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Solid polymer substrates and smart fibres for the 
selective visual detection of TNT both in vapour and 
in aqueous media 

Jesús L. Pablos,* Miriam Trigo-López, Felipe Serna, Félix C. García, José M. 
García* 

This work describes the design of efficient, inexpensive and easily prepared selective sensory 
polymers with chemically anchored amine groups as 2,4,6-trinitrotoluene (TNT)-sensing 
motifs as materials for the selective visual detection of TNT in aqueous media and as vapours. 
The materials are prepared as handleable sensory films or dense membranes from which 
sensory discs are cut, as well as smart fibres by coating conventional and commercial cotton 
fabrics. Both types of materials exhibited a highly visible colour development from colourless 
to red upon contact with TNT both in the gas phase and in solution, and the colour change was 
used to build titration curves using the colour definition parameters of a digital image acquired 
with a smartphone, i.e., the RGB system. The materials were selective, remaining silent with 
other nitroaromatic compounds, such us 4-nitrotoluene and 2,4-dinitrotoluene, and the 
detection limit in solution was close to the micromolar range. 
 

Introduction 

The societal concern about the detection of explosives, related to 
homeland security, stems mainly from the fear of terrorist attacks. 
However, their detection and quantification are challenging for 
forensic and criminal investigations after terrorist acts, for reducing 
the fatalities that occur during humanitarian efforts in demining, and 
for health and environmental control and remediation of water and 
contaminated soils in old military areas and in industrial wastes and 
spills by explosive-related industries. 

Among the various explosives, TNT (2,4,6-trinitrotoluene) 
belongs to the nitroaromatic explosive family and is one of the most 
widely used explosives in civil and military applications as well as 
by terrorists worldwide. As a chemical, TNT can easily enter 
groundwater supplies and is consider toxic at concentrations above 2 
ppb, presenting harmful effects to all biota.1 For humans, it is a liver 
toxin that can be absorbed by the gastrointestinal track or even by 
the skin.2 

Accordingly, the detection and quantification of TNT is of the 
outmost importance and can be performed using a broad set of 
analytical techniques, such as high performance liquid 
chromatography (HPLC) and high-resolution gas chromatography 
(HRGC) paired with different detectors, including mass 
spectrometry (MS), electrochemical detection (ED), electron capture 
detectors (ECD), and ultraviolet detectors (UV).1 However, the use 
of recognition processes in supramolecular chemistry and novel 
selective and sensitive optical probes have arisen as promising 
techniques for the detection of explosives by non-specialised 
personnel in an in situ, rapid and inexpensive manner, both for 
vapour and in-solution detection; the sensitivity is usually achieved 
using a quenching strategy based on the use of conjugated polymers 
or supported solids.3-14 

 
 
In a recent paper, we demonstrated an insanely simple, novel, 

and straightforward methodology to prepare handleable solid 
materials for the naked eye detection of TNT in water 
environments.15 Using a commercial monomer containing a tertiary 
amine, 2-(dimethylamino)ethyl methacrylate (AEMA), we prepared 
the most inexpensive sensory film that changed its colour upon 
dipping in aqueous media containing a low concentration of TNT. 
The sensing mechanisms corresponded to the formation, under mild 
conditions, of colour complexes of Lewis bases, such as the 
mentioned amine-containing monomer, with electron-deficient 
aromatic rings, such as TNT, known since the first decade of the 
former century as Meisenheimer complexes.16-20 

The tuning of the amine motif chemical characteristics of 
sensory monomers permits not only the lowering of the detection 
limits in aqueous solutions but also the achievement of TNT vapour 
detection, an especially cumbersome task due to the extremely low 
vapour pressure of TNT (9.2 ppbv).

21 Thus, the use of both 
commercial and designed sensory monomers with primary and 
secondary amines, more active towards the formation of 
Meisenheimer complexes than  tertiary amines, would most likely 
allow for the two-fold detection and quantification of explosives, 
i.e., as vapours and in solution. From an applied viewpoint, the 
former is related to homeland security and humanitarian efforts, and 
the latter is related to forensic and criminal investigations of washed 
scrap-metals and residues essential in terrorist-strike investigations 
and environmental control and remediation. 

Thus, we have prepared two film-shaped solid sensory 
membranes: the first one using the commercial monomer 4-{N-(2-
(methylamino)-ethyl)aminomethyl}styrene (di-AMS) with two 
secondary amine groups and the second one using the monomer with 
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