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Abstract. A novel procedure for learning Fuzzy Controllers (FC) is proposed that 
concerns with energy efficiency issues in distributing electrical energy to heaters in an 
electrical energy heating system. Energy rationalisation together with temperature 
control can significantly improve energy efficiency, by efficiently controlling electrical 
heating systems and electrical energy consumption. The novel procedure, which 
improves the training process, is designed to train the FC, as well as to run the control 
algorithm and to carry out energy distribution. Firstly, the dynamic thermal 
performance of different variables is mathematically modelled for each specific 
building type and climate zone. Secondly, an exploratory projection pursuit method is 
used to extract the relevant features. Finally, a supervised dynamic neural network 
model and identification techniques are applied to FC learning and training. The FC 
rule-set and parameter-set learning process is a multi-objective problem that minimises 
both the indoor temperature error and the energy deficit in the house. The reliability of 
the proposed procedure is validated for a city in a winter zone in Spain. 
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1. Introduction 

The greater a society’s prosperity, the greater the comfort that it might expect in its buildings and, 
consequently, the higher its consumption of electrical energy, which in great part explains government 
policies to promote the reduction of energy consumption. However, the reduction of energy 
consumption in the construction of buildings has not as yet been standardized [3, 9, 23]. For example, 
there are different approaches to heating systems in the literature that analyse the temperature control 
loop in order to improve heating system energy efficiency [26, 29, 33]. 

Soft Computing represents a broad range of techniques that can be used to solve inexact and 
complex problems [44]. It investigates, simulates, and analyzes very complex issues and phenomena in 
order to solve real-world problems [43]. In a previous study [43], Soft Computing was found valid for 
energy rationalization and temperature control by means of Fuzzy Controllers (FC). In this study, a 
novel procedure to to learn and train a FC for distributing electrical energy while controlling indoor 
temperatures is presented. As detailed in [43], the procedure firstly analyses the local building and 
heating regulations and market-related factors, in order to obtain suitable data for the learning and 
training step. The data set obtained in this way is processed, including a new feature selection and 
extraction stage based on Cooperative Maximum-Likelihood Hebbian Learning (CMLHL) [6] to 
extract the most relevant variables to model the indoor temperature. 

Previous studies [24, 42] reflect the complexity of predicting the thermal dynamics of a building. In 
this study, a neural network approach based on system identification is shown to be valid for such 
modelling, which optimises the FC. Once the prediction model defines the thermal dynamics of the 
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configuration, the learning and training of the FCs is carried out. Finally, the design stage ends using a 
Multi-Objective Simulated Annealing (MOSA) algorithm [40] to to learn and train the rule set and the 
parameter set, which minimises both the indoor temperature error and the electrical energy deficit in 
the house. 

The structure of the paper is as follows. Section 2 introduces the different techniques used in the 
proposed procedure. Section 3 discusses the problem description. Section 4 details the multi-step 
procedure, while Section 5 presents the experiments and their results. Finally, the conclusions and 
comments on future lines of work are set out in the final section. 

2. Machine Intelligence techniques for optimising FC learning 

In Subsection 2.1 the feature selection and extraction method is introduced, while in Subsection 2.2 the 
specific technique for these tasks is detailed. Finally, in Subsection 2.3, the System Identification (SI) 
issues are discussed. 

2.1. Feature selection and extraction 
Feature Selection and extraction [4, 14, 27, 45] entail feature construction, space dimensionality 
reduction, sparse representations and feature selection, among others. They are all commonly used pre-
processing tools in machine learning tasks, which include pattern recognition. Although researchers 
have grappled with such problems for many years, renewed interest has recently been shown in feature 
extraction.  

The goal of using feature selection in this study is to analyse the internal structure of a data set 
representative of a case of study, in order to establish whether the data set is sufficiently informative -
the system has been excited in their operating ranges and it can be modeled successfully- and to choose 
a subset of input variables eliminating less important ones by using statistical methods, such as 
Principal Component Analysis (PCA) [20, 32] and unsupervised neural models, such as Cooperative 
Maximum Likelihood Hebbian Learning (CMHL) [8, 6]. 

2.2. Data structure analysis using connectionist techniques 
The data analysis task is based on the use of a neural Exploratory Projection Pursuit (EPP) [11, 21] 
model called Cooperative Maximum Likelihood Hebbian Learning (CMLHL) [8, 6]. CMLHL, which 
is based on Maximum Likelihood Hebbian Learning (MLHL) [5, 7, 12], adds lateral connections [6, 
8] which have been derived from the Rectified Gaussian Distribution [39]. The resultant net can find 
the independent factors of a data set but does so in a way that captures some type of global ordering in 
the data set. 

Considering an N-dimensional input vector ( x ), an M-dimensional output vector ( y ) and with 

ijW  being the weight (linking input j  to output i ), CMLHL can be expressed [6, 8]  as:  
1. Feed-forward step: 
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Where: η  is the learning rate, τ is the "strength" of the lateral connections, b  the bias parameter, 
p  a parameter related to the energy function [5, 6], and A  a symmetric matrix used to modify the 

response to the data. The effect of this matrix is based on the relation between the distances among the 
output neurons. 

2.3. System Modelling Using Identification Algorithms 
The system Identification (SI) procedure includes several steps [28, 30]: selection of the models and 
their structure, their learning methods [17, 22, 41], identification and optimization criteria and the 
validation method. Validation ensures that the selected model meets the necessary conditions for 
estimation and prediction. Validation is typically carried out using three different methods: residual 
analysis ))(ˆ,( tt θε , -by means of a correlation test between inputs, their residuals and their 
combinations; the final prediction error (FPE) estimated, as is explained, by Akaike [1] and finally a 
graphical comparison between desired outputs and the outcome of the models through simulation, with 
one (or k) steps ahead. The increase in computational capacity has allowed Artificial Neural Networks 
(ANNs) to become one of the most interesting soft computing paradigms used in SI. Some well-known 
model structures may be found in the literature [2, 13, 19]. 

When using ANN, the purpose of an identification process is to determine the weight matrix based 
on the observations tZ , so as to obtain the relationships between the nodes in the network. The weight 
matrix is usually referred as w, W or θ. The supervised learning algorithm is then applied to find the 
estimator θ, so as to obtain the identification criterion. Several well-known model structures are used 
when merging system identification with ANN. If the AutoRegressive with eXternal input model 
(ARX) is used as the regression vector, the model structure is called a Neural Network for ARX model 
(NNARX). Likewise, the Neural Network for Finite Impulse Response model (NNFIR), the Neural 
Network for Autoregressive Moving Average with eXternal input model (NNARMAX), and the 
Neural Network for Output Error model (NNOE), are also extensively used [30, 34, 36, 37]. 

3. Optimising energy efficiency and temperature control 

In Spain, building and heating system regulations establish criteria for building design (issues such as 
building materials and insulation width, among others) and heating systems (nominal heating power 
for each installation). Moreover, they define up to five winter climate zones and five summer climate 
zones across the entire country. Building materials, insulation widths, and so on, are calculated 
accordingly to these <winter-zone, summer-zone> parameters.  

In our opinion, more information than that contained in the regulations is needed when designing a 
heating system controller. Further market-related factors should also be included: the geometric design 
and orientation of a building, aesthetic aspects and its internal layout, all of which have a significant 
impact on thermal dynamics. Taken together, they define what is known as the topology of the 
building.  

In a previous study, a two-stage method for calculating a FC that would control an electrical energy 
heating system was proposed [43]. In the first stage (called the design stage), FC learning took place 
for each topology; in the second stage (called the run stage), the FC was exploited for the 
corresponding climate zone. The design stage included several steps. Firstly, realistic building 
information and historical meteorological data for each climate zone were gathered and used in a 
simulation that ran on HTB2 software [25]. Heating and ventilation systems were also designed and 
other profiles were estimated in relation to occupancy, lighting, small power devices, ventilation, and 
set-point temperatures, among other aspects. 

The HTB2 software produced a data set containing the evolution of indoor temperature and the 
heating power requirements for each room, among others. This data set was manually post-processed 
in order to be used in the learning of FCs. Then, the post-processed data set was used for training a 
polynomial model to estimate the room temperature evolution given the instantaneous heating power. 
In this case the polynomial model was fitted using Simulated Annealing.  
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Finally, the temperature model and the post-processed data set were used for learning the FC for a 
specific climate zone using Multi-objective Simulated Annealing (MOSA) [40]. The two objectives to 
optimise were the temperature error and the electrical energy deficit. The latter measure was calculated 
as the difference between the required heating power estimated with the HTB2 and the heating power 
proposed by the FC. 

This previous study a better electric energy distribution scheme was obtained, but its main strong 
point was that the FC would reduce the heating energy, thereby improving energy efficiency in the 
installation. However, two important drawbacks were identified: the proposed room temperature 
estimation did not behave with the required precision and the post-processing stage had to be analysed 
to arrive at a better procedure. Solutions to these two drawbacks were approached in this research 
Firstly, a better model for the room temperature is proposed. Secondly, the post-processing stage has 
been automated. Both enhancements are to be detailed in the next Section. 

4. A multi-step procedure for detecting thermal dynamics in 
buildings  

The results from subsequent studies [34, 37, 38] that used a procedure for detecting thermal insulation 
failures in buildings in operation provide a clue for solving the two above-mentioned drawbacks: the 
use of CMLHL to find the most relevant variables for estimating in-room temperature evolution. 
Using these ideas, the four-step procedure detailed in previous section has been improved. Two of the 
four steps remain unchanged in the new approach: the initial step in which the meteorological data and 
the realistic data and profiles are used in the HTB2 simulation tool, and the final step for learning and 
training the FC using the MOSA algorithm. Nevertheless, a new post-processing step is introduced 
using CMLHL as a dimensionality reduction technique to choose the most relevant features in order to 
determine the indoor temperature. Finally, the Simulated Annealing step for training a polynomial 
model was replaced with an ANN model, as proposed in [34, 37, 38]. The differences between the two 
methods are depicted in Figure 1. 

 
Figure 1. The schema of the procedure learning FCs. The HTB2 outcome was manually post-processed -in a 
previous study- to obtain two data sets, one for the training of a room temperature evolution and the second for the 
learning of the FC using the MOSA algorithm. In the new approach, CMLHL is applied to determine and extract 
the most relevant features for determining the room temperature evolution, which is now modelled with a Neural 
Network. 
 

The following sub-sections deal with the description of each step. In the next subsection, the 
generation of the thermal dynamics data set is described. Sub-Section 4.2 presents the CMLHL step, 
while in Sub-Section 4.3 the procedure to obtain the indoor temperature prediction model is detailed. 
Finally, the learning of the FCs is outlined. 

Originally, a manually driven 
extraction method 
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4.1. Thermal dynamics data gathering by means of simulation. 
Certain variables and data sets should be gathered to simulate the thermal behaviour of a building. This 
data includes the building topology –the inner distribution and orientation of the building under 
analysis-, the climate zone defined in specific regulations, the building materials that comply with 
local regulations according to the chosen climate zone, the meteorological data for the climate zone 
and the simulated time period -solar radiation, outdoor temperature, wind speed and so on, which are 
generally available from weather stations in the climate zone-, and realistic profiles for heating, 
lighting, small power devices, occupancy and ventilation. In this study, the procedure is applied in 
Spain, where the regulations establish five winter/summer zones, from E1 (more severe climate zones) 
to A3 (gentler climate zone). 

Having defined and/or gathered these data sets, the chosen simulation tool is then applied to obtain 
the output data. The output from HTB2 is a data set that includes data on the evolution of the indoor 
temperature and heating power for each space in the building according to its expected operating 
conditions. The typical values that each variable could take for an E winter climate zone of maximum 
severity in Spain -i.e. the cities of León, Burgos or Soria among others- are shown in Table 1.  

Table 1. Typical values of each variable in an E winter climate zone city in Spain 
 

4.2. Selection of the relevant features 
PCA and CMLHL (Section 2) are both applied to this real-life problem and are instrumental in 
identifying the internal structure of the data. In this procedure, the data set gathered in the previous 
step is analysed. The objective is to find the relationships between the input variables with respect to 
the indoor temperature. CMLHL was used to detect the dependent relations and to choose the most 
relevant features. The output of this step is a new data set of a reduced dimension that only contains 
the data that corresponds to those features for which a relationship with the indoor temperature has 
been found.  
4.3. Modelling normal building operation 
Having extracted the relevant variables and their transformations from the thermal dynamics data, then 
a model to fit the normal building operation has to be obtained in order to identify bias in the room 
temperature, which is in the end used for failure detection. The different model learning methods used 
in this study were implemented in Matlab© [31].  

The model structures mentioned in Section 2.3 were analyzed in order to obtain the models that best 
suited the dataset. The Akaike Information Criterion (AIC) was used to obtain the best degree of the 
model and its delay for each model structure. Up to thirty-four different combinations of nonlinear 
model structures and optimization techniques were considered -including the Levenberg-Marquardt 
method, the batch version of the back-propagation algorithm and the recursive Gauss-Newton method 
for the NNARX, NNFIR, NNARMAX and NNOE models [10, 18, 28]-. 

Three different residual analyses based on cross correlation were carried out: residual analysis 
between the residual )(ˆ τε

NR , between the residual and the input )(ˆ τε
N
uR  and the non-linear residual 

correlation )(ˆ
22 τε

N
uR [28]. 

Moreover, several different indexes were used to validate the models. The indexes are well-known 
and widely-used measures in system identification [28, 30, 35]: the percentage representation of the 
estimated model; the graphical representation for the one-step prediction – )|(ˆ1 mty –; for ten-step 

Variable (Units) Range of 
values 

Transmittance level (W/m2K) 

Air temperature of the house (ºC), y1(t). 14 to 24 
Exterior air temperature in February (ºC), u1(t). 1 to 7 
Heater gain (w), u2(t). 0 to 4,250 
Small power and occupancy gain (w), u3(t). 0 to 1,200 
Lighting gain (w), u4(t). 0 to 500 
Ventilation gain (m3/min), u5(t). 0.5 to 7.5 

-External cavity wall: 0.54 
-Double glazing: 2.90 
-Floor/ceiling: 1.96 
-Party wall between buildings: 0.96 
-Others party wall: 1.050  
-Internal partition: 2.57 
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prediction – )|(ˆ10 mty – and for the ∞-step prediction – )|(ˆ mty∞ –, versus the measured output – )(1 ty –; 
the loss function or error function (V); the generalization error value and the Final Prediction Error 
(FPE), calculated as the average generalization error value computed with the estimation dataset. 

The percentage representation of the estimated model is calculated as the normalized mean error for 
the one-step prediction (FIT1), for the ten-step prediction (FIT10) and with the ∞-step prediction 
(FIT). The FIT is widely used as a simulation technique in classical system identification. The loss 
function or error function (V) is the numeric value of the mean squared error (MSE) that is computed 
with the estimation data set. Finally, the generalization error value is the numeric value of the 
normalized sum of squared errors (NSSE) that is computed with the validation data set [28, 36]. 

4.4. Learning the FC using multi-objective techniques 
The last step in the procedure is to learn the FC. For such tasks, data from the HTB2 output data set 
and the Neural Network model obtained from the previous step are used with recurrent simulations. 
The MOSA algorithm is used to evolve the FC from that proposed by the experts; both rules and 
parameters are developed. The MOSA is used due to the fact that evaluating an FC is a multi objective 
problem as two objectives are optimized: the minimization of the recurrent error and the minimization 
of the electrical energy deficit. The former aims to produce high quality models while the latter is 
employed to obtain a better electrical energy distribution among the electrical heaters [43]. The model 
which is closer to the origin is chosen. 

5. Experimentation and results 

As the results for the other parts of the procedure have yet to be documented [43], only the results that 
consider the new steps are presented: the CMLHL analysis for feature selection and extraction and the 
generation of the steps in the Neural model.  

Some realistic situations have been considered in order to validate the procedure. A building in the 
E winter zone, in the city of León is used as the actual building. As shown in Figure 1, this building 
was parameterised and the HTB2 simulation tool was used to gather the data set. This initial data set 
was analysed, in order to select the features that best describe the relationships with the indoor 
temperature.  

As may be seen in Figure 2, PCA (Figure 2.a) and CMLHL (Figure 2.b) have found a clear internal 
structure in the dataset. Both methods identified heater output and small power and occupancy as 
relevant variables. The CMLHL projections give us more information because it has recognised the 
lighting as another important variable. 

Having analysed the results obtained with the CMLHL model (Figure 2.b), the conclusion was that 
CMLHL identified two different clusters ordered by lighting. Inside each cluster there are further 
classifications by small power and occupancy and heater output, and the dataset may be said to have an 
interesting internal structure. When the dataset is considered sufficiently informative, the third step in 
the process begins. This step performs an accurate and efficient optimization of the heating system 
model to detect thermal insulation failures in the building, through the application of several 
conventional modelling systems. 
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Fig. 2.a. PCA  projections. Fig. 2.b. CMLHL projections. 

Figure 2. PCA projections (Figure 2.a) and CMLHL projection (Figure 2.b) after 2500 iterations using a learning 
rate of 0.05, 3 output neurons, p=0.1 and τ=0.2.  
 

Thus, a dynamic ANN was used to monitor the thermal dynamics of the building. The objective was 
to find the best suite of polynomial model orders [na nb1 nb2 nb3 nb4 nb5 nc nd nf nk1 nk2 nk3 nk4 nk5], which 
is the optimal architecture of ANN. Using the data set from the previous stage and the Optimal Brain 
Surgeon (OBS) [15, 16] network pruning strategy to remove superfluous weights, the best suite model 
was found from the residual analysis. Table 2 shows the estimation and prediction characteristics and 
qualities of the chosen ANN, along with their indexes. 

The graphic representations of )|(ˆ1 mty  for indoor temperature of the house - )(1 ty -are shown in 
Figure 3.a for a pruned NNARX model structure. The x-axis shows the number of samples used in the 
estimation and validation of the model and the y-axis represents the normalized output variable range, 
which is the normalized indoor temperature of the house. The estimation and validation data sets 
include 2000 and 1126 samples, respectively, and have a sampling rate of 1 sample/minute. Figure 3.b 
indicates the final neural network structure chosen for indoor temperature prediction, both of which are 
polynomial model orders. These orders specify the inputs to the ANN –five variables for a full 
connected– and the indices of the orders represent each of the thermal system inputs. 
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Figure 3.a.NNARX model for the validation 
data set. 

Fig. 3.b. Optimal architecture of the 
NNARX model, with the network pruned. 

Figure 3. In Figure 3.a the real measure is compared with the validation data. The actual output (solid line) is 
graphically presented with one-step-ahead prediction (dotted line). In Figure 3.b the optimal architecture of the 
NNARX model, with the network pruned, is presented. Positive weights are indicated by solid lines, while a 
dashed line represents a negative weight. A vertical line through the neuron represents a bias. 

 
From Figure 3, it can be concluded that the pruned network NNARX model is able to predict the 

behaviour of the indoor temperature of the house and is capable of modelling more than 93% of the 
actual measurements. In Table 2, the value of the indexes obtained for the NNARX model are shown. 
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These models not only present a lower loss function (V) and error values (NSSE and FPE), but also a 
higher system representation index value (FIT1).  

Once the thermal dynamic -in the building- of the configuration is defined, the learning and training 
of the FCs is carried out. Firstly, the basic FC established by the experts is optimized by a rule learning 
process. Secondly, the training of the fuzzy sets of the rule set is carried out. The objective to be 
accomplished is to minimise both the temperature error and the energy deficit in the building. This is a 
multi-objective problem which used the multi-objective simulated annealing algorithm presented in 
[40].  

Table 2. The value of the quality indexes obtained for the proposed model. FIT1, V, NSSE and FPE stand for the 
graphical representation percentage, the loss function error, the normalised sum of squared error and the final 
prediction error. 
 

6. Conclusions and future work 

Energy distribution and temperature control is an essential component of energy efficient heating 
systems in buildings. In this research, an improved design stage for learning and training a FC has 
been presented.  

Exploratory Pursuit methods have been used in feature selection and extraction, to search for the 
most informative feature set and data structure. CMLHL was able to identify the internal structure of 
the data and to choose the feature set. Finally, different techniques were applied to obtain a suitable 
prediction model, which was used for the prediction of indoor temperature.  

The results show a new promising method for learning FCs. The use of CMLHL with dynamic 
neural modelling -NNARX- improves on the response obtained from the methods used in earlier 
studies. Future work will include experimenting with the entire procedure and testing the FC in real 
world installations, in order to validate the overall proposal. 
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