443
7 0.76742 0.76742
8 0.80340 0.80340
9 0.83374 0.83374

10 0.85963 0.85973
11 0.88201 0.88236
12 0.90162 0.90196

60

7

1800*

0.76180

1800*

0.76180
8 0.79709 0.79717
9 0.82704 0.82706

10 0.85275 0.85275
11 0.87503 0.87506
12 0.89449 0.89449
13 0.91166 0.91176

63

7

1800*

0.75669

1800*

0.75669
8 0.79182 0.79182
9 0.82176 0.82176

10 0.84731 0.84731
11 0.86910 0.86910
12 0.88833 0.88833
13 0.90528 0.90529

66

7

1800*

0.75217

1800*

0.75217
8 0.78713 0.78713
9 0.81647 0.81650

10 0.84143 0.84186
11 0.86329 0.86367
12 0.88242 0.88258
13 0.89927 0.89946
14 0.91417 0.91434

69

7

1800*

0.74599

1800*

0.74644
8 0.78074 0.78119
9 0.81008 0.81053

10 0.83536 0.83562
11 0.85726 0.85749

𝒏𝒏 𝒑𝒑
BnB Original BnB Variant

time 𝒇𝒇 time 𝒇𝒇
12 0.87623 0.87640
13 0.89297 0.89326
14 0.90791 0.90820

72

8

1800*

0.77640

1800*

0.77640
9 0.80562 0.80562

10 0.83068 0.83068
11 0.85237 0.85237
12 0.87131 0.87134
13 0.88810 0.88811
14 0.90302 0.90302
15 0.91626 0.91626

Table 3. Comparison of the two Branch & Bound methods in the
fictitious matrices

The following conclusions can be drawn from Table 3:

- The two Branch & Bound methods managed to reach a conclusion in data matrices of up to 36
variables inclusive. In these matrices the optimal solutions were found for each of the values of
𝑝𝑝 considered. However, we can see that in all these matrices the computation time taken by the
variant was clearly shorter. Table 4 shows the percentage reduction in computation time for the
databases in which both methods reached a conclusion (𝑛𝑛 ≤ 36). As we can see, this percentage
reduction ranged from 24% to nearly 46%.

- For matrices with more variables (𝑛𝑛 ≥ 39), the execution of both methods was interrupted
when they reached the set time of 1800 seconds. In these cases it is not guaranteed that the
solutions obtained are the optimal ones. Nevertheless, in all these matrices we can see that the
results obtained by the variant are always better than or as good as those obtained by the BnB
Original method. Specifically, of the 79 instances (combinations of matrices and values of 𝑝𝑝) they
reached the same value in 54 and the value obtained by the variant was strictly better in 25.

𝒏𝒏 % reduction 𝒏𝒏 % reduction
18 45.97 30 28.23
21 39.01 33 35.00
24 44.33 36 24.54
27 37.48

Table 4. Time reductions achieved by
BnB Variant

Analogous tests were performed with the databases from the literature. Table 5 shows the
results obtained.

Base 𝒑𝒑
BnB Original BnB Variant

time 𝒇𝒇 time 𝒇𝒇

YearPredictionMsdn

10

1800*

0.19744

1800*

0.20038
11 0.20173 0.20321
12 0.20469 0.20609
13 0.20689 0.20842
14 0.20889 0.21104
15 0.21078 0.21271
16 0.21257 0.21428

Base 𝒑𝒑
BnB Original BnB Variant

time 𝒇𝒇 time 𝒇𝒇
17 0.21448 0.21594
18 0.21616 0.21743
19 0.21758 0.21885

Buzz in social media-
TomsHardware

10

1800*

0.96050

1800*

0.96050
11 0.96072 0.96078
12 0.96109 0.96110
13 0.96142 0.96144
14 0.96178 0.96178
15 0.96195 0.96195
16 0.96214 0.96220
17 0.96246 0.96264
18 0.96266 0.96266
19 0.96277 0.96292
20 0.96291 0.96306

Buzz in social media-
Twitter

8

1800*

0.93380

1800*

0.93380
9 0.93423 0.93423

10 0.93454 0.93454
11 0.93456 0.93471
12 0.93456 0.93489
13 0.93476 0.93497
14 0.93491 0.93505
15 0.93500 0.93508
16 0.93508 0.93524

Parkinson Speech
Dataset

3

0.629

0.38551

0.314

0.38551
4 0.40038 0.40038
5 0.40650 0.40650
6 0.41360 0.41360

Geographical Original
of Music

7

1800*

0.16314

1800*

0.16314
8 0.17114 0.17202
9 0.18107 0.18165

10 0.19030 0.19030
11 0.19657 0.19710
12 0.20444 0.20471
13 0.20970 0.21178
14 0.21428 0.21606

Facebook Comment
Volume Dataset -

Feature_Variant_1

6

38.084

0.31653

33.738

0.31653
7 0.31813 0.31813
8 0.31980 0.31980
9 0.32139 0.32139

10 0.32199 0.32199
11 0.32260 0.32260

Facebook Comment
Volume Dataset -

Feature_Variant_2

6

63.297

0.31946

19.313

0.31946
7 0.32249 0.32249
8 0.32357 0.32357
9 0.32439 0.32439

10 0.32519 0.32519
11 0.32587 0.32587

Facebook Comment
Volume Dataset -

Feature_Variant_3

6

122.466

0.34604

16.477

0.34604
7 0.34720 0.34720
8 0.34822 0.34822
9 0.34902 0.34902

10 0.34956 0.34956
11 0.35002 0.35002

Base 𝒑𝒑
BnB Original BnB Variant

time 𝒇𝒇 time 𝒇𝒇

Superconductivity
Data

9

1800*

0.66388

1800*

0.67094
10 0.67094 0.67866
11 0.67477 0.68126
12 0.67840 0.68469
13 0.68133 0.68860
14 0.68678 0.69165
15 0.68839 0.69450
16 0.69374 0.69901
17 0.69682 0.69939

Parkinson
Telemonitoring

3
0.019

0.19317
0.008

0.19317
4 0.21508 0.21508
5 0.22935 0.22935

Table 5. Comparison of the two Branch & Bound methods for the databases

The conclusions from Table 5 are very similar to those from Table 3:

- The two Branch & Bound methods managed to reach a conclusion in databases 4, 6, 7, 8 and
10, which are those with the lowest numbers of variables. In these databases both methods
obtained all the optimal solutions. However, with these databases we can also see that BnB
Variant always manages to reduce the computation time taken by BnB Original. Table 6 shows
the percentage reduction. As we can see, this percentage reduction ranges from 11% to nearly
87%.

- For the remaining databases the execution of both methods was interrupted when they
reached the set time of 1800 seconds, and therefore the optimal result is not guaranteed.
Nevertheless, in all these databases we can see that the results obtained by BnB Variant are
always better than or as good as those obtained by the BnB Original method. Specifically, of the
47 instances the same value was reached in 9 and the value obtained by BnB Variant was strictly
better in the other 38.

DataBase % reduction
Parkinson Speech Dataset with Multiple Types of Sound Recordings 50.08

Facebook Comment Volume Dataset - Feature_Variant_1 11.41
Facebook Comment Volume Dataset - Feature_Variant_2 69.49
Facebook Comment Volume Dataset - Feature_Variant_3 86.55

Parkinson Telemonitoring 57.89
Table 6. Time reductions achieved by BnB Variant in the databases

where the execution was not interrupted

In conclusion, it can be seen that in instances with a moderate number of variables (𝑛𝑛 ≤ 36 in
the matrices and as much as 𝑛𝑛 = 53 in the databases from the literature) both Branch & Bound
methods manage to finish and therefore to reach the optimal solution, although BnB Variant is
faster in reaching the solution in a substantially shorter time. For the instances with a higher
number of variables (n > 36 in the fictitious matrices and n ≥ 68 in the databases from the
literature) neither of the two Branch & Bound methods guarantees that the optimal solution is
obtained, since the procedure was interrupted to avoid excessive computation times.
Nevertheless, in these instances BnB Variant always achieved the better result. The BnB Original
method, in turn, reached the best result in 63 of the total of 126 instances (79 simulated and 47

from the literature). In other words, BnB Variant was strictly better than BnB Original in half of
the total of 126 instances and the two methods were equally good in the other half of the
instances. In short, using the information supplied by a heuristic executed beforehand (such as
the one proposed in section 5) makes the resulting Branch & Bound method (in this case BnB
Variant) more efficient and effective than the original method.

6.4 Comparison of the Branch & Bound method (BnB Variant) with other variable selection
strategies

In this subsection the results obtained by the BnB Variant method are compared with other well-
known methods and selection strategies in the literature for regression, as well as with general-
purpose optimization software. Specifically, the methods with which it is compared are the
following:

- Forward (Fwd): This method, Efroymson (1960), is a very well-known classical method present
in well-known statistical software such as SPSS, StatGraphics, etc.

- GARROTE: As indicated in subsection 1.2 this method was proposed in Breiman (1996). In our
case we used the algorithm proposed by Yuan and Lin (2006, 2007).

- LASSO: As indicated in subsection 1.2 this method was proposed in Tibshirani (1996). In this
study the adaptation of the Coordinate Descent algorithm proposed in Wu and Lange (2009)
was implemented.

- LARS: As indicated in subsection 1.2 this method was proposed in Efron et al. (2004).

- LocalSolver: In this case, the commercial software LocalSolver (version 8.0 Academic-Desktop)
optimizer was chosen, since it has been used successfully in various fields, as presented in
www.localsolver.com. LocalSolver uses its own programming language with data structures that
are especially useful in routing problems.

Table 7 shows the results obtained by the BnB Variant method and these 4 classical methods for
the matrices defined in subsection 6.1. The best result in indicated in bold type.

𝒏𝒏 𝒑𝒑 BnB Variant Fwd GARROTE LASSO LARS LocalSolver

18
2 0.54267 0.54267 0.54066 0.54066 0.54066 0.43903
3 0.69606 0.69593 0.69593 0.69593 0.69593 0.65868
4 0.81110 0.81062 0.81062 0.81062 0.81062 0.74651

21
3 0.65949 0.65949 0.65949 0.65949 0.65949 0.56768
4 0.76851 0.76851 0.76765 0.76765 0.76765 0.68873
5 0.85269 0.85269 0.85191 0.85191 0.85191 0.67849

24
3 0.63320 0.63320 0.63194 0.63194 0.63194 0.56213
4 0.73722 0.73722 0.73524 0.73524 0.73524 0.59255
5 0.81792 0.81792 0.81640 0.81640 0.81640 0.69482

27

3 0.61118 0.61118 0.60829 0.60975 0.60975 0.57576
4 0.71220 0.71220 0.71010 0.71010 0.71010 0.66636
5 0.79005 0.79005 0.78828 0.78838 0.78838 0.66949
6 0.85219 0.85216 0.85097 0.85097 0.85097 0.73062

30
4 0.69208 0.69208 0.69108 0.69108 0.69108 0.64478
5 0.76798 0.76798 0.76688 0.76688 0.76688 0.70922
6 0.82844 0.82840 0.82758 0.82681 0.82681 0.71688

http://www.localsolver.com/

𝒏𝒏 𝒑𝒑 BnB Variant Fwd GARROTE LASSO LARS LocalSolver
7 0.87801 0.87788 0.87660 0.87660 0.87660 0.73669

33

4 0.67477 0.67472 0.67205 0.67205 0.67205 0.62256
5 0.74914 0.74850 0.74740 0.74740 0.74740 0.62966
6 0.80806 0.80757 0.80631 0.80689 0.80689 0.70167
7 0.85630 0.85586 0.85436 0.85519 0.85519 0.75820

36

4 0.66261 0.66261 0.65935 0.66087 0.66087 0.53197
5 0.73451 0.73451 0.73273 0.73273 0.73273 0.61930
6 0.79233 0.79233 0.79176 0.79176 0.79176 0.66214
7 0.83947 0.83930 0.83909 0.83909 0.83909 0.70202
8 0.87850 0.87850 0.87850 0.87850 0.87850 0.81362

39

4 0.64955 0.64955 0.64919 0.64919 0.64919 0.53442
5 0.72105 0.72040 0.71948 0.71896 0.71896 0.65749
6 0.77763 0.77733 0.77580 0.77580 0.77580 0.69195
7 0.82393 0.82393 0.82261 0.82261 0.82261 0.73780
8 0.86273 0.86273 0.86188 0.86188 0.86188 0.75304

42

5 0.70964 0.70964 0.70766 0.70766 0.70766 0.66351
6 0.76520 0.76520 0.76307 0.76307 0.76307 0.72921
7 0.81105 0.81105 0.80938 0.80856 0.80856 0.68832
8 0.84907 0.84891 0.84722 0.84722 0.84722 0.70835
9 0.88116 0.88088 0.88015 0.88015 0.88015 0.80192

45

5 0.70046 0.70030 0.69927 0.69927 0.69927 0.61609
6 0.75609 0.75609 0.75515 0.75515 0.75515 0.64211
7 0.80077 0.80074 0.80049 0.79980 0.79980 0.73821
8 0.83806 0.83798 0.83707 0.83695 0.83755 0.77931
9 0.86954 0.86954 0.86887 0.86887 0.86887 0.75767

10 0.89654 0.89654 0.89532 0.89532 0.89532 0.75821

48

5 0.69201 0.69161 0.68951 0.68951 0.68951 0.63415
6 0.74630 0.74597 0.74423 0.74423 0.74423 0.64660
7 0.79068 0.79063 0.78935 0.78935 0.78935 0.73581
8 0.82773 0.82773 0.82645 0.82716 0.82716 0.74157
9 0.85916 0.85916 0.85833 0.85867 0.85867 0.73368

10 0.88585 0.88585 0.88541 0.88543 0.88543 0.78585

51

6 0.73570 0.73537 0.73360 0.73383 0.73383 0.63479
7 0.77994 0.77976 0.77849 0.77849 0.77849 0.69594
8 0.81687 0.81675 0.81468 0.81468 0.81468 0.74895
9 0.84808 0.84800 0.84586 0.84586 0.84586 0.73550

10 0.87477 0.87463 0.87304 0.87304 0.87304 0.80737
11 0.89780 0.89760 0.89615 0.89615 0.89615 0.79860

54

6 0.73073 0.73033 0.72933 0.72933 0.72933 0.64310
7 0.77405 0.77393 0.77256 0.77242 0.77242 0.67321
8 0.81019 0.81012 0.80876 0.80876 0.80876 0.70052
9 0.84091 0.84077 0.84019 0.83909 0.83909 0.73799

10 0.86721 0.86716 0.86583 0.86583 0.86583 0.80871
11 0.88999 0.88999 0.88879 0.88879 0.88879 0.78571

57

6 0.72443 0.72443 0.72213 0.72213 0.72213 0.69335
7 0.76742 0.76742 0.76502 0.76502 0.76502 0.69931
8 0.80340 0.80313 0.80088 0.80088 0.80088 0.75657
9 0.83374 0.83337 0.83198 0.83191 0.83191 0.73174

10 0.85973 0.85928 0.85861 0.85861 0.85861 0.78841
11 0.88236 0.88181 0.88130 0.88130 0.88130 0.81375
12 0.90196 0.90147 0.90064 0.90119 0.90119 0.81888

60
7 0.76180 0.76145 0.76004 0.76004 0.76004 0.70807
8 0.79717 0.79703 0.79597 0.79597 0.79597 0.71227

𝒏𝒏 𝒑𝒑 BnB Variant Fwd GARROTE LASSO LARS LocalSolver
9 0.82706 0.82702 0.82608 0.82570 0.82570 0.73724

10 0.85275 0.85263 0.85148 0.85148 0.85148 0.81139
11 0.87506 0.87495 0.87413 0.87383 0.87383 0.75926
12 0.89449 0.89449 0.89358 0.89348 0.89348 0.81451
13 0.91176 0.91164 0.91067 0.91062 0.91062 0.83932

63

7 0.75669 0.75631 0.75469 0.75469 0.75469 0.72183
8 0.79182 0.79180 0.78927 0.78927 0.78927 0.72149
9 0.82176 0.82155 0.81912 0.81912 0.81912 0.77438

10 0.84731 0.84731 0.84527 0.84487 0.84487 0.78130
11 0.86910 0.86910 0.86749 0.86749 0.86749 0.82835
12 0.88833 0.88833 0.88649 0.88649 0.88649 0.78806
13 0.90529 0.90528 0.90416 0.90416 0.90416 0.83055

66

7 0.75217 0.75184 0.74989 0.74989 0.74989 0.67840
8 0.78713 0.78664 0.78401 0.78401 0.78401 0.69603
9 0.81650 0.81608 0.81441 0.81441 0.81441 0.77959

10 0.84186 0.84128 0.84020 0.84020 0.84020 0.74353
11 0.86367 0.86322 0.86204 0.86204 0.86204 0.76765
12 0.88258 0.88242 0.88137 0.88137 0.88137 0.80298
13 0.89946 0.89927 0.89832 0.89832 0.89832 0.83559
14 0.91434 0.91417 0.91358 0.91358 0.91358 0.84046

69

7 0.74644 0.74558 0.74428 0.74428 0.74428 0.67092
8 0.78119 0.78028 0.77928 0.77928 0.77928 0.70632
9 0.81053 0.80961 0.80895 0.80895 0.80895 0.75631

10 0.83562 0.83488 0.83384 0.83384 0.83384 0.79285
11 0.85749 0.85680 0.85605 0.85577 0.85577 0.77502
12 0.87640 0.87586 0.87508 0.87508 0.87508 0.80975
13 0.89326 0.89275 0.89232 0.89232 0.89232 0.82294
14 0.90820 0.90778 0.90752 0.90752 0.90752 0.79817

72

8 0.77640 0.77640 0.77558 0.77558 0.77558 0.71184
9 0.80562 0.80562 0.80523 0.80523 0.80523 0.71434

10 0.83068 0.83068 0.83012 0.83012 0.83012 0.75642
11 0.85237 0.85237 0.85108 0.85108 0.85108 0.76582
12 0.87134 0.87131 0.87007 0.87007 0.87007 0.80658
13 0.88811 0.88810 0.88691 0.88691 0.88691 0.79588
14 0.90302 0.90302 0.90183 0.90183 0.90183 0.82840
15 0.91626 0.91626 0.91516 0.91516 0.91516 0.85412

Table 7. Comparison of the BnB Variant method with the Fwd,
GARROTE, LASSO, LARS and LocalSolver methods in the fictitious

matrices

From Table 7 the following conclusions can be drawn:

- Of the 105 instances analyzed the BnB Variant method achieved the best solution in all of them.
In the instances where the execution of this method ended within the maximum time set (𝑛𝑛 ≤
36) this result is obvious, since the solutions it obtained are optimal. However, it is interesting
that it also achieved the best results in all the instances where its execution was interrupted
(𝑛𝑛 ≥ 39) and where it was not guaranteed that the optimal result was obtained.

- The results obtained by the remaining methods are worse. Only the Fwd method obtained the
best result in an acceptable number of cases (41) while LARS, LASSO and GARROTE only achieved

the best result in 2 and LocalSolver in none. Table 8 shows the number of instances in which
each method obtained the best solution.

BnB Variant Fwd GARROTE LASSO LARS LocalSolver
105 41 2 2 2 0

Table 8. Number of instances in which each method
obtained the best solution in the matrices

To determine whether the solutions obtained by the BnB Variant method are significantly
better, various tests of means (t-tests) were conducted with the values obtained in Table 7.
Specifically, 5 tests were performed, one for each method with which the BnB Variant was
compared. Table 9 shows the results of these tests. As we can see, the differences are significant
in all 4 comparisons.

Test Mean std t-statistic p-value
BnB Variant versus Fwd 0.00018019 0.00023465 7.869 < 0.001

BnB Variant versus GARROTE 0.00142981 0.00063621 23.029 < 0.001
BnB Variant versus LASSO 0.00142981 0.00063621 23.029 < 0.001
BnB Variant versus LARS 0.00142981 0.00063621 23.029 < 0.001

BnB Variant versus LocalSolver 0.08424790 0.02927326 29.491 < 0.001
Table 9. T-tests to compare the results of BnB Variant with those of

the other methods (in the matrices)

In order to show more clearly some results of Table 7, two figures have been added (Figures 2
and 3). These figures correspond respectively with the instances of values 𝑛𝑛 = 66, 𝑝𝑝 = 14, and 𝑛𝑛
= 69, 𝑝𝑝 = 14.

Figure 2. Results obtained by different methods with 𝑛𝑛 = 66, 𝑝𝑝 = 14

0,9132

0,9134

0,9136

0,9138

0,914

0,9142

0,9144

BnB Variant Fwd GARROTE LASSO LARS

Figure 3. Results obtained by different methods with 𝑛𝑛 = 69, 𝑝𝑝 = 14

Finally, analogous tests were performed with the databases described in subsection 6.2. Table
10 shows the results.

Bases 𝒑𝒑 BnB Variant Fwd GARROTE LASSO LARS LocalSolver

YearPredictionMsdn

10 0.20038 0.19679 0.11615 0.11055 0.18660 0.06749
11 0.20321 0.20173 0.11913 0.11232 0.18782 0.11100
12 0.20609 0.20469 0.12014 0.11328 0.19157 0.11101
13 0.20842 0.20689 0.12033 0.11437 0.19303 0.07807
14 0.21104 0.20874 0.12135 0.11542 0.19315 0.11164
15 0.21271 0.21078 0.15439 0.11644 0.19574 0.08520
16 0.21428 0.21215 0.15506 0.11915 0.19736 0.08527
17 0.21594 0.21405 0.15620 0.15429 0.20164 0.05492
18 0.21743 0.21560 0.15704 0.15433 0.20282 0.05611
19 0.21885 0.21758 0.15779 0.15546 0.20320 0.05891

Buzz in social media-
TomsHardware

10 0.96050 0.95970 0.95311 0.95777 0.95391 0.77995
11 0.96078 0.96051 0.95311 0.95778 0.95391 0.81097
12 0.96110 0.96093 0.95312 0.95778 0.95392 0.87183
13 0.96144 0.96142 0.95312 0.95778 0.95398 0.80413
14 0.96178 0.96151 0.95312 0.95784 0.95462 0.80768
15 0.96195 0.96163 0.95312 0.95790 0.95485 0.87744
16 0.96220 0.96176 0.95312 0.95791 0.95501 0.92331
17 0.96264 0.96212 0.95312 0.95804 0.95501 0.88705
18 0.96266 0.96232 0.95313 0.95815 0.95512 0.81928
19 0.96292 0.96272 0.95313 0.95896 0.95513 0.90233
20 0.96306 0.96283 0.95313 0.95910 0.95537 0.92878

Buzz in social media-
Twitter

8 0.93380 0.93310 0.92327 0.92044 0.93124 0.86851
9 0.93423 0.93347 0.92359 0.92061 0.93156 0.83065

10 0.93454 0.93391 0.92360 0.92131 0.93358 0.82844
11 0.93471 0.93429 0.92360 0.92132 0.93360 0.89971
12 0.93489 0.93451 0.92360 0.92132 0.93384 0.89352
13 0.93497 0.93469 0.92360 0.92136 0.93390 0.92516
14 0.93505 0.93479 0.92360 0.92150 0.93391 0.91923
15 0.93508 0.93487 0.92360 0.92150 0.93394 0.88079
16 0.93524 0.93501 0.92360 0.92163 0.93427 0.92437

Parkinson Speech
Dataset

3 0.38551 0.38551 0.38380 0.37728 0.38551 0.36817
4 0.40038 0.39093 0.38835 0.38435 0.39016 0.00885
5 0.40650 0.39490 0.38970 0.38476 0.39430 0.05730
6 0.41360 0.41360 0.39216 0.38491 0.40044 0.05026
7 0.16314 0.15560 0.10447 0.10104 0.15031 0.09945

0,90700

0,90720

0,90740

0,90760

0,90780

0,90800

0,90820

0,90840

BnB Variant Fwd GARROTE LASSO LARS

Bases 𝒑𝒑 BnB Variant Fwd GARROTE LASSO LARS LocalSolver

Geographical
Original of Music

8 0.17202 0.17037 0.10579 0.10878 0.16089 0.08168
9 0.18165 0.17994 0.10735 0.10899 0.17455 0.06500

10 0.19030 0.18870 0.11046 0.10981 0.18027 0.07874
11 0.19710 0.19533 0.11181 0.12520 0.18357 0.08605
12 0.20471 0.20217 0.11339 0.12669 0.18996 0.10874
13 0.21178 0.20970 0.11772 0.12737 0.19345 0.11381
14 0.21606 0.21389 0.11852 0.12766 0.20281 0.10766

Facebook Comment
Volume Dataset -

Feature_Variant_1

6 0.31653 0.31653 0.29373 0.00058 0.00078 0.13749
7 0.31813 0.31813 0.29438 0.00058 0.00081 0.13750
8 0.31980 0.31959 0.29616 0.00098 0.00084 0.16228
9 0.32139 0.32139 0.31171 0.00103 0.00087 0.16571

10 0.32199 0.32199 0.31193 0.00103 0.02027 0.17638
11 0.32260 0.32260 0.31199 0.00104 0.03658 0.27331

Facebook Comment
Volume Dataset -

Feature_Variant_2

6 0.31946 0.31654 0.29409 0.00035 0.00045 0.14157
7 0.32249 0.31742 0.29560 0.00035 0.00055 0.14159
8 0.32357 0.31829 0.31051 0.00059 0.00057 0.17901
9 0.32439 0.31904 0.31208 0.00060 0.00057 0.18541

10 0.32519 0.31963 0.31210 0.00061 0.00062 0.18863
11 0.32587 0.32470 0.31322 0.00062 0.04576 0.27267

Facebook Comment
Volume Dataset -

Feature_Variant_3

6 0.34604 0.34469 0.32079 0.00059 0.00074 0.16549
7 0.34720 0.34551 0.32111 0.00059 0.00098 0.16550
8 0.34822 0.34659 0.32294 0.00101 0.00101 0.18558
9 0.34902 0.34750 0.33927 0.00114 0.00107 0.18812

10 0.34956 0.34832 0.33954 0.00115 0.00117 0.19416
11 0.35002 0.34888 0.33957 0.00117 0.03881 0.29946

Superconductivity
Data

9 0.67094 0.65799 0.49645 0.59077 0.63812 0.52677
10 0.67866 0.66353 0.50139 0.59132 0.64373 0.48502
11 0.68126 0.66736 0.50139 0.59515 0.65042 0.47507
12 0.68469 0.67161 0.50498 0.60245 0.66113 0.60153
13 0.68860 0.67625 0.50499 0.60827 0.66983 0.62785
14 0.69165 0.67990 0.52905 0.60876 0.67219 0.47725
15 0.69450 0.68617 0.52982 0.61103 0.67219 0.56584
16 0.69901 0.68853 0.54157 0.61212 0.67315 0.57063
17 0.69939 0.69281 0.55827 0.61282 0.67497 0.55451

Parkinson
Telemonitoring

3 0.19317 0.19317 0.17146 0.17146 0.19317 0.02816
4 0.21508 0.21508 0.17243 0.17441 0.21508 0.10168
5 0.22935 0.22935 0.17499 0.17499 0.22935 0.12257

Table 10. Comparison of the BnB Variant method with the Fwd,
GARROTE, LASSO, LARS and LocalSolver methods in the databases

The conclusions obtained from Table 10 are similar to those obtained from Table 7: the BnB
Variant method achieved the best results in all the databases analyzed and for all the values of
𝑝𝑝 considered. Only the Fwd and LARS methods managed to reach the best value in some cases
(10 and 4 respectively). The remaining methods, as shown in Table 11, did not achieve the best
value in any cases.

BnB Variant Fwd GARROTE LASSO LARS LocalSolver
72 10 0 0 4 0
Table 11. Number of instances in which each method

obtained the best solution in the databases

As with the matrices, to determine whether the solutions obtained by the BnB Variant method
are significantly better, various tests of means (t-tests) were conducted with the values obtained
in Table 10. The results of these tests are shown in Table 12. As we can see, the differences are
significant in all 5 comparisons.

Tests mean std t-statistic p-value
BnB Variant versus Fwd 0.00288319 0.00404840 6.043 < 0.001

BnB Variant versus GARROTE 0.04968625 0.05360251 7.865 < 0.001
BnB Variant versus LASSO 0.11795000 0.12730407 7.862 < 0.001
BnB Variant versus LARS 0.08912236 0.13605584 5.558 < 0.001

BnB Variant versus LocalSolver 0.12635014 0.07185972 14.920 < 0.001
Table 12. T-tests to compare the results of BnB Variant with those of

the other methods (databases)

In short, the BnB Variant method always obtained the best results. Only in a few instances did
some of the proposed methods manage to equal this best result (especially Fwd). Moreover, the
statistical tests show that the mean results obtained by BnB Variant are also significantly better.
Figure 4 shows the results corresponding to the database Buzz in social media – TomsHardware
and 𝑝𝑝 = 20.

Figure 4. Results obtained by different methods with the Buzz

in social media – TomsHardware database and 𝑝𝑝 = 20

It is important to point out that in our method, unlike others, the computational complexity
does not depend on the number of cases (as explained in the Appendix), which makes it possible
to work with databases containing a large number of cases (10000 cases in the simulated data
and more than 500000 in some of the databases from the literature).

In addition, it should be noted that since most applications of this problem (statistical studies of
various kinds) do not require obtaining solutions immediately, a moderate maximum execution
time can be set. In our case a maximum time of 1800 seconds was considered appropriate.

6.5 Experiments in high dimension matrices

The matrices and databases used in the previous sub-sections have different dimensions. Thus
the matrices defined in sub-section 6.1 have a number of cases 𝑚𝑚 = 100000 and the number of
variables varies from 𝑛𝑛 = 18 to 𝑛𝑛 = 72. Among the databases defined in subsection 6.2, the
smallest are Parkinson Speech Dataset with Multiple Types of Sound Recordings (𝑚𝑚 = 1040, 𝑛𝑛 =
27), and Parkinson Telemonitoring (𝑚𝑚 = 5875, 𝑛𝑛 = 20). While the largest databases are
YearPredictionMsdn (𝑚𝑚 = 515345, 𝑛𝑛 = 90) and Buzz in social media-Twitter (𝑚𝑚 = 583250, 𝑛𝑛 = 77).

0,951

0,953

0,955

0,957

0,959

0,961

0,963

BnB Variant Fwd GARROTE LASSO LARS

That is, the two largest databases have about 45-46 million real numbers. In short, some of the
matrices and databases have a dimension that can be considered high or at least moderately
high. However, in many real applications, larger databases are used. It would be interesting to
check the performance of our method in these larger databases or matrices.

Thus, in this section we perform some experiments with the aim of checking the performance
of our method in larger databases. For this purpose, a set of 4 matrices are designed in the same
way as those designed in sub-section 6.1, but with the following differences: the number of
cases is 𝑚𝑚 = 1000000 – that is, 10 times more than the matrices defined in sub-section 6.1; and
the number of variables varies from 𝑛𝑛 = 120 to 𝑛𝑛 = 210. So the number of real numbers varies
from 120 million to 210 million.

As in previous sections values of 𝑝𝑝 was considered from ⌊𝑛𝑛 · 0.1⌋ + 1 to ⌊𝑛𝑛 · 0.2⌋+ 1. These
values are shown in Table 13.

Matrix # 𝑛𝑛 𝑝𝑝 range
1 120 13 – 25
2 150 16 – 3 1
3 180 19 – 37
4 210 22 – 43

Table 13. Matrices and values of 𝑝𝑝 considered

Table 14 shows the results obtained in theses matrices by the BnB Variant method and the 4
classical methods considered in previous sections. The best result is indicated in bold type.

𝒏𝒏 𝒑𝒑 BnB Variant Fwd GARROTE LASSO LARS

120

13 0.80527 0.80522 0.80442 0.80442 0.80450
14 0.81893 0.81891 0.81824 0.81817 0.81817
15 0.83116 0.83116 0.83045 0.83045 0.83046
16 0.84216 0.84216 0.84128 0.84128 0.84150
17 0.85209 0.85209 0.85134 0.85133 0.85152
18 0.86111 0.86111 0.86022 0.86018 0.86061
19 0.86936 0.86935 0.86859 0.86847 0.86876
20 0.87692 0.87692 0.87617 0.87607 0.87632
21 0.88387 0.88387 0.88317 0.88315 0.88335
22 0.89029 0.89029 0.8896 0.88952 0.88976
23 0.89623 0.89623 0.89554 0.89550 0.89580
24 0.90176 0.90176 0.90107 0.90097 0.90133
25 0.90689 0.90689 0.90631 0.90627 0.90650

150

16 0.83991 0.83989 0.83907 0.83899 0.83907
17 0.84980 0.84980 0.84901 0.84886 0.84892
18 0.85878 0.85878 0.85794 0.85790 0.85798
19 0.86695 0.86695 0.86620 0.86605 0.86619
20 0.87446 0.87444 0.87366 0.87365 0.87377
21 0.88138 0.88133 0.88062 0.88050 0.88069
22 0.88776 0.88769 0.88698 0.88697 0.88700
23 0.89366 0.89358 0.89290 0.89276 0.89285
24 0.89913 0.89905 0.89844 0.89819 0.89834
25 0.90423 0.90416 0.90351 0.90350 0.90353
26 0.90899 0.90891 0.90826 0.90819 0.90833
27 0.91345 0.91336 0.91273 0.91271 0.91287

𝒏𝒏 𝒑𝒑 BnB Variant Fwd GARROTE LASSO LARS
28 0.91762 0.91753 0.91699 0.91696 0.91707
29 0.92155 0.92146 0.92092 0.92091 0.92108
30 0.92525 0.92515 0.92469 0.92454 0.92479
31 0.92873 0.92863 0.92825 0.92812 0.92825

180

19 0.86354 0.86350 0.86288 0.86281 0.86288
20 0.87108 0.87101 0.87035 0.87022 0.87035
21 0.87799 0.87791 0.87725 0.87715 0.87725
22 0.88437 0.88428 0.88363 0.88358 0.88363
23 0.89025 0.89018 0.88948 0.88946 0.88961
24 0.89572 0.89567 0.89502 0.89485 0.89502
25 0.90083 0.90077 0.90010 0.89999 0.90011
26 0.90559 0.90552 0.90485 0.90478 0.90487
27 0.91004 0.90997 0.90929 0.90917 0.90931
28 0.91420 0.91415 0.91352 0.91347 0.91354
29 0.91812 0.91807 0.91746 0.91738 0.91746
30 0.92180 0.92177 0.92121 0.92100 0.92116
31 0.92527 0.92523 0.92469 0.92454 0.92469
32 0.92855 0.92851 0.92800 0.92788 0.92797
33 0.93165 0.93161 0.93111 0.93105 0.93107
34 0.93457 0.93455 0.93406 0.93399 0.93404
35 0.93735 0.93734 0.93684 0.93674 0.93684
36 0.93999 0.93998 0.93950 0.93940 0.93950
37 0.94250 0.94249 0.94202 0.94201 0.94205

210

22 0.88130 0.88126 0.88043 0.88038 0.88050
23 0.88717 0.88713 0.88637 0.88628 0.88637
24 0.89263 0.89258 0.89183 0.89163 0.89183
25 0.89771 0.89767 0.89696 0.89680 0.89697
26 0.90243 0.90242 0.90175 0.90158 0.90175
27 0.90687 0.90686 0.90615 0.90599 0.90619
28 0.91101 0.91101 0.91029 0.91028 0.91033
29 0.91490 0.91491 0.91421 0.91400 0.91421
30 0.91857 0.91856 0.91790 0.91769 0.91790
31 0.92202 0.92200 0.92135 0.92117 0.92135
32 0.92528 0.92525 0.92459 0.92450 0.92469
33 0.92837 0.92833 0.92774 0.92763 0.92775
34 0.93129 0.93125 0.93066 0.93065 0.93072
35 0.93406 0.93402 0.93345 0.93338 0.93350
36 0.93669 0.93665 0.93615 0.93597 0.93615
37 0.93919 0.93916 0.93865 0.93856 0.93867
38 0.94157 0.94154 0.94101 0.94098 0.94106
39 0.94387 0.94381 0.94332 0.94319 0.94340
40 0.94604 0.94598 0.94555 0.94547 0.94555
41 0.94811 0.94806 0.94763 0.94755 0.94765
42 0.95009 0.95005 0.94963 0.94942 0.94966
43 0.95199 0.95194 0.95154 0.95149 0.95156

Table 14. Comparison of the BnB Variant method with the
Fwd, GARROTE, LASSO and LARS

The conclusions obtained from Table 14 are similar to those obtained in sub-section 6.4: the BnB
Variant method achieved the best results in almost all the matrices analyzed and for all the
values of 𝑝𝑝 considered (69 of 70 instances). Only the Fwd method managed to reach the best
value in some cases (15). The remaining methods, as shown in Table 15, did not achieve the best
value in any cases.

BnB Variant Fwd GARROTE LASSO LARS
69 15 0 0 0

Table 15. Number of instances in which each method
obtained the best solution in the matrices

As in previous sections, to determine whether the solutions obtained by the BnB Variant method
are significantly better, various tests of means (t-tests) were conducted with the values obtained
in Table 14. The results of these tests are shown in Table 16. As we can see, the differences are
significant in all 4 comparisons

Test Mean std t-statistic p-value
BnB Variant versus Fwd 0.00003771 0.00003051 10.342 < 0.0001

BnB Variant versus GARROTE 0.00067529 0.00011173 50.568 < 0.0001
BnB Variant versus LASSO 0.00076085 0.00011939 53.318 < 0.0001
BnB Variant versus LARS 0.00062629 0.00012120 43.232 < 0.0001

Table 16. T-tests to compare the results of BnB Variant with those of
the other methods (in the matrices)

In short, the BnB Variant method always obtained the best results. Only in a few instances did
some of the proposed methods manage to equal this best result (especially Fwd). Moreover, the
statistical tests show that the mean results obtained by BnB Variant are also significantly better.
Figures 5 and 6 show the results corresponding respectively with the instances of values 𝑛𝑛 = 150,
𝑝𝑝 = 31, and 𝑛𝑛 = 210, 𝑝𝑝 = 43.

Figure 6. Results obtained by different methods with 𝑛𝑛 = 150, 𝑝𝑝 = 31

0,928

0,9281

0,9282

0,9283

0,9284

0,9285

0,9286

0,9287

0,9288

BnB Variant Fwd GARROTE LASSO LARS

Figure 7. Results obtained by different methods with 𝑛𝑛 = 210, 𝑝𝑝 = 43

As mentioned above, the objective of our method is not so much to find the most relevant
variables, but rather the subset of variables that achieve the highest prediction accuracy.
However, sometimes it can also be important to determine the most relevant variables. It is
therefore interesting to examine the ability of our method to select the most relevant variables.
From the definition of the coefficients 𝛽𝛽𝑖𝑖 and the correlation population matrix 𝐿𝐿 (see sub-
section 6.1) the most significant variables are 3, 6, 9, 12, The variables selected by our method
in the tests of this section have been recorded and, in fact, all of them have been verified as
belonging to this set (index variables multiple of 3). Therefore, we understand that our method
is also capable of selecting the most relevant variables.

7. Conclusions

This study deals with the variable selection problem for linear regression. This model has a wide
range of applications, as explained in detail in the introduction. In this study, two Branch &
Bound methods have been proposed to obtain optimum solutions: an original method and a
variant. The computational effort of both methods does not depend on the number of cases. It
allows for the use of these methods in large database. In addition, these methods obtain the
optimal solution in a short time in databases with a moderate number of initial variables. The
main difference with respect to the original method is that the variant uses the information
provided by a fast heuristic executed beforehand. Computational experiments show that the
use of this information makes the variant a more efficient and effective method.

On the other hand, several computational experiments show that our Branch & Bound variant
performs better compared with other well-known feature selection methods for linear
regression.

In summary, appropriate use of the information provided by a heuristic can improve the
effectiveness and efficiency of some exact methods. This statement has been proved for the
problem of variable selection in linear regression in this paper. A challenge for the future is to
apply this idea to other complex problems.

Acknowledgments

This work was partially supported by FEDER funds and the Spanish Ministry of Economy and
Competitiveness (Projects ECO2016-76567-C4-2-R and PID2019-104263RB-C44), the Regional

0,9512
0,9513
0,9514
0,9515
0,9516
0,9517
0,9518
0,9519

0,952
0,9521

BnB Variant Fwd GARROTE LASSO LARS

Government of “Castilla y León”, Spain (Project BU329U14 and BU071G19), the Regional
Government of “Castilla y León” and FEDER funds (Project BU062U16 and COV2000375).

References

Aneiros, G., Ferraty, F., & Vieu, P. 2015. Variable selection in partial linear regression with
functional covariate. Statistics, 49(6), 1322-1347.

Bandura, R., 2008. A Survey of composite indices measuring country performance: 2008 Update.
Office of Development Studies. United Nations Development Programme, Working Paper.

Bioucas-Dias, J. M., Plaza, A., Dobigeon, N., Parente, M., Du, Q., Gader, P., & Chanussot, J., 2012.
Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based
approaches. IEEE journal of selected topics in applied earth observations and remote
sensing, 5(2), 354-379.

Bioucas-Dias, J. M., & Plaza, A., 2010. Hyperspectral unmixing: Geometrical, statistical, and
sparse regression-based approaches. Image and Signal Processing for Remote Sensing XVI (Vol.
7830, p. 78300A). International Society for Optics and Photonics.

Blancas Peral, F.J., Gonzalez Lozano M., Guerrero Casas F.M. and Lozano Oyola M. 2010.
Indicadores Sintéticos de Turismo Sostenible: Una aplicación para los destinos turísticos de
Andalucia. Revista Electrónica de Comunicaciones y Trabajos de ASEPUMA, Rect@ 11, 85- 118.

Breiman, L., 1995. Better subset regression using the nonnegative garrote. Technometrics 37, 4,
373-384.

Brusco, M.J., 2014. A comparison of simulated annealing algorithms for variable selection in
principal component analysis and discriminant analysis. Computational Statistics & Data
Analysis 77, 38-53.

Brusco, M.J., Singh, R., Steinley, D., 2009. Variable neighborhood search heuristics for selecting
a subset of variables in principal component analysis. Psychometrika 74, 705-726.

Brusco, M.J., Steinley, D., 2011. Exact and approximate algorithms for variable selection in linear
discriminant analysis. Computational Statistics & Data Analysis 55 (1), 123-131.

Chatterjee, S., Steinhaeuser, K., Banerjee, A., Chatterjee, S., & Ganguly, A. (2012, April). Sparse
group lasso: Consistency and climate applications. In Proceedings of the 2012 SIAM International
Conference on Data Mining (pp. 47-58). Society for Industrial and Applied Mathematics.

Dua, D. and Graff, C. (2019). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml].
Irvine, CA: University of California, School of Information and Computer Science.

Efron, B., Hastie, T., Johnstone, I., Tibshirani, R., 2004. Least angle regression. Annals of Statistics
32 (2), 407-499.

Efroymson, M., 1960. Multiple regression analysis. Mathematical methods for digital computers,
1:191–203.

http://www.sciencedirect.com/science/article/pii/S0167947314000668
http://www.sciencedirect.com/science/article/pii/S0167947314000668

Fan, J. and Li, R., 2001. Variable selection via non concave penalized likelihood and its oracle
properties. Journal of the American Statistical Association 96, 1348-1360.

Févotte, C., Torrésani, B., Daudet, L., & Godsill, S. J., 2008. Sparse linear regression with
structured priors and application to denoising of musical audio. IEEE Transactions on Audio,
Speech, and Language Processing, 16(1), 174-185.

Févotte, C., Daudet, L., Godsill, S. J., & Torrésani, B., 2006. Sparse regression with structured
priors: Application to audio denoising. In 2006 IEEE International Conference on Acoustics
Speech and Signal Processing Proceedings (Vol. 3, pp. III-III). IEEE.

Filzmoser, P., Gschwandtner, M., & Todorov, V., 2012. Review of sparse methods in regression
and classification with application to chemometrics. Journal of Chemometrics, 26(3-4), 42-51.

Gijbels, I. and Vrinssen, I., 2015. Robust nonnegative garrote variable selection in linear
regression. Computational Statistics & Data Analysis 85, 1-22.

Hans, C., Dobra, A. and West, M., 2007. Shotgun stochastic search for “large p” regression.
Journal of the American Statistical Association, 102 (478), 507-516.

Iordache, M. D., Bioucas-Dias, J. M., & Plaza, A., 2014. Collaborative sparse regression for
hyperspectral unmixing. IEEE Transactions on Geoscience and Remote Sensing, 52(1), 341-354.

Kilinc, B. K., Asikgil, B., Erar, A., and Yazici, B., 2016. Variable selection with genetic algorithm
and multivariate adaptive regression splines in the presence of multicollinearity. International
Journal of Advanced and Applied Sciences, 3(12), 26-31

Li, Y., Nan, B., & Zhu, J. (2015). Multivariate sparse group lasso for the multivariate multiple
linear regression with an arbitrary group structure. Biometrics, 71(2), 354-363.

Luo, S. and Ghosal, S. (2016). Forward selection and estimation in high dimensional single index
models. Statistical Methodology, 33, 172-179

Mateos, G., Bazerque, J. A., & Giannakis, G. B., 2010. Distributed sparse linear regression. IEEE
Transactions on Signal Processing, 58(10), 5262-5276.

Meiri, R. and Zahavi, J., 2006. Using simulated annealing to optimize the feature selection
problem in marketing applications. European Journal of Operational Research 171, 842-858.

Mundry, R. and Nunn, C.L., 2009. Stepwise model fitting and statistical inference: Turning noise
into signal pollution. The American Naturalist 173 (1), 119-123.

Nardo, M., Saisana, M., Saltelli, A., Tarantola, S., Hoffman, A. and Giovannini, E., 2005a.
Handbook on constructing composite indicators: methodology and user guide. OECD Statistics,
Working Paper 2005/3.

Nardo, M., Saisana, M., Saltelli, A. and Tarantola, S., 2005b. Tools for composite indicators
building. European Commission. Joint Research Centre. Working Paper 21682.

Naylor, T., 1977. Técnicas de simulación en computadoras. Limusa.

Pacheco J., Casado S. and Núñez L., 2009. A Variable Selection Method based on Tabu Search for
Logistic Regression Models. European Journal of Operational Research 199 (2), 506–511.

Pacheco, J., Casado, S., and Porras, S., 2013. Exact methods for variable selection in principal
component analysis: Guide functions and pre-Selection. Computational Statistics & Data
Analysis 57, 95-111.

Parada Rico, S.E., Fiallo Leal, E. and Blasco-Blasco, O. 2015. Construcción de indicadores
sintéticos basados en juicio experto: aplicación a una medida integral de excelencia académica.
Revista Electrónica de Comunicaciones y Trabajos de ASEPUMA, Rect@, 16, 51-67.

Rish, I., & Grabarnik, G. (2014). Sparse modeling: theory, algorithms, and applications. CRC press.

Rubinstein, R. Y., 1981. Simulation and the Monte Carlo method, Wiley.

Sayed, G. I., Khoriba, G., & Haggag, M. H. (2018). A novel chaotic salp swarm algorithm for global
optimization and feature selection. Applied Intelligence, 48(10), 3462-3481.

Sayed, G. I., Tharwat, A., & Hassanien, A. E. (2019). Chaotic dragonfly algorithm: an improved
metaheuristic algorithm for feature selection. Applied Intelligence, 49(1), 188-205.

Tibshirani, R., 1996. Regression shrinkage and selection via the Lasso. Journal of the Royal
Statistical Society, Series B 58 (1), 267-278.

Vounou, M., Nichols, T. E., Montana, G., & Alzheimer's Disease Neuroimaging Initiative. (2010).
Discovering genetic associations with high-dimensional neuroimaging phenotypes: A sparse
reduced-rank regression approach. Neuroimage, 53(3), 1147-1159.

Wang, Y., & Feng, L. (2019). A new hybrid feature selection based on multi-filter weights and
multi-feature weights. Applied Intelligence, 49(12), 4033-4057.

Wu, T. T., & Lange, K. 2008. Coordinate descent algorithms for lasso penalized regression. The
Annals of Applied Statistics, 2(1), 224-244.

Yuan, M., & Lin, Y., 2006. Model selection and estimation in regression with grouped
variables. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(1), 49-
67.

Yuan, M., & Lin, Y., 2007. On the non-negative garrotte estimator. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 69(2), 143-161.

Appendix 1. Corollary used by our Branch & Bound methods

Corollary

∀ 𝑝𝑝,𝑝𝑝’ ∈ {1, … ,𝑛𝑛 }, if 𝑝𝑝 < 𝑝𝑝’ then 𝑔𝑔(𝑝𝑝) ≤ 𝑔𝑔(𝑝𝑝’).

Proof:

By simplifying, we can define 𝑝𝑝’ = 𝑝𝑝 + 1, and 𝑆𝑆𝑝𝑝∗ = {1, . . ,𝑝𝑝}.

Let us also define 𝑆𝑆’ = {1, … ,𝑝𝑝, 𝑝𝑝 + 1}. Obviously, 𝑆𝑆𝑝𝑝∗ ⊂ 𝑆𝑆′. Therefore

𝑔𝑔(𝑝𝑝) = 𝑓𝑓�𝑆𝑆𝑝𝑝∗� ≤ 𝑓𝑓(𝑆𝑆’) ≤ 𝑚𝑚𝑎𝑎𝑥𝑥 {𝑓𝑓(𝑆𝑆): 𝑆𝑆 ⊂ 𝑉𝑉, |𝑆𝑆| = 𝑝𝑝 + 1} = 𝑔𝑔(𝑝𝑝 + 1).

Appendix 2. Calculation of the objective function

a) Pre-process for calculating the objective function

To facilitate the calculation of the objective function 𝑓𝑓(𝑆𝑆) a pre-calculation is initially performed
before beginning to execute the algorithms. The matrix of independent variables 𝑋𝑋 and the
vector of the dependent variable 𝑌𝑌 are considered, as defined in section 2. In other words

𝑋𝑋 = �𝑥𝑥𝑖𝑖𝑖𝑖�𝑖𝑖=1,…,𝑚𝑚;𝑖𝑖=1,…,𝑛𝑛
 e 𝑌𝑌 = (𝑦𝑦𝑖𝑖)𝑖𝑖=1,…,𝑚𝑚

The pre-process consists of the following steps:

- The matrix 𝑋𝑋∗ = �𝑥𝑥𝑖𝑖𝑖𝑖∗ �𝑖𝑖=1,…,𝑚𝑚;𝑖𝑖=1,…,𝑛𝑛
 is calculated

where 𝑥𝑥𝑖𝑖𝑖𝑖∗ = �𝑥𝑥𝑖𝑖𝑖𝑖−𝑥𝑥𝑖𝑖
√𝑚𝑚·𝑠𝑠𝑖𝑖

�, 𝑖𝑖 = 1, … ,𝑚𝑚; 𝑗𝑗 = 1, … ,𝑛𝑛

and 𝑥𝑥𝑖𝑖 and 𝑖𝑖𝑖𝑖2 are respectively the mean and the sample variance of the variable 𝑗𝑗; 𝑗𝑗 = 1, … , 𝑛𝑛.

- The matrix 𝑌𝑌∗ = (𝑦𝑦𝑖𝑖∗)𝑖𝑖=1,…,𝑚𝑚 is calculated

where 𝑦𝑦𝑖𝑖∗ = � 𝑦𝑦−𝑦𝑦
√𝑚𝑚·𝑠𝑠𝑦𝑦

�, 𝑖𝑖 = 1, … ,𝑚𝑚;

and 𝑦𝑦 and 𝑖𝑖𝑦𝑦2 are respectively the mean and the sample variance of the variable 𝑌𝑌.

- The matrix 𝑅𝑅 = 𝑋𝑋∗′ · 𝑋𝑋∗ and the vector 𝐻𝐻 = 𝑋𝑋∗′ · 𝑌𝑌∗ are calculated. Note that 𝑅𝑅 is the matrix
of correlations of the independent variables. We denote the elements of 𝑅𝑅, 𝑗𝑗, 𝑗𝑗′ = 1, … ,𝑛𝑛, as
𝑎𝑎𝑖𝑖𝑖𝑖′ l; and the elements of 𝐻𝐻, 𝑗𝑗 = 1, … ,𝑛𝑛, as ℎ𝑖𝑖.

The matrix 𝑅𝑅 and the vector 𝐻𝐻 will be used in calculating 𝑓𝑓(𝑆𝑆) for the various sets 𝑆𝑆 in the
algorithms proposed in this paper. This pre-process requires Θ(𝑛𝑛2 · 𝑚𝑚) operations. However, it
is executed only once.

b) Calculation of the objective function 𝑓𝑓(𝑆𝑆)

Let there be a set 𝑆𝑆 ⊂ 𝑉𝑉 of size 𝑝𝑝. We denote 𝑆𝑆 = {𝑖𝑖(1), 𝑖𝑖(2), … , 𝑖𝑖(𝑝𝑝)}. The calculation of 𝑓𝑓(𝑆𝑆)
consists of the following steps:

- The matrix 𝑅𝑅𝑆𝑆 = (𝑎𝑎𝑖𝑖𝑖𝑖′𝑆𝑆) is constructed, where 𝑎𝑎𝑖𝑖𝑖𝑖′𝑆𝑆 = 𝑎𝑎𝑆𝑆(𝑖𝑖)𝑆𝑆(𝑖𝑖′), 𝑗𝑗, 𝑗𝑗′ = 1, … ,𝑝𝑝;

- The vector 𝐻𝐻𝑆𝑆 = �ℎ𝑖𝑖𝑆𝑆�, where ℎ𝑖𝑖𝑆𝑆 = ℎ𝑆𝑆(𝑖𝑖) 𝑗𝑗 = 1, … ,𝑝𝑝;

- Find the inverse of the matrix 𝑅𝑅𝑆𝑆: (𝑅𝑅𝑆𝑆)−1

- Calculate the vector of coefficients Β = (𝑅𝑅𝑆𝑆)−1 · 𝐻𝐻𝑆𝑆. We denote the elements of Β, 𝑗𝑗 =
1, … ,𝑝𝑝 as 𝛽𝛽𝑖𝑖.

- Calculate the value of 𝑓𝑓(𝑆𝑆) = ∑ ∑ 𝛽𝛽𝑖𝑖 · 𝛽𝛽𝑖𝑖′ · 𝑎𝑎𝑖𝑖𝑖𝑖′𝑆𝑆
𝑝𝑝
𝑖𝑖′=1

𝑝𝑝
𝑖𝑖=1 .

This calculation requires Θ(𝑝𝑝2) operations and is therefore independent of the number of cases
𝑚𝑚 and of the initial number of variables 𝑛𝑛.

Appendix 3. Analysis of the complexity of our Branch & Bound methods

As described in Section 3, the Branch & Bound methods are based on a recursive exploration in
the set of solutions. This set is represented by a search tree. Each node of this tree corresponds
with a subset of solutions. In the exploration of the set of solutions corresponding to a node
(Pseudocode 1), a variable 𝑎𝑎 is selected and the corresponding set is divided into two subsets:
one with the variable 𝑎𝑎 fixed and another with the variable 𝑎𝑎 forbidden. The process is then
repeated with each subset. Since at most 𝑝𝑝0 variables are selected (𝑝𝑝0 fixed variables), there are
𝑝𝑝0 divisions until a solution with maximum size 𝑝𝑝0 is reached. Therefore, 𝜃𝜃(2𝑝𝑝0) nodes are
explored. On the other hand, the number of variables that are examined to be selected is limited
by 𝑛𝑛, so determining the variable 𝑎𝑎 assumes 𝜃𝜃(𝑛𝑛) calculations of the function 𝑓𝑓 (line 5 of
Pseudocode 1). Therefore, the Branch & Bound methods calculate the objective function of
𝜃𝜃(𝑛𝑛 · 2𝑝𝑝0) solutions 𝑆𝑆, with |𝑆𝑆| ≤ 𝑝𝑝0. As the calculation of each 𝑓𝑓(𝑆𝑆) requires 𝜃𝜃(|𝑆𝑆|2)
operations, the complexity of our methods is 𝜃𝜃(𝑝𝑝02 · 𝑛𝑛 · 2𝑝𝑝0).

Appendix 4. Basic ideas of traditional methods and our Branch & Bound methods

- Our Branch & Bound methods find the global optimum solution to the problem defined by (1)
– (3) in Section 2.

- The Forward Method finds a solution to the same problem defined by (1) – (3), but this solution
is and approximate solution (not necessarily the global optimal). The method works as follows:

1. Do 𝑆𝑆 = ∅

Repeat

 2. Determine 𝑖𝑖∗ = 𝑎𝑎𝑎𝑎𝑔𝑔𝑚𝑚𝑎𝑎𝑥𝑥 { 𝑓𝑓(𝑆𝑆 ∪ {𝑖𝑖}): 𝑖𝑖∈𝑉𝑉 − 𝑆𝑆}

 3. Make 𝑆𝑆 = 𝑆𝑆 ∪ {𝑖𝑖∗}

Until |𝑆𝑆| = 𝑝𝑝

Note that the problem defined by (1) - (3) can also be defined compactly as:

𝑚𝑚𝑖𝑖𝑛𝑛𝛽𝛽 ‖𝑌𝑌 − 𝑋𝑋∗𝛽𝛽‖2

subject to:

‖𝛽𝛽‖0 = 𝑝𝑝

where

𝑋𝑋∗ = (𝟏𝟏|𝑋𝑋) and 𝟏𝟏𝒕𝒕 = (1,1, … 1) ∈ 𝑅𝑅𝑚𝑚, that is 𝑋𝑋∗ is matrix 𝑋𝑋 extended with vector 1

𝛽𝛽𝑎𝑎 = (𝛽𝛽0,𝛽𝛽1,···,𝛽𝛽𝑛𝑛) is the vector of the coefficients of the variables and the independent
coefficient

‖‖𝑟𝑟 = 𝑎𝑎 - Norme

- The LASSO Method solves the following model:

𝑚𝑚𝑖𝑖𝑛𝑛𝛽𝛽 ‖𝑌𝑌 − 𝑋𝑋∗𝛽𝛽‖2 + 𝜆𝜆 · ‖𝛽𝛽‖1

where 𝜆𝜆 is a previously established positive parameter. The higher the value of 𝜆𝜆 the fewer the
variables with a coefficient 𝛽𝛽𝑖𝑖 ≠ 0 are selected – that is, the fewer variables are selected. To find
the solution, methods based on the Coordinate Descent algorithm are usually used.

- The LARS method solves the same model as LASSO but using strategies analogous to the
Forward method – that is, selecting in each step a variable to enter in the solution.

- The GARROTE method calculates its coefficients 𝛽𝛽𝑖𝑖
𝑔𝑔 as follows:

𝛽𝛽𝑖𝑖
𝑔𝑔 = �1 −

𝜆𝜆

�𝛽𝛽𝑖𝑖𝑟𝑟�
2�
+

· 𝛽𝛽𝑖𝑖𝑟𝑟

where the values 𝛽𝛽𝑖𝑖𝑟𝑟 are the coefficients of the linear regression model with all variables, [𝑧𝑧]+ is
the positive part of a real number 𝑧𝑧, and 𝜆𝜆 is a previously established positive parameter. As in
previous model, the higher the value of 𝜆𝜆 the fewer the variables with coefficient 𝛽𝛽𝑖𝑖 ≠ 0 – that
is, the fewer variables are selected.

	1. Introduction
	1.1. Motivation
	Research very often involves analyze datasets with one dependent variable and multiple independent variables (“response” variable and “predictor” variables), giving a dataset that is multivariate and multidimensional. Frequently these analyses have be...
	Recent improvements to data-collection technologies have resulted in complex regression problems in which the number of candidate predictor variables explaining the response variable may be very large. However, not all of the variables are equally rel...
	In addition to these advantages, variable selection in linear regression has interesting applications. One of its main applications is updating composite indicators. Suppose a composite indicator consists of a large set of variables. If the set of var...
	Composite indicators are also used in several areas (economy, society, quality of life, nature, technology, etc.) as measures of the evolution of regions or countries in such areas. The importance of composite indicators is explained in Nardo et al. (...
	Other interesting fields of application of this problem are, for example, musical audio denoising (Févotte et al., 2008 and Févotte et al., 2006), wireless communications (Mateos et al., 2010), spectral analysis of images (Iordache et al., 2014, Biou...
	As explained in the foregoing paragraphs, variable selection in linear regression is an interesting process that could provide important benefits and also has interesting applications. In related literature, various methods have been proposed for this...
	1.2 Related Literature
	Variable selection procedures are important in applied data analysis (since in many cases a large number of variables are measured) in order to detect all the variables that have no influence on the response to be predicted and to eliminate them from ...
	In general, these previous methods tend to get trapped in locally optimal models and face design problems with complex patterns of multicollinearity, specifically in large datasets (Hans and Dobra, 2007). To avoid these disadvantages several metaheuri...
	1.3. Contribution
	This paper proposes a Branch & Bound method for the variable selection problem in regression models. The method has been designed to solve this problem in databases with a very large number of cases. In addition, various tools and strategies are propo...
	Both the original method and the variant obtain the optimal solution in acceptable computation times in databases with a moderate number of variables. When databases with a larger number of variables are involved, the computation time can be excessive...
	Moreover, it must be pointed out that in our methods the computational complexity does not depend on the number of cases, making it possible to work with databases with a very large number of cases. This represents an additional advantage over other k...
	We have conducted a series of computational experiments, using several artificial databases (matrices) and databases from a well-known repository. The experiments include comparisons with other well-known variable selection methods from the literature...
	In summary the main contributions are the following: a) The development of exact methods capable of finding better solutions than traditional methods in feature selection for linear regression and that can be applied in large databases; b) The design ...
	The remainder of this paper is organized as follows. Section 2 outlines the definition of the problem. In section 3, the basic Branch & Bound method is explained, and the various tools for accelerating the Branch & Bound method are analyzed in Section...

