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Abstract

We analyze the magneto-optical conductivity (and related magnitudes like transmit-
tance and Faraday rotation of the irradiated polarized light) of some elemental two-
dimensional Dirac materials of group IV (graphene analogues, buckled honeycomb lat-
tices, like silicene, germanene, stannane, etc.), group V (phosphorene), and zincblende
heterostructures (like HgTe/CdTe quantum wells) near the Dirac and gamma points, un-
der out-of-plane magnetic and electric fields, to characterize topological-band insulator
phase transitions and their critical points. We provide plots of the Faraday angle and
transmittance as a function of the polarized light frequency, for different external electric
and magnetic fields, chemical potential, HgTe layer thickness and temperature, to tune
the material magneto-optical properties. We have shown that absortance/transmittance
acquires extremal values at the critical point, where the Faraday angle changes sign, thus
providing fine markers of the topological phase transition. In the case of non-topological
materials as phosphorene, a minimum of the transmittance is also observed due to the
energy gap closing by an external electric field.
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1 Introduction

Two-dimensional (2D) materials have been extensively studied in recent years (and are ex-
pected to be one of the crucial research topics in future years) especially because of their
remarkable electronic and magneto-optical properties which make them hopeful candidates
for next generation optoelectronic devices. Graphene is the archetype of a 2D nanomaterial
with exceptional high tensile strength, electrical conductivity, transparency, etc. In spite of be-
ing the thinnest one, it exhibits a giant Faraday rotation (ΘF ∼ 6◦) on polarized light in single-
and multilayer arrangements [1–6] with experimental confirmation [7]. Faraday rotation is a
fundamental magneto-optical phenomenon used in various optical control, laser technology
and magnetic field sensing techniques.

Magneto-optical properties of other buckled honeycomb lattices, like silicene [8], have
been studied in [9–11], together with other monolayer transition metal dichalcogenides [12]
and anisotropic versions like phosphorene [13]. Magneto-optical measurements also provide
signatures of the topological phase transition (TPT; see [14–16] for standard textbooks on the
subject) in inverted HgTe/CdTe quantum wells (QW), distinguishing quantum Hall (QH) from
quantum spin Hall (QSH) phases [17], where one can tune the band structure by fabricating
QWs with different thicknesses λ. A universal value of the Faraday rotation angle, close to
the fine structure constant, has been experimentally observed in thin HgTe QW with critical
thickness [18].

To determine experimentally the Faraday rotation effect in Dirac materials it is convenient
to consider: (1) A transverse-magnetic-polarized wave incident from the left onto a single
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topological insulator sandwiched by dielectric layers, which yields an enhancement of the
Faraday rotation with an angle larger than 700 mrad and with a transmission higher than
90% [19]. (2) A graphene sheet sandwiched by one-dimensional topological photonic crystals
also an enhancement of the Faraday rotation can be achieved with high transmittance [20]. (3)
In thin films of 3D topological insulators [21] or by considering thin films of Floquet topological
insulators where giant Faraday and Ker rotations have been observed under the action of a
perpendicular magnetic field or in a non-resonant optical field [22]. The inverse Faraday effect
(IFE) has been studied in Dirac materials in 2D and 3D, and these studies have concluded
that IFE is stronger than in conventional semiconductors. Then the Dirac materials can be
potentially useful for the optical control of magnetization in optoelectronic devices [23].

Information theoretic measures also provide signatures of the TPT in silicene [24–28] and
HgTe/CdTe QWs [29], as an alternative to the usual topological (Chern) numbers. They also
account for semimetalic behavior of phosphorene [30,31] under perpendicular electric fields.

In this paper we perform a comparative study of the magneto-optical properties of several
2D Dirac materials, looking for TPT signatures when the band structure is tuned by apply-
ing external fields or by changing the material characteristics. For this purpose, we focus on
transmittance and Faraday rotation near the critical point of the topological phase transition
for topological materials such as silicene and HgTe quantum wells. We found that, for these
materials, transmittance attains an absolute minimum T0 at the critical TPT point for a certain
value Ω0 of the normal incident polarized light frequency. This minimal behavior does not
depend on the chosen values of magnetic field, chemical potential and temperature, although
the location of Ω0 varies with them. An inflection point of the Faraday angle is observed at
each peak of the transmittance, coinciding in frequency. As a novel perspective, we study
that non-topological materials, such as phosphorene, also exhibit an extremal value of the
transmittance when the energy gap is closed by an external electric field.

The organization of the article is as follows. In Sec. 2 we discuss the structure of time
independent Bloch Hamiltonians for general two-band 2D-Dirac material models, their Chern
numbers and their minimal coupling to an external perpendicular magnetic field. We particu-
larize to graphene analogues (silicene, germanene, etc.) in Sec. 2.1, zincblende heterostruc-
tures (HgTe/CdTe quantum wells) in Sec. 2.2 and anisotropic materials like phosphorene in
2.3, calculating their energy spectrum and Hamiltonian eigenstates (Landau levels) and de-
scribing their topological phases (when they exist). In Sec. 3 we recall the Kubo-Greenwood
formula for the magneto-optical conductivity tensor σ of a 2D electron system in a perpen-
dicular magnetic field B and an oscillating electric field of frequency Ω. In particular, we are
interested in analyzing the transmittance and Faraday rotation of linearly polarized light of
frequency Ω for normal incidence on the 2D material. Magneto-optical properties of graphene
analogues, zincblende heterostructures and phosphorene are analyzed in Sections 3.1, 3.2 and
3.3, respectively. For topological insulator materials, we find that the critical point is generally
characterized by a minimum transmittance T0 at a given light frequencyΩ0, where the Faraday
angle changes sign. The effect of anisotropies is also discussed in phosphorene in Section 3.3.
Finally, Sec. 4 is devoted to conclusions.

2 Some two-band 2D-Dirac material models

The time independent Bloch Hamiltonian of a two-band 2D insulator has the general form

H(k) = ε0(k)τ0 + d(k) ·τ , (1)

where τ = (τx ,τy ,τz) is the Pauli matrix vector, τ0 denotes the 2 × 2 identity matrix and
d(k) parameterizes an effective spin-orbit coupling near the center Γ or the Dirac valleys K
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and K ′ of the first Brillouin zone (FBZ), with k = (kx , ky) the two-dimensional wavevector.
The energy of the two bands is ε±(k) = ε0(k)± |d(k)|.

To distinguish between band insulator and topological insulator phases, one can use
the TKNN (Thouless-Kohmoto-Nightingale-Nijs) formula [32] providing the Chern-Pontryagin
number (related to the quantum spin Hall conductance and the Berry phase [33])

C = 1
2π

∫ ∫

FBZ

d2k

�

∂ d̂(k)
∂ kx

×
∂ d̂(k)
∂ ky

�

· d̂(k) , (2)

with d̂ = d/|d|, which counts the number of times (winding number) the unit vector d̂(k)
wraps around the unit sphere as k wraps around the entire FBZ. The Chern number C usually
depends on the sign of some material and (external) control parameters in the Hamiltonian
H (see later for some examples), taking different values in different phases. We shall see that
magneto-optical conductivity measures also capture the topological phase transition.

We shall consider the interaction with a perpendicular magnetic field B = (0,0, B). Pro-
moting the wavevector k to the momentum operator k → p/ħh = −i∇, this interaction is in-
troduced through the usual minimal coupling, p → P = p + eA with A = (Ax , Ay) = (−B y, 0)
the electromagnetic potential (in the Landau gauge) and e the elementary charge (in absolute
value). After Peierls’ substitution, which results in

kx → Px/ħh=
a† + a
p

2ℓB
, ky → Py/ħh=

a† − a

i
p

2ℓB
, (3)

the Hamiltonian (1) can be eventually written in terms of creation a† and annihilation

a =
ℓBp
2ħh
(Px − iPy) =

−1
p

2ℓB
(y − y0 + iℓ2

B py/ħh) , (4)

operators, where ℓB =
p

ħh/(eB) is the magnetic length and y0 = ℓ2
Bkx is the coordinate of the

conserved center of the cyclotron orbit.
Let us review some relevant physical examples.

2.1 Graphene analogues: Silicene, germanene, etc

Silicene, germanene, and other transition metal dichalcogenides (of the Xene type) exhibit an
intrinsic non-zero spin-orbit coupling Hso = −

1
2 sξ∆soτz (s = ±1 is the spin of the electron

and ξ = ±1 refer to the Dirac valleys K and K ′) due to second neighbors hopping terms in
the tight binding model [34]. Spin-orbit interaction Hso combined with and external per-
pendicular electric field coupling H∆z

= 1
2∆zτz , gives d(k) = (vħhξkx , vħhky ,∆sξ), where

∆sξ = (∆z − sξ∆so)/2 results in a tunable (Dirac mass) gap (see e.g. [35–38]). In Table 1
we show a comparative of spin-orbit coupling and Fermi velocity values for several 2D mate-
rials.

The Chern number (2) turns out to be

Csξ = ξ sign(∆sξ) , (5)

where we have integrated on the whole plane, as corresponds to the FBZ in the continuum
limit (zero lattice constant). Therefore, the topological phase is determined by the sign of
the Dirac mass at each valley ξ. More precisely, there is a TPT from a topological insulator
(TI, |∆z| < ∆so) to a band insulator (BI, |∆z| > ∆so), at a charge neutrality point (CNP)
∆(0)z = sξ∆so, where there is a gap cancellation between the perpendicular electric field and
the spin-orbit coupling.
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Table 1: Approximate values of model parameters∆so (spin-orbit coupling), l (inter-
lattice distance) and v (Fermi velocity) for two dimensional Si, Ge, Sn and Pb sheets.
These data have been obtained from first-principles computations in [38] (∆so and
l) and [39,40] (v).

∆so (meV) l (Å) v (105m/s)
Si 4.2 0.22 4.2
Ge 11.8 0.34 8.8
Sn 36.0 0.42 9.7
Pb 207.3 0.44 –

Using the general prescription (3), the minimal coupling with a perpendicular magnetic
field B then results in a different Hamiltonian Hξ for each valley ξ= ±1

H1 =

�

∆s,1 ħhωa
ħhωa† −∆s,1

�

, H−1 =

�

∆s,−1 −ħhωa†

−ħhωa −∆s,−1

�

, (6)

where ω =
p

2v/ℓB denotes the cyclotron frequency. The eigenvalues of both Hamiltonians
are simply:

Esξ
n =

¨

sgn(n)
Ç

|n|ħh2ω2 +∆2
sξ , n ̸= 0 ,

−ξ∆sξ , n= 0 ,
(7)

and the corresponding eigenstates are written in terms of Fock states ||n|〉, for Landau level
(LL) index n= 0,±1,±2, . . . [valence (−) and conduction (+) states], as spinors

|n〉sξ =





Asξ
n

�

�

�|n| − ξ+1
2

¶

Bsξ
n

�

�

�|n|+ ξ−1
2

¶



 , (8)

with coefficients (see [9,41–43] for similar results)

Asξ
n =

¨

sgn(n)p
2

q

1+ sgn(n) cosθ sξ
n , n ̸= 0 ,

(1− ξ)/2 , n= 0 ,

Bsξ
n =

¨

ξp
2

q

1− sgn(n) cosθ sξ
n , n ̸= 0 ,

(1+ ξ)/2 , n= 0 ,

(9)

where θ sξ
n = arctan
�

ħhω
p

|n|/∆sξ

�

, that is, cosθ sξ
n = ∆sξ/|Esξ

n |. Note that Asξ
n and Bsξ

n can
eventually be written as cos(θ sξ

n /2) or sin(θ sξ
n /2), depending on sgn(n).

In Figure 1 we plot the low energy spectra of silicene, given by (7), as a function of the
external electric field ∆z , together with the charge neutrality (critical) points ∆(0)z = ±|∆so|
(marked by vertical dashed lines) at which the TPT takes place.

2.2 HgTe/CdTe quantum wells

In [44–47] it was shown that quantum spin Hall effect can be realized in mercury telluride-
cadmium telluride semiconductor quantum wells. Similar effects were also predicted in Type-II
semiconductor quantum wells made from InAs/GaSb/AlSb [48]. The surface states in these
3D topological insulators can be described by a 2D modified effective Dirac Hamiltonian

H =

�

H+ 0
0 H−

�

, Hs(k) = ε0(k)τ0 + ds(k) ·τ , (10)
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Figure 1: Low energy spectra of silicene as a function of the external electric potential
∆z (in ∆so units) for B = 0.05 T. Landau levels n= ±1,±2 and ±3 [valence (−) and
conduction (+)], at valley ξ= 1, are represented by thin solid lines, blue for s = −1
and red for s = 1 (for the other valley we simply have Es,−ξ

n = E−s,ξ
n ). The edge states

n = 0 are represented by thick lines at both valleys: solid at ξ = 1 and dashed at
ξ = −1. Vertical dashed gray lines indicate the charge neutrality points separating
band insulator (|∆z|>∆so) from topological insulator ( |∆z|<∆so) phases.

where s = ±1 is the spin and H−(k) = H∗+(−k) (temporarily reversed). The expansion of
Hs(k) about the center Γ of the first Brillouin zone gives [45]

ε0(k) = γ−δk2 , ds(k) = (αskx ,αky ,µ− βk2) , (11)

where α,β ,γ,δ and µ are expansion parameters that depend on the heterostructure (the HgTe
layer thickness λ). The most important one is the mass or gap parameter µ, which changes
sign at a critical HgTe layer thickness λc when going from the normal (λ < λc or µ/β < 0) to
the inverted (λ > λc or µ/β > 0) regime [49]. Typical values of these parameters for different
HgTe layer thickness (below and above λc) can be found in [49] and in Table 2 (γ can be
neglected).

The energy of the two bands is

ε±(k) = ε0(k)±
Æ

α2k2 + (µ− βk2)2 . (12)

Table 2: Material parameters for HgTe/CdTe quantum wells with different HgTe
layer thicknesses λ [49].

λ(nm) α(meV·nm) β(meV·nm2) δ(meV·nm2) µ(meV)
5.5 387 -480 -306 9
6.1 378 -553 -378 -0.15
7.0 365 -686 -512 -10
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The TKNN formula (2) for ds(k) provides the Chern number

Cs = s[sign(µ) + sign(β)] , (13)

where we have integrated on the whole plane, as corresponds to the continuum limit. Ac-
cording to Table 2, β does not change sing and, therefore, the topological phase transition
occurs when µ changes sign, as already mentioned. In reference [49], the normal and in-
verted regimes are equivalently given by the sign of µ/β .

Using again the general prescription (3), the minimal coupling with a perpendicular mag-
netic field B now results in

H+ =





γ+µ− (δ+β)(2N+1)
ℓ2

B

p
2α
ℓB

a
p

2α
ℓB

a† γ−µ− (δ−β)(2N+1)
ℓ2

B



 ,

H− =





γ+µ− (δ+β)(2N+1)
ℓ2

B
−
p

2α
ℓB

a†

−
p

2α
ℓB

a γ−µ− (δ−β)(2N+1)
ℓ2

B



 ,

(14)

with N = a†a. A Zeeman term contribution

HZ
s = −

s
2

BµB

�

ge
τ0 +τz

2
+ gh

τ0 −τz

2

�

, (15)

can also be added to the Hamiltonian, with µB ≃ 0.058 meV/T the Bohr magneton and ge,h
the effective (out-of-plane) g-factors for electrons and holes (conduction and valence bands).

Using (Fock state) eigenvectors ||n|〉 of the (Landau level) number operator N = a†a, one
can analytically obtain the eigenspectrum

Es
n = γ−

2δ|n|−sβ
ℓ2

B
− s ge+gh

4 BµB + sgn(n)

√

√

2α2|n|
ℓ2

B
+
�

µ− 2β |n|−sδ
ℓ2

B
− s ge−gh

4 BµB

�2
, (16)

for LL index n= ±1,±2,±3, . . . [valence (−) and conduction (+)] , and

Es
0 = γ− sµ−

δ− sβ

ℓ2
B

− BµB

�

s+ 1
4

gh +
s− 1

4
ge

�

, (17)

for the edge states n= 0, s = ±1. These eigenvalues coincide with those in [17,50,51] for the
identification s = {−1, 1}= {↑,↓}.

The corresponding eigenvectors are

|n〉s =
�

As
n

�

�|n| − s+1
2

�

Bs
n

�

�|n|+ s−1
2

�

�

, (18)

with coefficients

As
n =

� sgn(n)p
2

Æ

1+ sgn(n) cosϑs
n , n ̸= 0 ,

(1− s)/2 , n= 0 ,

Bs
n =

� sp
2

Æ

1− sgn(n) cosϑs
n , n ̸= 0 ,

(1+ s)/2 , n= 0 ,

(19)
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where

ϑs
n = arctan





p

2|n|α/ℓB

µ− 2β |n|−sδ
ℓ2

B
− s ge−gh

4 BµB



 . (20)

As for the graphene analogues in (9), the coefficients As
n and Bs

n can eventually be written as
sine and cosine of half angle, depending on sgn(n).

According to (17), the band inversion for edge states occurs when

E+0 = E−0 ⇒ Binv =
µ

eβ/ħh−µB(ge + gh)/4
, (21)

which gives the critical magnetic field Bc which separates the QSH and QH regimes [51]. For
example, for the material parameters in Table 2 corresponding to a QW thickness λ= 7.0 nm
and g-factors ge = 22.7, gh = −1.21, one obtains Binv ≃ 7.4 T. See also Figure 2 for a graphical
representation of this band inversion.

From now on we shall discard Zeeman coupling for the sake of convenience since our main
conclusions remain qualitatively equivalent. We address the interested reader to Appendix C
where we reproduce some results of Reference [17] for non-zero Zeeman coupling and contrast
with the zero Zeeman coupling case.

We shall use a linear fit

µ(λ) = 77.31 − 12.53λ ,

α(λ) = 467.49− 14.65λ ,

β(λ) = 283.58− 138.16λ ,

δ(λ) = 458.46− 138.25λ ,

(22)

of the material parameters in Table 2 as a function of the HgTe layer thickness λ (dimensionless
units and λ in nm units). In all cases the coefficient of determination is R2 > 0.99. Looking at
µ(λ) in (22), we can obtain an estimation of the critical HgTe thickness at which the topological
phase transition occurs as

µ= 0⇒ λc = 6.17 nm. (23)

In Figure 2 we plot the low energy spectra given by (16) and (17) as a function of the HgTe layer
thickness λ, where we have extrapolated the linear fit (22) to the interval [4 nm, 8 nm]. When
neglecting Zeeman coupling, the band inversion for edge states (21) occurs for B = ħhµ/(eβ)
which, using the linear fit (22), provides a relation

λinv(B) =
368.31− 2.05B

59.7− B
, (24)

between the applied magnetic field B (in Tesla) and the HgTe layer thickness λinv(B) (in
nanometers) at which the band inversion E+0 =E−0 takes place. Note that λinv(B)≃λc=6.17 nm
for low B≪ 1 T, and that E+0 = E−0 ≃ 0 meV at this point as shows Figure 2.

2.3 Phosphorene as an anisotropic material

The physics of phosphorene has been extensively studied [53–67]. There are several ap-
proaches to the low energy Hamiltonian of phosphorene in the literature. Rudenko et al. [68]
and Ezawa [69] propose a four-band and five-neighbors tight-binding model later simpli-
fied to two-bands [69]. Several approximations of this two-band model have been used
in [13,70–72]. We shall choose for our study the Hamiltonian

H =

�

Ec +αx k2
x +αy k2

y γkx

γkx Ev − βx k2
x − βy k2

y

�

, (25)

8

https://scipost.org
https://scipost.org/SciPostPhys.16.3.077


SciPost Phys. 16, 077 (2024)

s=1

s=-1

4 5 6 7 8

-40

-20

0

20

40

HgTe layer thickness λ (nm)
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E
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λinv

E0
+

E0
-

Figure 2: Low-energy spectra Es
n of a HgTe/CdTe quantum well as a function of the

HgTe layer thickness λ for B = 0.5 T. Landau levels n= ±1,±2,±3 [valence (−) and
conduction (+)] are represented by thin solid lines, blue for spin s = −1 and red for
s = 1. Edge states (n= 0) are represented by thick lines. A vertical dashed black line
indicates the HgTe thickness λinv(0.5) = 6.20 nm≃ λc where the band inversion for
edge states occurs for B = 0.5 T according to (24).

proposed by Zhou and collaborators [13]. This corresponds to a Bloch Hamiltonian (1) with

ε0(k) =
Ec + Ev + (αx − βx)k2

x + (αy − βy)k2
y

2
, (26)

d(k) =

�

γkx , 0,
Ec − Ev + (αx + βx)k2

x + (αy + βy)k2
y

2

�

.

The Hamiltonian (25) provides a trivial Chern number (2), even in the presence of a tunable
perpendicular constant electric field (see below), which means that monolayer phosphorene
does not have a topological phase per se. It has been shown that topological transitions can
be induced in phosphorene when rapidly driven by in-plane time-periodic laser fields [73];
these are called in general “Floquet topological insulators” (see e.g. [74–76]), but we shall
not consider this possibility here. Although phosphorene is not a topological material, we
will see in Sec. 3.3 that the critical magneto-optical properties (e.g., minimum transmittance)
observed for silicene and HgTe QWs are still valid in phosphorene when closing the energy
gap through an external electric field. Another possibility to modify the energy gap could be
by applying strain [60,70] (see later in Sec. 3.3).

The material parameters of phosphorene can be written in terms of conduction (c) and
valence (v) effective masses as (see [13] for more information)

αx ,y =
ħh2

2mcx ,cy
, βx ,y =

ħh2

2mvx ,vy
, (27)

with
mcx = 0.793me , mcy = 0.848me ,
mvx = 1.363me , mvy = 1.142me ,

(28)
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and me is the free electron mass. Conduction and valence band edge energies are Ec = 0.34 eV
and Ev = −1.18 eV, so that the energy gap is Eg = Ec − Ev = 1.52 eV. The interband coupling
parameter is γ= −0.523 eV·nm.

When coupling to an external perpendicular magnetic field, the anisotropic character of
phosphorene slightly modifies Peierls’ substitution (3), which now adopts the following form

kx →
Px

ħh
=

a† + a
p

2αy xℓB
, ky →

Py

ħh
=
αy x(a† − a)

i
p

2ℓB
, (29)

with αy x =
�mcy

mcx

�1/4
. Therefore, applying this prescription to (25), the final Hamiltonian can

be written as

H = ħhωγ(a+ a†)τx +
�

Ec +ħhωc(a
†a+ 1/2)
� τ0 +τz

2
(30)

+
�

Ev −ħhωv(a
†a+ 1/2)−ħhω′(a2 + a†2)

� τ0 −τz

2
,

in terms of the annihilation (and creation a†) operator

a =

√

√mcyωc

2ħh

�

y − y0 + i
p̂y

mcyωc

�

, (31)

in analogy to (4), where some effective frequencies have been defined as

ωc =
eBp

mcx mcy
, ωγ =

γp
2ħhαy xℓB

,

ωv = (rx + ry)ωc , ω′ = (rx − ry)ωc/2 ,
(32)

with
rx =

mcx

2mvx
, ry =

mcy

2mvy
.

As we did for silicene, we shall also consider here the application of a perpendicular elec-
tric field to the phosphorene sheet in the usual form [77] Ĥ∆ = ∆zτz , with ∆z the on-site
electric potential. Unlike for silicene and HgTe QWs, the diagonalization of the phosphorene
Hamiltonian (30) has to be done numerically [30].

Note that the Hamiltonian (30) preserves the parity π(n, s) = eiπns of the state |n〉s, with
ns = n+(s+1)/2 (see e.g. [30]). This means that the matrix elements s〈n|H|n′〉s′∝δπ(n,s),π(n′,s′)
are zero between states of different parity. Therefore, this parity symmetry helps in the di-
agonalization process and any (non-degenerate) eigenstate of H has a definite parity. The
Hamiltonian eigenstates can now be written as

|ψl〉=
∑

n,s

c(l)n,s|n〉s , (33)

where l ∈ Z denotes the LL index (l > 0 for conduction and l ≤ 0 for valence band). The sum
∑

n,s is constrained to π(n, s) = ±1, depending on the even (+) and odd (−) parity of k. The
coefficients c(k)n,s are obtained by numerical diagonalization of the Hamiltonian matrix, which
is truncated to n ≤ N , with N large enough to achieve convergent results for given values of
the magnetic and electric fields. In particular, we have used Fock states with N ≤ 1000 to
achieve convergence (with error tolerance ≤ 10−15 eV) for B = 0.5 T in the six first Hamilto-
nian eigenvalues in the range −1.55 ≤ ∆z ≤ −1.49 eV. The resulting spectrum, as a function
of the electric field potential ∆z , can be seen in Figure 3 for a magnetic field of B = 0.5 T
(higher magnetic fields need less Fock states to achieve convergence). The vertical dashed
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Figure 3: Low energy spectra El of phosphorene as function of the electric field
potential ∆z for thirteen Hamiltonian eigenstates l = −6, . . . , 0, . . . , 6 and a mag-
netic field B = 0.5 T. Valence and conduction band states of even (odd) parity
l = ±2,±4,±6 (n = ±1,±3,±5) are represented in red (blue) color. The edge state
Eeven

0 is represented by a thick black line. The vertical dashed black line is the point
∆z = −Eg = −1.520 eV at which the electric potential equals the energy gap of phos-
phorene.

line gives the point ∆z = −1.520 eV at which the electric potential equals minus the energy
gap Eg = Ec−Ev = 1.52 eV of phosphorene. This is not really a critical point in the same sense
as ∆(0)z = ∆so = 4.2 meV for silicene and λc = 6.17 nm for HgTe QWs, since phosphorene as
such (as already said) does not display a topological phase. However, we will see in Section
3.3 that the phosphorene transmittance still presents a minimum at ∆(0)z = −1.523 eV, which
closes the energy gap Eg = 1.52 eV at low magnetic fields.

It is also interesting to note that the LLs of phosphorene are degenerated in pairs for an elec-
tric potential below∆z ≃ −1.53 eV. Namely, we obtain numerically that |Eeven

l −Eodd
l+1 |≤10−4 eV

for all ∆z < −1.53 eV and l = −6,−4,−2,0, 2,4 as it shows the left hand side of Figure 3.
This energy degeneracy will influence the conductivity as well.

3 Magneto-optical conductivity

The magneto-optical conductivity tensorσ of a 2D electron system in a perpendicular magnetic
field B and an oscillating electric field of frequency Ω, can be obtained from Kubo-Greenwood
formula [32,78,79] in the Landau-level representation:

σi j(Ω, B) =
iħh

2πℓ2
B

∑

n,m

fm − fn

En − Em

〈m| ji|n〉〈n| j j|m >

ħhΩ+ Em − En + iη
, (34)

where

j =
ie
ħh
[H, r ] =

e
ħh
∇k H , (35)
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is the current operator, with r = (x , y) and∇k = (∂kx
,∂ky
) [the minimal coupling prescription

(3) is understood under external electromagnetic fields], and fn=1/(1+exp[(En−µF)/(kB T )])
is the Fermi distribution function at temperature T and chemical potential µF. In the zero
temperature limit, the Fermi function fn is replaced by the Heaviside step function Θ(µF−En),
which enforces the Pauli exclusion principle for optical transitions (they are allowed between
occupied and unoccupied states). The parameter η is a small residual scattering rate of charge
carriers and, although the exact shape of σi j would depend on the details of the scattering
mechanisms, using a constant η gives a good, qualitative description of the essential mecha-
nisms relevant for magneto-optical experiments. In

∑

n of eq. (34) it is also implicit the sum
over spin s and valley ξ, besides the LL index n (for graphene, there is a twofold spin and valley
degeneracy, so that the extra sum just contributes with a degeneracy factor g = 4). We shall
measure σi j in units of the conductance quantum σ0 = e2/h= 38.8 µS [78] and renormalize
the currents as j̄ = j/(e/ħh) =∇k H, so that

σi j(Ω, B)

σ0
=

i

ℓ2
B

∑

n,m

fm − fn

En − Em

〈m| j̄i|n〉〈n| j̄ j|m >

ħhΩ+ Em − En + iη
. (36)

We shall analyze the transmittance and Faraday rotation of linearly polarized light of fre-
quencyΩ for normal incidence on the 2D material, where the electric fields of incident (E i) and
transmitted (E t) waves are related through the conductivity tensor σ by the formula [80–82]

E t =
�

I + 1
2 Z0σ
�−1 · E i , (37)

where Z0 = 2α/σ0 is the vacuum impedance (α= 1/137 is the fine-structure constant) and I
denotes the 2× 2 identity matrix. We also assume that the incident field is linearly polarized
in the x axis, that is E i = (E i

x , 0). From here, the transmittance T and the Faraday rotation
angle ΘF (in degrees) are [2,82]

T = 1
2
(|t+|2 + |t−|2)≃ 1− Z0Re(σx x) , (38)

ΘF =
1
2
(arg(t+) + arg(t−))≃

180
2π

Z0Re(σx y) , (39)

where t± = E t
±/|E

i| are the transmission amplitudes in the circular polarization basis [83,84]
or chiral basis [85], E t

± = E t
x± iE t

y . Re(σi j)means the real part of σi j and arg(t±) the complex
argument. We have also provided the approximate expressions in the limit of weak absorption
for isotropic materials. Note that, in this case, according to (39), the absorption peaks of
Re[σx x(Ω)] shown in Figure 6, correspond to dips of the transmittance T . Silicene and HgTe
QWs have both longitudinal conductivities equal σx x = σy y , but this symmetry is broken
for anisotropic materials like phosphorene [10, 85] (see later on Section 3.3). Therefore, in
phosphorene, we cannot apply the approximation in eq.(39) and we have to use the strict
equality.

In the circular polarization (right- and left-handed ±) basis, the conductivity is given by
σ± = σx x ± iσx y , and the absorptive part is therefore Re(σ±) = Re(σx x) ∓ Im(σx y). In
Appendix B we provide extra plots for the silicene conductivity under circular polarization
which reproduce the results of [9].

3.1 Magneto-optical properties of graphene analogues

The current operator (35) for this case is j = ( jx , jy) = ev(ξτx ,τy). The matrix elements

〈m|τx |n〉sξ = Asξ
m Bsξ

n δ|m|−ξ,|n| + Asξ
n Bsξ

m δ|m|+ξ,|n| ,
〈m|τy |n〉sξ = −iAsξ

m Bsξ
n δ|m|−ξ,|n| + iAsξ

n Bsξ
m δ|m|+ξ,|n| ,

(40)
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Figure 4: Real and imaginary parts of the longitudinal σx x and transverse Hall σx y
magneto-optical conductivities in a silicene monolayer under three different electric
potentials ∆z = 0.5∆so,∆so, 1.5∆so, as a function of the polarized light frequency
Ω and in σ0 = e2/h units. We set the conductivity parameters as µF = 2.1 meV,
B = 0.05 T, T = 1 K and η= 0.1 meV.

provide the familiar selection rules |n| = |m| ± 1 for LL transitions. Plugging (40) into the
general expression (36) we obtain the magneto-optical conductivity for graphene analogues.
In Figure 4 we plot the real and imaginary parts of the conductivity tensor components σi j (in
σ0 = e2/h units) of silicene as a function of the polarized light frequency Ω at three different
electric potentials ∆z = 0.5∆so,∆so, 1.5∆so around the critical point ∆(0)z = ∆so, for a mag-
netic field B = 0.05 T and some representative values of the chemical potential µF = 2.1 meV,
temperature T = 1 K and scattering rate η = 0.1 meV. For ħhΩ ∈ [0, 20] meV, we achieve
convergence with 100 LLs, that is, restricting the sum in (36) as

∑∞
n=−∞ →
∑100

n=−100. More
explicitly, for the parameters mentioned above,

�

�

�

�

�

n=100
∑

n=−100

σi j −
n=99
∑

n=−99

σi j

�

�

�

�

�

/σ0 ≤



















10−5 , ifσi j = Re(σx x) ,
10−15 , ifσi j = Re(σx y) ,
10−3 , ifσi j = Im(σx x) ,
10−14 , ifσi j = Im(σx y) .

(41)

Each peak on the plot of the conductivity Re(σx x) against ħhΩ represents an electron transi-
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tion between two LLs n, m connected by the selection rules |n|= |m|±1 and generally arranged
above and below the Fermi level µF; this latter constrain comes from the Fermi functions factor
( fm − fn) of the Kubo formula (34), which becomes a step function at low temperatures. For
more information, see the Supplemental Material [52] where we illustrate these electron tran-
sitions by arrows in the energy spectrum in an animated gif explained in Appendix D. The value
of ħhΩ where a peak of the conductivity occurs coincides with the energy difference (En − Em)
of the LL transition n→ m. This is clear by looking at the denominator of the Kubo formula.
For example, the two main peaks of Re(σx x) at low frequencies ħhΩ ∈ [2,6] meV in Figure 4
correspond to the transitions 0 → 1 for spin and valley s = ξ = 1 and s = ξ = −1 (purple
and green arrows in the animated gif of [52]). The other conductivity peaks located at higher
frequencies correspond to electron transitions between higher LLs and different spin/valley
combinations according to (40). When the external electric field ∆z is such that the energy
differences of the two main peaks are the same, that is, when E++1 −E++0 is equal to E−−1 −E−−0 ,
both peaks merge into a bigger one. Using the silicene spectrum energy equation (7), we find
that this condition is fulfilled at the critical point ∆z =∆so for any value of the magnetic field
B. This result implies that we can extract information of the TPT occurring at ∆(0)z = ∆so by
looking at the conductivity Re(σx x) plot for different values of ∆z .

To be more specific, in Figure 5 we represent the behavior of the two observables given
in (39), that is, the Faraday angle ΘF and the transmittance T , as a function of the polarized
light frequency Ω around the critical point ∆(0)z = ∆so = 4.2 meV. We focus on the frequency
interval ħhΩ ∈ [2,6] meV where the main peaks (transition 0→ 1) in Figure 4 are located. We
find an absolute minimum of the transmittance T0 = 0.704 at the critical point ∆(0)z = ∆so
and ħhΩ = 4.06 meV. This “minimal” behavior does not depend on the particular values of
magnetic field, chemical potential and temperature, which only change the actual value of T0
and ħhΩ of the peak. Actually, the minimum peaks in the transmittance plot are related to the
maximum peaks of the absortance Re(σx x), according to equation (39). The Faraday angle at
the critical point (black curve in Figure 5) changes sign at the minimum transmittance point
ħhΩ = 4.06 meV, a behavior that can also be extrapolated to other 2D materials (se later for
HgTe QWs and phosphorene). In fact, each peak of the transmittance in Figure 5 coincides in
frequency with an inflection point of the Faraday angle, where it attains a value of 0 degrees.

Changing the chemical potential µF locks/unlocks other electronic transitions, so we would
see different peaks in the conductivity and transmittance plots (see e.g., [10]). Increasing
the scattering rate η smoothes the peaks in the transmittance, so it would be more difficult
to distinguish when they overlap. We have choosen values of η approximately an order of
magnitude below the frequency of the conductivity peaks, for which the resolution is fine.

For completeness, in Appendix E we show several contour plots of the Faraday angle using
different cross sections in the {ħhΩ,∆z , B, T,µF} parameter space.

3.2 Magneto-optical properties of zincblende heterostructures

From the Hamiltonian (10), the current operator (35) for zincblende heterostructures is

jsx =
e
ħh
(sατx − 2kx(βτz +δτ0)) ,

jsy =
e
ħh
�

ατy − 2ky(βτz +δτ0)
�

,
(42)

which, after minimal coupling according to the general prescription (3), results in

jsx =
e
ħh

�

sατx −
p

2
a† + a
ℓB

(βτz +δτ0)

�

,

jsy =
e
ħh

�

ατy + i
p

2
a† − a
ℓB

(βτz +δτ0)

�

.

(43)
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Figure 5: Transmittance T and Faraday angle ΘF (in degrees) in a silicene monolayer
as a function of the incident polarized light frequency Ω, and for different electric
fields below and above the critical (black line) electric field ∆(0)z = ∆so = 4.2meV.
T and ΘF are symmetric about ∆(0)z . We set the conductivity parameters as
µF = 2.1 meV, B = 0.05 T, T = 1 K and η= 0.1 meV .

Note that, in fact, jsy does not depend on s. The current matrix elements for this case are

〈m| jsx |n〉s =
esα
ħh
Ξs,+

m,n −
p

2e
ħhℓB
Φs,+

m,n ,

〈m| jsy |n〉s = −i
eα
ħh
Ξs,−

m,n + i

p
2e
ħhℓB
Φs,−

m,n ,

(44)

where

Ξs,±
m,n = (A

s
mBs

nδ|m|−s,|n| ± As
nBs

mδ|m|+s,|n|) ,

Φs,±
m,n = ((δ+ β)A

s
mAs

n + (δ− β)B
s
mBs

n)
�Ç

|n|+ 1+ s−1
2 δ|m|−1,|n| ±
Ç

|n| − s+1
2 δ|m|+1,|n|

�

.

(45)

Despite the more involved structure of the current than for silicene, the corresponding matrix
elements maintain the same familiar selection rules |n|= |m| ± 1 for LL transitions.

Inserting the matrix elements (40) into the general expression (36) we obtain the magneto-
optical conductivity for general zincblende heterostructures. In Figure 6 we plot the real and
imaginary parts of the conductivity tensor components σi j (in σ0 = e2/h units) of a HgTe
QW as a function of the polarized light frequency Ω at three different HgTe layer thicknesses
λ = 5.50nm < λc , λ = 6.17nm = λc , and λ = 7.00 nm > λc , a magnetic field B = 0.5 T
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Figure 6: Real and imaginary parts of the longitudinal σx x and transverse
Hall σx y magneto-optical conductivities in a bulk HgTe QW of thickness
λ = 5.50,6.17, 7.00 nm, as a function of the polarized light frequency Ω and in
σ0 = e2/h units. We set the conductivity parameters as µF = 12.5 meV, B = 0.5 T,
T = 1 K and η= 0.5 meV .

and some representative values of the chemical potential µF = 12.5 meV, temperature T = 1 K
and scattering rate η= 0.5 meV. For ħhΩ ∈ [0, 60] meV, we achieve convergence with 100 LLs,
that is, restricting the sum in (36) as

∑∞
n=−∞→
∑100

n=−100. More explicitly, for the parameters
mentioned above,

�

�

�

�

�

n=100
∑

n=−100

σi j −
n=99
∑

n=−99

σi j

�

�

�

�

�

/σ0 ≤



















10−5 , ifσi j = Re(σx x) ,
10−4 , ifσi j = Re(σx y) ,
10−3 , ifσi j = Im(σx x) ,
10−7 , ifσi j = Im(σx y) .

(46)

Similar to silicene, we can see in Figure 6 that there are multiple peaks in the absorptive
components Re(σx x) and Im(σx y), corresponding to transitions between occupied and unoc-
cupied LLs obeying the selection rules |n| = |m| ± 1. At lower frequencies ħhΩ ∈ [0, 30] meV,
inside each curve of Figure 6, we find the main peaks corresponding to the transitions 0→ 1
for spin s = 1 and s = −1. Both peaks merge approximately at λ ≃ λc = 6.17 nm. This is
because the energy differences E+1 −E+0 and E−1 −E−0 are similar when λ≃ λc for low magnetic
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Figure 7: Numerical solutions λ∗ (in nm, blue dots) of the equation E+1 −E+0 = E−1 −E−0
(energies (16,17) of HgTe QW) for 50 different values of the external magnetic field
B. In orange, non-linear fit (47) of the numerical values.

fields B≪ 1 T, according to equations (16,17). In order to extend this result to higher values of
the magnetic field, we insert the parameter fits (22) into the equation E+1 − E+0 = E−1 − E−0 , and
solve it numerically for λ∗ = λ∗(B), obtaining the values represented by blue dots in Figure 7.
These values fit the equation

λ∗fit(B) =
218.4− 17.3B
35.4− 2.8B

, (47)

which is represented as an orange curve in Figure 7. Consequently, only for small magnetic
fields, we can infer the critical thickness λc where the TPT in HgTe QW occurs from the con-
ductivity Re(σx x) plot, that is, λ∗ ≃ λc = 6.17 nm for B≪ 1 T.

The behavior of the Faraday angle and the transmittance as a function of the polarized
light frequency Ω around the critical HgTe layer thickness λc = 6.17 nm (at which the material
parameter µ changes sign/Chern number) is shown in Figure 8. As for silicene, we focus on
the lower frequencies ħhΩ ∈ [0, 30] meV where the main peaks are located, and find again a
minimum of the transmittance, this time T0 = 0.78, at the critical point λc and ħhΩ= 15.0 meV.
For this material, the “minimal” behavior does depend on the particular values of magnetic
field, as we saw in equation (47). However, for small magnetic fields like B = 0.5 T in Figure
8, the minimum of the transmittance still takes place at λ∗ ≃ λc = 6.17 nm. The Faraday
angle at the critical point (black curve in Figure 8) changes sign at the minimum transmittance
frequency ħhΩ= 15.0 meV, a behavior shared with silicene.

For completeness, in Appendix E we show several contour plots of the Faraday angle using
different cross sections in the {ħhΩ ,λ, B, T,µF} parameter space.

3.3 Magneto-optical properties of phosphorene and effect of anisotropies

From the phosphorene Hamiltonian (25), the current operator (35) is

jsx =
e
ħh
(γτx + kx(τ0(αx − βx) +τz(αx + βx))) ,

jsy =
e
ħh

ky

�

τ0(αy − βy) +τz(αy + βy)
�

, (48)
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Figure 8: Transmittance T and Faraday angle ΘF (in degrees) in a bulk HgTe QW
as a function of the polarized light frequency Ω, and for thickness λ < λc ,λ = λc
and λ > λc , with λc = 6.17 nm (black line). We set the conductivity parameters as
µF = 12.5 meV, B = 0.5 T, T = 1 K and η= 0.5 meV .

which, after minimal coupling, according to prescription (29), results in

jsx =
e
ħh

�

γτx +
a† + a
p

2αy xℓB
(τ0(αx − βx) +τz(αx + βx))

�

,

jsy =
e
ħh
αy x(a† − a)

i
p

2ℓB

�

τ0(αy − βy) +τz(αy + βy)
�

.

(49)

Plugging these matrix elements into the general expression (36) we obtain the magneto-
optical conductivity for phosphorene. Note that, unlike silicene and HgTe QW, there is now
a large asymmetry between σx x and σy y (about one order of magnitude difference), as evi-
denced by Figure 9. This asymmetry was already highlighted by [71], where tunable optical
properties of multilayer black phosphorus thin films were studied for B = 0. In Figure 9 we
plot the real and imaginary parts of the conductivity tensor components σi j (in σ0 = e2/h
units) of phosphorene as a function of the polarized light frequency Ω, for some values of
the electric potential around ∆(0)z = −Eg = −1.52 eV (closing the energy gap), a magnetic
field of B = 0.5 T, like in Figure 3, and some representative values of the chemical potential
µF = −0.417 eV, temperature T = 1 K and scattering rate η= 0.2 meV. We are using the same
threshold of N = 1000 Fock states that we used to find convergence in the first 6 Hamilto-
nian eigenstates of the numerical diagonalization in Figure 3. This convergence is ensured
for ħhΩ ∈ [0, 20] meV. The anisotropic character of phosphorene also implies that the current
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Figure 9: Real and imaginary parts of the longitudinal σx x ,σy y and transverse Hall
σx y magneto-optical conductivities in a phosphorene monolayer, as a function of
the polarized light frequency Ω and in σ0 = e2/h units. Phosphorene is under a
perpendicular electric field potential ∆(0)z = −Eg = −1.52 eV closing the energy gap
in Figure 3. The y-axis ticks have different values in each subplot as the conductivities
σx y and σy y attain smaller values than σx x (phosphorene anisotropy). We set the
conductivity parameters as µF = −0.417 meV, B = 0.5 T, T = 1 K and η= 0.2 meV .

jsy is significantly lower than jsx [the Hamiltonian (25) is of second order in ky]. This makes
transversal components of the conductivity significantly lower than longitudinal components.
This is why we have disposed Figure 9 in a slightly different manner from Figures 4 for silicene
and 6 for HgTe QW, which display a more isotropic structure.

Due to the parity symmetry of the Hamiltonian (30), only the electronic transitions be-
tween LLs of different parities are allowed [30]. The main peak (smaller frequency) of the
conductivity Re(σx x) in Figure 9 corresponds to the electronic transitions Eeven

0 → Eodd
3 and

Eodd
1 → Eeven

2 , which have approximately the same energy difference for all ∆z < −1.53 eV
with a tolerance ≤ 10−14 eV. That is, Eeven

0 and Eodd
1 , and Eeven

2 and Eodd
3 , are degenerate for all

∆z < −1.53 eV as the spectrum in Figure 3 shows. When the degeneration is broken around
the electric potential∆z ≃ −1.53 eV, the main conductivity Re(σx x) peak splits into two as we
can see in Figure 9.

The anisotropic character of phosphorene also affects the Faraday angle, which attains
much lower values (in absolute value) than for silicene or HgTe QWs. Indeed, in Figure 10
we plot Faraday angle and transmittance as a function of the polarized light frequency Ω for
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different electric field potentials −1.535 ≤ ∆z ≤ −1.519 eV. Like for silicene and HgTe QWs,
we find a minimal behavior in the transmittance of phosphorene T0 = 0.50 for a polarized
light frequency ħhΩ = 2.6 meV at electric field potential ∆(0)z = −1.523 eV, which is close to
minus the energy gap −Eg = −1.52 eV. Note that this value of the minimal transmittance of
phosphorene is much smaller than for silicene and HgTe QWs; actually, the assumption of low
absortance in formula (39) is no longer valid here and we have used the exact expressions for
T and ΘF in (39). Moreover, unlike for graphene analogues and HgTe QWs, this minimum of
the transmittance does not seem to be related to the union of two conductivity peaks into a
bigger one; rather, it is simply related to the energy gap closure. Actually, the critical electric
potential ∆(0)z where the transmittance of phosphorene reaches a minimum depends on the
magnetic field B chosen, as Figure 11 shows. We perform a non-linear fit of the numerical
values of ∆(0)z (B) and obtain the equation (B in dimensionless units)

�

∆(0)z

�

fit (B) =
−77.4− 3.5B
50.9+ 2.2B

eV , (50)

which is represented as a orange curve in Figure 11. For small magnetic fields, we can deduce
that the critical electric field potential is similar to minus the energy gap −Eg of phosphorene,
that is ∆(0)z (B) ≃ −Eg = −1.52 eV for B ≪ 1 T. We have also checked numerically that the
critical electric potentials ∆(0)z (B) are independent of the parameters µF and η for a fixed
magnetic field B. However, we set different values of µF for small fields B ≤ 2 T (see caption
of Figure 11), in order to avoid blocking the electric transition Eodd

1 → Eeven
2 of the main peak

of the transmittance. We also increment N as B decreases in order to achieve convergence in
the diagonalization.

Additionally, Figure 10 shows how one peak of the transmittance splits into two around
∆z ≃ −1.53 eV (blue lines), since the LL Eeven

0 breaks its degeneration approximately for
∆z > −1.53 eV (see Figure 3). For ∆z =∆(0)z = −1.523 eV (thick black line), the big peak on
the left in Figure 10 corresponds to the electronic transition Eodd

1 → Eeven
2 , and moves toward

smaller values of ħhΩ when increasing ∆z . The other small peak in the black line corresponds
to the electronic transition Eeven

0 → Eodd
3 , which moves toward bigger values of ħhΩ when

increasing ∆z . The Faraday angle also presents inflection points at the frequencies where the
peaks of the transmittance are located.

Therefore, we see that anisotropies affect the values of the Faraday angle and transmit-
tance. There are mechanical ways of introducing anisotropies in 2D materials by subjecting
them to strain (like for strained [86] or rippled [87] graphene). This kind of anisotropies can
be treated by replacing the scalar Fermi velocity v by a 2×2 symmetric tensor v (see e.g. [82]).
Namely, for graphene, the Hamiltonian (1) vector d components d j = ħhvk j are replaced by
d j = ħhki vi j , i = 1,2, d3 = 0. Actually, for uniformly strained graphene with strain tensor ϵ, the
Fermi velocity tensor is (up to first order) v = v(τ0−βϵ) (see e.g. [82,88]), where β ∼ 2. The
relation between the isotropic σ0 and the anisotropic σ magneto-optical conductivity tensors
is simply σ(Ω, B) = vσ0(Ω,B)v/det(v), with B = B det(v)/v2 an effective magnetic field.
Interesting discussions on how measurements of dichroism and transparency for two different
light polarization directions can be used to determine the magnitude and direction of strain can
be found in [81]. Also, photoelastic effects in graphene [86], strain-modulated anisotropies in
silicene [89,90], etc. The band gap Eg = Ev−Ec of phosphorene can be furthermore modulated
by strain and by the number of layers in a stack [60,70].
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Figure 10: Transmittance T and Faraday angle ΘF (in degrees) in a phosphorene
monolayer as a function of the polarized light frequency Ω, and for electric fields
−1.535 < ∆z < −1.519 eV around the minus energy gap −Eg = −1.52 eV. The
black line corresponds to the electric potential ∆(0)z = −1.523 eV≃ −Eg where the
transmittance attains a minimum of T0 = 0.5 atħhΩ= 2.5 meV. We set the conductivity
parameters as µF = −0.417 meV, B = 0.5 T, T = 1 K and η= 0.2 meV .

4 Conclusions

We have studied magneto-optical properties of different 2D materials, focusing on transmit-
tance and Faraday rotation near the critical point of the topological phase transition for topo-
logical insulators like silicene and HgTe quantum wells. We have seen that, in all topological
2D materials analyzed, transmittance attains an absolute minimum T0 at the critical TPT point
for a certain value Ω0 of the normal incident polarized light frequency. This is a universal
behavior for graphene analogues, that is, the minimal behavior of the transmittance does not
depend on the chosen values of magnetic field, chemical potential and temperature, although
the location of Ω0 varies with them. In addition, we have found that each peak of the transmit-
tance coincides in frequency with an inflection point of the Faraday angle, for a fixed selection
of the electric field, magnetic field, chemical potential and temperature parameters.

This extremal universal behavior is shared with other topological 2D materials like HgTe
quantum wells as long as the applied magnetic field remains small enough B ≪ 1 T. In HgTe
quantum wells we have verified that there is a minimum of the transmittance T0 at the critical
HgTe layer thickness at a given frequency Ω′0 (for this material this minimal behavior depends
on the magnetic field) and the Faraday angle at the critical point changes sign at the minimum
transmittance frequency Ω′0.
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Figure 11: Electric field potential at which phosphorene transmittance reaches a min-
imum, as a function of different magnetic fields. In orange, non-linear fit (50) of the
numerical values. In general, we set the conductivity parameters µF = −0.41 eV,
T = 1 K, η = 1 meV, and use N = 300 Fock state in the numerical diagonal-
ization, for all B ≥ 3 T. For smaller magnetic fields B = 0.1, 0.5,1, 2 T, we set
µF = −0.419,−0.418,−0.416,−0.416 eV respectively. In the case of B = 0.1 T we
also set η = 1 meV and N = 500 Fock states to achieve energy diagonalization con-
vergence.

For other non-topological anisotropic materials like phosphorene, this minimal behavior of
the transmittance still remains when the energy gap is closed, the Faraday angle being much
smaller (in absolute value) than in silicene and HgTe QWs. In this case the critical electric
potential where the transmittance reaches a minimum depends on the magnetic field.

Therefore, these extremal properties of transmittance/absortance and chirality change of
Faraday angle at the critical point turn out to provide sharp markers of either the topological
phase transition or the energy gap closure.
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A Landau levels plot versus external magnetic field

We provide an additional plot of the Landau levels of the three different materials as a func-
tion of the external magnetic field B. Critical values of the electric field and layer thick-
ness are selected, that is, in the case of the silicene ∆z = ∆so = 4.2 meV, for the HgTe QW
λ= λc = 6.17 nm, and for the phosphorene ∆z = −Eg = −1.52 eV.
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Figure 12: Energies (Landau levels) of (a) Silicene, (b) HgTe QW, and (c) Phos-
phorene as a function of the external magnetic field B. Critical values of the
electric field and layer thickness are selected, that is, in the case of the silicene
∆z = ∆so = 4.2 meV, for the HgTe QW λ = λc = 6.17 nm, and for the phospho-
rene ∆z = −Eg = −1.52 eV.

B Silicene conductivity in the circularly polarization basis

We complete the analysis of magneto-optical properties of graphene analogues by discussing
the case of circularly polarized light. In this case, the conductivity isσ±(Ω)=σx x(Ω)±iσx y(Ω)
for right-handed (+) and left-handed (-) polarization [91]. Therefore, the absorptive part is
Re(σ±) = Re(σx x) ∓ Im(σx y). In Figure 13, we present both absorptive parts Re(σ±) for a
silicene monolayer under an electric potential ∆z = 0.5∆so as a function of the frequency
of the incident light Ω. The conductivity parameters are specifically chosen to reproduce the
results in [9], that is, µF = 3.0∆so, B/∆2

so = 657 G/meV2, T = 0 K and η = 0.05∆so. Note
that we have defined the conductance quantum as σ0 = e2/h= 38.8µS, whereas the authors
in reference [9] take σ0 = e2/(4ħh).
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Figure 13: Conductivity absorptive parts Re(σ±) = Re(σx x) ∓ Im(σx y) for right-
handed (+) and left-handed (-) polarization in a silicene monolayer under an electric
potential∆z = 0.5∆so, as a function of the polarized light frequency Ω (in σ0 = e2/h
units). We set the conductivity parameters µF = 3.0∆so, B/∆2

so = 657 G/meV2,
T = 0 K and η= 0.05∆so as in Ref. [9].

C HgTe quantum well conductivity with Zeeman effect

We recalculate the conductivity of the HgTe quantum well with and without Zeeman coupling
to support the argument that the results are qualitatively equivalent, the quantitative differ-
ences being small. A layer thickness of λ = 7.0 nm is selected, so the material parameters
are α = 365 meV·nm, β = −686 meV·nm2, δ = −512 meV·nm2, and µ = −10 meV, as taken
from Ref. [49]. In Figure 14, we plot the real and imaginary parts of the longitudinal σx x and
transverse σx y conductivities as a function of the polarized light frequency Ω. The conduc-
tivity parameters are chosen to reproduce the results in [17] with Zeeman coupling, that is,
µF = 8 meV, B = 5 T, T = 1 K and η = 1 meV. The conductance quantum used here is again
σ0 = e2/h= 38.8µS, whereas the authors in reference [17] take σ0 = e2/ħh.

D Animations of the energy spectrum and conductivities

Attached in the Supplemental Material [52] is a series of animations called:

-Silicene_Conductivity_and_Energy_VS_Omega.gif,
-HgTe_Conductivity_and_Energy_VS_Omega.gif,
-Phosphorene_Conductivity_and_Energy_VS_Omega.gif,

where we plot the energy spectrum at right, and the real part Re[σx x(Ω)] and Re[σx y(Ω)]
of the conductivity components at left, for three different materials studied in the main text:
silicene, HgTe QW, and phosphorene. The external electric field ∆z in the case of the silicene
and phosphorene, and the layer thickness λ of the HgTe QW, are used as “time coordinate” on
the animations, so each frame corresponds to one value of these control parameters.

The conductivities are plotted as a function of the polarized light frequency Ω, and
they change in each frame according to the values of ∆z or λ. Therefore, we can observe
how the main peaks of the longitudinal conductivity Re(σx x) merge for the critical values
∆(0)z = ∆so = 4.12 meV (silicene) or λ = λc = 6.17 nm (HgTe QW), where the topological
phase transition occurs in these 2D materials.
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Figure 14: Real and imaginary parts of the longitudinal σx x and transverse Hall σx y
(magneto-)optical conductivities in a bulk HgTe QW of a thicknesses λ= 7.0 nm, as
a function of the polarized light frequency Ω (in σ0 = e2/h units) with and without
Zeeman coupling. We set the conductivity parameters µF = 8 meV, B = 5 T, T = 1 K
and η= 1 meV, as in Ref. [17].

In the case of the phosphorene, we only observe the degeneration of Landau levels n = 0
and n = 1 in the conductivity around the electric potential ∆z ≃ −1.53 eV. That is, the elec-
tronic transitions Eodd

1 → Eeven
2 and Eeven

0 → Eodd
3 have a similar energy and share a longitudi-

nal conductivity peak (main peak at left in the gif), until the degeneration breaks for electric
fields approximately higher than −1.53 eV, when both electronic transitions will have different
energies so the main peak will split into two.

On the other hand, the energy spectrum is static on the animation, as it is plotted as a
function of all the values that ∆z or λ take. However, we plot a moving vertical dashed line
on it, representing the value of ∆z or λ in the conductivity frame. On top of this vertical
line, we also draw arrows representing the electronic transitions allowed between Landau
levels (LLs) for the specific value ∆z or λ, where the Fermi energy µF is represented by an
horizontal dashed line. The color of the arrows is the same as the color of the points plotted
on the top of the longitudinal conductivity main peaks. The length of the arrows represents
the energy difference |En − Em| between the corresponding Landau levels in this particular
electronic transition n↔ m, which also coincides with the frequency ħhΩ of the longitudinal
conductivity peak associated with this transition. Therefore, when two arrows have the same
length, we can observe two longitudinal conductivity peaks merging at the critical point. We
have only drawn the arrows of the main peaks or lower Landau level electronic transitions for
the sake of simplicity.

E Faraday angle contour plots

For completeness, in Figure 15 we show the variability of the Faraday angle for silicene across
the parameter space: polarized light frequency ħhΩ, electric field potential ∆z , magnetic field
B, temperature T and chemical potential µF}, using several contour plots corresponding to
different cross sections. Also, in Figure 16 we do the same for the Faraday angle in HgTE
quantum wells using different cross sections in the {ħhΩ ,λ, B, T,µF} parameter space, where
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the critical thickness λc ≃ 6.17 nm is marked with a vertical magenta grid line. The variability
of the Faraday angle with those parameters is shown with a color code (in degrees), going
from the most negative value (blue) to the most positive (red).

In the case of the silicene, we have also repeated the contour plot of the parameters
{ħhΩ,∆z} for different values of the temperature T = 1, 10,100, 200 K in Figure 17. The
shape of the contour lines is almost the same when varying the temperature, but oscillation
amplitude in the Faraday angle diminish when increasing T , as the colors of the plots tend to
be more flat and yellow (ΘF ≃ 0 according to the legend).

Figure 15: Faraday rotation angle ΘF (in degrees) in a silicene monolayer for
η = 1 meV (all) and µF = 8 meV, T = 1 K, ħhΩ = 50 meV, B = 5 T and ∆z = ∆so,
when they are not varying.
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Figure 16: Faraday rotation angle ΘF (in degrees) in a bulk HgTe QW for η= 1 meV
(all) and µF = 8 meV, T = 1 K, ħhΩ = 50 meV, B = 5 T and λ = 6.55 nm, when they
are not varying. The critical point λc ≃ 6.17 nm is marked with a vertical magenta
grid line.
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Figure 17: Faraday rotation angle ΘF (in degrees) in a silicene monolayer
in the parameter space {ħhΩ,∆z}, and for different values of the temperature
T = 1, 10,100,200 K. We set the other parameters as η = 1 meV, µF = 8 meV, and
B = 5 T.
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